(11) EP 2 492 423 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

29.08.2012 Patentblatt 2012/35

(51) Int Cl.:

E05B 65/32 (2006.01)

E05B 15/04 (2006.01)

(21) Anmeldenummer: 12001330.5

(22) Anmeldetag: 28.02.2012

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

(30) Priorität: 28.02.2011 DE 102011012651

(71) Anmelder: Brose Schliesssysteme GmbH & Co. KG

42369 Wuppertal (DE)

(72) Erfinder:

- Kothe, Markus
 42553 Velbert (DE)
- El-Hamoumi, Abdelali 42369 Wuppertal (DE)
- (74) Vertreter: Gottschald, Jan Patentanwaltskanzlei Gottschald Am Mühlenturm 1 40489 Düsseldorf (DE)

(54) Sperrwerk mit Öffnungstendenz

(57) Sperrwerke bestehend aus einer Drehfalle 1 und einer Sperrklinke 3 erzeugen beim Einfallen der Sperrklinke 3 störende Geräusche. Um die Masse der beim Verschließen beweglichen Teile gering zu halten, ist die Sperrklinke 3 als Baugruppe aus Sperrklinkenhe-

bel 4 und Sperrklinke 3 gestaltet. Bei geschlossenem Sperrwerk wird die Sperrklinke 3 durch die Drehfalle 1 in Schließrichtung belastet, wobei die Baugruppe aus Sperrklinke 3 und Sperrklinkenhebel 4 in Öffnungsrichtung belastet wird.

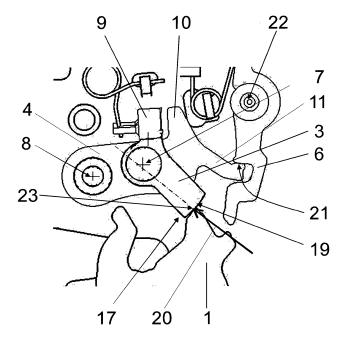


Fig. 4

EP 2 492 423 A2

Beschreibung

20

30

35

40

45

50

55

[0001] Die vorliegende Erfindung betrifft ein Sperrwerk für eine Kraftfahrzeugtür gemäß dem Oberbegriff des Anspruchs 1. Dabei ist der Begriff Kraftfahrzeugtür umfassend zu deuten und beinhaltet auch Kraftfahrzeug-Klappen, -Deckel, Schiebetüren, Motorhauben und alle Verschlusselemente, die in einem Fahrzeug Öffnungen abdecken.

[0002] In der US 3,386,761, von der die Erfindung ausgeht, ist in Fig. 5 ein Sperrwerk dargestellt, dass eine Drehfalle beinhaltet, die durch eine Feder in Öffnungsrichtung belastet wird. Diese Drehfalle wird im geschlossenen Zustand durch eine Sperrklinke formschlüssig blockiert. Die Sperrklinke ist auf einem Sperrklinkenhebel schwenkbar gelagert und durch eine Feder in Blockierrichtung zur Drehfalle belastet. Der Sperrklinkenhebel ist durch eine weitere Feder in Öffnungsrichtung belastet. Das Öffnen des Schlosses wird durch die formschlüssige Verbindung zu einem Sperrhebel verhindert. Der Sperrhebel ist durch eine weitere Feder in Schließrichtung belastet. Dieser Sperrhebel kann mittels eines Hubmagneten außer Eingriff mit dem Sperrklinkenhebel gebracht werden, so dass der Sperrklinkenhebel mit der Sperrklinke aus dem Eingriffsbereich der Drehfalle schwenkt und diese öffnet. Beim Schließen der Tür dreht der nicht dargestellte Schließbügel die Drehfalle in Schließrichtung. Dabei wird nur die Sperrklinke, ohne Sperrklinkenhebel in Öffnungsrichtung bewegt und durch die Sperrklinkenfeder sofort wieder geschlossen.

[0003] In dieser Ausführungsform sind jedoch die Sperrklinke und die Drehfalle derart zueinander angeordnet, dass die Drehfalle auf die Sperrklinke ein Drehmoment in Öffnungsrichtung erzeugt. Dies wird durch das Kräfteparallelogramm in Fig. 2 der US 3,386,761 detailliert dargestellt. Diese Anordnung beinhaltet jedoch den Nachteil, dass sich die Sperrklinke bei starken Vibrationskräften in Öffnungsrichtung bewegen kann. Durch die Bewegung der Sperrklinke in Öffnungsrichtung wird die Blockierung der Drehfalle aufgehoben, so dass sich das Schloss und somit die Fahrzeugtür öffnen kann.

[0004] Der Erfindung liegt die Aufgabe zugrunde, ein Sperrwerk zu schaffen, welches beim Schließen eine geringe Geräuschentwicklung hat, jedoch auch bei Vibrationen und anderen mechanischen Einflüssen die Tür sicher in geschlossener Position hält.

[0005] Zur Lösung dieser Aufgabe zeichnet sich das erfindungsgemäße Sperrwerk durch die im Patentanspruch 1 angegebenen Merkmale aus. Details der Erfindung ergeben sich aus den Unteransprüchen.

[0006] Das erfindungsgemäße Sperrwerk besteht u.a. aus einer Drehfalle und einer Sperrklinkenmechanik, die meist Bestandteil eines Kraftfahrzeugschlosses sind. Diese Kraftfahrzeugschlösser halten in Verbindung mit einem Schließbügel Kraftfahrzeugtüren, -Kofferraumdeckel, Kofferraumhauben, Motorhauben, Heckdeckel oder Schiebetüren in geschlossener Position, bzw. lassen sich mittels der Schlösser öffnen. Dabei steht der Begriff Kraftfahrzeugtür für alle Elemente, die Öffnungen in Fahrzeugen abdecken.

[0007] Bei Seitentüren sind die Schlösser mit den Sperrwerken meist in den Türen montiert, wobei der korrespondierende Schießbügel an der Karosserie, vorzugsweise an der B- oder C-Säule, befestigt ist. Bei Heckklappendeckeln hingegen ist das Schloss mit dem Sperrwerk an der Karosserie befestigt, wobei der Schließbügel am beweglichen Teil, dem Heckdeckel moniert ist. Die Positionierung der Komponenten hat somit keinen Einfluss auf die Erfindung. Das gleiche gilt für die geometrische Form des Schließbügels. Als Schließbügel werden alle Elemente bezeichnet, z.B. auch Schließbolzen oder Schließkeile, die mit dem Sperrwerk eine formschlüssige Verbindung eingehen.

