(19)
(11) EP 2 476 214 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
15.03.2017 Bulletin 2017/11

(21) Application number: 09782690.3

(22) Date of filing: 07.09.2009
(51) International Patent Classification (IPC): 
H04B 10/294(2013.01)
H01S 3/10(2006.01)
H01S 3/067(2006.01)
H01S 3/094(2006.01)
H01S 3/13(2006.01)
(86) International application number:
PCT/EP2009/061548
(87) International publication number:
WO 2011/026526 (10.03.2011 Gazette 2011/10)

(54)

OPTICAL FIBER AMPLIFIER WITH IMPROVED TRANSIENT PERFORMANCE

GLASFASERVERSTÄRKER MIT VERBESSERTER TRANSIENTENLEISTUNG

AMPLIFICATEUR À FIBRE OPTIQUE À PERFORMANCES TRANSITOIRES AMÉLIORÉES


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(43) Date of publication of application:
18.07.2012 Bulletin 2012/29

(73) Proprietor: Xieon Networks S.à r.l.
2633 Senningerberg (LU)

(72) Inventor:
  • RAPP, Lutz
    82041 Deisenhofen (DE)

(74) Representative: Lucke, Andreas et al
Boehmert & Boehmert Anwaltspartnerschaft mbB Patentanwälte Rechtsanwälte Pettenkoferstrasse 20-22
80336 München
80336 München (DE)


(56) References cited: : 
DE-A1-102005 060 019
US-A1- 2008 024 859
US-B1- 6 377 394
US-A1- 2004 091 206
US-A1- 2008 204 860
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The invention refers to an optical fiber amplifier with improved transient performance making use of pump power splitting.

    BACKGROUND OF THE INVENTION



    [0002] Optical fiber amplifiers are widely used for signal amplification in optical data transmitting networks based on wavelength-division multiplexing (WDM). Changes in network configuration, component failures, fiber breaks or protection switching can cause abrupt changes of optical input power. These changes cause fast changes of amplifier output power which can be transferred to other wavelengths due to nonlinear fiber effects and the non-ideal dynamic properties of erbium-doped fiber amplifiers (EDFAs). These changes can propagate to other sites leading to optical power fluctuations across the whole network and possibly to oscillations. Thus, even channels that are not directly affected by the switching operations or failures can suffer from some performance degradation at the receivers.

    [0003] Furthermore, gain variations can also accumulate in a cascade of amplifiers. Thus, even small gain variations can result in significant power changes at the receivers. Therefore, efficient amplifier control techniques are required that allow to keep the inversion and as a consequence the gain profile of an amplifier or an amplifier stage relatively constant even if the input power changes.

    [0004] Fast electronic control architectures are currently the most economical solution to stabilize the gain of EDFAs. Commonly, feedback architectures are used since they allow to adjust the gain or output power to given target values and to compensate for control errors. However, purely feedback based controllers cannot meet the transient performance requirements for dynamically reconfigured networks. Fortunately, feedback controllers can be complemented by a feedforward controller. The combination of the two types of controllers provides quick response to any changes with the feedback system cleaning up for any error in the predetermined adjustment made by the feedforward control.

    [0005] On the other hand, cost reduction has become a continuing task. Therefore pump power splitting has become a widely used technique to reduce amplifier cost. If pump power splitting is applied to amplifier stages that are separated by a component afflicted with delay such as a dispersion compensating fiber (DCF) unacceptable poor transient performance is gained. Therefore, pump splitting is typically applied only to stages that are all before the DCF or all after the DCF.

    [0006] From US2008/02204860A1 an amplifier with a first and a second stage is known, wherein between the stages an insulator is inserted. Both stages are pumped with a common pump source. From US2004/00991206A1 another amplifier with a first and a second stage is known, wherein between the stages a dispersion compensating module with a delay is inserted and wherein each of the stages is pumped with a corresponding pump source. Each pump source is controlled by a corresponding pump control. The input signal of the second pump control for the second stage is delayed.

