FIELD OF THE INVENTION
[0001] The invention relates to a method for burning lean fuel gas, such as gas from gasification
of biofuel or waste, in a furnace of a power plant boiler according to the preamble
of claim 1. The invention also concerns a burner for burning lean fuel gas according
to the preamble of claim 8.
BACKGROUND OF THE INVENTION
[0002] Currently coal and oil are mainly combusted by means of dedicated burners in different
kinds of boilers. As a result of burning coal and oil, carbon dioxide, which is a
greenhouse gas, is emitted into the atmosphere. To reduce greenhouse gas emissions,
renewable fuels of biological origin could be used to replace part of coal and oil.
The method is then called co-firing of coal/oil and biofuels.
[0003] One practical way of carrying out co-firing comprises gasification of biofuels and
combustion of the lean product gas thus produced in a boiler by separate burners.
An advantage of this method is that gasification allows use of very heterogeneous
fuels, such as wood, peat, waste, sludge, coal, etc., and it is still possible to
produce fuel gas of uniform quality for burners. A drawback of this method is its
high investment cost.
[0004] Typically, the calorific value of the product gas from gasification is from about
3 to 6 MJ/m
3n, whereas the calorific value of natural gas is about 49 MJ/m
3n. Furthermore, the product gas from gasification does not contain any oxygen, which
is necessary for burning. The temperature of the product gas is usually from 600°C
to 900°C, and the gas may contain from 100 to 200 ppm hydrogen sulphide. Stable combustion
of this kind of product gas with low calorific value is much more difficult than combustion
of natural gas, which is why specific burning apparatus is required. The high temperature
and high hydrogen sulphide content together create a corrosion risk that should also
be taken into consideration.
[0005] Conventionally, the product gas obtained from a separate gasifier has been fed into
a furnace via burners. As the product gas has a low calorific value, the burners have
been designed for a low axial velocity in order to assure reliable ignition, whereby
the burner's dimensions have become very large. The gas volume flow becomes extremely
large, which further complicates the fuel feed at a low velocity. Mounting large burners
in an existing furnace is technically difficult, and adding new burners to an existing
boiler cuts down the available heat transfer surface of the boiler. The additional
burners may cause fouling and flow disturbances in the furnace, because introduction
of new flows changes the flow patterns in the furnace, thus altering the fuel combustion
process, the flame pattern, emissions and the heat transfer on the boiler's internal
surfaces.
[0006] If the lean gas burners are placed on false grounds in an existing boiler, or if
the flame ignition or burning is poor, the result may be deficient combustion degree
of coal/oil, increased CO and NO
x emissions and increased boiler corrosion. Furthermore, in the placement of lean gas
burners in the existing boiler, the total heat transfer of the boiler has to be taken
into consideration so that it is not changed, because that would mean reduction of
the combustion efficiency of the power plant.
[0007] In a prior-art lean gas burner that has been used in co-firing of lean gas in a powdered
coal-fired boiler, the flame ignition has been poor because of the inferior aerodynamic
design of the burner. In this prior-art burner, the velocity of the fuel gas in the
fuel pipe is only 5 - 10 m/s, and the velocities of the primary air and the secondary
air in the air channels are 10 - 15 m/s. The fuel gas is fed at the outer periphery
of the burner very close to the refractory throat. The major part of the combustion
air is supplied to the center of the burner, which is why a sufficient protective
air curtain is not formed in between the fuel gas flow and the burner throat. As a
result of the above aerodynamic design, slag is formed in the burner pipe, one of
the reasons for this being the low velocity of the fuel gas. Slag is also accumulated
on the refractory throat, because in practice the fuel gas gets into direct contact
with the refractory throat as there is no sufficient protective air curtain.
[0008] Low velocities of the combustion airs and lack of stabilizing elements lead to poor
flame ignition. Low velocities of both the fuel gas and the airs also lead to notably
large burner sizes and high investment costs, with the specific drawback that it is
necessary to make large holes in the boiler wall. If the boiler must be provided with
new large holes, the water and steam circulation of the boiler may be disturbed. In
practice, poor ignition and unstable flame cause boiler corrosion and material damages
in the other burners of the furnace. Furthermore, the combustion degree of coal and
the level of nitrogen oxides generated are not best possible.
[0009] Due to poor ignition of the prior-art fuel gas burners, they can only be started
after the boiler has been pre-heated for several hours by heavy fuel oil fired burners.
