[0001] The invention concerns a telescopic hydraulic cylinder in accordance with the preamble
of claim 1. In the known telescopic hydraulic cylinders a sideways force on an extended
piston or tube that results in a bending moment in the lower end of an inner tube
and a similar bending moment in the adjacent top end of a concentric outer tube. This
bending moment leads to bending stress in the tube and stress concentration due to
abrupt changes in the cross section of the tube near the inner groove might lead to
rupture of the tube. High fluid pressure in the telescopic hydraulic cylinders increases
the risk of rupture as the high fluid pressure also leads to stress in the tubes and
this adds to the bending stress.
[0002] In order to increase the resistance of the telescopic hydraulic cylinder against
bending and axial forces the telescopic hydraulic cylinder is according to claim 1.
In this way, by reducing the cross section in the high loaded part of the tube over
a longer length than the width of the outer groove, the tube remains over a longer
stretch of the tube under high tension but the stress concentration is reduced and
the resistance against bending increases.
[0003] Document
EP 0450501 discloses a telescopic hydraulic cylinder with inner stop rings and outer stop rings.
Figures 5-6 disclose an inner stop ring 45.1 and an outer stop ring 45.2 and between
these two rings there is an intermediate ring 35H or are intermediate rings 35H and
35H2. The function of the intermediate rings is to improve the direction under which
the load is affected on the stop rings. In order to accommodate an intermediate ring
of sufficient dimension there is adjacent to the inner grooves and outer groove a
groove for the intermediate ring(s). This groove has a shallow depth and its depth
does not extend to a depth of more than 50% of the depth of the inner groove or the
outer groove. Figure 7 show a similar construction wherein the depth of the groove
is also significantly less than 50% of the depth of the inner groove or the outer
groove. Due to their smaller depth these grooves do not reduce the cross section in
the high loaded part of the tube over a longer length than the width of the outer
groove and so do not remove the stress concentration in the outer groove. This means
that the prior art document does not disclose the invention and the document does
not give an indication that the grooves might contribute to reduce the stress in the
tubes.
[0004] A telescopic hydraulic cylinder according to the preamble of claim 1 is known from
DE 20 04 117 A1. In accordance with the invention, the resistance against bending at the other end
of the tube is increased.
[0005] In accordance with an embodiment, the telescopic hydraulic cylinder is according
to claim 2. In this way, the minimum section surface of the tubes increases over a
considerable length thereby avoiding sudden increases that might lead to stress concentrations.
[0006] In accordance with an embodiment the telescopic hydraulic cylinder is according to
claim 3. In this way, the ridge can maintain the stop ring in its position on the
tube and/or the relief groove can be machined as several narrow grooves that have
the same effect as a groove of larger width.
[0007] In accordance with an embodiment, the telescopic hydraulic cylinder is according
to claim 4. In this way, the contact area between the stop rings in extended position
is large so that surface stress between the stop rings is reduced.
[0008] In accordance with an embodiment, the telescopic hydraulic cylinder is according
to claim 5. In this way, the inner stop ring groove and/or the outer stop ring groove
are smaller, less deep and give less stress concentration.
[0009] In accordance with the invention, the tube has a small wall thickness so that the
weight of the telescopic hydraulic cylinder is reduced.
[0010] The invention is explained with the aid of one or more embodiments using a drawing.
In the drawing
Figure 1 shows a perspective view of a tipper with a telescopic hydraulic cylinder
lifting a tipping body,
Figure 2 shows a perspective view of the telescopic hydraulic cylinder for lifting
the tipping body,
Figure 3 shows a section of the telescopic hydraulic cylinder of figure 2 in retracted
position,
Figure 4 shows a detail of the transition between two tubes of the telescopic hydraulic
cylinder of figure 2 in extended position, and
Figure 5 shows various embodiments of the relief groove of a tube of the telescopic
hydraulic cylinder of figure 2.
[0011] Figure 1 shows a tipper 1 comprising a tractor 4 and a trailer 5. A hinge 8 connects
a frame of the trailer 5 and a tipping body 2 and a telescopic hydraulic cylinder
3 can lift the tipping body 2 to a tilted position for unloading the tipping body
2. The trailer 5 has axles with wheels to support the frame of the trailer 5 on the
terrain. The terrain might have mounds 6, so that a rear axle 7 and with that the
hinge 8 can be slightly inclined whereby the trailer 5 has a slight twist. The inclination
of the hinge 8 can cause sideways movement of the tipping body 2 relative to the trailer
5 and in extreme situations this might lead to rolling over of the tipper 1 during
lifting of the tipping body 2. By giving support to the tipping body 2 in a direction
transverse to the trailer 5 the telescopic hydraulic cylinder 3 can reduce the sideways
movement of the tipping body 2 relative to the trailer 5 during tipping.