    OBJECTS AND SUMMARY OF THE INVENTION



    [0007] Therefore it is an object of the present invention to provide a fiber amplifier at reasonable costs with improved transient performance.

    [0008] The invention refers to an optical amplifier of claim 1.

    [0009] The maximum gain variation of the output signal is minimized by setting the right delay of the feedforward control.

    [0010] Dispersion of the transmission fiber is advantageously compensated if the optical element afflicted with delay is a dispersion compensating fiber.

    [0011] For higher technical requirements it is necessary that
    the control unit is in addition extended by feedback control of amplifier gain and/or output power.

    [0012] It is advantageously that the pump signal splitter is a variable splitter.

    [0013] This allows performance adaptation to noise and transient requirements.
    A possible control unit comprises

    a second delay element for delaying the feedforward control signal and an adder connected to an output of the second delay element and receiving a feedforward control signal and

    a feedback control circuit for receiving an electrical measuring input signal derived from the optical input signal and receiving an electrical measuring output signal derived from the optical output signal and generating a feedback control signal, which is combined with the feedforward control signal.



    [0014] More flexible is a control unit implemented as programmable processor receiving the electrical measuring signals derived from the input signal and output signal respectively.

    [0015] This allows simple adaptation of the amplifier performance according to network requirements.

    [0016] The amplifier performance is optimized by
    choosing the delay of the second delay element and the splitting factor according to network requirements.

    [0017] The amplifier performance using a processor solution is optimized by programming a delay of the pump signal related to the feedforward control signal while the splitting factor of the splitter is chosen according to network requirements.

    [0018] For a more flexible solution it is necessary that the delay of the feedforward control and the splitting factor are adjustable by adapting control parameters of the control unit.

    [0019] The transient performance can be further improved if the second amplifier stage is pumped via a pump signal delay element.

    [0020] This allows a smaller delay between the power drop and the reduction of the first pump signal pumping the first amplifier stage.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0021] A presently preferred example of the invention is described below with reference to accompanying drawings, where

    FIG 1 shows a simplified bloc diagram of an EDFA,

    FIG 2 shows a time diagram illustrating the gain performance,

    and FIG 3A and FIG 3B show diagrams illustrating the gain performance for different splitting factors.


    DETAILED DESCRIPTION OF THE INVENTION



    [0022] FIG 1 illustrates a simplified block diagram of a fiber amplifier (EDFA). Details of the fiber amplifier, which are not part of the invention like couplers for inserting pump signals or isolators, are not shown for clarity reasons.

    [0023] The fiber amplifier comprises two amplifier stages 3 and 5 connected in series. Each stage comprises a separately pumped doped optical fiber. A delay element 4, e.g. a dispersion compensating fiber (DCF) and/or an optical filter with a delay τ4, is inserted between said amplifier stages. A single pump source 15 generates a pump signal PS, which is divided by an optical power splitter 16 into a first pump signal PS1 and a second pump signal PS2 pumping the first and the second amplifier stage respectively. The stages may be pumped forward or backward. A control unit 10 controls the power of a pump signal PS generated by said single pump source 15.

    [0024] The control unit 10 makes use of feedforward control and feedback control.

    [0025] A feedforward control generates a feedforward component of the pump control signal PCS. The illustrated feedforward control comprises a first splitter 2 arranged between amplifier input 1 and the first amplifier stage 3, a first optical-electrical converter 8 (photo diode) converting an amplifier input signal WS1 into an electrical measurement input signal S1, and a feedforward control circuit 12 receiving the measurement input signal S1 and converting it into a feedforward control signal FCS. The feedforward control further comprises a (variable) electrical feedforward control delay element 13 delaying the reaction of the feedforward control by a feedforward delay time τF. The shown feedforward control delay element illustrates only an example for delaying the reaction of the feedforward control; the delay element 13 can be inserted at different positions in the control loop or implemented by software. An adder 14 receives the delayed feedforward control signal FCS.