In other words, those lean gas burners cannot be used as ignition burners of the boiler.
Furthermore, due to their poor ignition the burners cannot be staged, i.e. used with
an air-fuel ratio of the flame in the range of 0.6 - 0.8. This will result in high
nitrogen oxide emissions. To suppress NO
x generation during combustion of lean fuel gas, an atmosphere or a flame should be
created that has a sufficiently low oxygen concentration and high temperature. In
practice, the flame needs to be stable and short.
[0010] EP 1 998 112 A2 discloses a method and a burner for burning lean fuel gas according to the preamble
of claim 1 and claim 8, respectively.
[0011] US 2008/0227040 A1 discloses a method and burner for combustion of lean fuel gas, comprising creating
an inflammable pre-mixture containing air and fuel gas, ejecting the pre-mixture in
rotation around a central axis, and ejecting a complementary air flow either in the
center of the pre-mixture flow or around the pre-mixture flow as a peripheral complementary
flow. The structure of the burner is very complicated.
[0012] EP 0 639 742 A2 discloses a method and device for low emission combustion of gaseous fuels with internal
recirculation of flue gas, particularly in water tube boilers. A first part of combustion
air is guided in a swirled manner as primary air coaxially with the fuel and essentially
in rotational symmetry with respect to the longitudinal axis of the burner to a primary
exit position. A second part of the combustion air is guided in two stages as secondary
air to a secondary exit position. The secondary air is fed in the form of a number
of free jets essentially in the direction of the primary air flow. These secondary
air jets cause circulation of flue gases, which flue gases are cooler than the flame.
[0013] Successful co-firing of lean product gas with coal or oil requires good ignition
and flame stability of the gas burner. The burner should remain free of slag and it
should not cause corrosion of the boiler walls. In co-firing one should also take
notice of the other burners and the performance of the over-fire air system. If the
change in the boiler performance caused by addition of lean gas burners is not considered
in the operation of the over-fire air system, the result may be deterioration of the
combustion degree of coal and increase of carbon monoxide emissions.
SUMMARY OF THE INVENTION
[0014] It is an object of the present invention to provide an improved method and burner
for burning lean fuel gas in a power plant boiler.
[0015] The method according to the present invention is characterized by what is stated
in claim 1.
[0016] Furthermore, the burner according to the present invention is characterized by what
is stated in claim 8.
[0017] In the method, a fuel gas flow is fed into a furnace via a fuel pipe, a primary air
flow is fed centrally into the fuel gas flow discharging from the fuel pipe, and a
secondary air flow is fed peripherally into the fuel gas flow discharging from the
fuel pipe. A small amount of air may be introduced into the fuel gas flow in the fuel
pipe. The outlet of the fuel pipe is provided with an inner and an outer stabilizing
ring that contribute to the flame ignition. The primary and the secondary air channels
are provided with swirlers that set the respective air flows into rotation.
[0018] The product gas received from a biofuel gasifier is oxygen-free and its temperature
is typically in the range of 600°C to 800°C. This being the case, producing a stable
gas flame requires efficient mixing of air with the fuel gas to create a combustible
mixture. The novel gas burner supports mixing the air and the fuel gas in several
significant ways. Firstly, part of the combustion air - from 20 to 40% of the total
amount - is supplied as primary air via a primary air channel in the center of the
fuel gas flow. The primary air flow is given a drastic tangential acceleration at
the outlet of the primary air channel, thus boosting the mixing of the air with the
surrounding fuel gas flow. Part of the secondary air may be introduced into the fuel
pipe through separate nozzles arranged in the separating wall to increase the oxygen
content of the fuel gas already in the fuel pipe. The secondary air flow is given
a high velocity, preferably in the range of 40 to 60 m/s. The share of secondary air
is preferably from 60 to 80% of the total amount of combustion air. Mixing of combustion
air with fuel gas improves as the velocity difference increases. The velocity of the
fuel gas can be maintained in the range of 15 - 30 m/s, preferably 20 to 25 m/s. Furthermore,
by providing the refractory throat with a small burner throat angle, e.g. in the range
of 0° - 10°, the secondary air flow can be forced to efficiently mix with the fuel
gas.
[0019] Rapid ignition of fuel gas can be secured by means of flame stabilizing rings fitted
in connection with the outlet of the fuel pipe. Rapid ignition also requires intense
swirl numbers of the primary and secondary air flows. The swirl numbers should preferably
be in the range of 0.6 - 1.0. Cutting down the swirl number would impair ignition.
