[0001] The present invention relates to disintegration of liquid waste.
[0002] A typical municipal sewage treatment plant comprises a screening stage in which large
objects are separated from the sewage and a plurality of primary and secondary treatment
stages, in which liquid waste is processed to remove suspended solids, oils, degrade
the biological content etc. The efficiency of the secondary treatment stage of degrading
the biological content of the sludge depends on the composition and structural properties
of the sludge. It is therefore advantageous to pre-process the sludge entering the
secondary treatment stages.
[0003] A
PCT application W02005/030659 discloses a device for treatment of a medium containing thread- and flake-forming
microorganisms, such as effluent clarifier sludge, by means of a shear field for treating
the microorganisms in the medium with mechanical stress, wherein the shear field is
defined by a pair of planar elements separated from each other by a shear gap and
rotatable around a vertical axis. The medium inlet is or may be connected to a feed
pump such that the device does not siphon with at least a reduction, or an avoidance
of cavitation in the shear gap.
[0004] A
US patent 3996012 discloses an apparatus for continuous treatment of substances in flowable form in
conjunction with a catalyst for carrying out chemical reactions, the apparatus including
a conical-shaped rotor and stator in opposed relationship defining between opposing
working surfaces a reaction area and rotatable around a horizontal axis. The rotating
rotor causes a turbulence effect in the reaction mixture which occurs in shearing
at impact zones promoted by cavitation-like impact phenomena which intensify the chemical
reaction.
[0005] A European patent application
EP1985357 discloses an apparatus for processing liquid fluids, such as wastewater, with use
of cavitation process, wherein the liquid to be cavited is input between two planar
elements rotatable with respect to each other around a horizontal axis and comprising
alternate protrusion and channels.
[0006] The known devices, even if described as applicable for processing wastewater, require
a clarified input medium, in order to avoid clogging of the rotatable elements. Such
clarification may be typically performed by a filter installed at a pumping arrangement
via which the medium to be processed is input to the device.
[0007] The aim of the present invention is to provide a method and a device for disintegrating
liquid waste which is convenient to operate and resilient to clogging.
[0008] The object of the invention is a device for disintegrating liquid waste, comprising
a waste processing chamber defined by a housing with a set of discs rotatable with
respect to each other and comprising correlated concentric protrusions and channels
defining a shear gap and configured to disintegrate liquid waste by cavitation during
rotation, an inlet conduit connected to an inlet port for providing the liquid waste
to an inlet chamber at the central portion of the waste processing chamber, an outlet
conduit connected to an outer port for collecting the disintegrated liquid waste from
a collecting chamber at the periphery of the waste processing chamber, wherein the
waste processing chamber is liquid-tight and comprises liquid-tight sealing and an
air vent mounted in the uppermost portion of the waste processing chamber, and the
inlet conduit comprises switchable inlet valve means for providing to the inlet conduit
a liquid waste of a first density from a liquid waste input conduit and a liquid of
a second density lower than the first density from a supplementary conduit.
[0009] At least one of the discs can be mounted on a rotatable horizontal shaft.
[0010] The shaft can be rotatable by an engine with a speed from 2960 rpm to 3500 rpm.
[0011] The device may further comprise a sensor configured to monitor at least one process
parameter of the device and a controller configured to control the inlet valve means
depending on the monitored process parameter.
[0012] The sensor can be configured to monitor the temperature of the waste processing chamber.
[0013] The sensor can be configured to monitor the temperature and/or load of an engine
driving a rotatable disc.
[0014] The sensor can be configured to monitor the density of the liquid in the outlet conduit.
[0015] The liquid-tight sealing of the waste processing chamber may comprise carbon rings.
[0016] The width of the shear gap can be from 0,4 mm to 0,6 mm.
[0017] The object of the invention is also a liquid waste processing installation, comprising
a sedimentation tank, the device for disintegrating liquid waste according to the
invention, wherein the liquid waste inlet conduit is configured to collect liquid
waste from the bottom portion of the sedimentation tank and wherein the outlet conduit
is configured to output the disintegrated liquid waste to the upper portion of the
sedimentation tank.
[0018] The installation may further comprise an anaerobic digestion chamber, to which the
liquid waste from the sedimentation tank is input, configured to produce biogas to
be stored in a biogas tank, a biogas sensor configured to measure the amount of produced
biogas, wherein the controller is further configured to control the working cycle
of the device depending on the output of the biogas sensor.