    [0026] The feedback control comprises the first splitter 2, a second splitter 6 arranged between an output of the second amplifier stage 5 and an amplifier output 7, the first optical-electrical converter 8 (photo diode) and a second optical-electrical converter 9 converting the amplifier input signal WS1 and an amplifier output signal WS4 into the electrical input measuring signal S1 and an electrical output measuring signal S4 respectively. Both measuring signals are fed to a feedback control unit 11. The feedback control unit generates a feedback control signal BCS, which is fed to the adder 14 and added to the feedforward control signal FCS. To avoid unwanted intervention of the feedback control after a channel drop/add the measurement input signal S1 can be delayed by a feedback delay element 19 (which might be also implemented as a low pass filter) with feedback delay time τB before it is fed to the feedback control circuit. The resulting pump control signal PCS controls the power of pump source 15 (if necessary via a converter, e.g. if the pump control signal is a digital data signal). The shown feedback control is only an example which may be adapted according to different requirements.

    [0027] The control unit 10 is preferable designed as programmable processor allowing more flexibility and easy adaptation to network requirements. The described elements are then substituted by program functions. A converter (not shown in FIG 1) is then inserted to convert a digital pump control signal into a control current.

    [0028] A preferable embodiment of the invention comprises also a variable pump signal splitter 16 allowing different splitting factors SP.

    [0029] The transient performance and the noise performance of the amplifier depend also on the splitting ratio. The parameter splitting ratio denotes here the portion of the total pump power launched into the first stage. If excellent noise performance is required, quite large splitting ratios have to be used. However, this comes along with quite poor transient performance. If there is sufficient margin, it is worth to decrease the splitting ratio in order to improve transient performance. The amplifier can be adapted according to the network performance.

    [0030] Power drops constitute the most critical transient scenarios in optical networks since they can result from accidental events such as fiber cuts or malfunctions of network elements and the induced power changes are not predictable. Therefore, the following considerations focus on the power drops.

    [0031] Variations in the amplifier gain will occur after a power drop even if the pumping power is optimally matched to the change of input power. These variations are due to the memory effect of the pumping mechanism. Also, a delayed reaction of the feedforward control of a single stage leads to an increase of the peak value of a gain overshoot. Furthermore, the sensitivity of the amplifier gain to variations of the input power increases also with growing input power. This implies that at higher input powers already small delays in the pumping circuit lead to almost maximum gain variations.

    [0032] In the following, a technique is described reducing gain variations in multi-stage amplifiers with pump power splitting. The splitting ratio is usually set before the gain variation is minimized.

    [0033] For this example, it is assumed that forty channels of equal power with a spacing of 100 GHz (0,8 nm) in the conventional wavelength band (C-band) are launched into the optical amplifier. At zero on the time axis, a drop of 39 out of 40 channels takes place. The power reduction happens within an infinitesimal short period of time. This constitutes the worst case in optical networks if channels are dropped or a fiber is cut. In addition, it is assumed that the feedforward control adjusts the pump power to a new value that provides exactly the same gain value for the new input power on steady-state conditions.

    [0034] According to the invention the reaction of the feedforward control signal FCS is delayed by an amount τF less than the delay time τ4 of the optical delay 4 (DCF), typically less than half of the delay of the optical delay time τ4. An optimum delay value τF within the typical range (0,25 - 0,75) τ4 is usually determined by experiment but may also be calculated.

    [0035] FIG 2 shows the output powers of the amplifier stages 3 and 5 versus time if 39 of 40 channels (channel = signal) of the WDM signal WS1 are dropped. In that moment the amplification of the first amplifier stage 3 and therefore the output power of the remaining signal WS2 is constant but increases because the first pump signal PS1 is not reduced to an adequate amount. After a short time after the pump power is altered the output power of the remaining signal WS2 is reduced to a final value and the amplification of the first amplifier stage has again reached the previous value.