[0020] Advantageously, the fuel pipe is made of corrosion resistant stainless steel, which
preferably contains more than 15% chromium. Calculations have shown that in the novel
burner a chromium oxide layer is formed on the metal surface, limiting the corrosion
rate to an acceptable level.
[0021] In the new lean gas burner the flame ignites rapidly and bums stably. This is achieved
by utilizing specific flame stabilizing rings and by setting the velocities of the
combustion airs and the fuel gas to an optimal level. As the flame ignition is simple,
the furnace may be started up directly by the new fuel gas burners. In that case,
the heavy fuel oil fired start-up burners that have previously been used for ignition
can be eliminated. Heavy fuel oil is expensive and tends to cause detrimental emissions.
[0022] Slag-formation can be prevented by guiding a large amount of protective secondary
air close to the refractory burner throat and by increasing the velocities of air
flows. By the above measures, oxygen-rich conditions will be generated in the vicinity
of the refractory throat and the burner throat will remain clean. Slagging of the
fuel pipe can be further prevented by increasing the velocity of the fuel gas flow.
[0023] Due to the good ignition and the stability of the flame, the novel burner enables
very low air-fuel ratio of the flame, such as 0.6 - 0.8, combined with the over-fire
system of the boiler. This makes it possible to reach very low level of nitrogen oxide
emissions.
[0024] Furthermore, because of the good ignition and the stability of the flame, the new
burner produces a short flame, which is easy to fit in the furnace in such a way that
the flame does not cause detrimental corrosion of the boiler walls and/or deteriorate
the other burners of the furnace.
[0025] The novel lean gas burner can be installed in existing boilers or in new boilers.
When renovating an existing power plant boiler, care should be taken of the accompanied
changes in the over-fire space. Furthermore, the boiler may be operated solely with
lean fuel gas or it may be a boiler co-firing e.g. coal or oil and the product gas.
[0026] Due to high air and gas velocities, the novel lean gas burner has smaller dimensions
than the prior-art lean gas burners. That is why the holes needed in the water wall
of the furnace are not as large as when using the prior-art gas burners.
BRIEF DESCRIPTION OF THE DRAWINGS
[0027] In the following the invention is explained in more detail by reference to illustrative
embodiments represented in the drawings.
FIG. 1 is a front view of a lean gas burner.
FIG. 2 is a cross-sectional view along the line A-A of FIG. 1.
DETAILED DESCRIPTION OF THE INVENTION
[0028] FIGS. 1 and 2 illustrate a gas burner suitable for burning lean fuel gas, such as
product gas from gasification of various kinds of biofuel or waste material.
[0029] The burner comprises a fuel pipe 1 for feeding fuel gas into a furnace, a primary
air channel 2 arranged centrally in the fuel pipe 1, and a secondary air channel 6
arranged circumferentially around the fuel pipe 1. In the center of the primary air
channel 2 there is an auxiliary fuel firing tube 5, which may provide a jet of liquid
fuel, such as light fuel oil, when the combustion furnace is started up. Furthermore,
there may be a gas igniter 11 arranged in the fuel pipe 1. The fuel firing tube 5
and the gas igniter 11 are alternative means for ignition of the flame. It would be
sufficient to have either of them.
[0030] The interior of the fuel pipe 1 may be provided with deflectors 12 to guide the fuel
gas flow from the inlet 13 of the fuel pipe 1 to the outlet 14 through which the fuel
gas is ejected into the furnace.
[0031] The outlet 14 of the annular fuel pipe 1 is provided with two annular stabilizing
rings 4, 8. The inner stabilizing ring 4 is fitted at the end of the inner wall of
the fuel tube 1. The inner ring 4 comprises a plurality of tooth-like projections
15 extending radially outwards into the fuel pipe 1. The outer stabilizing ring 8
is fitted at the end of the outer wall of the fuel pipe 1. The outer ring 8 comprises
a plurality of tooth-like projections 16 extending radially inwards into the fuel
pipe 1. In addition to the inwards extending projections 16, the second stabilizing
ring 8 comprises an annular section 17 extending outwards into the secondary air channel
6.
