FIELD OF THE INVENTION
[0001] The invention refers to an optical fiber amplifier with improved transient performance
making use of pump power splitting.
BACKGROUND OF THE INVENTION
[0002] Optical fiber amplifiers are widely used for signal amplification in optical data
transmitting networks based on wavelength-division multiplexing (WDM). Changes in
network configuration, component failures, fiber breaks or protection switching can
cause abrupt changes of optical input power. These changes cause fast changes of amplifier
output power which can be transferred to other wavelengths due to nonlinear fiber
effects and the non-ideal dynamic properties of erbium-doped fiber amplifiers (EDFAs).
These changes can propagate to other sites leading to optical power fluctuations across
the whole network and possibly to oscillations. Thus, even channels that are not directly
affected by the switching operations or failures can suffer from some performance
degradation at the receivers.
[0003] Furthermore, gain variations can also accumulate in a cascade of amplifiers. Thus,
even small gain variations can result in significant power changes at the receivers.
Therefore, efficient amplifier control techniques are required that allow to keep
the inversion and as a consequence the gain profile of an amplifier or an amplifier
stage relatively constant even if the input power changes.
[0004] Fast electronic control architectures are currently the most economical solution
to stabilize the gain of EDFAs. Commonly, feedback architectures are used since they
allow to adjust the gain or output power to given target values and to compensate
for control errors. However, purely feedback based controllers cannot meet the transient
performance requirements for dynamically reconfigured networks. Fortunately, feedback
controllers can be complemented by a feedforward controller. The combination of the
two types of controllers provides quick response to any changes with the feedback
system cleaning up for any error in the predetermined adjustment made by the feedforward
control.
[0005] On the other hand, cost reduction has become a continuing task. Therefore pump power
splitting has become a widely used technique to reduce amplifier cost. If pump power
splitting is applied to amplifier stages that are separated by a component afflicted
with delay such as a dispersion compensating fiber (DCF) unacceptable poor transient
performance is gained. Therefore, pump splitting is typically applied only to stages
that are all before the DCF or all after the DCF.
[0006] From
US2008/02204860A1 an amplifier with a first and a second stage is known, wherein between the stages
an insulator is inserted. Both stages are pumped with a common pump source. From
US2004/00991206A1 another amplifier with a first and a second stage is known, wherein between the stages
a dispersion compensating module with a delay is inserted and wherein each of the
stages is pumped with a corresponding pump source. Each pump source is controlled
by a corresponding pump control. The input signal of the second pump control for the
second stage is delayed.
OBJECTS AND SUMMARY OF THE INVENTION
[0007] Therefore it is an object of the present invention to provide a fiber amplifier at
reasonable costs with improved transient performance.
[0008] The invention refers to an optical amplifier of claim 1.
[0009] The maximum gain variation of the output signal is minimized by setting the right
delay of the feedforward control.
[0010] Dispersion of the transmission fiber is advantageously compensated if the optical
element afflicted with delay is a dispersion compensating fiber.
[0011] For higher technical requirements it is necessary that
the control unit is in addition extended by feedback control of amplifier gain and/or
output power.
[0012] It is advantageously that the pump signal splitter is a variable splitter.
[0013] This allows performance adaptation to noise and transient requirements.
A possible control unit comprises
a second delay element for delaying the feedforward control signal and an adder connected
to an output of the second delay element and receiving a feedforward control signal
and
a feedback control circuit for receiving an electrical measuring input signal derived
from the optical input signal and receiving an electrical measuring output signal
derived from the optical output signal and generating a feedback control signal, which
is combined with the feedforward control signal.
[0014] More flexible is a control unit implemented as programmable processor receiving the
electrical measuring signals derived from the input signal and output signal respectively.
[0015] This allows simple adaptation of the amplifier performance according to network requirements.
[0016] The amplifier performance is optimized by
choosing the delay of the second delay element and the splitting factor according
to network requirements.
[0017] The amplifier performance using a processor solution is optimized by programming
a delay of the pump signal related to the feedforward control signal while the splitting
factor of the splitter is chosen according to network requirements.
[0018] For a more flexible solution it is necessary that the delay of the feedforward control
and the splitting factor are adjustable by adapting control parameters of the control
unit.
[0019] The transient performance can be further improved if the second amplifier stage is
pumped via a pump signal delay element.