[0012] Figure 2 and figure 3 show the telescopic hydraulic cylinder 3. Two chassis brackets
13 are mounted on the trailer 5 and support two chassis trunnions 12 that support
a base tube 14. The base tube 14 can swivel around a base tube swivel axis 28 in the
chassis brackets 13; the base tube swivel axis 28 is mounted parallel to the axis
of hinge 8. The base tube 14 has a centreline 24, a bottom plate 29, and a high-pressure
connection 15. A tube 23 can slide in the direction of the centreline 24 in the base
tube 14. A tube 22 can slide in the direction of the centreline 24 in the tube 23.
A tube 21 can slide in the direction of the centreline 24 in the tube 22. A tube 20
can slide in the direction of the centreline 24 in the tube 21. In retracted position
of the telescopic hydraulic cylinder 3, the bottom plate 29 can support the tubes
20, 21, 22, and 23. A piston 19 can slide in the tube 20 in the direction of the centreline
24. The shown embodiment has four tubes that can slide relative to the piston 19 and
the base tube 14, in other embodiments, this number of tubes can have any value above
zero.
[0013] The piston 19 is made from a tube and is closed at the underside by a plate 30 and
at the top by a plug 17. The plug 17 and a top plate 18 are connected and the top
plate 18 is connected to a cover tube 9. A spherical ring 27 that is coupled to the
cover tube 9 supports a lifting ring 16 with lifting trunnions 11 that swivably connect
the lifting ring 16 to lifting brackets 10. The lifting ring 16 can rotate around
a top swivel axis 25. The lifting brackets 10 couple the telescopic hydraulic cylinder
3 to the tipping body 2, whereby the top swivel axis 25 and the base tube swivel axis
28 are parallel to the axis of the hinge 8. A spherical bearing 27 between the lifting
ring 16 and the spherical ring 27 compensates for alignment errors between the top
swivel axis 25, the base tube swivel axis 28 and the axis of the hinge 8. As described
the tipping body 2 and the piston 19 are coupled and the position of the tipping body
2 determines the position of the piston 19 in the telescopic hydraulic cylinder 3.
[0014] The base tube 14 and the tubes 20, 21, 22, and 23 have near the top end of their
inside surface a groove into which a seal 37 is mounted to seal a gap between the
base tube 14, the tubes 20, 21, 22, or 23 or the piston 19. Each seal 37 can slide
over an outside surface of an adjacent tube 20, 21, 22, or 23 or the outside surface
of the piston 19 and the seals 37 are suitable for the high pressure in the telescopic
hydraulic cylinder 3 and seal the area inside the telescopic hydraulic cylinder 3
from the surroundings. The wipers 40, mounted in a groove at the top end of the inside
surfaces of the base tube 14 and the tubes 20, 21, 21, 22, and 23, remove contaminations
from the outside surfaces of the tubes 20, 21, 22, and 23 and the piston 19 and prevent
dirt entering the gaps. For guiding the piston 19, the tubes 20, 21, 22, and 23 and
the base tube 14 relative one another the inside surfaces have an upper wear ring
39 mounted at the top in grooves, under the upper wear ring 39 a lower wear ring 38,
and at the bottom mounted in grooves in the outside surfaces a slider 33. The upper
wear rings 39 and the lower wear rings 38 are mounted between the seal 37 and the
wiper 40.
[0015] Filling the telescopic hydraulic cylinder 3 with pressurised fluid through the high
pressure connection 15 causes the pressurized fluid to enter in the gaps between the
base tube 14, the tubes 20, 21, 22, 23 and the piston 19 through holes 34 to the room
between the piston 19 and the bottom plate 29. The pressurized fluid pushes the piston
19 and tubes 20, 21, 22, and 23 surrounding the piston 19 upwards. Inner lift rings
31 that interact with outer lift rings 32 or with a slider 33 ensure that the tubes
20, 21, 22 and 23 move together with the piston 19 in upward direction. The inner
lift rings 31 are mounted in grooves in the inside surface of the tubes 20, 21, 22,
and 23. The outer lift rings 32 are mounted in grooves in the outside surfaces of
the piston 19 and the tubes 20 and 21. The slider 33 in tube 22 acts in a similar
manner as an outer lift ring 31.