[0019] Another object of the invention is a method for disintegrating liquid waste by the
device according to the invention, comprising the steps of detecting increase of clogging
of the device, switching the inlet valve means to provide to the inlet conduit increased
amount of liquid from the supplementary conduit, detecting reduction of clogging of
the device, switching the inlet valve means to provide to the inlet conduit increased
amount of liquid waste from the liquid waste input conduit.
[0020] The method may comprise the step of, upon detecting increase of clogging of the device,
switching the inlet valve means to provide to the inlet conduit only liquid from the
supplementary conduit.
[0021] The method may comprise the step of, upon detecting reduction of clogging of the
device, switching the inlet valve means to provide to the inlet conduit only liquid
waste from the liquid waste input conduit.
[0022] The invention is shown on a drawing, in which:
Fig. 1 presents an exploded view of the device according to the invention.
Fig. 2 presents a cross-sectional view of the device according to the invention.
Fig. 3 presents the functional schematic of a liquid waste processing installation
according to the invention.
[0023] The device for disintegrating liquid waste according to the invention is shown in
an exploded view on Fig. 1 and in a cross-sectional view of its top portion on Fig.
2. The device comprises a waste processing chamber 100 defined by a housing 101A,
101B with a set of discs 103, 104, 105 rotatable with respect to each other and comprising
correlated concentric protrusions 103A, 104A and channels 103B, 104B defining a shear
gap 106 and configured to disintegrate liquid waste by cavitation during rotation.
The liquid waste is provided to an inlet chamber 108 at the central portion of the
waste processing chamber 100 via at least one inlet conduit 111 connected to an inlet
port 110 formed in the housing 101A. The liquid waste disintegrated after passing
through the shear gap 106 between the discs 103, 104, 105 is collected from a collecting
chamber 107 at the periphery of the waste processing chamber 100 by an outlet conduit
121 connected to an outer port 120 formed in the housing 101A.
[0024] The set of discs comprises stationary discs 104, 105, which are fixed to the housing
101A, 101B or are formed within the internal wall of the housing and a rotatable disc
103 mounted on a shaft 102. A collecting chamber 107, shaped as a semi-spiral is formed
at the outer periphery of the stationary discs 104, 105 and facilitates collection
of the disintegrated liquid waste via the outer port 120. The concentric protrusions
103A, 104A and concentric channels 103B, 104B are formed such that after assembly
of the device the concentric protrusions 104A of the stationary discs 104, 105 enter
into the concentric channels 103B of the rotary disc 103 and vice versa, defining
a shear gap 106. Moreover, radial channels 103C, 104C are formed within the concentric
protrusions 103A, 104A to facilitate flow of liquid during disintegration from the
inlet chamber 108 within the centre of the housing to the collecting chamber 107 at
its periphery.
[0025] In a simple embodiment, one stationary disc 104 and one rotatable disc 103 may be
provided. In a more elaborate embodiment, as shown in Figs. 1 and 2, a pair of stationary
discs 104, 105 may be provided, wherein the rotary disc 103 has protrusions and channels
formed at its both sides. In such a case, a pair of inlet ports 110 and outlet ports
120 may be provided, one at each housing part 101A, 101 B, to facilitate flow of liquid
waste.
[0026] The waste processing chamber 100 is liquid-tight and comprises liquid-tight sealing
131-134, comprising liquid-tight seals 131 at the shaft 102 driving the rotatable
disc 103, liquid-tight seals 132 at the inlet ports 110, liquid-tight seals 133 at
the outlet ports 120 and liquid-tight seal 134 between the housing parts 101A, 101B.
Preferably, the liquid-tight seals 131 have a form of carbon rings, which guarantees
their resistance to wear and high temperature at a point of contact with the rotatable
shaft. Moreover, an air vent 141 is mounted in the uppermost portion of the waste
processing chamber 100. The air vent 141 can be opened during the start phase of the
operation of the device to outlet all air from the waste processing chamber 100. Such
configuration guarantees that during the operation of the device, the whole volume
of the waste processing chamber 100 is filled with liquid, which provides most effective
cavitation process. The shaft 102 on which the rotatable disc 103 is mounted is preferably
horizontal, which facilitates equal distribution of liquid waste within the chamber.