[0020] This allows a smaller delay between the power drop and the reduction of the first
pump signal pumping the first amplifier stage.
BRIEF DESCRIPTION OF THE DRAWINGS
[0021] A presently preferred example of the invention is described below with reference
to accompanying drawings, where
FIG 1 shows a simplified bloc diagram of an EDFA,
FIG 2 shows a time diagram illustrating the gain performance,
and FIG 3A and FIG 3B show diagrams illustrating the gain performance for different
splitting factors.
DETAILED DESCRIPTION OF THE INVENTION
[0022] FIG 1 illustrates a simplified block diagram of a fiber amplifier (EDFA). Details of the
fiber amplifier, which are not part of the invention like couplers for inserting pump
signals or isolators, are not shown for clarity reasons.
[0023] The fiber amplifier comprises two amplifier stages 3 and 5 connected in series. Each
stage comprises a separately pumped doped optical fiber. A delay element 4, e.g. a
dispersion compensating fiber (DCF) and/or an optical filter with a delay τ
4, is inserted between said amplifier stages. A single pump source 15 generates a pump
signal PS, which is divided by an optical power splitter 16 into a first pump signal
PS1 and a second pump signal PS2 pumping the first and the second amplifier stage
respectively. The stages may be pumped forward or backward. A control unit 10 controls
the power of a pump signal PS generated by said single pump source 15.
[0024] The control unit 10 makes use of feedforward control and feedback control.
[0025] A feedforward control generates a feedforward component of the pump control signal
PCS. The illustrated feedforward control comprises a first splitter 2 arranged between
amplifier input 1 and the first amplifier stage 3, a first optical-electrical converter
8 (photo diode) converting an amplifier input signal WS1 into an electrical measurement
input signal S1, and a feedforward control circuit 12 receiving the measurement input
signal S1 and converting it into a feedforward control signal FCS. The feedforward
control further comprises a (variable) electrical feedforward control delay element
13 delaying the reaction of the feedforward control by a feedforward delay time τ
F. The shown feedforward control delay element illustrates only an example for delaying
the reaction of the feedforward control; the delay element 13 can be inserted at different
positions in the control loop or implemented by software. An adder 14 receives the
delayed feedforward control signal FCS.
[0026] The feedback control comprises the first splitter 2, a second splitter 6 arranged
between an output of the second amplifier stage 5 and an amplifier output 7, the first
optical-electrical converter 8 (photo diode) and a second optical-electrical converter
9 converting the amplifier input signal WS1 and an amplifier output signal WS4 into
the electrical input measuring signal S1 and an electrical output measuring signal
S4 respectively. Both measuring signals are fed to a feedback control unit 11. The
feedback control unit generates a feedback control signal BCS, which is fed to the
adder 14 and added to the feedforward control signal FCS. To avoid unwanted intervention
of the feedback control after a channel drop/add the measurement input signal S1 can
be delayed by a feedback delay element 19 (which might be also implemented as a low
pass filter) with feedback delay time τ
B before it is fed to the feedback control circuit. The resulting pump control signal
PCS controls the power of pump source 15 (if necessary via a converter, e.g. if the
pump control signal is a digital data signal). The shown feedback control is only
an example which may be adapted according to different requirements.
[0027] The control unit 10 is preferable designed as programmable processor allowing more
flexibility and easy adaptation to network requirements. The described elements are
then substituted by program functions. A converter (not shown in FIG 1) is then inserted
to convert a digital pump control signal into a control current.
[0028] A preferable embodiment of the invention comprises also a variable pump signal splitter
16 allowing different splitting factors SP.
[0029] The transient performance and the noise performance of the amplifier depend also
on the splitting ratio. The parameter splitting ratio denotes here the portion of
the total pump power launched into the first stage. If excellent noise performance
is required, quite large splitting ratios have to be used. However, this comes along
with quite poor transient performance. If there is sufficient margin, it is worth
to decrease the splitting ratio in order to improve transient performance. The amplifier
can be adapted according to the network performance.
[0030] Power drops constitute the most critical transient scenarios in optical networks
since they can result from accidental events such as fiber cuts or malfunctions of
network elements and the induced power changes are not predictable. Therefore, the
following considerations focus on the power drops.
