Background Of The Invention
[0001] The invention concerns an hydraulic valve comprising a body, mono-block or bankable,
in which is present at least a spool movable axially for controlling flu id flow which
flows in inner channels of said hydraulic valve, and relates to at least a sensor
designed to sense the position of the spool of said hydraulic valve and give out a
corresponding electrical signal.
Description Of The Related Art
[0002] In the prior art it is desirable monitor and/or check the movements of spools within
the spool bore of the hydraulic valve devices.
[0003] US4107604 discloses an "Hall effect displacement transducer using a bar magnet parallel to
the plane of the Hall device" - A position indicating device for providing a generally
linear output in response to displacement; the system includes a Hall effect device
and apparatus for providing a response therein in accordance to displacement of a
movable stylus or plunger and the method of making the same.
[0004] US5565770 relates to magnetic sensors, and in particular to sensors for cyclic lubricant feeders
utilizing reciprocating distributor valves, the sensor being a magnetic sensor for
sensing the movement of a reciprocating valve. The sensor provides a threaded nozzle
for screwing into the block with a bore therethrough. A magnet holder extends out
of the nozzle and mounts a magnet thereto recessed inside the housing. The magnet
holder is moveable reciprocally by the reciprocating spool. A sensor body is connected
to the housing and holds a magnetic sensing element such as a Hall effect sensor adjacent
to the housing for sensing the proximity of the magnetic field of the reciprocating
magnet. In other words it discloses a magnetic proximity switch for a reciprocating
lubrication distributor block having reciprocating spools therein, comprising:
- a housing having a threaded nozzle for screwing into the block aligned with one of
the spools, said threaded nozzle having a longitudinal bore with an open first end
and a closed second end;
- a magnet holder held reciprocally within said bore and extendable out of said first
end into said block to be abuttable by said spool, said magnet holder reciprocally
driven by a pushing force from said spool;
- a magnet held by said holder within said bore; a spring arranged within said housing
and urging said magnet holder away from said closed second end, said spring surrounding
said magnet;
- a sensor body connected to said housing at said second end;
- a magnetic sensing element mounted within said sensor body outside said housing and
responsive to position of a magnetic field created by said magnet through said closed
second end.
[0005] FR2897933 discloses an "Element's e.g. slide, linear movement detecting device for e.g. hydraulic
distributor , has fixed housing integrated with Hall effect sensor, and movable unit
including magnet and non-magnetic material body overmolded around magnet". The device
has a tube comprising a fixed housing integrated with two Hall effect sensors, and
a movable member moving with respect to the housing. The movable unit has a magnet
and a non-magnetic material body overmolded around the magnet. One of the Hall effect
sensors is connected to a processing unit via a flexible card, and the body and the
tube are made of plastic material. The housing further comprising guide means in translation
of the movable.
[0006] EP1219935 discloses a switching element of the pickup for the hydraulic unit is a reed switch
and the operator is a bar magnet. The longitudinal axis of the bar magnet is arranged
within at least one section of the path, at least approximately parallel to the longitudinal
axis of the reed switch, and approximately parallel to the movement direction. The
section determined in size and position within the path, by the reed switch on the
basis of a lateral weak region of the force field of the bar magnet, existing in the
direction of the longitudinal axis of the bar magnet, is indicated.
[0007] US6152172 discloses an hydraulic control valve having a spool slidably received in a bore of
the valve body. The spool can be moved in opposite directions to control flow fluid
to and from a pair of workports. A sensor assembly has a coupling attached to the
spool and holds a permanent magnet. A Hall effect sensor produces an electrical signal
indicating the position of the permanent magnet and thus the spool. A double acting
spring assembly biases the coupling and spool with respect to the housing of the sensor
when the spool moves in one direction, and biases the coupling and spool with respect
to the valve body when the spool moves in the other direction.
[0008] US2009/0261819 relates to a sensor arrangement is arranged to detect at least one position of a
displaceable component in a fluid device, which fluid device comprises a wall enclosing
a cavity, in which cavity the component is displaced by pressurized fluid selectively
applied to the component. The sensor arrangement includes a magnetic sensor mounted
outside the wall and a first sensor element that is connected to the magnetic sensor
and extends through the wall and a predetermined distance into the cavity. The magnetic
sensor is arranged to detect the position of at least one predetermined second sensor
element located on the displaceable component by sensing a change in magnetic flux
induced in the first sensor element by the second sensor element.
