

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

(11)

EP 2 454 996 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
23.05.2012 Bulletin 2012/21

(51) Int Cl.:
A61B 8/08 (2006.01)

(21) Application number: 11165987.6

(22) Date of filing: 13.05.2011

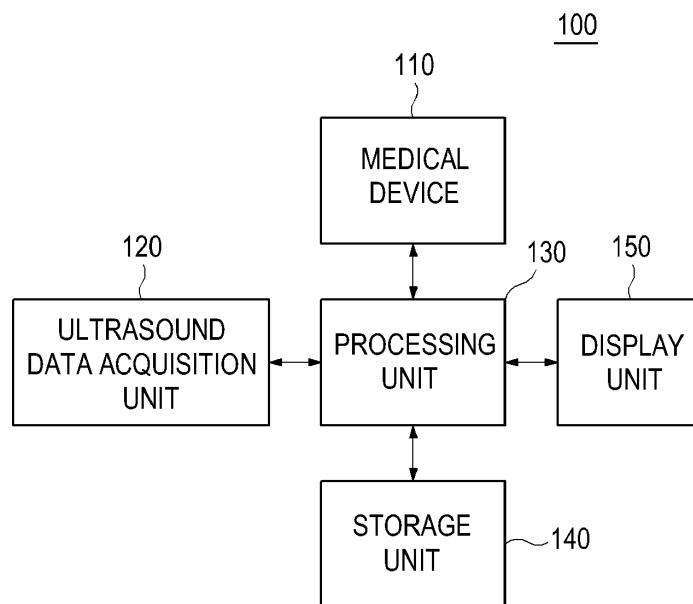
(84) Designated Contracting States:
**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**
Designated Extension States:
BA ME

(30) Priority: 17.11.2010 KR 20100114331

(71) Applicant: **Samsung Medison Co., Ltd.**
Nam-myun
Hongchun-gun
Kangwon do 250-875 (KR)

(72) Inventors:

- Kim, Chul An
135-851, Seoul (KR)
- Song, Young Seuk
135-851, Seoul (KR)
- Hyun, Dong Gyu
135-851, Seoul (KR)


(74) Representative: **Schmid, Wolfgang
Lorenz & Kollegen
Patentanwälte Partnerschaftsgesellschaft
Alte Ulmer Strasse 2
89522 Heidenheim (DE)**

(54) Providing an optimal ultrasound image for interventional treatment in a medical system

(57) Embodiments for providing an optimal ultrasound image for interventional treatment in a medical system are disclosed. In one embodiment, by way of non-limiting example, a medical system comprises: a medical device that is inserted into a target object and configured to remove a lesion within the target object; an ultrasound data acquisition unit configured to transmit and receive

ultrasound signals to and from the target object to output ultrasound data; and a processing unit in communication with the ultrasound data acquisition unit, the processing unit being configured to form a plurality of ultrasound images based on the ultrasound data and perform an image processing upon each of the ultrasound images to detect a position of the medical device.

FIG. 1

Description

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims priority from Korean Patent Application No. 10-2010-0114331 filed on November 17, 2010.

TECHNICAL FIELD

[0002] The present disclosure generally relates to medical systems, and more particularly to providing an optimal ultrasound image for interventional treatment in a medical system.

BACKGROUND

[0003] Surgical treatment using a medical needle such as ablator or biopsy has recently become popular due to relatively small incisions made in such a procedure. The surgical treatment is performed by inserting the medical needle into an internal region of a human body while referring to an internal image of the human body. Such surgical treatment, which is performed while observing internal organs of the human body with the help of a diagnostic imaging system, is referred to as an interventional treatment. The interventional treatment is performed by directing the medical needle to a lesion to be treated or examined through a skin with reference to images during the treatment. The images are acquired by employing a computerized tomography (CT) scanner, which is generally used in a radiology department, or a magnetic resonance imaging (MRI) system. Compared to a normal surgical treatment requiring relatively wide incisions to open the lesion, the interventional treatment has the advantages of low costs and obtaining effective operation results. This is because general anesthesia is not necessary for the interventional treatment and patients are subjected to less pain while benefiting from rapid recovery.

[0004] However, it is difficult to obtain such images in real time by using the CT scanner or the MRI system. Especially, when the interventional treatment is performed by using the CT scanner, both the patient and the operator are exposed to radiation for quite a long time. However, when the interventional treatment is performed by using an ultrasound diagnostic system, the images can be obtained in real time without affecting the human body. But, there is a problem since it is difficult to accurately recognize the lesion as well as the medical device (i.e., a needle) in the ultrasound image obtained by using the ultrasound system.

SUMMARY

[0005] Embodiments for providing an optimal ultrasound image for interventional treatment in a medical system are disclosed herein. In one embodiment, by way

of non-limiting example, a medical system comprises: a medical device inserted into a target object and configured to remove a lesion within the target object; an ultrasound data acquisition unit configured to transmit and receive ultrasound signals to and from the target object to output ultrasound data; and a processing unit in communication with the ultrasound data acquisition unit, the processing unit being configured to form a plurality of ultrasound images based on the ultrasound data and perform an image processing upon each of the ultrasound images to detect a position of the medical device.

[0006] In another embodiment, there is a method of providing an ultrasound image for interventional treatment, comprising: a) inserting a medical device including a needle into a target object; b) transmitting and receiving ultrasound signals to and from the target object to output ultrasound data; c) forming a plurality of ultrasound images based on the ultrasound data; and d) performing an image processing upon each of the ultrasound images to detect a position of the needle.

[0007] The Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008]

FIG. 1 is a block diagram showing an illustrative embodiment of a medical system.

FIG. 2 is a block diagram showing an illustrative embodiment of an ultrasound data acquisition unit.

FIG. 3 is a schematic diagram showing an example of acquiring ultrasound data corresponding to a plurality of ultrasound images.

FIG. 4 is a flow chart showing a process of forming an optimal ultrasound image for interventional treatment in accordance with a first embodiment.

FIG. 5 is a schematic diagram showing an example of a reference ultrasound image and a plurality of sub ultrasound images in accordance with a second embodiment.

FIG. 6 is a flow chart showing a process of forming an optimal ultrasound image for interventional treatment in accordance with the second embodiment.

FIG. 7 is a flow chart showing a process of forming an optimal ultrasound image for interventional treatment in accordance with a third embodiment.

FIG. 8 is a flow chart showing a process of forming an optimal ultrasound image for interventional treatment in accordance with a fourth embodiment.

DETAILED DESCRIPTION

[0009] A detailed description may be provided with ref-

erence to the accompanying drawings. One of ordinary skill in the art may realize that the following description is illustrative only and is not in any way limiting.