[0032] The two stabilizers 4 and 8 are arranged such that they generate turbulence in the
fuel gas flow ejecting from the fuel pipe 1, which makes it easier to mix the turbulent
fuel gas flow with the tangential primary air flow injected from the primary air channel
2 and the tangential secondary air flow injected from the secondary air channel 6.
The stabilizing rings 4 and 8 form a two-part flame holder.
[0033] The primary air channel 2 is provided with a first swirler 3 that sets the primary
air flow in a rotation close to the outlet of the primary air channel 2. Here the
swirler 3 is fixed to the auxiliary fuel firing tube 5. The secondary air channel
6 is provided with a second swirler 7 that sets the secondary air flow in rotation
close to the outlet of the secondary air channel 6. The angle of the blades of the
second swirler 7 may be adjustable in order to control the rotation of the secondary
air flow discharging from the secondary air channel 6.
[0034] Furthermore, the outer wall of the fuel pipe 1 may be provided with a plurality of
nozzles 9 that allow introduction of air from the secondary air channel 6 into the
fuel pipe 1. The number of the nozzles 9 in the outer wall of the fuel pipe 1 may
be 5 - 10. The amount of air introduced into the fuel pipe 1 through the nozzles 9
may be adjustable in the range of 10 - 20% of the total amount of secondary air.
[0035] The fuel gas is injected to the furnace via the fuel pipe 1, which is advantageously
made of high-chromium stainless steel. The velocity of the fuel gas flow is adjustable
in the range of 15 - 30 m/s, preferably 20 - 25 m/s. The fuel gas is mixed with a
small amount of secondary air introduced through nozzles 9 in the fuel pipe 1.The
primary air channel 2 injects a tangential primary air flow into the fuel gas flow
discharging from the fuel pipe 1, and the secondary air channel 6 injects a tangential
secondary air flow around the fuel gas flow discharging from the fuel pipe 1. The
velocity of the primary air flow may be adjustable in the range of 15 - 40 m/s. The
velocity of the secondary air flow may be adjustable in the range of 40 - 60 m/s.
The two stabilizing rings 4 and 8 assist in mixing the fuel gas with the tangential
air flows.
[0036] The burner is fixed in the wall of the furnace via a refractory throat 10 that surrounds
the outlet of the secondary air channel 6. The refractory throat 10 might have a burner
throat angle in the range of 0 - 10°. The air flow ejecting from the secondary air
channel 6 is arranged to flush the surface of the refractory throat 10, thus cooling
the surface of the burner throat 10 and preventing slagging. The annular section 17
of the outer stabilizing ring 8 helps in guiding the secondary air flow to flush the
surface.
[0037] Burning may be carried out with an air-fuel ratio of 0.6 - 0.8, which ensures that
the generation of nitrogen oxides is minimized. The flame provided by the burner is
relatively short and hot. Thus the flame does not disturb the operation of any other
burners in the furnace.
[0038] The air supply is advantageously divided such that 20 - 40% of the total amount of
burner air is supplied to the flame via the primary air channel 2 and 60 - 80% of
the total amount of burner air is supplied to the flame via the secondary air channel
6. The relationship between the two air flows can be adjusted by control dampers arranged
in the pipes supplying air into the primary air channel 2 and the secondary air channel
6.
1. Method for burning lean fuel gas in a furnace of a power plant boiler, comprising
the steps of:
- feeding a fuel gas flow into the furnace via an outlet (14) of a fuel pipe (1),
- feeding a primary air flow centrally into the fuel gas flow discharging from the
outlet (14) of the fuel pipe (1),
- feeding a secondary air flow peripherally into the fuel gas flow discharging from
the outlet (14) of the fuel pipe (1),
- providing the primary air channel (2) with a first swirler (3) to set the primary
air flow into a rotation before the outlet (14),
- providing the secondary air channel (6) with a second swirler (7) to set the secondary
air flow into a rotation before the outlet (14),
characterized by providing the outlet (14) of the fuel pipe (1) with an inner stabilizing ring (4)
and an outer stabilizing ring (8) to boost flame ignition, said outlet (14) being
confined between said inner stabilizing ring (4) and said outer stabilizing ring (8),
the inner stabilizing ring (4) comprising a plurality of tooth-like projections (15)
extending radially outwards into the fuel pipe (1) and the outer stabilizing ring
(8) comprising a plurality of tooth-like projections (16) extending radially inwards
into the fuel pipe (1) and an annular section (17) extending outwards into the secondary
air channel (6).