[0008] Das erfindungsgemäße Sperrwerk besteht aus einer Drehfalle und einer Sperrklinkenmechanik. Die Drehfalle steht bei geschlossener Tür mit dem Schließbügel in formschlüssiger Verbindung. Beim Öffnen der Tür wird dieser Formschluss gelöst. Die Drehfalle ist vorzugsweise ein U-förmiges Element, das schwenkbar gelagert ist. Eine Feder belastet die Drehfalle in Öffnungsrichtung. Beim Schließvorgang drückt der Schließbügel auf einen Schenkel der U-förmigen Drehfalle, wodurch der andere Schenkel der Drehfalle um den Schließbügel rotiert und damit eine formschlüssige Verbindung mit dem Schließbügel eingeht. Diese Position der Drehfalle wird bei geschlossener Tür durch eine Sperrklinke fixiert. Sowohl die Sperrklinkenfeder, als auch die Türdichtung üben über den Schließbügel und die Drehfalle Druck auf die Sperrklinke aus. Erzeugt die Kraft der Drehfalle auf die Sperrklinke ein Drehmoment, das den Formschluss zwischen Sperrklinke und Drehfalle stabilisiert, z.B. weil die Drehfalle die Sperrklinke gegen einen festen Anschlag drückt, wird diese Belastungsrichtung als "in Schließrichtung" bezeichnet. Als Öffnungsrichtung wird die Bewegungsrichtung bezeichnet, bei der die Drehfalle die Sperrklinke, bzw. die Sperrklinkenbaugruppe in die Richtung drückt, in der die Sperrklinke außer Eingriff mit der Drehfalle gebracht wird.

[0009] Der Kernpunkt der Erfindung besteht nun darin, die Kontaktflächen zwischen Drehfalle, Sperrklinke und Sperrklinkenhebel, und deren Drehpunkte derart anzuordnen, dass die Kraft der Drehfalle, die auf die Sperrklinke wirkt, ein Drehmoment erzeugt, das die Blockierung zwischen Sperrklinke und Drehfalle verstärkt. Gleichzeitig erzeugt die gleiche Kraft der Drehfalle, ein Drehmoment auf die Baugruppe von Sperrklinkenhebel und Sperrklinke, durch die die Baugruppe aus Sperrklinkenhebel und Sperrklinke in Öffnungsrichtung belastet ist.

[0010] Erzeugt wird die Kraft, die von der Drehfalle auf die Sperrklinke übertragen wird, von einer Drehfallenfeder und der Türdichtung. Die Drehfallenfeder greift direkt an der Drehfalle an und erzeugt ein Drehmoment das die Drehfalle in Öffnungsrichtung belastet. Eine weitaus höhere Kraft wird, bei geschlossener Tür, durch die Türdichtung erzeugt. Die Türdichtung, die zwischen Karosserie und Tür angeordnet ist, erzeugt eine Kraft über die Türstruktur, auch als Türrahmen

bezeichnet, auf das Schloss, insbesondere auf das Sperrwerk, insbesondere auf die Drehfalle. Bei geschlossener Tür steht die Drehfalle in formschlüssiger Verbindung mit dem Schließbügel, wodurch der Kraftfluss geschlossen ist. Die so erzeugte Kraft wird von der Drehfalle auf die Sperrklinke bzw. auf die Baugruppe aus Sperrklinkenhebel und Sperrklinke übertragen.