First embodiment

[0010] FIG. 1 is a block diagram showing an illustrative embodiment of a medical system. As depicted therein, the medical system 100 includes a medical device 110. The medical device 110 includes a needle (not shown) for removing the lesion of a living body and a vibration applying section (not shown) for applying vibration to the needle. However, it should be noted herein that the medical device 110 may not be limited thereto. The living body includes a plurality of target objects (e.g., blood vessels, a heart, a lesion, etc.).

[0011] The medical system 100 further includes an ultrasound data acquisition unit 120. The ultrasound data acquisition unit 120 is configured to transmit and receive ultrasound signals to and from the living body and output ultrasound data.

[0012] FIG. 2 is a block diagram showing the ultrasound data acquisition unit 120 in accordance with the first embodiment. Referring to FIG. 2, the ultrasound data acquisition unit 120 includes an ultrasound probe 210, a transmitting section ("Tx signal generating section") 220, a receiving section ("beam former") 230 and an ultrasound data forming section 240.

[0013] The ultrasound probe 210 includes a plurality of elements (not shown) for reciprocally converting between ultrasound signals and electrical signals. The ultrasound probe 210 is configured to transmit ultrasound signals to the living body based on each of scanlines (not shown). The ultrasound probe 210 further receives ultrasound signals (i.e., ultrasound echo signals) from the living body and output the received signals. The received signals are analog signals. The ultrasound probe 210 includes a convex probe, a linear probe and the like.

[0014] The Tx signal generating section 220 is configured to control the transmission of the ultrasound signals. The Tx signal generating section 220 further generates electrical signals ("Tx signals") in consideration of the elements and focal points. The Tx signals are low frequency (e.g., 2~5MHz) Tx signals or high frequency (e.g., more than 10MHz) Tx signals.

[0015] For example, the Tx signal generating section 220 generates the Tx signals for obtaining each of a plurality of ultrasound images UI_i ($1 \leq i$) as shown in FIG. 3, sequentially. Thus, the ultrasound probe 210 converts the Tx signals provided from the Tx signal generating section 220 into the ultrasound signals, transmit the ultrasound signals to the living body and receive the ultrasound echo signals from the living body to thereby output electrical signals ("the received signals").

[0016] The beam former 230 is configured to convert the received signals provided from the ultrasound probe 210 into digital signals. The beam former 230 further applies delays to the digital signals in consideration of the

elements and the focal points to output digital receive-focused signals.

[0017] The ultrasound data forming section 240 is configured to form ultrasound data corresponding to the ultrasound images based on the digital receive-focused signals provided from the beam former 230. The ultrasound data forming section 240 is further configured to perform signal processing (e.g., gain control, etc) upon the digital receive-focused signals.

[0018] Referring back to FIG 1, the medical system 100 further includes a processing unit 130 in communication with the medical device 110 and the ultrasound data acquisition unit 120. The processing unit 130 includes a central processing unit, a microprocessor or a graphic processing unit. However, it should be noted herein that the processing unit 130 may not be limited thereto.

[0019] FIG. 4 is a flow chart showing a process of forming an optimal ultrasound image for interventional treatment in accordance with the first embodiment. As explained above, the medical device including the needle is inserted into the target object, and then the ultrasound data are obtained by transmitting and receiving ultrasound signals to and from the target object. The processing unit 130 is configured to form the ultrasound image UI_i based on the ultrasound data provided from the ultrasound data acquisition unit 120, at step S402 in FIG. 4.

[0020] The processing unit 130 is configured to perform motion tracking between the ultrasound image UI_{i-1} and the ultrasound image UI_i to detect a position of the medical device 110 from the ultrasound image UI_i , at step S404 in FIG. 4. The methods of performing the motion tracking are well known in the art. Thus, they have not been described in detail so as not to unnecessarily obscure the present invention.

[0021] The processing unit 130 is configured to perform image processing for enhancing image quality upon the ultrasound image UI_i based on the detected position, at step S406 of FIG. 4. The methods of enhancing the image quality are well known in the art. Thus, they have not been described in detail so as not to unnecessarily obscure the present invention.

[0022] The processing unit 130 is configured to continuously perform the process upon all of the ultrasound images while performing the interventional treatment, as mentioned above, at step S408 in FIG. 4.

[0023] Referring back to FIG. 1, the medical system 100 further includes a storage unit 140. The storage unit 140 stores the ultrasound data acquired by the ultrasound data acquisition unit 120. The storage unit 140 further stores the ultrasound images formed by the processing unit 130.

[0024] The medical system 100 further includes a display unit 150. The display unit 150 displays the ultrasound images formed by the processing unit 130. The display unit 150 further displays the ultrasound images image-processed by the processing unit 130. The display unit 150 includes a cathode ray tube, a liquid crystal display,

an organic light emitting diode and the like.

Second Embodiment

[0025] Referring to FIG. 1, the medical device 110 includes the needle (not shown) for removing the lesion of the living body.

[0026] The ultrasound data acquisition unit 120 includes the ultrasound probe 210, the Tx signal generating section 220, the receiving section 230 and an ultrasound data forming section 240, as shown in FIG. 2.

[0027] The ultrasound probe 210 includes the plurality of elements (not shown) for reciprocally converting between ultrasound signals and electrical signals. The ultrasound probe 210 is configured to transmit ultrasound signals to the living body based on each of the scanlines (not shown). The ultrasound probe 210 further receives the ultrasound echo signals from the living body and output the received signals. The received signals are analog signals.

[0028] The Tx signal generating section 220 is configured to control transmission of the ultrasound signals. The Tx signal generating section 220 is further configured to generate electrical signals ("Tx signals") for obtaining ultrasound images in consideration of the elements and focal points. In this embodiment, the Tx signal generating section 220 is configured to form Tx signals for obtaining a reference ultrasound image, which does not steer the scanlines, and Tx signals for obtaining a plurality of sub ultrasound images, which electronically steer the scanlines in different steering angles.