    [0036] The output signal WS2 of the first amplifier stage 3 is delayed by the delay time τ4 of the DCF before it reaches the input of the second stage. But the power of the second pump signal PS2 injected into this amplifier stage 5 has been reduced simultaneously with the first pump signal PS1 after the feedforward delay time τF. Therefore the second pump signal PS2, the inversion of the second amplifier stage 5 and its output power is already reduced before a signal WS3 delayed by τ4 reaches the input of the second stage because τ4F. The bottom line in FIG 2 shows the resulting output signal WS4. The maximum gain variation and the settling time of the output signal are significantly reduced.

    [0037] An additional pump signal delay element 17 delaying the second pump signal PS2 improves the performance because the delay time between the drop of the amplifier input power and the reaction of the feedforward control signal and therefore the power of the first pump signal PS1 can be reduced. Of course the attenuation of the pump signal delay element 17 has to be taken into account.

    [0038] FIG 3A and FIG 3B illustrate the influence of the splitting factor SP (pump power of SP1 of 3 : pump power of SP2) on transient performance. The diagrams are plotted for channel powers of -12 dB and -6 dB. The magnitude of gain variation due to power drops versus delay of the feedforward control is shown. Except for small input powers (FIG 3a) or small splitting ratios (30%) an optimum delay τ providing a minimum of gain variations decreases with an increased splitting factor SP (FIG 3b).

    [0039] In a preferred embodiment, the variable delay element 13 and the splitting factor SP are adjustable by control signals DTS and SPS, preferable controlled by software. The splitting factor is adjusted by a control signal SPC. The control parameters may be adapted to the network requirements by a configuration unit 18 or even automatically, e.g. to achieve either optimum steady-state performance or optimum transient performance. The invention may be also used in amplifiers with more than two cascaded amplifier stages separated by one or more delay elements fed by the same pump.

    [0040] The present invention is not limited to the details of the above described principles. The scope of the invention is defined by the appended claims and all changes and modifications as fall within the equivalents of the scope of the claims are therefore to be embraced by the invention. Especially analogue control processing can be substituted by digital data processing.

    REFERENCE SIGNS



    [0041] 
    1
    amplifier input
    2
    power splitter
    3
    first amplifier stage
    4
    optical delay element, DCF
    5
    second amplifier stage
    6
    second power splitter
    7
    amplifier output
    8
    first electrical-optical converter
    9
    second electrical-optical converter
    10
    control unit
    11
    feedback control circuit
    12
    feedforward control circuit
    13
    (variable) feedforward delay element
    14
    adder
    15
    pump source
    16
    (variable) pump signal splitter
    17
    pump signal delay element
    18
    configuration unit
    19
    feedback delay element
    WS1
    amplifier input signal at input 1
    WS2
    signal at output of 3
    WS3
    signal at output of 4
    WS4
    amplifier output signal at output of 5
    BCS
    feedback control signal
    FCS
    feedforward control signal
    PCS
    pump control signal
    PS
    pump signal
    PS1
    first stage pump signal
    PS2
    second stage pump signal
    S1
    electrical input measuring signal
    S4
    electrical output measuring signal
    SP
    splitting factor
    DTS
    delay time control signal
    SPS
    splitting factor control signal
    τ4
    delay time of 4
    τF
    feedforward delay time of 13
    τB
    feedback delay time of 19



    Claims

    1. Optical fiber amplifier with improved transient performance, comprising
    a first amplifier stage (3) receiving an input signal (WS1) and a second amplifier stage (5) connected in series and outputting an output signal (WS4);
    a common pump source (15) generating a pump signal (PS);
    a power splitter (16), which input is connected to the common pump source (15) and which outputs are connected to the first amplifier stage (3) and the second amplifier stage (5) respectively;
    a control unit (10) determining the power of the pump signal (PS), said control unit (10) generating a feedforward control signal (FCS) out of a part of the optical input signal (WS1) which is converted into an electrical signal (S1) by a first optical electrical converter (8) and fed into a feedforward control circuit (12),
    characterized in that
    the optical fiber amplifier further comprises an optical element (4) afflicted with delay inserted between said amplifier stages (3, 5) and in that said control unit (10) delaying the reaction of the feedforward control by a feedforward delay time (τF), which is less than a delay time (τ4) of said optical element (4) afflicted with delay, reducing the gain variation of an output signal (WS4).
     