[0031] Variations in the amplifier gain will occur after a power drop even if the pumping
power is optimally matched to the change of input power. These variations are due
to the memory effect of the pumping mechanism. Also, a delayed reaction of the feedforward
control of a single stage leads to an increase of the peak value of a gain overshoot.
Furthermore, the sensitivity of the amplifier gain to variations of the input power
increases also with growing input power. This implies that at higher input powers
already small delays in the pumping circuit lead to almost maximum gain variations.
[0032] In the following, a technique is described reducing gain variations in multi-stage
amplifiers with pump power splitting. The splitting ratio is usually set before the
gain variation is minimized.
[0033] For this example, it is assumed that forty channels of equal power with a spacing
of 100 GHz (0,8 nm) in the conventional wavelength band (C-band) are launched into
the optical amplifier. At zero on the time axis, a drop of 39 out of 40 channels takes
place. The power reduction happens within an infinitesimal short period of time. This
constitutes the worst case in optical networks if channels are dropped or a fiber
is cut. In addition, it is assumed that the feedforward control adjusts the pump power
to a new value that provides exactly the same gain value for the new input power on
steady-state conditions.
[0034] According to the invention the reaction of the feedforward control signal FCS is
delayed by an amount τ
F less than the delay time τ
4 of the optical delay 4 (DCF), typically less than half of the delay of the optical
delay time τ
4. An optimum delay value τ
F within the typical range (0,25 - 0,75) τ
4 is usually determined by experiment but may also be calculated.
[0035] FIG 2 shows the output powers of the amplifier stages 3 and 5 versus time if 39 of 40 channels
(channel = signal) of the WDM signal WS1 are dropped. In that moment the amplification
of the first amplifier stage 3 and therefore the output power of the remaining signal
WS2 is constant but increases because the first pump signal PS1 is not reduced to
an adequate amount. After a short time after the pump power is altered the output
power of the remaining signal WS2 is reduced to a final value and the amplification
of the first amplifier stage has again reached the previous value.
[0036] The output signal WS2 of the first amplifier stage 3 is delayed by the delay time
τ
4 of the DCF before it reaches the input of the second stage. But the power of the
second pump signal PS2 injected into this amplifier stage 5 has been reduced simultaneously
with the first pump signal PS1 after the feedforward delay time τ
F. Therefore the second pump signal PS2, the inversion of the second amplifier stage
5 and its output power is already reduced before a signal WS3 delayed by τ
4 reaches the input of the second stage because τ
4>τ
F. The bottom line in FIG 2 shows the resulting output signal WS4. The maximum gain
variation and the settling time of the output signal are significantly reduced.
[0037] An additional pump signal delay element 17 delaying the second pump signal PS2 improves
the performance because the delay time between the drop of the amplifier input power
and the reaction of the feedforward control signal and therefore the power of the
first pump signal PS1 can be reduced. Of course the attenuation of the pump signal
delay element 17 has to be taken into account.
[0038] FIG 3A and
FIG 3B illustrate the influence of the splitting factor SP (pump power of SP1 of 3 : pump
power of SP2) on transient performance. The diagrams are plotted for channel powers
of -12 dB and -6 dB. The magnitude of gain variation due to power drops versus delay
of the feedforward control is shown. Except for small input powers (FIG 3a) or small
splitting ratios (30%) an optimum delay τ providing a minimum of gain variations decreases
with an increased splitting factor SP (FIG 3b).
[0039] In a preferred embodiment, the variable delay element 13 and the splitting factor
SP are adjustable by control signals DTS and SPS, preferable controlled by software.
The splitting factor is adjusted by a control signal SPC. The control parameters may
be adapted to the network requirements by a configuration unit 18 or even automatically,
e.g. to achieve either optimum steady-state performance or optimum transient performance.
The invention may be also used in amplifiers with more than two cascaded amplifier
stages separated by one or more delay elements fed by the same pump.
[0040] The present invention is not limited to the details of the above described principles.
The scope of the invention is defined by the appended claims and all changes and modifications
as fall within the equivalents of the scope of the claims are therefore to be embraced
by the invention. Especially analogue control processing can be substituted by digital
data processing.