- [0011] Sowohl Sperrklinke als auch Sperrklinkenhebel werden durch eine Feder in Richtung Drehfalle belastet. Die Sperrklinke ist derart geformt, dass diese auf dem Sperrklinkenhebel gelagert ist und eine Kontur aufweißt, die in formschlüssiger Verbindung mit einer Kontur des Sperrklinkenhebels steht. Die Federkraft der Drehfallenfeder wird nun auf diese Kontur der Sperrklinke und direkt weiter über die Sperrklinkenhebelkontur auf den Sperrklinkenhebel übertragen, der dadurch in Richtung Drehfalle belastet ist.
- [0012] Sowohl Drehfalle als auch Sperrklinke und Sperrklinkenhebel sind derart gestaltet, dass die Drehfalle auf die Baugruppe aus Sperrklinkenhebel und Sperrklinke ein Drehmoment erzeugt, dass die Baugruppe in Öffnungsrichtung belastet. Bei geschlossener Tür wird die Bewegung der Sperrklinken-Sperrklinkenhebel-Baugruppe in Öffnungsrichtung durch den Sperrhebel verhindert. Dies erfolgt dadurch, dass der Sperrhebel den Sperrklinkenhebel in Öffnungsrichtung blockiert. Beim Öffnungsvorgang wird der Sperrhebel aus der Bahn des Sperrklinkenhebels geschwenkt, wodurch der Formschluss aufgehoben wird und die Sperrklinken-Sperrklinkenhebel-Baugruppe sich in Öffnungsrichtung bewegt.
 - **[0013]** Der Sperrhebel wird durch eine Feder in die Richtung belastet, in der er den Sperrklinkenhebel blockiert. Durch einen motorischen Antrieb oder auch manuell kann der Sperrhebel außer Eingriff mit dem Sperrklinkenhebel gebracht werden.
- [0014] Es darf an dieser Stelle klargestellt werden, dass der in den Ansprüchen verwendete Begriff "Zwischenhebel" dem in der Beschreibung verwendeten Begriff "Sperrklinkenhebel" entspricht, auch wenn dieser Zusammenhang bereits aus der vorangegangenen Beschreibung sowie aus der Figurenbeschreibung zu den Fig. 1 bis 5 hervorgeht.
 - [0015] Der oben beschriebene Öffnungsvorgang ist stets damit verbunden, dass der Eingriff zwischen der Sperrklinke und der Drehfalle aufgehoben wird. Dies kann in einer bevorzugten Variante impulsartig erfolgen, indem die Sperrklinke aus dem Bewegungsbereich der Drehfalle gezogen wird. Diese Art des Aushebens der Sperrklinke ist stets mit einem entsprechend impulsartigen Geräusch verbunden. Bei einer besonders bevorzugten Ausgestaltung ist es daher vorgesehen, dass der Öffnungsvorgang mit einer Abwälzbewegung der Sperrklinke auf der Drehfalle einhergeht. Weiter vorzugsweise dreht sich die Sperrklinke im Zuge der Abwälzbewegung aus der Hauptraste bzw. Vorraste der Drehfalle heraus. Die oben beschriebene Abwälzbewegung sorgt dafür, dass eine impulsartige Geräuschentwicklung durch das Aufheben des Eingriffs zwischen Sperrklinke und Drehfalle nicht auftritt.
- [0016] Nach einer weiteren Lehre gemäß Anspruch 14, der eigenständige Bedeutung zukommt, wird ein Kraftfahrzeugtürschloss mit einem Sperrwerk beansprucht.
 - [0017] Das vorschlagsgemäße Kraftfahrzeugtürschloss ist in einer Kraftfahrzeugtür oder in einem Türrahmen positionierbar. Das Kraftfahrzeugtürschloss hält die Kraftfahrzeugtür in Verbindung mit einem an dem Türrahmen oder der Tür positionierten Schließbügel geschlossen oder öffnet die Kraftfahrzeugtür entsprechend, wobei ein Sperrwerk mit einer Drehfalle, die bei geschlossener Kraftfahrzeugtür mit dem Schließbügel formschlüssig verbunden ist, mit einer Sperrklinke, die die Drehfalle bei geschlossener Kraftfahrzeugtür, in einer Vorraststellung oder einer Hauptraststellung, blockiert und mit einer Baugruppe bestehend aus einem schwenkbaren Zwischenhebel und der darin schwenkbar gelagerten Sperrklinke, die die Drehfalle bei geschlossener Kraftfahrzeugtür, in einer Vorraststellung oder eine Hauptraststellung, blockiert, vorgesehen ist.
- [0018] Wesentlich nach dieser weiteren Lehre ist, dass die Drehfalle bei geschlossener Kraftfahrzeugtür die Sperrklinke in Schließrichtung belastet, jedoch auch die Baugruppe aus Zwischenhebel und Sperrklinke in Öffnungsrichtung belastet.
 [0019] Hinsichtlich der Vorteile der weiteren Lehre sowie möglichen Ausführungsbeispielen darf in vollem Umfange auf die Ausführungen zu dem vorschlagsgemäßen Sperrwerk verwiesen werden.
- **[0020]** Die Erfindung wird im Folgenden anhand eines Ausführungsbeispiels beschrieben. Von den zugehörigen Zeichnungen zeigt:
 - Fig. 1 ein Sperrwerk in geöffneter Position,

35

50

- Fig. 2 das Sperrwerk gemäß Fig. 2 während des Schließvorganges,
- Fig. 3 das Sperrwerk gemäß Fig. 1 in Hauptraststellung,
- Fig. 4 einen vergrößerten Ausschnitt aus Fig. 3,
- 55 Fig. 5 das Sperrwerk gemäß Fig. 3 mit ausgehobenem Sperrhebel,
 - Fig. 6 ein weiteres Sperrwerk in geöffneter Position,

- Fig. 7 das Sperrwerk gemäß Fig. 6 während des Schließvorganges,
- Fig. 8 das Sperrwerk gemäß Fig. 6 in Hauptraststellung,

10

20

30

35

40

45

50

55

- 5 Fig. 9 das Sperrwerk gemäß Fig. 6 in einem ersten Abschnitt des Öffnungsvorgangs und
 - Fig. 10 das Sperrwerk gemäß Fig. 6 in einem zweiten Abschnitt des Öffnungsvorgangs.

[0021] Fig. 1 zeigt ein erfindungsgemäßes Sperrwerk in geöffneter Position. Der Schießbügel 2 befindet sich nicht im Eingriff mit der Drehfalle 1. Die Sperrklinke 3 ist auf dem Sperrklinkendorn 7 gelagert, wobei die Sperrklinkendorn 7 auf dem Sperrklinkenhebel 4 positioniert ist. Der Sperrklinkenhebel 4 ist auf einem Dorn 8 schwenkbar gelagert. Die Kraft der Sperrklinkenfeder 5 greift am Hebelarm 9 der Sperrklinke 3 an und wird auf den Hebelarm 10 des Sperrklinkenhebels 4 übertragen. Dies bewirkt eine Bewegung des Sperrklinkenhebels 4 im Uhrzeigersinn. Die Bewegung des Sperrklinkenhebels 4 wird über den Blockadehebelarm 11, der gegen die Kontur 12 des Sperrhebels 6 stößt, gestoppt. Eine Sperrhebelfeder 13 belastet den Sperrhebel 6 in Schließrichtung.