    2. The optical amplifier according to claim 1, wherein
    the optical element (4) afflicted with delay is a dispersion compensating fiber (DCF).
     
    3. The optical amplifier according to claim 1 or 2,wherein
    the control unit (10) is in addition adapted for feedback control of amplifier gain and/or output power.
     
    4. The optical amplifier according to claim 3, wherein
    the pump signal splitter (16) is a variable splitter.
     
    5. The optical amplifier according to claim 3 or 4, wherein
    the control unit (10) comprises
    a feedforward control circuit (12) and a feedforward delay element (13) connected in series generating the feedforward control signal (FCS),
    an adder (14) receiving the feedforward control signal (FCS), and
    a feedback control circuit (11) for receiving an electrical input measuring signal (S1) derived from the amplifier input signal (WS1) and receiving an electrical output measuring signal (S4) derived from the amplifier output signal (WS4) and generating a feedback control signal (BCS), which is fed to the adder (14) and combined with the delayed feedforward control signal (FCS).
     
    6. The optical amplifier according to claim 4, wherein
    the control unit (10) is implemented as programmable processor receiving electrical measuring signals (S1, S4) derived from the amplifier input signal (WS1) and the amplifier output signal (WS4) respectively.
     
    7. The optical amplifier according to claim 5, wherein
    the feedforward delay time (τF) of the feed forward delay element (13) can be determined by experiment or by calculation in combination with a chosen splitting factor (SP).
     
    8. The optical amplifier according to claim 6, wherein
    the feedforward delay time (τF) of the feedforward control signal (FCS) and the splitting factor (SP) of the splitter (16) can be determined by experiment or by calculation.
     
    9. The optical amplifier according to claim 7 or 8, wherein
    the feedforward delay time (τF) and the splitting factor (SP) are adjustable or pro grammable.
     
    10. The optical amplifier according to claim 4 or 9, wherein
    the second amplifier stage is pumped via a pump signal delay element (17).
     
    11. Optical fiber amplifier according to claim 5, comprising
    a feedback delay element (19) delaying the electrical input measuring signal (S1) fed to the feedback control circuit (11).
     


    Ansprüche

    1. Optischer Faserverstärker mit verbesserter Transientenleistung, der folgendes umfasst:

    eine erste Verstärkervorrichtung (3), die ein Eingangssignal (WS1) empfängt, und eine zweite Verstärkervorrichtung (5), die in Reihe geschaltet ist, und die ein Ausgangssignal (WS4) ausgibt;

    eine gemeinsame Pumpquelle (15), die ein Pumpsignal (PS) erzeugt;

    einen Leistungsteiler (16), dessen Eingang mit der gemeinsamen Pumpquelle (15) verbunden ist, und dessen Ausgänge jeweils mit der ersten Verstärkervorrichtung (3) und der zweiten Vorrichtung (5) verbunden sind;

    eine Steuereinheit (10), die die Leistung des Pumpsignals (PS) bestimmt, wobei die Steuereinheit (10) ein Vorwärtssteuerungssignal (forward control signal) (FCS) aus einem Teil des optischen Eingangssignals (WS1) erzeugt, das von einem ersten optischen elektrischen Wandler (8) in ein elektrisches Signal (S1) umgewandelt wird und in eine Vorwärtssteuerungsschaltung (12) eingespeist wird,

    dadurch gekennzeichnet, dass
    der optische Faserverstärker ferner ein optisches Element (4) umfasst, das eine Verzögerung verursacht, und das zwischen den Verstärkervorrichtungen (3, 5) angeordnet ist, und dass die Steuereinheit (10) die Reaktion der Vorwärtssteuerung um eine Vorwärtsverzögerungszeit (τF) verzögert, die kleiner als eine Verzögerungszeit (τ4) ist, die von dem optischen Element (4) verursacht wird, wodurch die Verstärkungsvariation eines Ausgangssignals (WS4) verringert wird.
     