REFERENCE SIGNS
[0041]
- 1
- amplifier input
- 2
- power splitter
- 3
- first amplifier stage
- 4
- optical delay element, DCF
- 5
- second amplifier stage
- 6
- second power splitter
- 7
- amplifier output
- 8
- first electrical-optical converter
- 9
- second electrical-optical converter
- 10
- control unit
- 11
- feedback control circuit
- 12
- feedforward control circuit
- 13
- (variable) feedforward delay element
- 14
- adder
- 15
- pump source
- 16
- (variable) pump signal splitter
- 17
- pump signal delay element
- 18
- configuration unit
- 19
- feedback delay element
- WS1
- amplifier input signal at input 1
- WS2
- signal at output of 3
- WS3
- signal at output of 4
- WS4
- amplifier output signal at output of 5
- BCS
- feedback control signal
- FCS
- feedforward control signal
- PCS
- pump control signal
- PS
- pump signal
- PS1
- first stage pump signal
- PS2
- second stage pump signal
- S1
- electrical input measuring signal
- S4
- electrical output measuring signal
- SP
- splitting factor
- DTS
- delay time control signal
- SPS
- splitting factor control signal
- τ4
- delay time of 4
- τF
- feedforward delay time of 13
- τB
- feedback delay time of 19
1. Optical fiber amplifier with improved transient performance, comprising
a first amplifier stage (3) receiving an input signal (WS1) and a second amplifier
stage (5) connected in series and outputting an output signal (WS4);
a common pump source (15) generating a pump signal (PS);
a power splitter (16), which input is connected to the common pump source (15) and
which outputs are connected to the first amplifier stage (3) and the second amplifier
stage (5) respectively;
a control unit (10) determining the power of the pump signal (PS), said control unit
(10) generating a feedforward control signal (FCS) out of a part of the optical input
signal (WS1) which is converted into an electrical signal (S1) by a first optical
electrical converter (8) and fed into a feedforward control circuit (12),
characterized in that
the optical fiber amplifier further comprises an optical element (4) afflicted with
delay inserted between said amplifier stages (3, 5) and in that said control unit (10) delaying the reaction of the feedforward control by a feedforward
delay time (τF), which is less than a delay time (τ4) of said optical element (4) afflicted with delay, reducing the gain variation of
an output signal (WS4).
2. The optical amplifier according to claim 1, wherein
the optical element (4) afflicted with delay is a dispersion compensating fiber (DCF).
3. The optical amplifier according to claim 1 or 2,wherein
the control unit (10) is in addition adapted for feedback control of amplifier gain
and/or output power.
4. The optical amplifier according to claim 3, wherein
the pump signal splitter (16) is a variable splitter.
5. The optical amplifier according to claim 3 or 4, wherein
the control unit (10) comprises
a feedforward control circuit (12) and a feedforward delay element (13) connected
in series generating the feedforward control signal (FCS),
an adder (14) receiving the feedforward control signal (FCS), and
a feedback control circuit (11) for receiving an electrical input measuring signal
(S1) derived from the amplifier input signal (WS1) and receiving an electrical output
measuring signal (S4) derived from the amplifier output signal (WS4) and generating
a feedback control signal (BCS), which is fed to the adder (14) and combined with
the delayed feedforward control signal (FCS).
6. The optical amplifier according to claim 4, wherein
the control unit (10) is implemented as programmable processor receiving electrical
measuring signals (S1, S4) derived from the amplifier input signal (WS1) and the amplifier
output signal (WS4) respectively.
7. The optical amplifier according to claim 5, wherein
the feedforward delay time (τF) of the feed forward delay element (13) can be determined by experiment or by calculation
in combination with a chosen splitting factor (SP).
8. The optical amplifier according to claim 6, wherein
the feedforward delay time (τF) of the feedforward control signal (FCS) and the splitting factor (SP) of the splitter
(16) can be determined by experiment or by calculation.
9. The optical amplifier according to claim 7 or 8, wherein
the feedforward delay time (τF) and the splitting factor (SP) are adjustable or pro grammable.
10. The optical amplifier according to claim 4 or 9, wherein
the second amplifier stage is pumped via a pump signal delay element (17).
11. Optical fiber amplifier according to claim 5, comprising
a feedback delay element (19) delaying the electrical input measuring signal (S1)
fed to the feedback control circuit (11).