2. Method according to claim 1, comprising introducing some air from the secondary air
channel (6) to the fuel gas flowing in the fuel pipe (1).
3. Method according to claim 1 or 2, wherein the velocity of the fuel gas discharging
from the fuel pipe (1) is in the range of 15 to 30 m/s, preferably 20 to 25 m/s.
4. Method according to any one of the preceding claims, wherein the velocity of the primary
air is in the range of 15 to 40 m/s and the velocity of the secondary air is in the
range of 40 to 60 m/s.
5. Method according to any one of the preceding claims, wherein 20 - 40 % of the air
fed to the fuel gas flow is supplied as primary air and 60 - 80 % of the air is supplied
as secondary air.
6. Method according to any one of the preceding claims, wherein the air-fuel ratio of
the flame is 0.6 - 0.8.
7. Method according to any one of the preceding claims, comprising the step of starting
up the boiler by lean fuel gas burners, thus eliminating the need of specific start-up
burners.
8. Burner for burning lean fuel gas in a furnace of a power plant boiler, comprising:
- a fuel pipe (1) for feeding the fuel gas into the furnace,
- a primary air channel (2) arranged centrally in the fuel pipe (1) for feeding primary
air into the fuel gas flow discharging from an outlet (14) of the fuel pipe (1),
- a first swirler (3) provided in the primary air channel (2) to set the primary air
flow into rotation,
- a secondary air channel (6) arranged circumferentially around the fuel pipe (1)
for feeding secondary air into the fuel gas flow discharging from the outlet (14)
of the fuel pipe (1),
- a second swirler (7) provided in the secondary air channel (6) to set the secondary
air flow into rotation,
characterized by
- an inner stabilizing ring (4) fitted at the end of the inner wall of the fuel pipe
(1) comprising a plurality of tooth-like projections (15) extending radially outwards
into the fuel pipe (1), and
- an outer stabilizing ring (8) fitted at the end of the outer wall of the fuel pipe
(1) comprising a plurality of tooth-like projections (16) extending radially inwards
into the fuel pipe (1) and an annular section (17) extending outwards into the secondary
air channel (6).
9. Burner according to claim 8, wherein the outer wall of the annular fuel pipe (1) is
provided with nozzles (9) to allow introduction of secondary air into the fuel pipe
(1).
10. Burner according to claim 8 or 9, wherein the fuel pipe (1) is made of corrosion resistant
stainless steel.
11. Burner according to any one of claims 8 to 10, comprising a refractory throat (10)
provided with a burner throat angle in the range of 0° - 10°.
1. Verfahren zur Verbrennung von niederkalorigem Heizgas in einem Brennraum eines Kraftwerkskessels,
umfassend die Schritte:
- Zuführen eines Heizgasstroms in den Brennraum über einen Auslass (14) einer Brennstoffleitung
(1),
- Zuführen eines Primärluftstroms zentral in den aus dem Auslass (14) der Brennstoffleitung
(1) austretenden Heizgasstrom,
- Zuführen eines Sekundärluftstroms am Umfang in den aus dem Auslass (14) der Brennstoffleitung
(1) austretenden Heizgasstrom,
- Ausstatten des Primärluftkanals (2) mit einem ersten Drallkörper (3), um den Primärluftstrom
vor dem Auslass (14) in eine Drehung zu versetzen,
- Ausstatten des Sekundärluftkanals (6) mit einem zweiten Drallkörper (7), um den
Sekundärluftstrom vor dem Auslass (14) in eine Drehung zu versetzen,
gekennzeichnet durch Ausstatten des Auslasses (14) der Brennstoffleitung (1) mit einem inneren Stabilisierungsring
(4) und einem äußeren Stabilisierungsring (8), um Flammenzündung zu verstärken, wobei
der Auslass (14) zwischen dem inneren Stabilisierungsring (4) und dem äußeren Stabilisierungsring
(8) eingeschlossen ist, der innere Stabilisierungsring (4) eine Vielzahl zahnähnlicher
Vorsprünge (15) aufweist, die sich radial nach außen in die Brennstoffleitung (1)
hinein erstrecken, und der äußere Stabilisierungsring (8) eine Vielzahl zahnähnlicher
Vorsprünge (16), die sich radial nach innen in die Brennstoffleitung (1) hinein erstrecken,
und einen ringförmigen Abschnitt (17), der sich nach außen in den Sekundärluftkanal
(6) hinein erstreckt, aufweist.