[0029] For example, the Tx signal generating section 220 forms first Tx signals for obtaining a reference ultrasound image U_{1R} , which does not steer the scanlines (not shown), as shown in FIG. 5. Thus, the ultrasound probe 210 converts the first Tx signals provided from the Tx signal generating section 220 into ultrasound signals, transmit the ultrasound signals to the living body, and receive ultrasound echo signals from the living body to thereby output first received signals. The Tx signal generating section 220 further generates second Tx signals for obtaining a first sub ultrasound image SUI_1 , which electronically steers the scanlines in a first steering angle θ_1 , as shown in FIG. 5. As such, the ultrasound probe 210 further converts the second Tx signals provided from the Tx signal generating section 220 into ultrasound signals, transmit the ultrasound signal to the living body, and receive ultrasound echo signals from the living body to thereby output second received signals. The Tx signal generating section 220 further generates third Tx signals for obtaining a second sub ultrasound image SUI_2 , which electronically steers the scanlines in a second steering angle θ_2 , as shown in FIG. 5. Thus, the ultrasound probe 210 further converts the third Tx signals provided from the Tx signal generating section 220 into ultrasound signals, transmit the ultrasound signal to the living body, and receive ultrasound echo signals from the living body to thereby output third received signals. The Tx signal

generating section 220 further generates fourth Tx signals for obtaining a third sub ultrasound image SUI_3 , which electronically steers the scanlines in a third steering angle θ_3 , as shown in FIG. 5. Thus, the ultrasound probe 210 further converts the fourth Tx signals provided from the Tx signal generating section 220 into ultrasound signals, transmit the ultrasound signal to the living body, and receive ultrasound echo signals from the living body to thereby output fourth received signals. The Tx signal generating section 220 further generates fifth Tx signals for obtaining a fourth sub ultrasound image SUI_4 which electronically steers the scanlines in a fourth steering angle θ_4 , as shown in FIG. 5. Thus, the ultrasound probe 210 further converts the fifth Tx signals provided from the Tx signal generating section 220 into ultrasound signals, transmit the ultrasound signal to the living body, and receive ultrasound echo signals from the living body to thereby output fifth received signals.

[0030] The beam former 230 is configured to convert the received signals provided from the ultrasound probe 210 into digital signals. The beam former 230 is further configured to apply delays to the digital signals in consideration of the elements and the focal points to output digital receive-focused signals.

[0031] For example, the beam former 230 converts the first received signals provided from the ultrasound probe 210 into first digital signals. The beam former 230 further applies delays to the first digital signals in consideration of the elements and the focal points to output first digital receive-focused signals. Also, the beam former 230 converts the second received signals provided from the ultrasound probe 210 into second digital signals. The beam former 230 further applies delays to the second digital signals in consideration of the elements and the focal points to output second digital receive-focused signals. Also, the beam former 230 converts the third received signals provided from the ultrasound probe 210 into third digital signals. The beam former 230 further applies delays to the third digital signals in consideration of the elements and the focal points to output third digital receive-focused signals. Also, the beam former 230 converts the fourth received signals provided from the ultrasound probe 210 into fourth digital signals. The beam former 230 further applies delays to the fourth digital signals to output fourth digital receive-focused signals. Also, the beam former 230 converts the fifth received signals provided from the ultrasound probe 210 into fifth digital signals. The beam former 230 further applies delays to the fifth digital signals to output fifth digital receive-focused signals.

[0032] The ultrasound data forming section 240 is configured to form ultrasound data based on the digital receive-focused signals provided from the beam former 230. The ultrasound data includes radio frequency data.

[0033] For example, the ultrasound data forming sec-

tion 240 forms first ultrasound data corresponding to the reference ultrasound image UI_R based on the first digital receive-focused signals. The ultrasound data forming section 240 further forms second ultrasound data corresponding to the first sub ultrasound image SUI_1 based on the second digital receive-focused signals. The ultrasound data forming section 240 further forms third ultrasound data corresponding to the second sub ultrasound image SUI_2 based on the third digital receive-focused signals. The ultrasound data forming section 240 further forms fourth ultrasound data corresponding to the third sub ultrasound image SUI_3 based on the fourth digital receive-focused signals. The ultrasound data forming section 240 further forms fifth ultrasound data corresponding to the fourth sub ultrasound image SUI_4 based on the fifth digital receive-focused signals.

[0034] FIG. 6 is a flow chart showing a process of forming an optimal ultrasound image for interventional treatment in accordance with the second embodiment. The processing unit 130 is configured to form ultrasound images based on the ultrasound data provided from the ultrasound data acquisition unit 120, at step S602 in FIG. 6. For example, the processing unit 130 forms the reference ultrasound image UI_R based on the first ultrasound data provided from the ultrasound data acquisition unit 120. The processing unit 130 further forms the first sub ultrasound image SU_1 to the fourth sub ultrasound image SU_4 based on the second ultrasound data to fifth ultrasound data provided from the ultrasound data acquisition unit 120.

[0035] The processing unit 130 is configured to perform a contour detection upon each of the sub ultrasound images to detect the contour of the medical device 110, at step S604 in FIG. 6. The methods of performing the contour detection are well known in the art. Thus, they have not been described in detail so as not to unnecessarily obscure the present invention.

[0036] The processing unit 130 is configured to compare the detected contours from each of the sub ultrasound images to extract an optimal sub ultrasound image from the sub ultrasound images based on the detected contour, at step S606 in FIG. 6. For example, the processing unit 130 detects a sub ultrasound image having the contour of a maximum brightness value from the sub ultrasound images, and extracts the detected sub ultrasound image as the optimal sub ultrasound image.

[0037] The processing unit 130 is configured to control display of the reference ultrasound image and the optimal sub ultrasound image, at step S608 in FIG. 6. For example, the processing unit 130 controls that the reference ultrasound image and the extracted sub ultrasound image are displayed in dual form.

[0038] Referring back to FIG. 1, the storage unit 140 stores the ultrasound data acquired by the ultrasound data acquisition unit 120.

[0039] The display unit 150 displays the reference ultrasound image and the optimal sub ultrasound image. The display unit 150 may further display the sub ultra-

sound images.

Third embodiment

5 **[0040]** Referring to FIG. 1, the medical device 110 includes the needle (not shown) and a fluid providing section (not shown). The needle includes a pipe (not shown) therein. The fluid providing section is configured to provide the fluid to the pipe.

10 **[0041]** The ultrasound data acquisition unit 120 includes an ultrasound probe 210, the Tx signal generating section 220, the receiving section 230 and the ultrasound data forming section 240, as shown in FIG. 2.

15 **[0042]** The ultrasound probe 210 includes the plurality of elements (not shown) for reciprocally converting between ultrasound signals and electrical signals. The ultrasound probe 210 is configured to transmit ultrasound signals to the living body based on each of scanlines (not shown). The ultrasound probe 210 further receives the ultrasound echo signals from the living body and output the received signals. The received signals are analog signals.

20 **[0043]** The Tx signal generating section 220 is configured to control the transmission of the ultrasound signals.

25 The Tx signal generating section 220 is further configured to generate Tx signals in consideration of the elements and the focal points. In the embodiment, the Tx signal generating section 220 forms Tx signals for obtaining each of ultrasound images, sequentially. Thus, the ultrasound probe 210 converts the Tx signals provided from the Tx signal generating section 220 into ultrasound signals, transmit the ultrasound signals to the living body, and receive the ultrasound echo signals from the living body to thereby output the received signals.