    2. Optischer Faserverstärker nach Anspruch 1, wobei das optische Element (4), das eine Verzögerung verursacht, eine Dispersionskompensationsfaser (DCF) ist.
     
    3. Optischer Faserverstärker nach Anspruch 1 oder 2, wobei die Steuereinheit (10) ferner zur Rückwärtssteuerung (feedback control) einer Verstärkung und/oder einer Ausgangsleistung eingerichtet ist.
     
    4. Optischer Faserverstärker nach Anspruch 3, wobei der Pumpsignalteiler (16) ein variabler Teiler ist.
     
    5. Optischer Faserverstärker nach Anspruch 3 oder 4, wobei die Steuereinheit (10) folgendes umfasst:

    eine Vorwärtssteuerungsschaltung (12) und ein Vorwärtsverzögerungselement (13),

    die in Reihe geschaltet sind und das Vorwärtssteuerungssignal (FCS) erzeugen,

    einen Addierer (14), der das Vorwärtssteuerungssignal (FCS) empfängt, und

    eine Rückwärtssteuerungsschaltung (11) zum Empfangen eines elektrischen Eingangsmesssignals (S1), das aus dem Verstärkereingangssignal (WS1) abgeleitet wird,

    und zum Empfangen eines elektrischen Ausgangsmesssignals (S4), das aus dem Verstärkerausgangssignal (WS4) abgeleitet wird, und zum Erzeugen eines Rückwärtssteuerungssignals (BCS), das in den Addierer (14) eingespeist wird und mit dem verzögerten Vorwärtssteuerungssignal (FCS) kombiniert wird.


     
    6. Optischer Faserverstärker nach Anspruch 4, wobei die Steuereinheit (10) als programmierbarer Prozessor implementiert ist, der elektrische Messsignale (S1, S4) empfängt, die jeweils aus dem Verstärkereingangssignal (WS1) und dem Verstärkerausgangssignal (WS4) abgeleitet werden.
     
    7. Optischer Faserverstärker nach Anspruch 5, wobei die Vorwärtsverzögerungszeit (τF) des Vorwärtsverzögerungselementes (13) in Kombination mit einem ausgewählten Teilungsfaktor (SP) durch Experiment oder durch Ausrechnung bestimmt werden kann.
     
    8. Optischer Faserverstärker nach Anspruch 6, wobei die Vorwärtsverzögerungszeit (τF) des Vorwärtssteuerungssignals (FCS) und der Teilungsfaktor (SB) des Teilers (16) durch Experiment oder durch Ausrechnung bestimmt werden können.
     
    9. Optischer Faserverstärker nach Anspruch 7 oder 8, wobei die Vorwärtsverzögerungszeit (τF) und der Teilungsfaktor (SP) einstellbar oder programmierbar sind.
     
    10. Optischer Faserverstärker nach Anspruch 4 oder 9, wobei die zweite Verstärkervorrichtung durch ein Pumpsignalverzögerungselement (17) gepumpt wird.
     
    11. Optischer Faserverstärker nach Anspruch 5, umfassend ein Rückwärtsverzögerungselement (19), das das elektrische Eingangsmesssignal (S1) verzögert, das in die Rückwärtssteuerungsschaltung (11) eingespeist wird.
     