[0022] Beim Schließen des Sperrwerks bewegt sich der Schließbügel 2, wie in Fig. 2 dargestellt, in das Einlaufmaul 14 der Drehfalle 1. Dabei drückt der Schließbügel 2 auf die Kontur 15 der Drehfalle 1, wodurch sich die Drehfalle 1 um den Drehfallendom 16 in Schließrichtung bewegt. Parallel dazu schwenkt die Kontur 18 der Drehfalle die Sperrklinke 3 über deren Kontur 17 gegen den Uhrzeigersinn in Öffnungsrichtung. Dies erfolgt gegen die Kraft der Sperrklinkenfeder 5. Besonders deutlich wird in Fig. 2, dass während des Schließvorgangs nur die Sperrklinke 3 um den Sperrklinkendorn 7 schwenkt, wobei der Sperrklinkenhebel 4 in seiner Position bleibt. Nachdem die Drehfalle 1 ihre Endposition erreicht hat, fällt die Sperrklinke 3 aufgrund der Federkraft der Feder 5 wieder in Ihre Ursprungslage (siehe Fig. 3). Aufgrund der geringen Masse der Sperrklinke 3 entsteht beim Auftreffen auf dem Sperrklinkenhebel 4 nur ein geringes Geräusch. [0023] In Fig. 3 ist das Sperrwerk in geschlossener Position dargestellt. Hier drückt die Drehfalle 1 über die Druckkontur 23 auf die Sperrkontur 19 der Sperrklinke 3. Der Angriffspunkt an der Sperrklinkenkontur 19, an dem die Druckkontur 23 der Drehfalle 1 angreift und der Drehpunkt 7 auf der die Sperrklinke 1 gelagert ist, sind so zueinander angeordnet, dass der Hebelarm 9 der Sperrklinke 3 den Hebelarm 10 des Sperrklinkenhebels 4 belastet. Der Sperrhebel 6 blockiert mit der Kontur 12 über den Blockierarm 11 den Sperrklinkenhebel 4. Aufgrund dieser Zuordnung blockiert die Sperrklinke 3 in Verbindung mit dem Sperrklinkenhebel 4 und dem Sperrhebel 6 die Bewegung der Drehfalle 1 in Öffnungsposition. [0024] In Fig. 4 ist die Drehfalle 1, die Sperrklinke 3, der Sperrklinkenhebel 4 und der Sperrhebel 6 vergrößert dargestellt. Die Richtung der Kraft, die von der Drehfalle 1 auf die Sperrklinke 3 ausgeübt wird, ist in dieser Ansicht durch den Pfeil 20 dargestellt. Die Kraftrichtung 20 verläuft zwischen dem Drehpunkt 7 der Sperrklinke 3 und dem Drehpunkt 8 des Sperrklinkenhebels 4. Dies bewirkt, dass auf die Sperrklinke 3 ein Drehmoment im Uhrzeigersinn erzeugt wird. Auch bei Vibrationen versucht die Sperrklinke 3 sich immer in Richtung Uhrzeigersinn zu bewegen. Diese Bewegung der Sperrklinke 3 wird jedoch durch den Hebelarm 10 des Sperrklinkenhebels 4 und den Hebelarm 9 der Sperrklinke 3 formschlüssig blockiert. Somit wird auf die Sperrklinke 3 in geschlossener Position ein Drehmoment in Schließrichtung erzeugt. Wird hingegen ein Drehmoment gegen den Uhrzeigersinn erzeugt, kann die Sperrklinke gegen die Federkraft der Sperrklinkenfeder 5 ausweichen. In diesem Fall wird ein Drehmoment in Öffnungsrichtung erzeugt.

[0025] Da die Sperrklinke 3 auf dem Sperrklinkenhebel 4 gelagert ist, wird bei Belastung der Sperrklinke 3 gleichzeitig ein Drehmoment auf den Sperrklinkenhebel 4 erzeugt. Bei dieser Anordnung der Drehpunkte 7, 8 und der Ausrichtung der Kraft gemäß Pfeil 20 wirkt dieses Drehmoment bezogen auf den Drehpunkt 8 gegen den Uhrzeigersinn. Die Bewegung des Sperrklinkenhebels 4 wird jedoch durch die Blockierung des Sperrklinkenhebels 4 durch die Sperrkontur 21 am Sperrhebel 6 gestoppt. Der Sperrhebel 6 ist jedoch um den Drehpunkt 22 schwenkbar (siehe Fig. 5). In der Ansicht von Figur 5 ist der Sperrhebel 6 außer Eingriff mit dem Sperrklinkenhebel 6. Das zuvor erläuterte Drehmoment auf den Sperrklinkenhebel 4, das gegen den Uhrzeigersinn um den Drehpunkt 8 wirkt, dreht die Baugruppe aus Sperrklinkenhebel 4 und Sperrklinkenhebel 4 und Sperrklinkenhebel 4 gegen den Uhrzeigersinn, wird die Baugruppe aus Sperrklinkenhebel 4 und Sperrklinke in den Bereich der Drehfalle 1 und somit in Schließrichtung belastet.

[0026] Die Fig. 6 bis 10 zeigen ein erfindungsgemäßes Sperrwerk in einer weiteren Ausfiihrungsform. Die grundsätzliche Funktion der Komponenten Drehfalle 1, Sperrklinke 3, Sperrklinkenhebel 4 und Sperrhebel 6 entspricht der grundsätzlichen Funktion der entsprechenden Komponenten des in den Fig. 1 bis 5 dargestellten Sperrwerks. Entsprechend handelt es sich auch bei dem in den Fig. 6 bis 10 dargestellten Sperrwerk um ein Sperrwerk für ein Kraftfahrzeugtürschloss, das im montierten Zustand in einer Kraftfahrzeugtür oder in einem Türrahmen positioniert ist und das dann in Verbindung mit einem an den Türrahmen oder der Tür positionierten Schießbügel 2 die Kraftfahrzeugtür geschlossen hält oder öffnet. Im Folgenden wird die Funktionsweise des in den Fig. 6 bis 10 dargestellten Sperrwerks erläutert, wobei der in den Ansprüchen verwendete Begriff "Zwischenhebel" wieder dem in der Beschreibung verwendeten Begriff "Sperrklinkenhebel" entspricht.

[0027] Das Sperrwerk ist mit einer Drehfalle 1 ausgestattet, die bei geschlossener Kraftfahrzeugtür mit dem

Schließbügel 2 formschlüssig verbunden ist (Fig. 8). Weiter ist eine Sperrklinke 3 vorgesehen, die die Drehfalle 1 bei geschlossener Kraftfahrzeugtür in einer nicht dargestellten Vorraststellung oder einer in Fig. 8 dargestellten Hauptraststellung blockiert. Ein Sperrklinkenhebel 4 (Zwischenhebel 4) und die obige Sperrklinke 3 bilden eine Baugruppe.

[0028] Die Kraftrichtung der von der Drehfalle 1 auf die Sperrklinke 3 übertragenden Kraft ist in Fig. 8 mit dem Bezugszeichen 20 angedeutet. Aus dieser Darstellung geht hervor, dass es auch bei dem in den Fig. 6 bis 10 dargestellten Ausführungsbeispiel so ist, dass die Drehfalle 1 bei geschlossener Kraftfahrzeugtür die Sperrklinke 3 in Schließrichtung, in Fig. 8 relativ zu dem Sperrklinkenhebel 4 im Uhrzeigersinn, belastet, jedoch auch die Baugruppe aus Sperrklinkenhebel 4 und Sperrklinke 3 insgesamt in Öffnungsrichtung, in Fig. 8 relativ zum Sperrwerk im Übrigen gegen den Uhrzeigersinn, belastet. Die Sperrklinke 3 ist dabei auf dem Sperrklinkenhebel 4 um eine Sperrklinkenachse 3a schwenkbar gelagert. Der Sperrklinkenhebel 4 ist dagegen um eine Sperrklinkenhebelachse 4a an einem feststehenden Teil des Kraftfahrzeugtürschlosses, insbesondere an einem Gehäuseteil des Kraftfahrzeugtürschlosses, schwenkbar gelagert. Die Drehfalle 1 ist entsprechend um eine Drehfallenachse 1a wiederum an einem feststehenden Teil, insbesondere an einem Gehäuseteil des Kraftfahrzeugtürschlosses, schwenkbar gelagert.