[0016] The upward movement of the tube 23 stops when an outer stop ring 35 of the tube 23
interacts with an inner stop ring 36 of the base tube 14 and the tube 23 has reached
its maximum extension. The outer stop rings 35 are mounted in grooves in the outer
surfaces of the piston 19 and the tubes 20, 21, 22, and 23. The inner stop rings 36
are mounted in grooves in the inner surface of the base tube 14 and the tubes 20,
21, 22, and 23.
[0017] Further filling of the telescopic hydraulic cylinder 3 with pressurized fluid pushes
the piston 19 and tubes 20, 21, and 22 upwards until an outer stop ring 35 of the
tube 22 interacts with an inner stop ring 36 of tube 23 and tube 22 has its maximum
extension. Further filling of the telescopic hydraulic cylinder 3 brings one after
the other tube 21, tube 20, and the piston 19 to their maximum extension. The telescopic
hydraulic cylinder 3 then has its maximum extension and the tipping body 2 has its
maximum tipping position.
[0018] Releasing pressurized fluid from the extended telescopic hydraulic cylinder 3 causes
the piston 19 to move downwards in the tube 20 until the underside of the piston 19
interacts with an inner lift ring 31 of the tube 20. Further releasing of pressurize
fluid causes the piston 19 and tube 20 to move downwards until an outer lift ring
32 of tube 20 interacts with an inner lift ring 31 of tube 21. In a similar way the
tubes 21, 22 and 23 retract in the base tube 14 until the telescopic hydraulic cylinder
3 is in its retracted position.
[0019] Figure 4 shows the transition between tube 22 and tube 23 when they are in extended
position and the inner stop ring 36 and the outer stop ring 35 interact. The shown
transition is exemplary for the other transitions between the base tube 14, the tubes
20, 21, 22 and 23, and the piston 19 and the shown transition is similar between the
other tubes 20, 21, the base tube 14, and the piston 19.
[0020] As discussed earlier the telescopic hydraulic cylinder 3 stabilises the transversal
movement of a lifted tipping body 2 by exerting a transverse force F
H on the tipping body 2. This transverse force F
H causes a bending moment M in the extended telescopic hydraulic cylinder 3 and this
bending moment M is highest near the trailer 5. This bending moment M causes bending
of the tubes 14, 20, 21, 22 and 23 in the longitudinal direction and deformation of
the circular section of the tubes 14, 20, 21, 22 and 23 to a slightly oval section.
This means that the bending moment M causes bending stress in the base tube 14 and
the tubes 20, 21, 22, and 23.
[0021] At the location of the transition between tube 22 and tube 23, the bending moment
is indicated as bending moment M
22-23. The bending moment M
22-23 causes a force P between the upper wear ring 39 and the outer surface of tube 22
and a force Q between the slider 33 and the inner surface of tube 23. This means that
between the upper wear ring 39 and the slider 33 both tubes 22, 23 have to transfer
the bending moment M
22-23 and both tubes are there subjected to the bending stress. In that area, the grooves
of the outer stop ring 35 and the inner stop ring 36 reduce the strength of the tubes
22, 23 the grooves form the weakest part of the tubes, especially for the inside tube
22 that has the smallest diameter. As the tubes in the telescopic hydraulic cylinder
3 have relative thin walls in order to reduce its weight, the grooves have a depth
of more than 20 % of the wall thickness of the tube 22,23 for the outer groove and
more than 25% of the inner groove to make it possible that the stop rings 35,36 transmit
the axial forces between the adjacent tubes 22,23. A relief groove 41 reduces the
stress in the bottom of the groove of the outer stop ring 35 and so reduces the risk
of damages. In another embodiment, there is a relief groove 41 both adjacent to the
groove of the outer stop ring 35 and adjacent to the groove of the inner stop ring
36.