30 **[0044]** The beam former 230 is configured to convert the received signals provided from the ultrasound probe 210 into digital signals. The beam former 230 is further configured to apply delays to the digital signals in consideration of the elements and the focal points to output digital receive-focused signals.

35 **[0045]** The ultrasound data forming section 240 is configured to form ultrasound data corresponding to each of the ultrasound images based on the digital receive-focused signals provided from the beam former 230. The ultrasound data forming section 240 is further configured to perform signal processing (e.g., gain control, etc) upon the digital receive-focused signals.

40 **[0046]** FIG. 7 is a flow chart showing a process of forming an optimal ultrasound image for interventional treatment in accordance with the third embodiment. The processing unit 130 is configured to form at least one brightness mode image based on the ultrasound data provided from the ultrasound data acquisition unit 120, at step S702 in FIG. 7.

45 **[0047]** The processing unit 130 is configured to form Doppler signals based on the ultrasound data provided from the ultrasound data acquisition unit 120, at step S704 in FIG. 7. The methods of forming the Doppler sig-

nals based on the ultrasound data are well known in the art. Thus, they have not been described in detail so as not to unnecessarily obscure the present invention.

[0048] The processing unit 130 is configured to calculate velocity components and power components based on the Doppler signals, at step S706 in FIG. 7. The methods of calculate the velocity components and the power components based on the Doppler signals are well known in the art. Thus, they have not been described in detail so as not to unnecessarily obscure the present invention.

[0049] The processing unit 130 is configured to form a color Doppler image corresponding to the fluid flow based on the velocity components and the power components, at step S708 in FIG. 7. The methods of forming the color Doppler image based on the velocity components and the power components are well known in the art. Thus, they have not been described in detail so as not to unnecessarily obscure the present invention.

[0050] The processing unit 130 is configured to perform image compounding upon the brightness mode image and the color Doppler image to form a compound image, at step S710 in FIG. 7.

[0051] Optionally, the processing unit 130 further detects a position of the medical device 110 from the brightness mode image based on the color Doppler image, and performs the image processing for making prominence of the medical device 110 upon the brightness mode image based on the detected position.

[0052] Referring back to FIG. 1, the storage unit 140 stores the ultrasound data acquired by the ultrasound data acquisition unit 120. The storage unit 140 further stores the Doppler signals formed by the processing unit 130.

[0053] The display unit 150 displays the compound image formed by the processing unit 130. The display unit 150 further displays the brightness mode image formed by the processing unit 130. The display unit 150 further displays the color Doppler image formed by the processing unit 130.

Fourth embodiment

[0054] Referring to FIG. 1, the medical device 110 includes the needle (not shown) for remove the lesion of the living body.

[0055] The ultrasound data acquisition unit 120 includes the ultrasound probe 210, the Tx signal generating section 220, the beam former 230 and the ultrasound data forming section 240 as shown in FIG. 2.

[0056] The ultrasound probe 210 includes the plurality of elements (not shown) for reciprocally converting between ultrasound signals and electrical signals. The ultrasound probe 210 is configured to transmit ultrasound signals to the living body based on each of scanlines (not shown). The ultrasound probe 210 is further configured to receive the ultrasound echo signals from the living body to thereby output the received signals.

[0057] The Tx signal generating section 220 is configured to control the transmission of the ultrasound signals. The Tx signal generating section 220 is further configured to generate Tx signals for obtaining each of ultrasound images in consideration of the elements and the focal points.

[0058] The beam former 230 is configured to convert the received signals provided from the ultrasound probe 210 into digital signals. The beam former 230 is further configured to apply delays to the digital signals in consideration of the elements and the focal points to output digital receive-focused signals.

[0059] The ultrasound data forming section 240 is configured to form the ultrasound data corresponding to each of the ultrasound images based on the digital receive-focused signals provided from the beam former 230. The ultrasound data includes phase information. Also the ultrasound data is radio frequency data. However, it should be noted herein that the ultrasound data may not be limited thereto. The ultrasound data forming section 240 further performs signal processing (e.g., gain control, etc) upon the digital receive-focused signals.

[0060] FIG. 8 is a flow chart showing a process of forming an optimal ultrasound image for interventional treatment in accordance with the fourth embodiment. The processing unit 130 is configured to analyze the ultrasound data provided from the ultrasound data acquisition unit 120 to detect a region that phase inversion occurs, at step S802 in FIG. 8. Generally, the phase of sound wave is inverted at a reflection plane when the sound wave is transmitted from a softness medium to a hardness medium, or vice versa. Thus, the processing unit 130 detects the phase inversion region at the reflection plane based on the phase inversion characteristic.

[0061] The processing unit 130 is configured to form the ultrasound images based on the ultrasound images provided from the ultrasound data acquisition unit 120, at step S804 in FIG. 8. The ultrasound image includes a brightness mode image. However, it should be noted herein that the ultrasound image may not be limited thereto.

[0062] The processing unit 130 is configured to perform edge detection upon the phase inversion region of the ultrasound images, at step S806 in FIG. 8. The edge is detected by using an edge mask such as a Sobel mask, a Prewitt mask, a Robert mask, a Canny mask and the like. Also, the edge is detected by using a structure tensor.

[0063] The processing unit 130 is configured to perform an image processing upon the ultrasound data based on the detected edge, at step S808 in FIG. 8. In one embodiment, the processing unit 130 performs the image processing for making prominence of the detected edge upon the ultrasound image.

[0064] Referring back to FIG. 1, the storage unit 140 stores the ultrasound data acquired at the ultrasound data acquisition unit 120.

[0065] The display unit 150 displays the ultrasound im-

age formed at the processing unit 130. The display unit 150 further displays the image-processed ultrasound image.

[0066] Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the scope of the principles of this disclosure. More particularly, numerous variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.

Claims

1. A medical system, comprising:

a medical device inserted into a target object and configured to remove a lesion within the target object;
an ultrasound data acquisition unit configured to transmit and receive ultrasound signals to and from the target object to output ultrasound data; and
a processing unit in communication with the ultrasound data acquisition unit, the processing unit being configured to form a plurality of ultrasound images based on the ultrasound data and perform an image processing upon each of the ultrasound images to detect a position of the medical device.

2. The medical system of Claim 1, wherein the medical device comprises:

a needle configured to remove the lesion; and a vibration applying section configured to apply vibration to the needle,
wherein the processing unit is configured to:

form the ultrasound images based on the ultrasound data;
perform motion tracking upon each of the ultrasound images to detect the position of the needle; and
perform an image processing for making prominence of the ultrasound images upon each of the ultrasound images based on the detected position of the needle.