[0027] Furthermore, the inlet conduit 111 comprises switchable inlet valve means 112A, 113A
for providing to the inlet conduit 111 a liquid waste of a first density from a liquid
waste input conduit 112 and/or a liquid of a second density lower than the first density
from a supplementary conduit 113. The switchable inlet valve means 112A, 113A may
comprise separate cut-off valves for the liquid waste input conduit 112 and the supplementary
conduit 113 or a single three-way valve for connecting both conduits 112, 113 to the
inlet conduit 111. The supplementary conduit 113 may provide water or liquid waste
of a lower density than the density of the liquid waste provided from conduit 112.
[0028] In use, the liquid waste to be disintegrated enters the inlet chamber 108 via the
inlet port 110. As the discs 103, 104, 105 rotate with respect to each other, pressure
differences are created within the shear gap. For sufficiently high rotational speed,
the low pressure within the gap falls under vapour point of the waste liquid, thus
creating cavitation bubbles. The pressure difference also causes self-suction of the
liquid and flow of the liquid from the inlet chamber 108 to the collecting chamber
107. The disintegration of the liquid waste is therefore effected in two ways. First,
larger particles are broken by entering the narrow shear gap into particles of a size
smaller than the shear gap width. Second, the broken particles leaving the shear gap
are subject to cavitation, which causes their further disintegration into cavitation
bubbles.
[0029] However, when the liquid waste comprises a considerable amount of solid waste including
large particles or particles which are hard to disintegrate, the shear gap may become
clogged. The clogging may cause increased friction between the discs 103, 104, 105,
resulting in increase of power consumption by the engine or reduction of rotational
speed of the shaft 102, thereby reducing the operational efficiency of the device.
When clogging is detected, the inlet valve means may be switched such that the liquid
from the supplementary conduit 113 is input to the processing chamber 100. Since the
liquid from the supplementary conduit, preferably water, has a density lower than
the density of the liquid waste from the first conduit 112, it causes rinsing of the
channels of the discs 103, 104, 105 and reduction of clogging of the shear gap 106.
After clogging is removed, the inlet valve means may be switched back to provide the
liquid waste from the liquid waste input conduit 112 to the waste processing chamber
100.
[0030] The outlet conduit may comprise switchable outlet valve means 122A, 123A for providing
the disintegrated output liquid to a waste output conduit 122 or to a supplementary
output conduit 123. The output conduits 122, 123 may be coupled with different tanks.
For example, a sedimentation tank 161 may be coupled with a waste input conduit 112
and the waste output conduit 122, while a water supply tank may be coupled with the
supplementary input conduit 113 and the supplementary output conduit 123. Instead
of a water tank, another sedimentation tank, having waste liquid of a density lower
than the sedimentation tank 161, can be used in the installation.
[0031] The clogging may be detected by the operator of the device by simple observation
of its operation and the inlet valve mans 112A, 113A may be operated manually. Preferably,
the clogging can be detected automatically by a sensor 152-154 configured to monitor
at least one process parameter of the device and the inlet valve means 112A, 113A
may be automatically operated by a controller 151 depending on the monitored process
parameter, as shown in Fig. 3. One sensor 153 can be configured to monitor the temperature
of the waste processing chamber 100, for example by monitoring the internal temperature
or the external temperature of the housing 101A, 101 B, which increase with clogging.
Another sensor 152 can be configured to monitor the temperature and/or load of an
engine 109 driving the rotatable disc 103, which increase with clogging. Another sensor
154 can be configured to monitor the density of the liquid in the outlet conduit 120,
to detect a threshold density above which clogging may occur. The controller 151 may
be configured to switch the inlet valve means 112A, 113A such as to provide liquid
only from the liquid waste input conduit 112 or only from the supplementary conduit
113, or, alternatively, a mix of liquids from both conduits 112, 113 depending on
the monitored process parameter. In other words, when increase of clogging is detected,
the inlet valve means 112A, 113A are switched to provide to the inlet conduit 111
increased amount of liquid from the supplementary conduit 113 and when reduction of
clogging is detected, the inlet valve means 112A, 113A are switched to provide to
the inlet conduit 111 increased amount of liquid waste from the liquid waste input
conduit 112.