[0029] Da alle weiter oben zu dem ersten Ausführungsbeispiel angeführten Überlegungen hinsichtlich eines ersten Drehmoments und eines zweiten Drehmoments auch für das in den Fig. 6 bis 10 dargestellte Ausführungsbeispiel zutreffen, darf auf die dortigen Ausführungen verwiesen werden.

[0030] Einen ersten Unterschied des in den Fig. 6 bis 10 dargestellten Ausführungsbeispiels gegenüber dem in den Fig. 1 bis 5 dargestellten Ausführungsbeispiel besteht darin, dass die Sperrklinke 3 gegenüber dem Sperrklinkenhebel 4 mit einer ersten Federanordnung 5a gekoppelt ist und dass der Sperrklinkenhebel 4 gegenüber einem feststehenden Teil mittels einer zweiten Federanordnung 5b gekoppelt ist. Die Wirkungsweise der beiden Federanordnungen 5a, 5b wird weiter unten im Detail erläutert.

20

30

35

40

45

50

55

[0031] Wie bei dem in den Fig. 1 bis 5 dargestellten Ausführungsbeispiel ist auch bei dem in den Fig. 6 bis 10 dargestellten Ausführungsbeispiel ein Sperrhebel 6 vorgesehen, der den Sperrklinkenhebel 4 gegen eine Bewegung in Öffnungsrichtung, in Fig. 8 gegen den Uhrzeigersinn, blockiert. Der Sperrklinkenhebel 8 ist zum Lösen des blockierenden Eingriffs mit dem Sperrhebel 6 um eine Sperrhebelachse 6a, in Fig. 8 gegen den Uhrzeigersinn, schwenkbar. Der Sperrhebel 6 ist durch die Sperrhebelfeder 13 in Schließrichtung, in Fig. 8 im Uhrzeigersinn, vorgespannt.

[0032] Interessant bei dem in den Fig. 6 bis 10 dargestellten Ausführungsbeispiel ist die Tatsache, dass die Sperrklinke 3 auf dem Sperrklinkenhebel 4 aus einer eingefallenen Stellung heraus, in der die Sperrklinke 3 die Drehfalle 1 in der Hauptraststellung und in der ggf. vorhandenen Vorraststellung blockiert (Fig. 8), sowohl in Schließrichtung (in Fig. 8 im Uhrzeigersinn) als auch in Öffnungsrichtung (in Fig. 8 gegen den Uhrzeigersinn) bewegbar, hier schwenkbar ist. Ein irgendwie gearteter Anschlag der Relativbewegung der Sperrklinke 3 auf dem Sperrklinkenhebel 4 ist also nicht vorgesehen. Allerdings ist die Sperrklinke 3 hinsichtlich beider Bewegungsrichtungen in eine Mittelstellung, hier und vorzugsweise im Wesentlichen in die eingefallene Stellung, vorgespannt. Die Mittelstellung lässt sich am besten der Darstellung gemäß Fig. 6 entnehmen.

[0033] Der Schließvorgang bei dem in den Fig. 6 bis 10 dargestellten Ausführungsbeispiel entspricht im Wesentlichen dem Schließvorgang bei dem in den Fig. 1 bis 5 dargestellten Ausführungsbeispiel. Der Schließbügel 2 bewegt sich in das Einlaufmaul 14 der Drehfalle 1, wobei sich die Drehfalle 1 um die Drehfallenachse 1a in Schließrichtung bewegt. Parallel dazu schwenkt die Kontur 18 der Drehfalle 1 die Sperrklinke 3 über deren Kontur 17 in Fig. 6 gegen den Uhrzeigersinn in Öffnungsrichtung relativ zu dem Sperrklinkenhebel 4, was gegen die Kraft der ersten Federanordnung 5a erfolgt. Fig. 8 zeigt den Zustand, in dem die Sperrklinke 3 aufgrund der Federkraft der Federanordnung 5a in ihre Ursprungslage gefallen ist. In dieser eingefallenen Stellung, in der die Sperrklinke 3 die Drehfalle 1 in der Hauptraststellung blockiert, liegt die Sperrklinke 3 an einer Begrenzungsfläche 24 der Drehfalle 1 an, wodurch die weitere Bewegung der Sperrklinke 3 in Schließrichtung, in Fig. 8 im Uhrzeigersinn, blockiert wird. Hier wird deutlich, dass es vorteilhaft sein kann, dass die oben angesprochene Mittelstellung von der ausgehobenen Stellung der Sperrklinke 3 aus gesehen jenseits der in Fig. 8 dargestellten, eingefallenen Stellung der Sperrklinke 3 liegt. Damit wird nämlich sichergestellt, dass die Federanordnung 5a zumindest geringfügig auf die Begrenzungsfläche 24 an der Drehfalle 1 drückt, um eventuellen Klappergeräuschen entgegenzuwirken.

[0034] Besonders interessant bei dem in den Fig. 6 bis 10 dargestellten Ausführungsbeispiel ist der Öffnungsvorgang, der sich aus der Abfolge der Fig. 8, 9 und 10 ergibt.