3. The medical system of Claim 1, wherein the ultrasound data acquisition unit is configured to transmit and receive ultrasound signals to and from the target

object based on a plurality of steering angles to output ultrasound data,
wherein the processing unit is configured to:

form the plurality of ultrasound images corresponding to the plurality of steering angles based on the ultrasound image;
perform a contour detection upon each of the ultrasound images to detect contour of the medical device; and
compare the detected contours from each of the ultrasound images to extract an optimal ultrasound image from the ultrasound images based on the detected contour.

4. The medical system of Claim 3, wherein the processing unit is configured to extract the optima ultrasound image having the contour of a maximum brightness value.

5. The medical system of Claim 1, wherein the medical device comprises:

a needle including a pipe therein; and a fluid providing section configured to provide fluid to the pipe,
wherein the processing unit is configured to:

form a brightness mode image based on the ultrasound data;
form Doppler signals based on the ultrasound data;
calculate velocity components and power components based on the Doppler signals;
form color Doppler image corresponding to the fluid flow based on the velocity components and the power components; and
perform an image compounding upon the brightness mode image and the color Doppler image to form compound image.

6. The medical system of Claim 1, wherein the medical device comprises:

a needle including a pipe therein; and a fluid providing section configured to provide fluid to the pipe,
wherein the processing unit is configured to:

form a brightness mode image based on the ultrasound data;
form Doppler signals based on the ultrasound data;
calculate velocity components and power components based on the Doppler signals;
form a color Doppler image corresponding to the fluid flow based on the velocity components and the power components;

detect a position of the needle from the brightness mode image based on the color Doppler image; and perform an image processing for making prominence of the brightness mode image based on the detected position of the needle. 5

7. The medical system of Claim 1, wherein the processing unit is configured to: 10

detect a phase inversion region based on the ultrasound data, wherein the phase inversion region is defined when a sound wave is transmitted from a softness medium to a hardness medium, or vice versa; 15

form the ultrasound images based on the ultrasound image; perform edge detection upon the phase inversion region of the ultrasound images; and perform an image processing for making prominence upon each of the ultrasound images based on the detected edge. 20

8. A method of providing an ultrasound image for interventional treatment, comprising: 25

inserting a medical device including a needle into a target object; transmitting and receiving ultrasound signals to and from the target object to output ultrasound data; 30

forming a plurality of ultrasound images based on the ultrasound data; and performing an image processing upon each of the ultrasound images to detect a position of the needle. 35

9. The method of Claim 8, wherein the step a) further comprises: 40

applying vibration to the needle, wherein the step d) comprises:

performing motion tracking upon each of the ultrasound images to detect the position of the needle; and performing an image processing for making prominence of the ultrasound images upon each of the ultrasound images based on the detected position of the needle. 45

10. The method of Claim 8, wherein the step b) comprises: 50

transmitting and receiving ultrasound signals to and from the target object based on a plurality of steering angles to output ultrasound data, 55

wherein the step d) comprises:

d1) performing a contour detection upon each of the ultrasound images to detect contour of the medical device; and d2) comparing the detected contours from each of the ultrasound images to extract an optimal ultrasound image from the ultrasound images. 60

11. The method of Claim 10, wherein the step d2) comprises: 65

extracting the optimal ultrasound image having the contour of a maximum brightness value. 70

12. The method of Claim 8, wherein the step a) further comprises: 75

providing fluid to a pipe of the needle. 80

13. The method of Claim 12, wherein the step d) comprises: 85

forming a brightness mode image based on the ultrasound data; forming Doppler signals based on the ultrasound data; calculating velocity components and power components based on the Doppler signals; forming a color Doppler image corresponding to the fluid flow based on the velocity components and the power components; and performing an image compounding upon the brightness mode image and the color Doppler image to form compound image. 90

14. The method of Claim 12, wherein the step d) comprises: 95

forming a brightness mode image based on the ultrasound data; forming Doppler signals based on the ultrasound data; calculating velocity components and power components based on the Doppler signals; forming a color Doppler image corresponding to the fluid flow based on the velocity components and the power components; detecting a position of the needle from the brightness mode image based on the color Doppler image; and performing an image processing for making prominence of the brightness mode image based on the detected position of the needle. 100

15. The method of Claim 8, wherein the step d) comprises:

detecting a phase inversion region based on the ultrasound data, wherein the phase inversion region is defined when a sound wave is transmitted from a softness medium to a hardness medium, or vice versa; 5
forming the ultrasound images based on the ultrasound image;
performing edge detection upon the phase inversion region of the ultrasound images; and
performing an image processing for making 10
prominence upon each of the ultrasound images based on the detected edge.