Summary Of The Invention
[0009] The invention provides an hydraulic valve comprising a body, mono-block or bankable,
in which is present at least a spool movable axially for controlling fluid flow which
flows in inner channels of said hydraulic valve; the invention relates to at least
a sensor designed to sense the position of the spool of said hydraulic valve and give
out a corresponding electrical signal.
[0010] An object of the present invention is to provide a sensor which is able to detect
the position of a spool in a hydraulic valve device and precisely a sensor which measure
the linear displacement of the spool of a valve, wherein said measurement is obtained
reading, namely sensing, the angle of the magnetic field lines.
[0011] It is another object of the invention provide a sensor be readily suitable for existing
hydraulic valve.
[0012] It is another object of the present invention to provide a sensor is insensitive
to external magnetic influences, both environmental, magnetically and electrical.
[0013] It is another object of the invention to provide a magnet housing sealable to the
block of hydraulic valve and formable a closed compartment for a magnet (i.e., a magnet
housing); to provide a sensor body for holding electronics including a sensing element,
in which the sensor body is isolated by the magnet housing to prevent oil entrance.
[0014] Magnet housing and sensor body are separated, namely modular pieces which can be
readily assembled/disassembled together either before or after installation of the
sensor to the hydraulic valve device.
[0015] The objects of the invention are achieved by the sensor of present invention applied
to the hydraulic valve.
[0016] Specifically, a magnet provided inside a magnet housing and said sensor body being
effectively sealed to the hydraulic body by threaded engagement thereto compressing
a gasket or O-ring seal.
[0017] The magnet housing is open to the block, particularly to the spool inside the block.
[0018] Said sensor is fixed or mounted on the valve by means of thread so that a plunger
of the sensor can move axially together with the spool of the hydraulic valve, being
plunger kept in contact with spool by a spring placed internal to said housing.
[0019] When the magnet moves along with the spool, it creates a variation of magnetic field
and a magnetic pickup of a integrated circuit on a printed circuit board, positioned
in the sensor, senses the variation of angle of the magnetic field lines and generates
an output signal proportional to the movement of the spool.
[0020] A magnet holder or magnet carrier is used to hold the magnet within the magnet housing
and keeps the magnet steady and protected within said magnet housing.
[0021] The magnet holder is constructed preferably of brass or non magnetic steel in order
to avoid disturbing or distorting the magnetic field of the permanent magnet into
the sensor.
[0022] The magnet holder and the magnet housing are adapted such that the magnet holder
has two locations of contact or support along its length for stability and guidance
as it slides inwardly/outwardly within the housing with the movement of the spool,
reducing lateral vibrations and preventing rotation around the axis (AA).
[0023] The magnet holder/carrier material can be selected to be compatible with repetitive
impact by the spool.
[0024] Moreover sensor body is provided for holding an integrated circuit on a printed circuit
board.
[0025] In a first embodiment such integrated circuit is a Hall Effect type sensor.
[0026] In a second embodiment such integrated circuit is a magneto resistive type sensor.
Brief Description Of The Drawings
[0027]
- Fig. 1: is a top view of an hydraulic valve with three spools for controlling fluid
flow; each spool having a lateral sensor device attached for sensing the position
of said spool and give out a corresponding electrical signal,
- Fig. 2: is a sectional view (A-A) of previous figure,
- Fig. 3: shows a prospective view of the hydraulic assembly with sensor drafted in
figure 1,
- Fig. 4: shows a section of a bankable hydraulic device with sensor associated,
- Fig. 5: shows an exploded view of figure 4,
- Fig. 6: shows in details the sensor of previous figures,
- Fig. 7: is an exploded view of the sensor illustrated in figure 6,
- Fig. 8: is a sectional view of the sensor illustrated in figure 6.
Description Of The Preferred Embodiments
[0028] As illustrated in the figures from 1 to 8, the invention relates to a sensor 30 applied
to a hydraulic valve 20.