[0022] Figure 5 shows various embodiments of the relief groove 41 in an outer surface of
a tube. Figure 5a shows an embodiment wherein a small ridge limits the axial movement
of the outer stop ring 35 and wherein the groove has a depth that is approximately
equal to the depth of the groove for the outer stop ring 35. The width of the ridge
is smaller than the depth of the groove for the outer stop ring 35 and the ridge might
have a fillet to the bottom of the relief groove 41. Figure 5b shows an embodiment
with a relief groove 41 with a large radius from the bottom of the groove for the
outer stop ring 35 to the outside diameter with a width of at least the twice the
width of the groove for the outer stop ring 35. Figure 5c shows a similar embodiment
with a relief groove 41 with a conical surface. The minimum diameter of the relief
groove 41 is approximately equal to the diameter of the groove for the outer stop
ring 35. In these latter embodiments, the outer stop ring 35 clamps around the tube
to prevent axial movement. Figure 5d shows as a further embodiment of the relief groove
a first narrow relief groove 41 separated by a ridge from the groove for the outer
stop ring 35, which first narrow relief groove 41 has a depth that is approximately
equal to the depth of the groove for the outer stop ring 35. The first narrow relief
groove 41 has a width that is smaller than its depth and the bottom has a fillet.
As indicated with interrupted lines in figure 5d, in another embodiment a second and
possibly a third narrow relief groove are adjacent to the first narrow relief groove
41 wherein the second groove and the third groove have a decreasing depth. Between
the groove for the outer stop ring 35, the first, the second and/or the third relief
groove are thin ridges that have a thickness that is smaller than the depth of the
outer groove for the stop ring. In the inner surface of a tube, the relief grooves
41 can have similar dimensions.
1. Telescopic hydraulic cylinder (3) comprising two or more concentric cylindrical tubes
(14,20,21,22,23) and a piston (19), seals (37) between the cylindrical tubes and the
piston whereby the cylindrical tubes and the piston can move in axial direction relative
one another between a retracted position and an extended position, an inner tube (20,21,22,23)
or piston has an outer stop ring (35) mounted in an outer groove with a depth of more
than 20% of the wall thickness of the tube in its outer surface and an outer tube
or base tube has an inner stop ring (36) mounted in an inner groove with a depth of
more than 25% of the wall thickness of the tube in its inner surface, in the extended
position the outer stop ring and the inner stop ring interact against each other for
in the extended position limiting movement in axial direction wherein adjacent to
the outer groove at the side of the outer groove away from the nearest end of the
inner tube there is an outer relief groove (41) with a depth that is substantially
equal to the depth of the outer groove and characterised in that adjacent to the inner groove at the side of the inner groove away from the nearest
end of the outer tube there is an inner relief groove with a depth that is substantially
equal to the depth of the inner groove.
2. Telescopic hydraulic cylinder in accordance with claim 1 wherein the outer relief
groove (41) has a width of at least twice the width of the outer groove and/or the
inner relief groove has a width of at least twice the width of the inner groove and
wherein the relief grooves can have in the direction away from the outer groove or
inner groove a diminishing depth over the width.
3. Telescopic hydraulic cylinder in accordance with one of the previous claims wherein
the outer relief groove and/or the inner relief groove has a ridge with a width that
is smaller than the depth of the outer groove or the inner groove.
4. Telescopic hydraulic cylinder in accordance with one of the previous claims wherein
the inner stop ring (36) and/or the outer stop ring (35) have a rectangular section.
5. Telescopic hydraulic cylinder in accordance with one of the previous claims wherein
the inner stop ring and/or the outer stop ring have a hexagonal section.
1. Teleskopischer Hydraulikzylinder (3) umfassend zwei oder mehr konzentrische zylindrische
Rohre (14, 20, 21, 22, 23) und einen Kolben (19), Dichtungen (37) zwischen den zylindrischen
Rohren und dem Kolben, wobei sich die zylindrischen Rohre und der Kolben in axialer
Richtung relativ zueinander zwischen einer eingezogenen Position und einer ausgefahrenen
Position bewegen können, wobei ein Innenrohr (20, 21, 22, 23) oder ein Kolben einen
auf dessen Außenseite montierten äußeren Anschlagring (35) aufweist, der eine Tiefe
von mehr als 20% der Wandstärke des Rohres aufweist und wobei ein Außenrohr oder Grundrohr
einen an dessen Innenfläche montierten inneren Anschlagring (36) aufweist, der eine
Tiefe von mehr als 25% der Wandstärke des Rohres aufweist, wobei der äußere Anschlagring
und der innere Anschlagring in der ausgefahrenen Stellung in axialer Richtung gegeneinander
wirken und die Bewegung begrenzen, wobei ein äußerer Freistich (41) mit einer im Wesentlichen
gleich tiefen Nut wie die äußere Nut an die äußere Nut auf der Seite der äußeren Nut
angrenzt und vom nächstgelegenen Ende des Innenrohres entfernt angeordnet ist und
dadurch gekennzeichnet ist, dass ein innerer Freistich mit einer im Wesentlichen gleich tiefen Nut wie die innere
Nut an die innere Nut an der Seite der inneren Nut angrenzt und vom nächsten Ende
des äußeren Rohres weg angeordnet ist.