5

10

15

20

25

30

35

40

45

50

55

FIG. 1

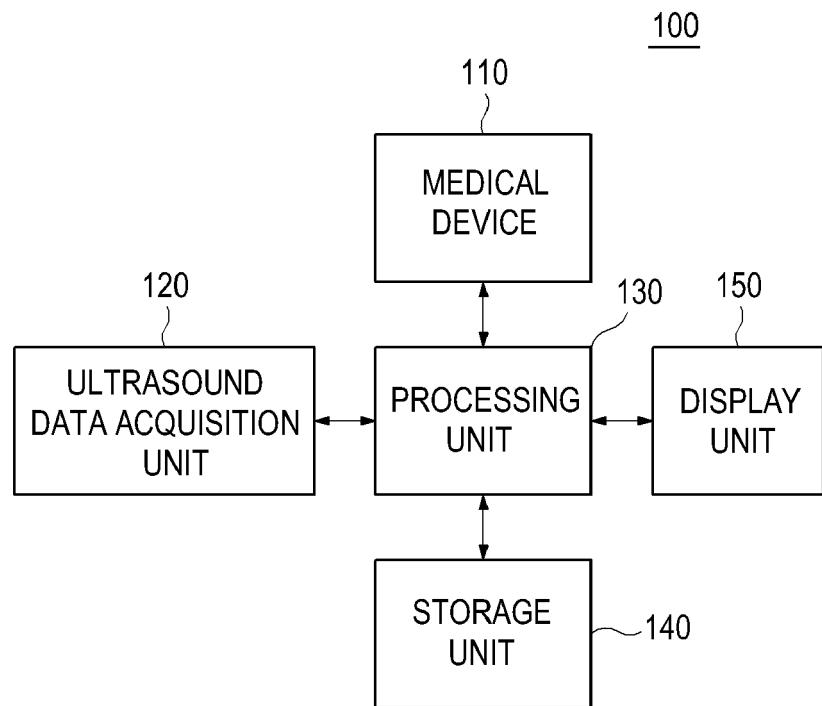


FIG. 2

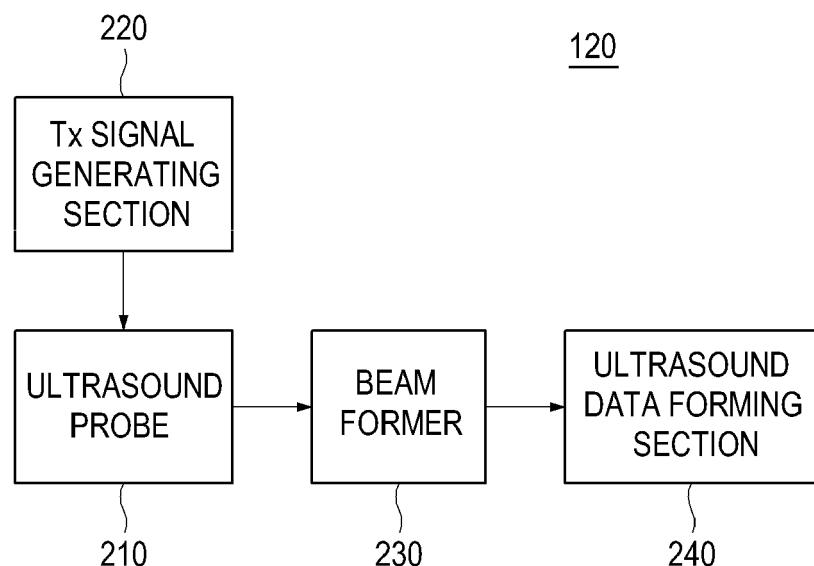


FIG. 3

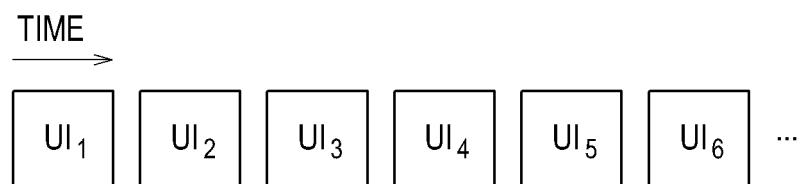


FIG. 4