[0029] Said sensor 30 comprising at least two main subassemblies applied to said hydraulic
device: Tube Assembly and Body Assembly (refer to Fig. 7 - exploded drawing)
[0030] Said Tube Assembly (corresponding to parts numbered from 1 to 8) comprises at least:
- a tube 8 designed to resist oil pressure and serve as a magnet housing,
- amoving plunger 1,2,4,5 with a permanent magnet 4 inside; said moving plunger is defined
by a magnet carrier 5, having elongated shape; in said magnet carrier 5 is present
a bore closed by the plunger 1; eventually one or more spacer 2 will be put inside
in order to keep the magnet 4 steady and protected within said bore of magnet carrier
5,
- aspring 6 to keep said moving plunger in contact with the moving spool 21 of the hydraulic
valve 20;
- an anti-spin device 3 for preventing the plunger to rotate around its axis AA; said
anti-spin device 3 has at least one linear surface suitable to cooperate to a corresponding
planar surface of the magnet carrier 5; in the example said anti-spin device 3 is
an annular element provided a polygonal central bore and having shape partially corresponding
to the section of the magnet carrier 5. The anti-spin device is fixed, e.g., by press-fit,
to the inside of the tube 8. This will fix the physical relationship of the magnet
4 with respect to the remaining elements of the sensor 30, e.g., with respect to PC
board 11 (discussed below). It is noted that the magnetic field of the magnet 4 may
not be uniform and therefore it is important to maintain an indexed relationship between
the magnetic field of the magnet 4 and the magnetic pickup 23 of the PC board 11.
[0031] Said Tube assembly is further provided with gasket or O-Ring seal for sealing the
tube 8, namely the sensor 30, against the valve 20.
[0032] The Body Assembly (corresponding to parts numbered from 9 to 18) comprises at least:
- a connector (9,10,12) for power supply and output signals, namely a connector 10,
connector screw 9 and connector O-Ring seal 12
- a printed circuit board 11 with the integrated circuit and other electronics
- a body 13 and a tube and PC board holder 14 with a planar surface for supporting the
printed circuit board 11; said tube and PC board holder 14 provided with an axial
bore which allocates the tube 8 previously defined; said body 13 is constituted by
ferromagnetic material
- a non magnetic body cover 16,
- a Seal-lock nut 18 to keep everything together.
[0033] With 15 and 17 two gaskets or O-Rings are identified for sealing the tube 8 with
the body 13 and the tube and PC board holder 14.
[0034] Said Tube Assembly is mounted onto the hydraulic valve body 19 by means of the thread
8A in tube 8; said thread 8A directly engages the body 19 or alternatively it engages
an element 19A interposed between said body 19 and the sensor, as shown in figure
2.
[0035] The tube 8 together with the body 19 or spacer element 19A creates a closed space
where oil flows.
[0036] The plunger 1,2,4,5 with the magnet 4 inside, is kept in contact with the valve spool
21 by the spring 6 so that the magnet 4 moves along with the spool 21; so does also
the variation of angle of magnetic field created by the magnet.
[0037] The integrated circuit on said printed circuit board 11 senses the variation of angle
of the magnetic field lines and generates an output signal proportional to the movement
of the spool 21.
[0038] In embodiment illustrated in the figures such integrated circuit is an Hall Effect
type sensor.
[0039] However, in a second embodiment, not illustrated, such integrated circuit could be
a magneto-resistive type sensor.
[0040] The integrated circuit is of the type sensitive to the direction of the magnetic
field (variation of angle of the magnetic field lines) and not to the magnitude. This
allows larger tolerances in the dimensions of the parts (different air gaps between
magnet and Hall chip), allows working in wide temperature ranges (e.g. with high temperatures
the magnetic field changes magnitude but does not change direction) and compensates
well the aging of the permanent magnet.
[0041] Advantages:
- High Pressure Tube: can be used in high pressure control valves;
- Anti spin device: can be used with less expensive magnets;
- integrated circuit sensitive to direction of the magnetic field:
o can compensate for different air gaps,
o can work in wide temperature ranges,
o insensitive to magnet aging,
- Non magnetic body-cover 16: does not disturb the internal magnetic field;
- Magnetic screening body 13 (ferromagnetic): protects from external disturbing magnetic
fields;
- Sealed from external contaminants (water, chemicals)
- Programmable:
o can be adjusted for different valves models,
o can give different types of output (discrete, continuous, ...), and
o can be individually calibrated to reduce errors.