2. Verfahren nach Anspruch 1, umfassend das Einführen von etwas Luft aus dem Sekundärluftkanal
(6) in das in der Brennstoffleitung (1) strömende Heizgas.
3. Verfahren nach Anspruch 1 oder 2, bei dem die Geschwindigkeit des aus der Brennstoffleitung
(1) austretenden Heizgases im Bereich von 15 bis 30 m/s, vorzugsweise 20 bis 25 m/s,
liegt.
4. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Geschwindigkeit der
Primärluft im Bereich von 15 bis 40 m/s und die Geschwindigkeit der Sekundärluft im
Bereich von 40 bis 60 m/s liegen.
5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem 20 bis 40% der in den Heizgasstrom
zugeführten Luft als Primärluft und 60 bis 80% der Luft als Sekundärluft bereitgestellt
werden.
6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Brennstoff/Luft-Verhältnis
der Flamme 0,6 bis 0,8 beträgt.
7. Verfahren nach einem der vorhergehenden Ansprüche, umfassend den Schritt des Anfahrens
des Kessels durch Brenner niederkalorigen Heizgases, womit der Bedarf an speziellen
Anfahrbrennern ausgeschlossen wird.
8. Brenner zum Verbrennen von niederkalorigem Heizgas in einem Brennraum eines Kraftwerkskessels,
umfassend:
- eine Brennstoffleitung (1) zur Zuführung des Heizgases in den Brennraum,
- einen Primärluftkanal (2), der zentral in der Brennstoffleitung (1) zur Zuführung
von Primärluft in den aus einem Auslass (14) der Brennstoffleitung (1) austretenden
Heizgasstrom eingerichtet ist,
- einen ersten Drallkörper (3), der in dem Primärluftkanal (2) vorgesehen ist, um
den Primärluftstrom in Drehung zu versetzen,
- einen Sekundärluftkanal (6), der in Umfangsrichtung um die Brennstoffleitung (1)
herum eingerichtet ist, um Sekundärluft in den aus dem Auslass (14) der Brennstoffleitung
(1) austretenden Heizgasstrom zuzuführen,
- einen zweiten Drallkörper (7), der in dem Sekundärluftkanal (6) vorgesehen ist,
um den Sekundärluftstrom in Drehung zu versetzen,
gekennzeichnet durch
- einen inneren Stabilisierungsring (4), der an dem Ende der Innenwand der Brennstoffleitung
(1) angebracht ist, eine Vielzahl zahnähnlicher Vorsprünge (15) aufweist, die sich
radial nach außen in die Brennstoffleitung (1) hinein erstrecken, und
- einen äußeren Stabilisierungsring (8), der an dem Ende der Außenwand der Brennstoffleitung
(1) angebracht ist, eine Vielzahl zahnähnlicher Vorsprünge (16), die sich radial nach
innen in die Brennstoffleitung (1) hinein erstrecken, und einen ringförmigen Abschnitt
(17) aufweist, der sich nach außen in den Sekundärluftkanal (6) hinein erstreckt.
9. Brenner nach Anspruch 8, bei dem die Außenwand der Brennstoffringleitung (1) mit Düsen
(9) versehen ist, um eine Einführung von Sekundärluft in die Brennstoffleitung (1)
zu ermöglichen.
10. Brenner nach Anspruch 8 oder 9, bei dem die Brennstoffleitung (1) aus korrosionsbeständigem,
rostfreiem Stahl besteht.
11. Brenner nach einem der Ansprüche 8 bis 10, umfassend eine feuerfeste Mündung (10),
die mit einem Brennermündungswinkel im Bereich von 0° bis 10° versehen ist.