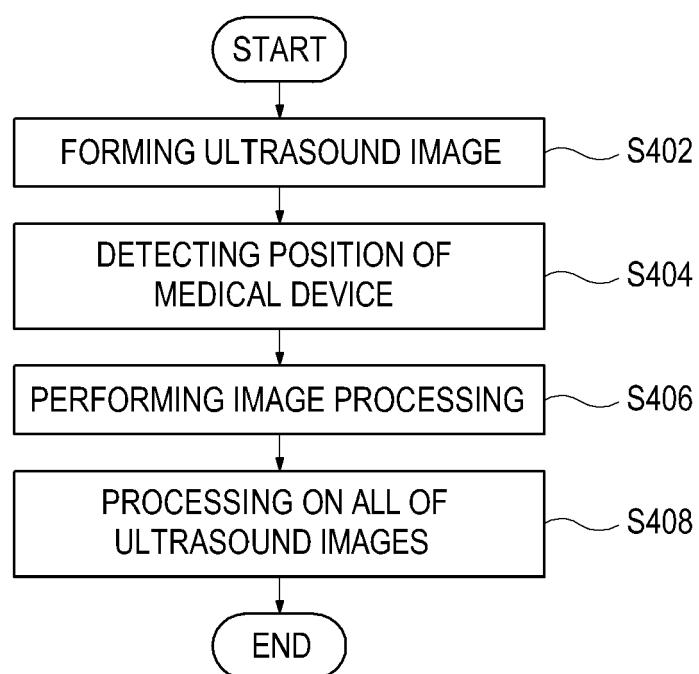


FIG. 5

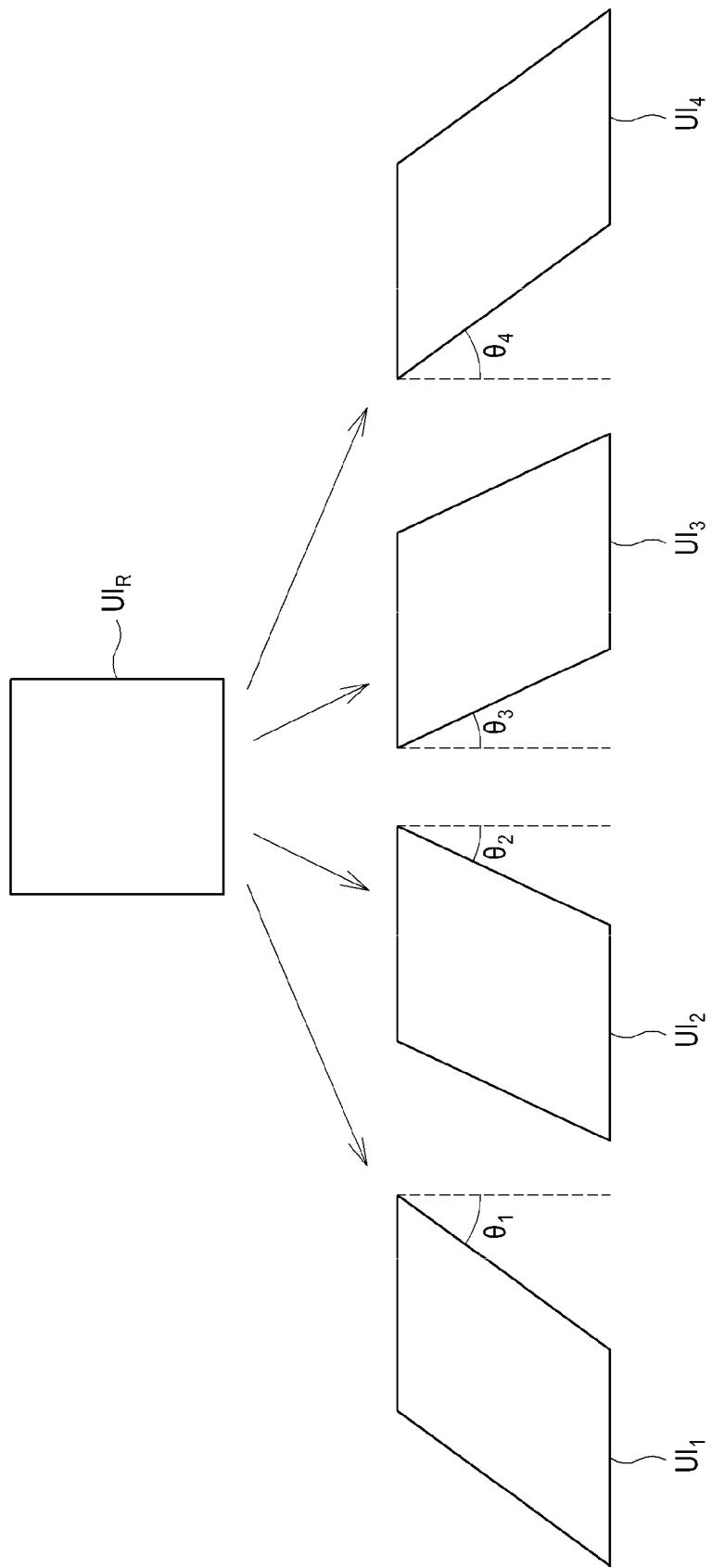


FIG. 6

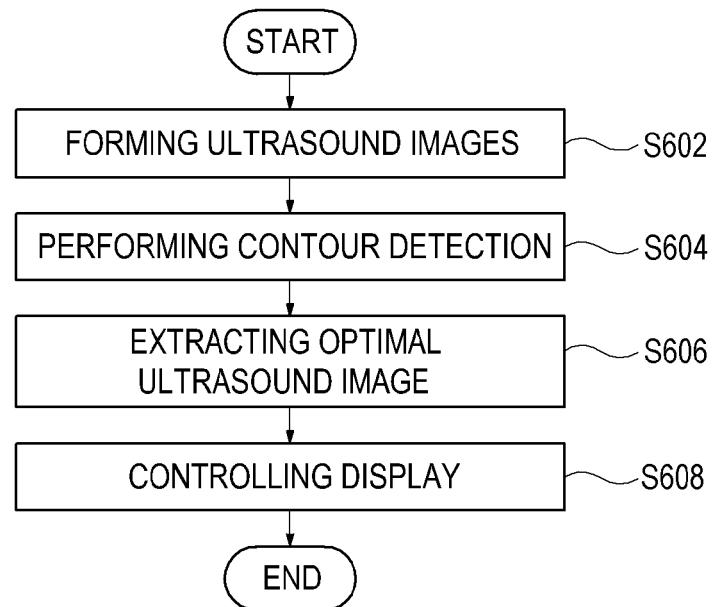


FIG. 7

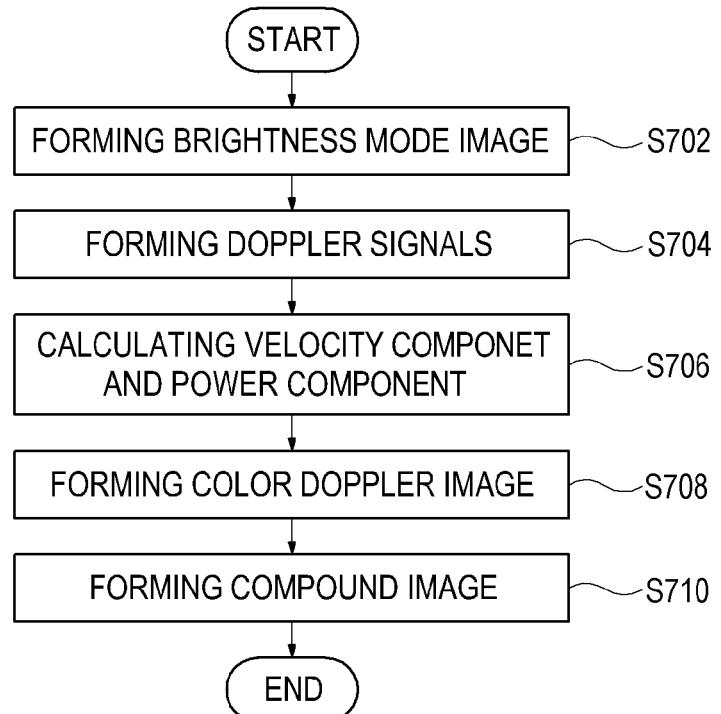
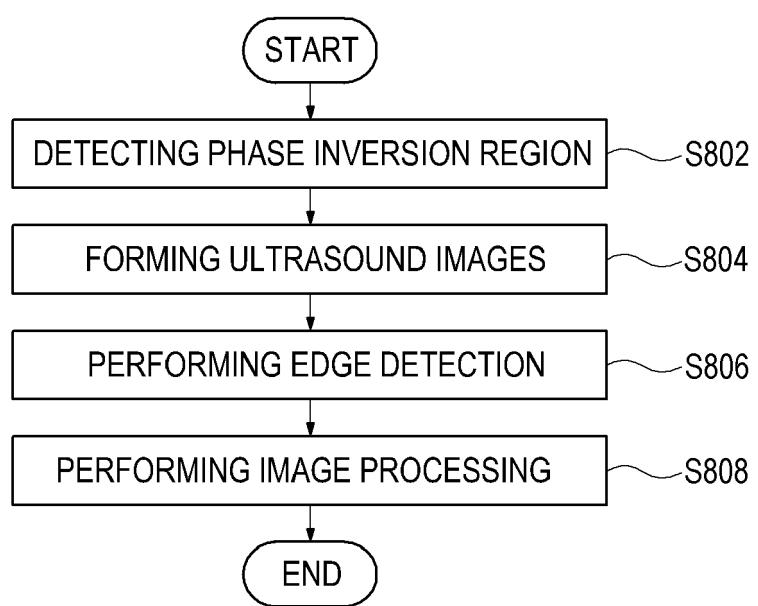