[0042] With reference to the drawing figures, a preferred embodiment of the inventive hydraulic
valve (20) comprises a valve body (19); inner channels (22) within the valve body,
the inner channels defining passages for fluid flow; at least a spool (21) present
in the body, the spool movable axially in order to control the fluid flow in the inner
channels (22); and at least a sensor (30) attached to said body (19), said sensor
(30) movable with the spool (21) to i) sense a current position of the spool, and
ii) give out a corresponding electrical signal indicating the current position of
the spool. The sensor (30) measures a linear displacement of the spool (21) by sensing
an angle of magnetic field lines and is attached to said body (19) either i) via an
interposed element (19A), or ii) directly to said body (19).
[0043] The sensor comprises a tube assembly, which is in turn comprised of at least i) a
tube (8) resistant to oil pressure, the tube comprising a thread (8A), the sensor
mounted on the valve body by the thread so that the tube together with the valve body
create a closed space where oil flows, the tube serving as the magnet housing, ii)
a moving plunger (1, 2, 4, 5) having an axis (AA), iii) a magnet carrier (5) with
a permanent magnet (4) located in an inside of the magnet carrier, iv) a spring (6)
placed internal to the tube (8) and acting against the magnet carrier (5), the spring
keeping the plunger, with the magnet (4) inside the magnet carrier, in contact with
the spool (21), v) an anti-spin device (3) cooperating with the moving plunger and
preventing the moving plunger from rotating around the axis (AA); and a body assembly,
[0044] The body assembly comprises at least i) a connector (9,10,12) for power supply and
output signals, ii) a printed circuit board (11) with an integrated circuit, iii)
a body (13) supporting the integrated circuit and the tube, iv) a tube and PC board
holder (14) within the body, v) a non-magnetic body cover (16), and vi) a seat-lock
nut (18) keeping the tube assembly mounted in the body assembly.
[0045] With this arrangement, the magnet moves along with the spool and creates a variation
in a magnetic field during movement with the spool, and the integrated circuit measures
a linear displacement of the spool (21) by sensing a variation in an angle of magnetic
field lines of the magnetic field from the permanent magnetic and generates an output
signal proportional to the movement of the spool (21).
[0046] Advantageously, the body (13) of the body assembly is comprised of a ferromagnetic
material protecting the sensor from external disturbing magnetic fields. Further,
the magnet carrier may be comprised of one of brass and non-magnetic steel, the magnet
carrier not distorting the magnetic field from the permanent magnet.
[0047] Either gaskets and O-rings (12, 15, 17) serve for sealing i) the non-magnetic body
cover (16) with the tube (8), ii) the non-magnetic body cover (16) with the body (13)
of the body assembly, and iii) the connector (10) with the body (13) .
[0048] Also either a gasket or an O-ring (7) may be provided for sealing the tube (8) against
the valve body (19).
[0049] In order to maintain an indexed relationship between the magnetic field of the magnet
4 to the magnetic pickup 23 of the PC board 11, the anti-spin device (3) is fixed
to an interior surface of the tube (8), thereby preventing the magnet (4) and magnet
carrier (5) of the moving plunger from rotating around the axis (AA). Further, the
PC board holder (14) is adapted to support the PC board (11) and maintain the indexed
relationship between the magnetic field of the magnet (4) and the magnetic pickup
of the PC board (11).
[0050] The magnetic pickup (23) of the integrated circuit is sensitive to the direction
of the magnetic field and is insensitive to a magnitude of the magnetic field. The
sensor (30) may be, e.g., a "Hall Effect" sensor or a magneto-resistive sensor. Further
the sensor (30) is programmable. The sensor (30) provides plural, different types
of outputs and be calibrated in order to reduce errors. Such a sensor can be adapted
to different valve models.
DETAILED DESCRIPTION
[0051]
| Number |
Name |
| 1 |
Plunger |
| 2 |
Magnet spacer |
| 3 |
Anti-spin |
| 4 |
Magnet |
| 5 |
Magnet Carrier |
| 6 |
Spring |
| 7 |
Tube-Valve OR |
| 8 |
Tube |
| 9 |
Connector Screws |
| 10 |
Connector |
| 11 |
Printed circuit board (PCB) |
| 12 |
Connector OR |
| 13 |
Body |
| 14 |
Tube and PC board holder |
| 15 |
Tube-Body OR |
| 16 |
Body Cover |
| 17 |
Body Cover OR |
| 18 |
Seal-lock NT |
| 19 |
Body of hydraulic valve |
| 20 |
Hydraulic valve |
| 21 |
Spool |
| 22 |
Internal channels |
| 23 |
Magnetic pickup |
1. A hydraulic valve (20), comprising:
a valve body (19);
inner channels (22) within the valve body, the inner channels defining passages for
fluid flow;
at least a spool (21) present in the body, the spool movable axially in order to control
the fluid flow in the inner channels (22); and
at least a sensor (30) attached to said body (19), said sensor (30) movable with the
spool (21) to i) sense a current position of the spool, and ii) give out a corresponding
electrical signal indicating the current position of the spool,
characterized in that said sensor (30) measures a linear displacement of the spool (21) by sensing an angle
of magnetic field lines.