[0032] In the liquid waste processing installation of Fig. 3, the device according to the
invention operates by processing a part of the liquid waste contained in the sedimentation
tank 161, which can be further processed in anaerobic digestion chamber 162, in which
biogas is produced and stored in a biogas tank 163. Disintegration of the liquid waste
entering the anaerobic digestion chamber 162 promotes the amount of the produced biogas.
Therefore, a biogas sensor 164 configured to measure the amount of produced biogas
can be connected to the controller 151, and the controller can be configured to control
the working cycle, i.e. the amount of time the device operates or the amount of processed
liquid waste, depending on the output of the biogas sensor 164, in order to adjust
the production of biogas to an optimal amount. The optimal amount can be e.g. the
amount of biogas which allows filling the biogas tank 163 up to 90% of its maximum
capacity.
[0033] The inlet conduit 112 is configured to collect liquid waste from the bottom portion
of the sedimentation tank 161, to avoid air content in the liquid waste to be processed.
The outlet conduit 120 is configured to output the disintegrated liquid waste to the
upper portion of the sedimentation tank 161, preferably above the surface of the liquid
waste, to facilitate dynamic mixing of the processed liquid waste with the liquid
waste in the sedimentation tank
[0034] The width of the shear gap is preferably from 0,4 mm to 0,6 mm. The discs 103, 104,
105 are preferably made of corrosion-resistant and cavitation-resistant material,
such as stellite. The engine 103 preferably rotates the shaft 102 with a speed from
2960 rpm to 3500 rpm.
1. A device for disintegrating liquid waste, comprising:
- a waste processing chamber (100) defined by a housing (101A, 101B) with a set of
discs (103, 104, 105) rotatable with respect to each other and comprising correlated
concentric protrusions (103A, 104A) and channels (103B, 104B) defining a shear gap
(106) and configured to disintegrate liquid waste by cavitation during rotation,
- an inlet conduit (111) connected to an inlet port (110) for providing the liquid
waste to an inlet chamber (108) at the central portion of the waste processing chamber
(100),
- an outlet conduit (121) connected to an outer port (120) for collecting the disintegrated
liquid waste from a collecting chamber (107) at the periphery of the waste processing
chamber (100),
characterized in that
- the waste processing chamber (100) is liquid-tight and comprises liquid-tight sealing
(131-134) and an air vent (141) mounted in the uppermost portion of the waste processing
chamber (100),
- and the inlet conduit (111) comprises switchable inlet valve means (112A, 113A)
for providing to the inlet conduit (111) a liquid waste of a first density from a
liquid waste input conduit (112) and a liquid of a second density lower than the first
density from a supplementary conduit (113).
2. The device according to claim 1, wherein at least one of the discs (103) is mounted
on a rotatable horizontal shaft (102).
3. The device according to claim 2, wherein the shaft (102) is rotatable by an engine
(109) with a speed from 2960 rpm to 3500 rpm.
4. The device according to any of previous claims, further comprising a sensor (152-154)
configured to monitor at least one process parameter of the device and a controller
(151) configured to control the inlet valve means (112A, 113A) depending on the monitored
process parameter.
5. The device according to claim 4, wherein the sensor (153) is configured to monitor
the temperature of the waste processing chamber (100).
6. The device according to claim 4, wherein the sensor (152) is configured to monitor
the temperature and/or load of an engine (109) driving a rotatable disc (103).
7. The device according to claim 4, wherein the sensor (154) is configured to monitor
the density of the liquid in the outlet conduit (120).
8. The device according to any of previous claims, wherein the liquid-tight sealing (131)
of the waste processing chamber (100) comprises carbon rings.
9. The device according to any of previous claims, wherein the width of the shear gap
is from 0,4 mm to 0,6 mm.
10. A liquid waste processing installation, comprising:
- a sedimentation tank (161),
- the device for disintegrating liquid waste according to any of claims 1-9, wherein
the liquid waste inlet conduit (112) is configured to collect liquid waste from the
bottom portion of the sedimentation tank (161) and wherein the outlet conduit (120)
is configured to output the disintegrated liquid waste to the upper portion of the
sedimentation tank (161).