FIG. 8

EUROPEAN SEARCH REPORT

 Application Number
 EP 11 16 5987

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	EP 0 453 251 A1 (ADVANCED TECH LAB [US]) 23 October 1991 (1991-10-23) * column 2, line 18 - line 44 * * column 3, line 31 - column 8, line 52; claims 1,10,15,16; figures 1,2,4 * -----	1,2	INV. A61B8/08
X	US 5 967 985 A (HAYAKAWA KENICHI [JP]) 19 October 1999 (1999-10-19) * column 1, line 26 - line 27 * * column 2, line 34 - line 35 * * column 17, line 12 - line 22; figure 1 * * column 24, line 14 - column 25, line 43; figures 7a-c,8 * * column 28, line 39 - column 29, line 30; figure 12 *	1,2	
A	* column 1, line 26 - line 27 * * column 2, line 34 - line 35 * * column 17, line 12 - line 22; figure 1 * * column 24, line 14 - column 25, line 43; figures 7a-c,8 * * column 28, line 39 - column 29, line 30; figure 12 *	5,6	
X	WO 2004/019799 A2 (COMPUTERIZED MED SYST INC [US]; BURDETTE EVERETTE C [US]; DEARDORFF DA) 11 March 2004 (2004-03-11) * page 14, line 36 - page 15, line 20; figure 1 *	1,3	
Y		4	TECHNICAL FIELDS SEARCHED (IPC)
A		7	A61B
Y	US 6 336 899 B1 (YAMAZAKI NOBUO [JP]) 8 January 2002 (2002-01-08) * column 10, line 34 - column 11, line 6; figures 9a,9b,10a,10b * * column 3, line 33 - line 58; figure 2 *	4	
A	* column 10, line 34 - column 11, line 6; figures 9a,9b,10a,10b * * column 3, line 33 - line 58; figure 2 *	3	
X	US 2006/241451 A1 (NAKAYA SHIGEMITSU [JP] ET AL) 26 October 2006 (2006-10-26) * paragraphs [0115] - [0131]; figures 16,17,18a,18b *	1	
Y		5,6	
A		3,4,7	
Y	WO 2004/082749 A2 (KEENAN JAMES [CA]) 30 September 2004 (2004-09-30) * page 6, line 20 - page 7, line 21; figure 1 * * page 12, line 29 - page 13, line 2 *	5,6	

		-/-	
The present search report has been drawn up for all claims			
2	Place of search The Hague	Date of completion of the search 19 March 2012	Examiner Daoukou, Eleni
CATEGORY OF CITED DOCUMENTS			
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			
T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document			

EUROPEAN SEARCH REPORT

Application Number

EP 11 16 5987

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
X	WO 99/16352 A1 (MEDSIM ADVANCED RADIOLOGY MEDI [IL]; FRIEDMAN MARK M [IL]; NADLER SIMA) 8 April 1999 (1999-04-08) * page 7, line 16 - page 9, line 2 * * page 15, line 9 - page 17, line 6; figure 3 * -----	1,7	TECHNICAL FIELDS SEARCHED (IPC)
A	EP 2 215 969 A1 (TOSHIBA KK [JP]; TOSHIBA MEDICAL SYS CORP [JP]) 11 August 2010 (2010-08-11) * paragraphs [0009], [0026] - [0027], [0038] - [0044], [0051] - [0053], [0058], [0066] * -----	1,3-6	TECHNICAL FIELDS SEARCHED (IPC)
A	EP 1 323 380 A2 (MEDISON CO LTD [KR]) 2 July 2003 (2003-07-02) * paragraphs [0006], [0008], [0011] - [0012], [0015], [0017], [0018], [0022] - [0024]; figures 2,5 * -----	1,3	TECHNICAL FIELDS SEARCHED (IPC)
A	WO 2004/086082 A1 (KONINKL PHILIPS ELECTRONICS NV [NL]; PESZYNSKI MICHAEL [US]; SALGO IVA) 7 October 2004 (2004-10-07) * page 10, line 23 - page 11, line 5 * -----	3	TECHNICAL FIELDS SEARCHED (IPC)
A	US 2002/173719 A1 (ZHAO DANHUA [US] ET AL) 21 November 2002 (2002-11-21) * paragraphs [0006], [0013] - [0015], [0017], [0035], [0037]; figures 1,2 * -----	3	TECHNICAL FIELDS SEARCHED (IPC)
A	WO 2009/069038 A1 (KONINKL PHILIPS ELECTRONICS NV [NL]; FERNANDEZ ANNA [US]; XIE HUA [US]) 4 June 2009 (2009-06-04) * page 6, line 33 - page 9, line 8; figures 4,5 * -----	5,6	TECHNICAL FIELDS SEARCHED (IPC)
2 The present search report has been drawn up for all claims			TECHNICAL FIELDS SEARCHED (IPC)
Place of search The Hague		Date of completion of the search 19 March 2012	Examiner Daoukou, Eleni
CATEGORY OF CITED DOCUMENTS <p>X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document</p> <p>T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document</p>			

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 11 16 5987

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

19-03-2012

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0453251	A1	23-10-1991	AT DE DE EP JP JP US	156984 T 69127310 D1 69127310 T2 0453251 A1 3146018 B2 4227239 A 5095910 A	15-09-1997 25-09-1997 22-01-1998 23-10-1991 12-03-2001 17-08-1992 17-03-1992
US 5967985	A	19-10-1999	DE JP JP US	19754674 A1 3723663 B2 11033021 A 5967985 A	11-02-1999 07-12-2005 09-02-1999 19-10-1999
WO 2004019799	A2	11-03-2004	AU EP US WO	2003263003 A1 1542591 A2 2005182316 A1 2004019799 A2	19-03-2004 22-06-2005 18-08-2005 11-03-2004
US 6336899	B1	08-01-2002	JP JP US	4443672 B2 2000185041 A 6336899 B1	31-03-2010 04-07-2000 08-01-2002
US 2006241451	A1	26-10-2006	EP US WO	1803402 A1 2006241451 A1 2006043639 A1	04-07-2007 26-10-2006 27-04-2006
WO 2004082749	A2	30-09-2004	CA CA CN EP JP US WO	2433205 A1 2519324 A1 1791440 A 1605996 A2 2006520220 A 2007197954 A1 2004082749 A2	18-09-2004 30-09-2004 21-06-2006 21-12-2005 07-09-2006 23-08-2007 30-09-2004
WO 9916352	A1	08-04-1999	AU WO	9482698 A 9916352 A1	23-04-1999 08-04-1999
EP 2215969	A1	11-08-2010	CN EP JP US	101797167 A 2215969 A1 2010183935 A 2010204579 A1	11-08-2010 11-08-2010 26-08-2010 12-08-2010
EP 1323380	A2	02-07-2003	DE EP JP KR	60212313 T2 1323380 A2 2003284717 A 20030058423 A	31-05-2007 02-07-2003 07-10-2003 07-07-2003

**ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.**

EP 11 16 5987

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

19-03-2012

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
		US	2003135119	A1	17-07-2003
WO 2004086082	A1 07-10-2004	CN	1764849	A	26-04-2006
		EP	1611457	A1	04-01-2006
		JP	2006521146	A	21-09-2006
		WO	2004086082	A1	07-10-2004
US 2002173719	A1 21-11-2002	NONE			
WO 2009069038	A1 04-06-2009	CN	101878000	A	03-11-2010
		EP	2217150	A1	18-08-2010
		US	2010312117	A1	09-12-2010
		WO	2009069038	A1	04-06-2009

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- KR 1020100114331 [0001]