1. Procédé pour brûler du gaz combustible pauvre dans un four d'une chaudière de centrale
électrique, comprenant les étapes suivantes :
- l'introduction d'un flux de gaz combustible dans le four par l'intermédiaire d'une
sortie (14) d'un tuyau de combustible (1),
- l'introduction d'un flux d'air primaire centralement dans le flux de gaz combustible
s'évacuant par la sortie (14) du tuyau de combustible (1),
- l'introduction d'un flux d'air secondaire périphériquement dans le flux de gaz combustible
s'évacuant par la sortie (14) du tuyau de combustible (1),
- la fourniture, au canal d'air primaire (2), d'une première coupelle rotative (3)
pour mettre le flux d'air primaire en rotation avant la sortie (14),
- la fourniture, au canal d'air secondaire (6), d'une deuxième coupelle rotative (7)
pour mettre le flux d'air secondaire en rotation avant la sortie (14),
caractérisé par la fourniture, à la sortie (14) du tuyau de combustible (1), d'un anneau de stabilisation
intérieur (4) et d'un anneau de stabilisation extérieur (8) pour renforcer l'allumage
de flamme, ladite sortie (14) étant confinée entre ledit anneau de stabilisation intérieur
(4) et ledit anneau de stabilisation extérieur (8), l'anneau de stabilisation intérieur
(4) comprenant une pluralité de saillies en forme de dents (15) s'étendant radialement
vers l'extérieur dans le tuyau de combustible (1) et l'anneau de stabilisation extérieur
(8) comprenant une pluralité de saillies en forme de dents (16) s'étendant radialement
vers l'intérieur dans le tuyau de combustible (1) et une section annulaire (17) s'étendant
vers l'extérieur dans le canal d'air secondaire (6).
2. Procédé selon la revendication 1, comprenant l'introduction d'air du canal d'air secondaire
(6) dans le gaz combustible s'écoulant dans le tuyau de combustible (1).
3. Procédé selon la revendication 1 ou 2, dans lequel la vitesse du gaz combustible s'évacuant
par le tuyau de combustible (1) est dans la plage de 15 à 30 m/s, de préférence de
20 à 25 m/s.
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel la vitesse
de l'air primaire est dans la plage de 15 à 40 m/s et la vitesse de l'air secondaire
est dans la plage de 40 à 60 m/s.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel de 20 à
40 % de l'air introduit dans le flux de gaz combustible est fourni en tant qu'air
primaire et de 60 à 80 % de l'air est fourni en tant qu'air secondaire.
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel le rapport
air-combustible de la flamme est de 0,6 à 0,8.
7. Procédé selon l'une quelconque des revendications précédentes, comprenant l'étape
du démarrage de la chaudière par des brûleurs de gaz combustible pauvre, en éliminant
ainsi la nécessité d'avoir des brûleurs de démarrage spécifiques.
8. Brûleur pour brûler du gaz combustible pauvre dans un four d'une chaudière de centrale
électrique, comprenant :
- un tuyau de combustible (1) pour effectuer l'introduction du gaz combustible dans
le four,
- un canal d'air primaire (2) agencé centralement dans le tuyau de combustible (1)
pour effectuer l'introduction d'air primaire dans le flux de gaz combustible s'évacuant
par une sortie (14) du tuyau de combustible (1),
- une première coupelle rotative (3) fournie dans le canal d'air primaire (2) pour
mettre le flux d'air primaire en rotation,
- un canal d'air secondaire (6) agencé circonférentiellement autour du tuyau de combustible
(1) pour effectuer l'introduction d'air secondaire dans le flux de gaz combustible
s'évacuant par la sortie (14) du tuyau de combustible (1),
- une deuxième coupelle rotative (7) fournie dans le canal d'air secondaire (6) pour
mettre le flux d'air secondaire en rotation,
caractérisé par
- un anneau de stabilisation intérieur (4) monté à l'extrémité de la paroi intérieure
du tuyau de combustible (1) comprenant une pluralité de saillies en forme de dents
(15) s'étendant radialement vers l'extérieur dans le tuyau de combustible (1), et
- un anneau de stabilisation extérieur (8) monté à l'extrémité de la paroi extérieure
du tuyau de combustible (1) comprenant une pluralité de saillies en forme de dents
(16) s'étendant radialement vers l'intérieur dans le tuyau de combustible (1), et
une section annulaire (17) s'étendant vers l'extérieur dans le canal d'air secondaire
(6).
9. Brûleur selon la revendication 8, dans lequel la paroi extérieure du tuyau de combustible
annulaire (1) est pourvue de buses (9) pour permettre l'introduction d'air secondaire
dans le tuyau de combustible (1).
10. Brûleur selon la revendication 8 ou 9, dans lequel le tuyau de combustible (1) est
constitué d'acier inoxydable anticorrosif.
11. Brûleur selon l'une quelconque des revendications 8 à 10, comprenant une gorge réfractaire
(10) pourvue d'un angle de gorge de brûleur dans la plage de 0° à 10°.