11. The liquid waste processing installation according to claim 10, further comprising:
- an anaerobic digestion chamber (162), to which the liquid waste from the sedimentation
tank (161) is input, configured to produce biogas to be stored in a biogas tank (163),
- a biogas sensor (164) configured to measure the amount of produced biogas,
- wherein the controller (151) is further configured to control the working cycle
of the device depending on the output of the biogas sensor (164).
12. A method for disintegrating liquid waste by the device according to any of claims
1-9, comprising the steps of:
- detecting increase of clogging of the device,
- switching the inlet valve means (112A, 113A) to provide to the inlet conduit (111)
increased amount of liquid from the supplementary conduit (113),
- detecting reduction of clogging of the device,
- switching the inlet valve means (112A, 113A) to provide to the inlet conduit (111)
increased amount of liquid waste from the liquid waste input conduit (112).
13. The method according to claim 12, comprising the step of, upon detecting increase
of clogging of the device, switching the inlet valve means (112A, 113A) to provide
to the inlet conduit (111) only liquid from the supplementary conduit (113).
14. The method according to claim 12 or 13, comprising the step of, upon detecting reduction
of clogging of the device, switching the inlet valve means (112A, 113A) to provide
to the inlet conduit (111) only liquid waste from the liquid waste input conduit (112).
1. Vorrichtung zum Zersetzen von Flüssigabfall, umfassend
• eine Abfallbearbeitungskammer (100), definiert durch ein Gehäuse (101A, 101 B) mit
einem Satz Scheiben (103, 104, 105), welche gegeneinander drehbar sind und in gegenseitiger
Beziehung stehende konzentrische Vorsprünge (103A, 104A) und Kanäle (103B, 104B),
welche einen Scherspalt (106) definieren, umfassen und konfiguriert sind, um Flüssigabfall
durch Kavitation während Rotation zu zersetzen,
• eine Zutrittsleitung (111), welche mit einem Zutrittsanschluss (110) verbunden ist,
um den Flüssigabfall in einer Zutrittskammer (108) in dem zentralen Bereich der Abfallbearbeitungskammer
(100) bereitzustellen,
• eine Austrittsleitung (121), welche mit einem äußeren Anschluss (120) verbunden
ist, um den zersetzten Flüssigabfall aus einer Sammelkammer (107) an der Peripherie
der Abfallbearbeitungskammer (100) zu sammeln,
dadurch gekennzeichnet, dass
• die Abfallbearbeitungskammer (100) flüssigkeitsdicht ist und flüssigkeitsdichte
Abdichtung (131-134) und ein Entlüftungsventil (141), welches in dem obersten Bereich
der Abfallbearbeitungskammer (100) angebracht ist, umfasst,
• und die Zutrittsleitung (111) ein umschaltbares Zutrittsventilmittel (112A, 113A)
umfasst, zum Bereitstellen eines Flüssigabfalls einer ersten Dichte von einer Flüssigabfallzugabeleitung
(112) und einer Flüssigkeit einer zweiten Dichte, welche geringer als die erste Dichte
ist, von einer zusätzlichen Leitung (113) an der Zutrittsleitung (111).
2. Vorrichtung nach Anspruch 1, wobei mindestens eine der Scheiben (103) auf einer drehbaren
horizontalen Welle (102) angebracht ist.
3. Vorrichtung nach Anspruch 2, wobei die Welle (102) durch einen Motor (109) mit einer
Geschwindigkeit von 2960 rpm bis 3500 rpm drehbar ist.
4. Vorrichtung nach einem der vorherigen Ansprüche, die weiterhin einen Sensor (152-154)
umfasst, der konfiguriert ist, mindestens einen Verfahrensparameter der Vorrichtung
zu überwachen, und eine Regelungs-/Steuerungseinheit (151), die konfiguriert ist,
die Zutrittsventilmittel (112A, 113A) abhängig von den überwachten Verfahrensparametern
zu regeln/steuern.
5. Vorrichtung nach Anspruch 4, wobei der Sensor (153) konfiguriert ist, um die Temperatur
der Abfallbearbeitungskammer (100) zu überwachen.
6. Vorrichtung nach Anspruch 4, wobei der Sensor (152) konfiguriert ist, um die Temperatur
und/oder Belastung eines Motors (109), welcher eine drehbare Scheibe (103) antreibt,
zu überwachen.
7. Vorrichtung nach Anspruch 4, wobei der Sensor (154) konfiguriert ist, um die Dichte
der Flüssigkeit in der Austrittsleitung (120) zu überwachen.