1. Optischer Faserverstärker mit verbesserter Transientenleistung, der folgendes umfasst:
eine erste Verstärkervorrichtung (3), die ein Eingangssignal (WS1) empfängt, und eine
zweite Verstärkervorrichtung (5), die in Reihe geschaltet ist, und die ein Ausgangssignal
(WS4) ausgibt;
eine gemeinsame Pumpquelle (15), die ein Pumpsignal (PS) erzeugt;
einen Leistungsteiler (16), dessen Eingang mit der gemeinsamen Pumpquelle (15) verbunden
ist, und dessen Ausgänge jeweils mit der ersten Verstärkervorrichtung (3) und der
zweiten Vorrichtung (5) verbunden sind;
eine Steuereinheit (10), die die Leistung des Pumpsignals (PS) bestimmt, wobei die
Steuereinheit (10) ein Vorwärtssteuerungssignal (forward control signal) (FCS) aus
einem Teil des optischen Eingangssignals (WS1) erzeugt, das von einem ersten optischen
elektrischen Wandler (8) in ein elektrisches Signal (S1) umgewandelt wird und in eine
Vorwärtssteuerungsschaltung (12) eingespeist wird,
dadurch gekennzeichnet, dass
der optische Faserverstärker ferner ein optisches Element (4) umfasst, das eine Verzögerung
verursacht, und das zwischen den Verstärkervorrichtungen (3, 5) angeordnet ist, und
dass die Steuereinheit (10) die Reaktion der Vorwärtssteuerung um eine Vorwärtsverzögerungszeit
(τ
F) verzögert, die kleiner als eine Verzögerungszeit (τ
4) ist, die von dem optischen Element (4) verursacht wird, wodurch die Verstärkungsvariation
eines Ausgangssignals (WS4) verringert wird.
2. Optischer Faserverstärker nach Anspruch 1, wobei das optische Element (4), das eine
Verzögerung verursacht, eine Dispersionskompensationsfaser (DCF) ist.
3. Optischer Faserverstärker nach Anspruch 1 oder 2, wobei die Steuereinheit (10) ferner
zur Rückwärtssteuerung (feedback control) einer Verstärkung und/oder einer Ausgangsleistung
eingerichtet ist.
4. Optischer Faserverstärker nach Anspruch 3, wobei der Pumpsignalteiler (16) ein variabler
Teiler ist.
5. Optischer Faserverstärker nach Anspruch 3 oder 4, wobei die Steuereinheit (10) folgendes
umfasst:
eine Vorwärtssteuerungsschaltung (12) und ein Vorwärtsverzögerungselement (13),
die in Reihe geschaltet sind und das Vorwärtssteuerungssignal (FCS) erzeugen,
einen Addierer (14), der das Vorwärtssteuerungssignal (FCS) empfängt, und
eine Rückwärtssteuerungsschaltung (11) zum Empfangen eines elektrischen Eingangsmesssignals
(S1), das aus dem Verstärkereingangssignal (WS1) abgeleitet wird,
und zum Empfangen eines elektrischen Ausgangsmesssignals (S4), das aus dem Verstärkerausgangssignal
(WS4) abgeleitet wird, und zum Erzeugen eines Rückwärtssteuerungssignals (BCS), das
in den Addierer (14) eingespeist wird und mit dem verzögerten Vorwärtssteuerungssignal
(FCS) kombiniert wird.
6. Optischer Faserverstärker nach Anspruch 4, wobei die Steuereinheit (10) als programmierbarer
Prozessor implementiert ist, der elektrische Messsignale (S1, S4) empfängt, die jeweils
aus dem Verstärkereingangssignal (WS1) und dem Verstärkerausgangssignal (WS4) abgeleitet
werden.
7. Optischer Faserverstärker nach Anspruch 5, wobei die Vorwärtsverzögerungszeit (τF) des Vorwärtsverzögerungselementes (13) in Kombination mit einem ausgewählten Teilungsfaktor
(SP) durch Experiment oder durch Ausrechnung bestimmt werden kann.
8. Optischer Faserverstärker nach Anspruch 6, wobei die Vorwärtsverzögerungszeit (τF) des Vorwärtssteuerungssignals (FCS) und der Teilungsfaktor (SB) des Teilers (16)
durch Experiment oder durch Ausrechnung bestimmt werden können.
9. Optischer Faserverstärker nach Anspruch 7 oder 8, wobei die Vorwärtsverzögerungszeit
(τF) und der Teilungsfaktor (SP) einstellbar oder programmierbar sind.