[0035] Bei einer Zusammenschau der Fig. 8, 9 und 10 fällt auf, dass ausgehend von dem Zustand der geschlossenen Kraftfahrzeugtür (Fig. 8), in dem der Sperrhebel 6 den Sperrklinkenhebel 4 gegen eine Bewegung in Öffnungsrichtung blockiert, eine Bewegung des Sperrhebels 6 in eine nicht blockierende Stellung (Fig. 8, 9) eine von der Drehfalle 1 getriebene Abwälzbewegung der Sperrklinke 3 auf der Drehfalle 1 auslöst. Die Abwälzbewegung ergibt sich aus einer Zusammenschau der Fig. 9 und 10. Hier wird deutlich, dass die Abwälzbewegung im Bereich der Hauptraste 25 bzw. der Vorraste 26 der Drehfalle 1 stattfindet. Die Hauptraste 25 bzw. die Vorraste 26 dienen der Einnahme der Hauptraststellung bzw. der Vorraststellung durch die Drehfalle 1, indem die Sperrklinke 3 bei in der Hauptraststellung bzw. in der Vorraststellung befindlicher Drehfalle 1 in blockierendem Eingriff mit der Hauptraste 25 bzw. der Vorraste 26 steht.

[0036] Insgesamt ergibt eine Zusammenschau der Fig. 8 bis 10, dass sich die Sperrklinke 3 im Zuge der Abwälzbe-

wegung aus der Hauptraste 25 bzw. aus der Vorraste 26 herausdreht, was den weiter oben angesprochenen Effekt der Geräuschreduzierung während des Öffnungsvorgangs mit sich bringt.

[0037] Der Begriff "Abwälzbewegung" ist vorliegend weit zu verstehen. Damit ist nicht nur ein reines "Abrollen" der Sperrklinke 3 gegenüber der Drehfalle 1 gemeint, sondern auch eine Mischung aus Abroll- und Gleitbewegung zwischen Sperrklinke 3 und Drehfalle 1. Mit einer solchen Abwälzbewegung lassen sich impulsartige Geräusche beim Aufheben des Eingriffs zwischen Sperrklinke 3 und Drehfalle 1 weitestgehend vermeiden.

[0038] Eine Voraussetzung für die oben angesprochene Abwälzbewegung der Sperrklinke 3 auf der Drehfalle 1 ist bei dem in den Fig. 6 bis 10 dargestellten Ausführungsbeispiel, dass die Sperrklinke 3 ausgehend von der oben angesprochenen Mittelstellung gegen die Federkraft der ersten Federanordnung 5a relativ zu dem Sperrklinkenhebel 4 in Schließrichtung auslenkbar ist. Diese Auslenkung zeigt eine Zusammenschau der Fig. 8, 9 und 10. Entsprechend handelt es sich bei der Federanordnung 5a um eine sogenannte Mitte-Null-Feder, die eine Auslenkung der Sperrklinke 3 aus der Mittelstellung heraus in beide Schwenkrichtungen, jeweils gegen die Federkraft der Federanordnung 5a erlaubt. Die Sperrklinke 3 weist hier und vorzugsweise einen Mitnehmer 27 auf, der in der Mittelstellung auf einen entsprechenden Mitnehmer 28 ausgerichtet ist. Beide Mitnehmer 27, 28 sind, wie aus den Fig. 6 bis 10 ersichtlich, mit der Federanordnung 5a gekoppelt. Die zweite Federanordnung 5b dient entsprechend der Vorspannung des Sperrklinkenhebels 4 in Schließrichtung, in Fig. 6 im Uhrzeigersinn.

[0039] Der Öffnungsvorgang geht nun aus von dem Zustand der geschlossenen Kraftfahrzeugtür, in dem der Sperrhebel 6 den Sperrklinkenhebel 4 gegen eine Bewegung in Öffnungsrichtung, in Fig. 8 gegen eine Bewegung gegen den Uhrzeigersinn blockiert. Der Öffnungsvorgang wird dadurch ausgelöst, dass der Sperrhebel 6 in eine nicht blockierende Stellung, in Fig. 8 gegen den Uhrzeigersinn, in die in Fig. 9 dargestellte Stellung bewegt wird. Anschließend treibt die Drehfalle 1 die Sperrklinke 3 auf dem Sperrklinkenhebel 4 in Schließrichtung (in Fig. 9 im Uhrzeigersinn). Hier und vorzugsweise gleichzeitig treibt die Drehfalle 1 den Sperrklinkenhebel 4 in Öffnungsrichtung, in Fig. 9 gegen den Uhrzeigersinn. Der Übergang von Fig. 9 auf Fig. 10 zeigt, dass die Sperrklinke 3 wie oben angesprochen, auf der Drehfalle 3 abwälzt, bis der Sperrklinke 3 schließlich außer Eingriff von der Drehfalle 1 kommt und anschließend die Drehfalle 1 die in Fig. 6 dargestellte Offenstellung erreicht. Diese Schwenkbewegung der Sperrklinke 3 auf dem Sperrklinkenhebel 4 beträgt hier und vorzugsweise mehr als 10° und ist insbesondere nicht durch einen Anschlag begrenzt.

[0040] Besonders hervorzuheben bei dem in den Fig. 6 bis 10 dargestellten Ausführungsbeispiel ist die Tatsache, dass der Sperrklinkenhebel 4 nie auf die Drehfalle 1 fällt, sondern stets von dem Sperrhebel 6 gehalten wird. Der Sperrhebel 6 ist mit dem Sperrklinkenhebel 4 nämlich derart gekoppelt oder koppelbar, dass der Sperrhebel 6, hier und vorzugsweise unabhängig von seiner Stellung, die Bewegung des Sperrklinkenhebels 4 in Schließrichtung begrenzt. Hierfür weisen der Sperrhebel 6 und der Sperrklinkenhebel 4 jeweils eine Eingriffskontur 29, 30 auf, die hier und vorzugsweise konzentrisch zu der Sperrhebelachse 6a verlaufen und die für die obige Kopplung miteinander in Eingriff stehen oder bringbar sind. Interessant ist dabei vor allem die Tatsache, dass diese Bewegungsbegrenzung durch eine entsprechende Länge der Eingriffskonturen 29, 30 unabhängig von der Stellung des Sperrhebels 6 garantiert ist. Grundsätzlich ist es natürlich auch denkbar, dass eine solche Eingriffskontur 29, 30 ausschließlich auf dem Sperrhebel 6 oder ausschließlich auf dem Sperrklinkenhebel 4 vorgesehen ist. Eine solche Kontur würde dann mit einem korrespondierenden Mitnehmer o. dgl. des jeweils anderen Hebels zusammenwirken.