2. Teleskopischer Hydraulikzylinder gemäß Anspruch 1, wobei der äußere Freistich (41)
eine Breite von mindestens der doppelten Breite der äußeren Nut aufweist und/oder
der innere Freistich eine Breite von mindestens der doppelten Breite der inneren Nut
aufweist und wobei der Freistich in Richtung von der äußeren Nut oder inneren Nut
weg über die Breite eine abnehmende Tiefe aufweisen kann.
3. Teleskopischer Hydraulikzylinder gemäß einem der vorhergehenden Ansprüche, wobei der
äußere Freistich und/oder der innere Freistich einen Steg mit einer Breite aufweist,
die kleiner ist als die Tiefe der äußeren Nut oder der inneren Nut.
4. Teleskopischer Hydraulikzylinder gemäß einem der vorhergehenden Ansprüche, wobei der
innere Anschlagring (36) und/oder der äußere Anschlagring (35) einen rechteckigen
Querschnitt aufweist.
5. Teleskopischer Hydraulikzylinder gemäß einem der vorhergehenden Ansprüche, wobei der
innere Anschlagring und/oder der äußere Anschlagring einen sechseckigen Querschnitt
aufweist.
1. Cylindre hydraulique télescopique (3) comprenant deux ou plus de tubes cylindriques
concentriques (14,20,21,22,23) et un piston (19), des joints (37) entre les tubes
cylindriques et le piston, de sorte que les tubes cylindriques et le piston peuvent
se déplacer en direction axiale l'un par rapport à l'autre entre une position rétractée
et une position étendue, un tube intérieur (20, 21, 22, 23) ou un piston présente
une bague de butée extérieure (35) montée dans une rainure extérieure avec une profondeur
de plus que 20 % de l'épaisseur de paroi du tube dans sa surface extérieure et un
tube extérieur ou tube de base présente une bague de butée interne (36) montée dans
une rainure interne d'une profondeur supérieure à 25 % de l'épaisseur de paroi du
tube dans sa surface intérieure, dans la position étendue, la bague de butée extérieure
et la bague de butée interne interagissent l'une contre l'autre pour un mouvement
limitant de la position étendue dans la direction axiale, dans lequel, l'adjacente
à la rainure extérieure sur le côté de la rainure extérieure loin de l'extrémité la
plus proche du tube intérieur.
Il existe une rainure de relief extérieure (41) avec une profondeur qui est sensiblement
égale à la profondeur de la rainure extérieure et caractérisée en cette adjacente à la rainure intérieure sur le côté de la rainure interne, à l'extrémité
la plus proche du tube extérieur, il existe une rainure de relief interne avec une
profondeur sensiblement égale à la profondeur de la rainure interne.
2. Cylindre hydraulique télescopique selon la revendication 1, dans laquelle la rainure
de relief extérieure (41) a une largeur d'au moins deux fois la largeur de la rainure
extérieure et/ou la rainure de relief interne a une largeur d'au moins deux fois la
largeur de la rainure intérieure et dans laquelle les rainures en relief peuvent avoir
dans la direction à l'écart de la rainure extérieure ou de la rainure interne une
profondeur décroissante sur la largeur.
3. Cylindre hydraulique télescopique selon l'une quelconque des revendications précédentes,
dans laquelle la rainure de relief extérieure et/ou la rainure de relief interne présente
une nervure d'une largeur inférieure à la profondeur de la rainure extérieure ou de
la rainure intérieure.
4. Cylindre hydraulique télescopique selon l'une quelconque des revendications précédentes,
dans laquelle la bague de butée interne (36) et/ou la bague de butée extérieure (35)
ont une section rectangulaire
5. Cylindre hydraulique télescopique selon l'une quelconque des revendications précédentes,
dans laquelle la bague de butée intérieure et/ou la bague de butée extérieure ont
une section hexagonale.