2. The hydraulic valve of claim 1, characterized in that said sensor is attached to said body (19) via an interposed element (19A).
3. The hydraulic valve of claim 1, characterized in that said sensor is attached directly to said body (19).
4. The hydraulic valve of claim 1,
characterized in that said sensor comprises:
a tube assembly comprising at least
i) a tube (8) resistant to oil pressure, the tube comprising a thread (8A), the sensor
mounted on the valve body by the thread so that the tube together with the valve body
create a closed space where oil flows, the tube serving as a magnet housing,
ii) a moving plunger (1, 2, 4, 5) having an axis (AA),
iii) a magnet carrier (5) with a permanent magnet (4) located in an inside of the
magnet carrier,
iv) a spring (6) placed internal to the tube (8) and acting against the magnet carrier
(5), the spring keeping the plunger, with the magnet (4) inside the magnet carrier,
in contact with the spool (21),
v) an anti-spin device (3) cooperating with the moving plunger and preventing the
moving plunger from rotating around the axis,(AA); and
a body assembly comprising at least
i) a connector (9,10,12) for power supply and output signals,
ii) a printed circuit board (11) with an integrated circuit serving as magnetic pickup
(23),
iii) a body (13) supporting the integrated circuit and the tube,
iv) a tube and PC board holder (14) within the body,
v) a non-magnetic body cover (16), and
vi) a seal-lock nut (18) keeping the tube assembly mounted in the body assembly, wherein,
said magnet moves along with the spool and creates a variation in a magnetic field
during movement with the spool, and
the integrated circuit measures a linear displacement of the spool (21) by sensing
a variation in an angle of magnetic field lines of the magnetic field from the permanent
magnetic and generates an output signal proportional to the movement of the spool
(21).
5. The hydraulic valve of claim 4, characterized in that said body (13) of the body assembly is comprised of a ferromagnetic material protecting
the sensor from external disturbing magnetic fields.
6. The hydraulic valve of claim 4, characterized in that the magnet carrier is comprised of one of brass and non-magnetic steel, the magnet
carrier not distorting the magnetic field from the permanent magnet.
7. The hydraulic valve of claim 4, characterized in that further comprises one of gaskets and O-rings (12, 15, 17) sealing i) the non-magnetic
body cover (16) with the tube (8), ii) the non-magnetic body cover (16) with the body
(13) of the body assembly, iii) the connector (10) with the body (13) of the body
assembly.
8. The hydraulic valve of claim 4, characterized in that further comprises one of a gasket and an O-ring (7) sealing the tube (8) against
the valve body (19).
9. The hydraulic valve of claim 4, characterized in that,
the anti-spin device (3) is fixed to an interior surface of the tube (8), thereby
preventing the magnet (4) and magnet carrier (5) of the moving plunger from rotating
around the axis (AA),
the PC board holder (14) is adapted to support the PC board (11) and maintain an indexed
relationship between the magnetic field of the magnet (4) and the magnetic pickup
(23) of the PC board (11).
10. The hydraulic valve of claim 4, wherein the magnetic pickup of the integrated circuit
is sensitive to the direction of the magnetic field and is insensitive to a magnitude
of the magnetic field.
11. The hydraulic valve of claim 1, characterized in that said sensor (30) is a "Hall Effect" sensor.
12. The hydraulic valve of claim 1, characterized in that said sensor (30) is a magneto-resistive sensor.
13. The hydraulic valve of claim 1, characterized in that the sensor (30) is programmable.
14. The hydraulic valve of claim 13, characterized in that the sensor (30) provides plural, different types of outputs.
15. The hydraulic valve of claim 13, characterized in that the sensor (30) can be calibrated.