[0041] Nach einer weiteren Lehre, der eigenständige Bedeutung zukommt, wird ein vorschlagsgemäßes Kraftfahrzeugtürschloss als solches mit einem vorschlagsgemäßen Sperrwerk beansprucht. Auf alle Ausführungen zu dem vorschlagsgemäßen Sperrwerk darf verwiesen werden.

Bezugszeichenliste:

[0042]

50

55

10

20

30

35

40

45

1 Drehfalle 1a Drehfallenachse 2 Schließbügel 3 Sperrklinke За Sperrklinkenachse 4 Sperrklinkenhebel 4a Sperrklinkenhebelachse 5 Sperrklinkenfeder

6

(fortgesetzt)

5	5a	Erste Federanordnung
	5b	Zweite Federanordnung
	6	Sperrhebel
	6a	Sperrhebelachse
10	7	Sperrklinkendorn
	8	Dorn des Sperrklinkenhebels
	9	Hebelarm der Sperrklinke
15	10	Hebelarm des Sperrklinkenhebels
	11	Blockadehebelarm
	12	Kontur am Sperrhebel
	13	Sperrhebelfeder
20	14	Einlaufmaul der Drehfalle
	15	Kontur an der Drehfalle
	16	Drehfallendorn
25	17	Kontur an der Sperrklinke
	18	Kontur an der Drehfalle
	19	Sperrkontur an der Sperrklinke
30	20	Kraftrichtung der von der Drehfalle auf die Sperrklinke übertragenden Kraft
	21	Sperrkontur am Sperrhebel
	22	Sperrhebeldorn
	23	Druckkontur
<i>35 40</i>	24	Begrenzungsfläche
	25	Hauptraste
	26	Vorraste
	27	Mitnehmer an Sperrklinke
	28	Mitnehmer an Sperrklinkenhebel
	29	Eingriffskontur an Sperrhebel
	30	Eingriffskontur an Sperrklinkenhebel

45 Patentansprüche

50

55

1. Sperrwerk für ein Kraftfahrzeugtürschloss, dass in einer Kraftfahrzeugtür oder in einem Türrahmen positioniert ist und das in Verbindung mit einem an dem Türrahmen oder der Tür positionierten Schließbügel (2) die Kraftfahrzeugtür geschlossen hält oder öffnet, mit einer Drehfalle (1), die bei geschlossener Kraftfahrzeugtür mit dem Schließbügel (2) formschlüssig verbunden ist, mit einer Sperrklinke (3), die die Drehfalle (1) bei geschlossener Kraftfahrzeugtür, in einer Vorraststellung oder einer Hauptraststellung, blockiert, mit einer Baugruppe bestehend aus einem Zwischenhebel (4) und einer daran schwenkbar gelagerten Sperrklinke,

dadurch gekennzeichnet, dass

- die Drehfalle (1) bei geschlossener Kraftfahrzeugtür die Sperrklinke (3) in Schließrichtung belastet, jedoch auch die Baugruppe aus Zwischenhebel (4) und Sperrklinke (3) in Öffnungsrichtung belastet.
- Sperrwerk für ein Kraftfahrzeugtürschloss gemäß Anspruch 1 dadurch gekennzeichnet, dass

ein erstes Drehmoment, welches durch die Kraftübertragung von der Drehfalle (1) auf die Sperrklinke (3) entsteht, die Sperrklinke (3) in Schließrichtung belastet, dass jedoch auch ein zweites Drehmoment, das durch die Kraftübertragung von der Drehfalle (1) auf die Sperrklinke (3) entsteht, und die Baugruppe aus Sperrklinke (3) und Zwischenhebel (4) in Öffnungsrichtung belastet.

5

3. Sperrwerk für ein Kraftfahrzeugtürschloss gemäß Anspruch 2

dadurch gekennzeichnet, dass

die Kraft einer Drehfallenfeder und/oder die Kraft einer Türdichtung, die über die Türstruktur und/oder den Schließbügel (2) auf die Drehfalle (1) übertragen wird, das erste Drehmoment und das zweite Drehmoment erzeugt.

10

4. Sperrwerk für ein Kraftfahrzeugtürschloss gemäß einem der Ansprüche 1 bis 3

dadurch gekennzeichnet, dass

eine Feder (5) zwischen einem Schlossgehäuse und der Sperrklinke (3) angeordnet ist, die über die Sperrklinke (3) den Zwischenhebel (4) in Schließrichtung belastet.

15

5. Sperrwerk für ein Kraftfahrzeugtürschloss gemäß einem der Ansprüche 1 bis 4

dadurch gekennzeichnet, dass

bei geschlossener Kraftfahrzeugtür, ein Sperrhebel (6) den Zwischenhebel (4) gegen eine Bewegung in Öffnungsrichtung blockiert.

20

6. Sperrwerk für ein Kraftfahrzeugtürschloss gemäß Anspruche 5

dadurch gekennzeichnet, dass

der Sperrhebel (6) durch eine Feder (13) in die Richtung belastet ist, in der der Sperrhebel (6) die Öffnungsbewegung der Baugruppe, bestehend aus dem Zwischenhebel (4) und der Sperrklinke (3), blockiert.

25

7. Sperrwerk für ein Kraftfahrzeugtürschloss gemäß einem der Ansprüche 1 bis 6

dadurch gekennzeichnet,

dass die Sperrklinke (3) auf dem Zwischenhebel (4) aus einer eingefallenen Stellung heraus, in der die Sperrklinke (3) die Drehfalle (1) in der Hauptraststellung und in der ggf. vorhandenen Vorraststellung blockiert, sowohl in Schließrichtung als auch in Öffnungsrichtung bewegbar, insbesondere schwenkbar ist, vorzugsweise, dass die Sperrklinke (3) hinsichtlich beider Bewegungsrichtungen in eine Mittelstellung, vorzugsweise im Wesentlichen in die eingefallene Stellung vorgespannt ist.

30

35

8. Sperrwerk für ein Kraftfahrzeugtürschloss gemäß Anspruch 7

dadurch gekennzeichnet,

dass die Sperrklinke (3) in einer eingefallenen Stellung, in der die Sperrklinke (3) die Drehfalle (1) in der Hauptraststellung und in der ggf. vorhandenen Vorraststellung blockiert, an einer Begrenzungsfläche (24) der Drehfalle (1) anliegt, wodurch eine weitere Bewegung der Sperrklinke (3) in Schließrichtung blockiert wird.