10. Optischer Faserverstärker nach Anspruch 4 oder 9, wobei die zweite Verstärkervorrichtung
durch ein Pumpsignalverzögerungselement (17) gepumpt wird.
11. Optischer Faserverstärker nach Anspruch 5, umfassend ein Rückwärtsverzögerungselement
(19), das das elektrische Eingangsmesssignal (S1) verzögert, das in die Rückwärtssteuerungsschaltung
(11) eingespeist wird.
1. Amplificateur à fibre optique à performance transitoire améliorée, comprenant un premier
étage d'amplification (3) recevant un signal d'entrée (WS1) et un second étage d'amplification
(5) connecté en série et produisant un signal de sortie (WS4) ;
une source de pompage commune (15) générant un signal de pompage (PS) ;
un diviseur de puissance (16), dont l'entrée est branchée à la source de pompage commune
(15) et dont les sorties sont branchées au premier étage d'amplification (3) et au
second étage d'amplification (5) respectivement ;
une unité de commande (10) déterminant la puissance du signal de pompage (PS), ladite
unité de commande (10) générant un signal de commande prédictive (FCS) faisant partie
du signal d'entrée optique (WS1) qui est converti en un signal électrique (S1) par
un premier convertisseur électrique optique (8) et transmis à un circuit de commande
prédictive (12),
caractérisé en ce que
l'amplificateur à fibre optique comprend en outre un élément optique (4) affecté par
un retard inséré entre lesdits étages d'amplification (3, 5) et en ce que ladite unité de commande (10) retarde la réaction de la commande prédictive d'un
temps de retard prédictif (τF), qui est inférieur à un temps de retard (τ4) dudit élément optique (4) affecté par un retard, réduisant la variation de gain
d'un signal de sortie (WS4).
2. Amplificateur optique selon la revendication 1,
dans lequel
l'élément optique (4) affecté par un retard est une fibre de compensation de dispersion
(DCF).
3. Amplificateur optique selon la revendication 1 ou 2,
dans lequel
l'unité de commande (10) est en outre adaptée à la commande de rétroaction de gain
de l'amplificateur et/ou de la puissance de sortie.
4. Amplificateur optique selon la revendication 3,
dans lequel
le diviseur de signal de pompage (16) est un diviseur variable.
5. Amplificateur optique selon la revendication 3 ou 4,
dans lequel
l'unité de commande (10) comprend
un circuit de commande prédictive (12) et un élément de retard prédictif (13) connectés
en série générant le signal de commande prédictive (FCS),
un sommateur (14) recevant le signal de commande prédictive (FCS), et
un circuit de commande de rétroaction (11) destiné à recevoir un signal de mesure
d'entrée électrique (S1) dérivé du signal d'entrée d'amplification (WS1) et à recevoir
un signal de mesure de sortie électrique (S4) dérivé du signal de sortie d'amplification
(WS4) et à générer un signal de commande de rétroaction (BCS), qui est transmis au
sommateur (14) et combiné au signal de commande prédictive retardé (FCS).
6. Amplificateur optique selon la revendication 4,
dans lequel
l'unité de commande (10) est mise en oeuvre en tant que processeur programmable recevant
des signaux de mesure électrique (S1, S4) dérivés du signal d'entrée d'amplification
(WS1) et du signal de sortie d'amplification (WS4) respectivement.
7. Amplificateur optique selon la revendication 5,
dans lequel
le temps de retard prédictif (τF) de l'élément de retard prédictif (13) peut être déterminé par expérience ou par
calcul en combinaison avec un facteur de division choisi (SP).
8. Amplificateur optique selon la revendication 6,
dans lequel
le temps de retard prédictif (τF) du signal de commande prédictive (FCS) et le facteur de division (SP) du diviseur
(16) peuvent être déterminés par expérience ou par calcul.
9. Amplificateur selon la revendication 7 ou 8,
dans lequel
le temps de retard prédictif (τF) et le facteur de division (SP) sont ajustables ou programmables.
10. Amplificateur selon la revendication 4 ou 9,
dans lequel
le second étage d'amplification est pompé via un élément de retard de signal de pompage
(17).
11. Amplificateur à fibre optique selon la revendication 5,
comprenant
un élément de retard de rétroaction (19) retardant le signal de mesure d'entrée électrique
(S1) transmis au circuit de commande de rétroaction (11).S