8. Vorrichtung nach einem der vorherigen Ansprüche, wobei die flüssigkeitsdichte Abdichtung
(131) der Abfallbearbeitungskammer (100) aus Kohlenstoff bestehende Ringe (engl.:
carbon rings) umfasst.
9. Vorrichtung nach einem der vorherigen Ansprüche, wobei die Breite des Scherspalts
von 0,4 mm bis 0,6 mm ist.
10. Flüssigkeitsabfallbearbeitungsanlage, umfassend:
• einen Absetzbehälter (161),
• die Vorrichtung zum Zersetzen von Flüssigabfall nach einem der Ansprüche 1-9, wobei
die Flüssigabfallzugabeleitung (112) konfiguriert ist, um Flüssigabfall aus dem unteren
Bereich des Absetzbehälters (161) zu sammeln und wobei die Austrittsleitung (120)
konfiguriert ist, den zersetzten Flüssigabfall an den oberen Bereich des Absetzbehälters
(161) auszugeben.
11. Flüssigkeitsabfallbearbeitungsanlage nach Anspruch 10, weiterhin umfassend:
• eine anaerobe Faulkammer (162), der der Flüssigabfall aus dem Absetzbehälter (161)
zugeführt wird, wobei die Faulkammer konfiguriert ist, Biogas herzustellen, welches
in einem Biogastank (163) gelagert werden soll,
• einen Biogassensor (164), welcher konfiguriert ist, die Menge des produzierten Biogases
zu messen,
• wobei die Regelungs-/Steuereinheit (151) weiterhin konfiguriert ist, den Arbeitszyklus
der Vorrichtung abhängig von der Ausgabe des Biogassensors (164) zu regeln/steuern.
12. Verfahren zum Zersetzen von Flüssigabfall durch die Vorrichtung nach einem der Ansprüche
1-9, umfassend die Schritte von:
• Detektieren von Zunahme von Verstopfen der Vorrichtung,
• Umschalten der Zutrittsventilmittel (112A, 113A), um an der Zutrittsleitung (111)
erhöhte Menge von Flüssigkeit aus der zusätzlichen Leitung (113) bereitzustellen,
• Detektieren von Abnahme von Verstopfen der Vorrichtung,
• Umschalten der Zutrittsventilmittel (112A, 113A), um an der Zutrittsleitung (111)
erhöhte Menge von Flüssigabfall aus der Flüssigabfallzugabeleitung (112) bereitzustellen.
13. Verfahren nach Anspruch 12, umfassend den Schritt von, auf Detektieren von Zunahme
von Verstopfen der Vorrichtung hin, Umschalten der Zutrittsventilmittel (112A, 113A),
um an der Zutrittsleitung (111) nur Flüssigkeit aus der zusätzlichen Leitung (113)
bereitzustellen.
14. Verfahren nach Anspruch 12 oder 13, umfassend den Schritt von, auf Detektieren von
Abnahme von Verstopfen der Vorrichtung hin, Umschalten der Zutrittsventilmittel (112A,
113A), um an der Zutrittsleitung (111) nur Flüssigabfall aus der Flüssigabfallzugabeleitung
(112) bereitzustellen.
1. Dispositif pour désintégrer un déchet liquide, comprenant :
- une chambre de traitement de déchet (100) définie par un logement (101A, 101B) comportant
un jeu de disques (103, 104, 105) pouvant tourner les uns par rapport aux autres et
comprenant des saillies (103A, 104A) et canaux (103B, 104B) concentriques corrélés
définissant un espace de cisaillement (106) et configurés pour désintégrer un déchet
liquide par cavitation lors de la rotation,
- une conduite d'entrée (111) raccordée à un orifice d'entrée (110) pour introduire
le déchet liquide dans une chambre d'entrée (108) dans la partie centrale de la chambre
de traitement de déchet (100),
- une conduite de sortie (121) raccordée à un orifice de sortie (120) pour collecter
le déchet liquide désintégré provenant d'une chambre de collecte (107) à la périphérie
de la chambre de traitement de déchet (100),
caractérisé en ce que
- la chambre de traitement de déchet (100) est étanche au liquide et comprend un joint
étanche au liquide (131-134) et un évent (141) monté dans la partie la plus élevée
de la chambre de traitement de déchet (100),
- et la conduite d'entrée (111) comprend des moyens à soupape d'introduction commutable
(112A, 113A) pour introduire dans la conduite d'entrée (111) un déchet liquide ayant
une première densité provenant d'une conduite d'entrée de déchet liquide (112) et
un liquide ayant une seconde densité inférieure à la première densité provenant d'une
conduite supplémentaire (113).