    Revendications

    1. Amplificateur à fibre optique à performance transitoire améliorée, comprenant un premier étage d'amplification (3) recevant un signal d'entrée (WS1) et un second étage d'amplification (5) connecté en série et produisant un signal de sortie (WS4) ;
    une source de pompage commune (15) générant un signal de pompage (PS) ;
    un diviseur de puissance (16), dont l'entrée est branchée à la source de pompage commune (15) et dont les sorties sont branchées au premier étage d'amplification (3) et au second étage d'amplification (5) respectivement ;
    une unité de commande (10) déterminant la puissance du signal de pompage (PS), ladite unité de commande (10) générant un signal de commande prédictive (FCS) faisant partie du signal d'entrée optique (WS1) qui est converti en un signal électrique (S1) par un premier convertisseur électrique optique (8) et transmis à un circuit de commande prédictive (12),
    caractérisé en ce que
    l'amplificateur à fibre optique comprend en outre un élément optique (4) affecté par un retard inséré entre lesdits étages d'amplification (3, 5) et en ce que ladite unité de commande (10) retarde la réaction de la commande prédictive d'un temps de retard prédictif (τF), qui est inférieur à un temps de retard (τ4) dudit élément optique (4) affecté par un retard, réduisant la variation de gain d'un signal de sortie (WS4).
     
    2. Amplificateur optique selon la revendication 1,
    dans lequel
    l'élément optique (4) affecté par un retard est une fibre de compensation de dispersion (DCF).
     
    3. Amplificateur optique selon la revendication 1 ou 2,
    dans lequel
    l'unité de commande (10) est en outre adaptée à la commande de rétroaction de gain de l'amplificateur et/ou de la puissance de sortie.
     
    4. Amplificateur optique selon la revendication 3,
    dans lequel
    le diviseur de signal de pompage (16) est un diviseur variable.
     
    5. Amplificateur optique selon la revendication 3 ou 4,
    dans lequel
    l'unité de commande (10) comprend
    un circuit de commande prédictive (12) et un élément de retard prédictif (13) connectés en série générant le signal de commande prédictive (FCS),
    un sommateur (14) recevant le signal de commande prédictive (FCS), et
    un circuit de commande de rétroaction (11) destiné à recevoir un signal de mesure d'entrée électrique (S1) dérivé du signal d'entrée d'amplification (WS1) et à recevoir un signal de mesure de sortie électrique (S4) dérivé du signal de sortie d'amplification (WS4) et à générer un signal de commande de rétroaction (BCS), qui est transmis au sommateur (14) et combiné au signal de commande prédictive retardé (FCS).
     
    6. Amplificateur optique selon la revendication 4,
    dans lequel
    l'unité de commande (10) est mise en oeuvre en tant que processeur programmable recevant des signaux de mesure électrique (S1, S4) dérivés du signal d'entrée d'amplification (WS1) et du signal de sortie d'amplification (WS4) respectivement.
     
    7. Amplificateur optique selon la revendication 5,
    dans lequel
    le temps de retard prédictif (τF) de l'élément de retard prédictif (13) peut être déterminé par expérience ou par calcul en combinaison avec un facteur de division choisi (SP).
     
    8. Amplificateur optique selon la revendication 6,
    dans lequel
    le temps de retard prédictif (τF) du signal de commande prédictive (FCS) et le facteur de division (SP) du diviseur (16) peuvent être déterminés par expérience ou par calcul.
     
    9. Amplificateur selon la revendication 7 ou 8,
    dans lequel
    le temps de retard prédictif (τF) et le facteur de division (SP) sont ajustables ou programmables.
     
    10. Amplificateur selon la revendication 4 ou 9,
    dans lequel
    le second étage d'amplification est pompé via un élément de retard de signal de pompage (17).
     
    11. Amplificateur à fibre optique selon la revendication 5,
    comprenant
    un élément de retard de rétroaction (19) retardant le signal de mesure d'entrée électrique (S1) transmis au circuit de commande de rétroaction (11).S
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description