2. Dispositif selon la revendication 1, dans lequel au moins un des disques (103) est
monté sur un arbre horizontal rotatif (102).
3. Dispositif selon la revendication 2, dans lequel l'arbre (102) peut être mis en rotation
grâce à un moteur (109) à une vitesse de 2960 tours/minute à 3500 tours/minute.
4. Dispositif selon l'une quelconque des revendications précédentes, comprenant en outre
un capteur (152-154) conçu pour surveiller au moins un paramètre de procédé du dispositif
et un appareil de commande (151) conçu pour commander les moyens à soupape d'introduction
(112A, 113A) en fonction du paramètre de procédé surveillé.
5. Dispositif selon la revendication 4, dans lequel le capteur (153) est conçu pour surveiller
la température de la chambre de traitement de déchet (100).
6. Dispositif selon la revendication 4, dans lequel le capteur (152) est conçu pour surveiller
la température et/ou la charge d'un moteur (109) entraînant un disque rotatif (103).
7. Dispositif selon la revendication 4, dans lequel le capteur (154) est conçu pour surveiller
la densité du liquide dans la conduite de sortie (120).
8. Dispositif selon l'une quelconque des revendications précédentes, dans lequel le joint
étanche au liquide (131) de la chambre de traitement de déchet (100) comprend des
anneaux de carbone.
9. Dispositif selon l'une quelconque des revendications précédentes, dans lequel la largeur
de l'espace de cisaillement est de 0,4 mm à 0,6 mm.
10. Installation de traitement de déchet liquide, comprenant :
- une cuve de sédimentation (161),
- le dispositif pour désintégrer un déchet liquide selon l'une quelconque des revendications
1 à 9, dans lequel la conduite d'entrée de déchet liquide (112) est conçue pour collecter
un déchet liquide provenant de la partie inférieure de la cuve de sédimentation (161)
et dans lequel la conduite de sortie (120) est conçue pour sortir le déchet liquide
désintégré vers la partie supérieure de la cuve de sédimentation (161).
11. Installation de traitement de déchet liquide selon la revendication 10, comprenant
en outre :
- une chambre de digestion anaérobie (162), dans laquelle le déchet liquide provenant
de la cuve de sédimentation (161) est entré, conçue pour produire un biogaz à stocker
dans une cuve de biogaz (163),
- Un capteur de biogaz (164) conçu pour mesurer la quantité de biogaz produit,
- dans laquelle l'appareil de commande (151) est en outre conçu pour commander le
cycle de travail du dispositif en fonction de la sortie du capteur de biogaz (164).
12. Procédé de désintégration d'un déchet liquide par le dispositif selon l'une quelconque
des revendications 1 à 9, comprenant les étapes suivantes :
- la détection de l'augmentation de l'engorgement du dispositif,
- la commutation des moyens à soupape d'introduction (112A, 113A) pour introduire
dans la conduite d'entrée (111) une quantité accrue de liquide provenant de la conduite
supplémentaire (113),
- la détection de la réduction de l'engorgement du dispositif,
- la commutation des moyens à soupape d'introduction (112A, 113A) pour introduire
dans la conduite d'entrée (111) une quantité accrue de déchet liquide provenant de
la conduite d'entrée de déchet liquide (112).
13. Procédé selon la revendication 12, comprenant l'étape de commutation, lors de la détection
de l'augmentation de l'engorgement du dispositif, des moyens à soupape d'introduction
(112A, 113A) pour introduire dans la conduite d'entrée (111) seulement un liquide
provenant de la conduite supplémentaire (113).
14. Procédé selon la revendication 12 ou 13, comprenant l'étape de commutation, lors de
la détection de la réduction de l'engorgement du dispositif, des moyens à soupape
d'introduction (112A, 113A) pour introduire dans la conduite d'entrée (111) seulement
un déchet liquide provenant de la conduite d'entrée de déchet liquide (112).