40

9. Sperrwerk für ein Kraftfahrzeugtürschloss gemäß Anspruch 7 oder 8 dadurch gekennzeichnet,

dass ausgehend von dem Zustand der geschlossenen Kraftfahrzeugtür, in dem der Sperrhebel (6) den Zwischenhebel (4) gegen eine Bewegung in Öffnungsrichtung blockiert, eine Bewegung des Sperrhebels (6) in eine nicht blockierende Stellung eine von der Drehfalle (1) getriebene Abwälzbewegung der Sperrklinke (3) auf der Drehfalle (1) auslöst.

45

10. Sperrwerk für ein Kraftfahrzeugtürschloss gemäß Anspruch 9

dadurch gekennzeichnet,

dass die Sperrklinke (3) bei in der Hauptraststellung und in der ggf. vorhandenen Vorraststellung befindlicher Drehfalle (1) in blockierendem Eingriff mit einer Hauptraste (25) bzw. Vorraste (26) der Drehfalle (1) steht und dass die Abwälzbewegung im Bereich der Hauptraste (25) bzw. der Vorraste (26) der Drehfalle (1) stattfindet.

50

11. Sperrwerk für ein Kraftfahrzeugtürschloss gemäß Anspruch 9 oder 10

dadurch gekennzeichnet,

dass sich die Sperrklinke (3) im Zuge der Abwälzbewegung aus der Hauptraste (25) bzw. Vorraste (26) herausdreht.

55

12. Sperrwerk für ein Kraftfahrzeugtürschloss gemäß einem der Ansprüche 9 bis 11 dadurch gekennzeichnet,

dass ausgehend von dem Zustand der geschlossenen Kraftfahrzeugtür, in dem der Sperrhebel (6) den Zwischen-

hebel (4) gegen eine Bewegung in Öffnungsrichtung blockiert, eine Bewegung des Sperrhebels (6) in eine nicht blockierende Stellung eine jeweils von der Drehfalle (1) getriebene Bewegung der Sperrklinke (3) auf dem Zwischenhebel (4) in Schließrichtung und insbesondere gleichzeitig dazu eine Bewegung des Zwischenhebels (4) in Öffnungsrichtung auslöst, vorzugsweise, dass diese Bewegung der Sperrklinke (3) auf dem Zwischenhebel (4) mehr als 10° beträgt.

13. Sperrwerk für ein Kraftfahrzeugtürschloss gemäß einem der Ansprüche 1 bis 12 dadurch gekennzeichnet,

dass der Sperrhebel (6) mit dem Zwischenhebel (4) derart gekoppelt oder koppelbar ist, dass der Sperrhebel (6), vorzugsweise unabhängig von seiner Stellung, die Bewegung des Zwischenhebels (4) in Schließrichtung begrenzt, vorzugsweise, dass der Sperrhebel (6) und/oder der Zwischenhebel (4) hierfür eine Eingriffskontur (29, 30) aufweist bzw. aufweisen, vorzugsweise, dass die Eingriffskontur (29, 30) bzw. die Eingriffskonturen (29, 30) konzentrisch zu einer Sperrhebelachse (6a) verläuft bzw. verlaufen.

14. Kraftfahrzeugtürschloss, das in einer Kraftfahrzeugtür oder in einem Türrahmen positionierbar ist und das in Verbindung mit einem an dem Türrahmen oder der Tür positionierten Schließbügel (2) die Kraftfahrzeugtür geschlossen hält oder öffnet, wobei ein Sperrwerk (6) mit einer Drehfalle (1), die bei geschlossener Kraftfahrzeugtür mit dem Schließbügel (2) formschlüssig verbunden ist, mit einer Sperrklinke (3), die die Drehfalle (1) bei geschlossener Kraftfahrzeugtür, in einer Vorraststellung oder einer Hauptraststellung, blockiert, mit einer Baugruppe bestehend aus einem schwenkbaren Zwischenhebel (4) und der daran schwenkbar gelagerten Sperrklinke (3), die die Drehfalle (1) bei geschlossener Kraftfahrzeugtür, in einer Vorraststellung oder einer Hauptraststellung, blockiert, vorgesehen ist,

dadurch gekennzeichnet, dass

5

10

15

20

25

30

35

40

45

50

55

die Drehfalle (1) bei geschlossener Kraftfahrzeugtür die Sperrklinke (3) in Schließrichtung belastet, jedoch auch die Baugruppe aus Zwischenhebel (4) und Sperrklinke (3) in Öffnungsrichtung belastet.

15. Kraftfahrzeugschloss nach Anspruch 14, gekennzeichnet durch ein Sperrwerk nach einem der Ansprüche 1 bis 13.

9

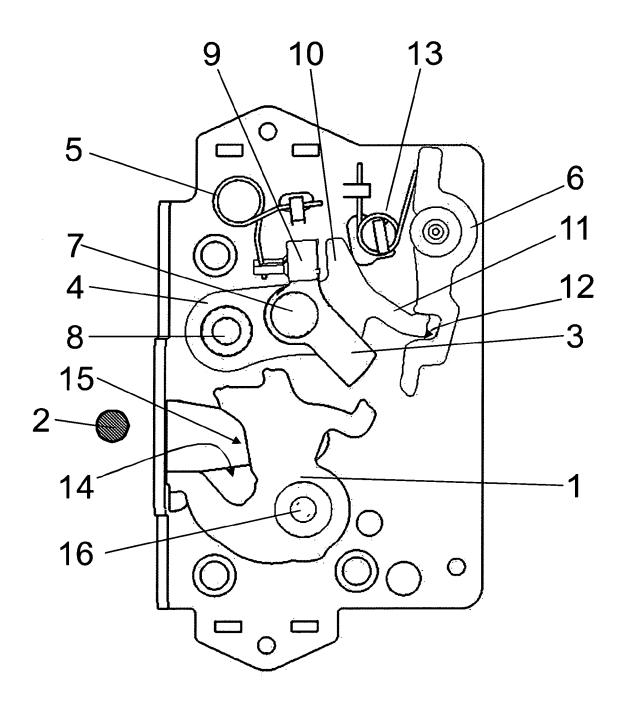


Fig. 1

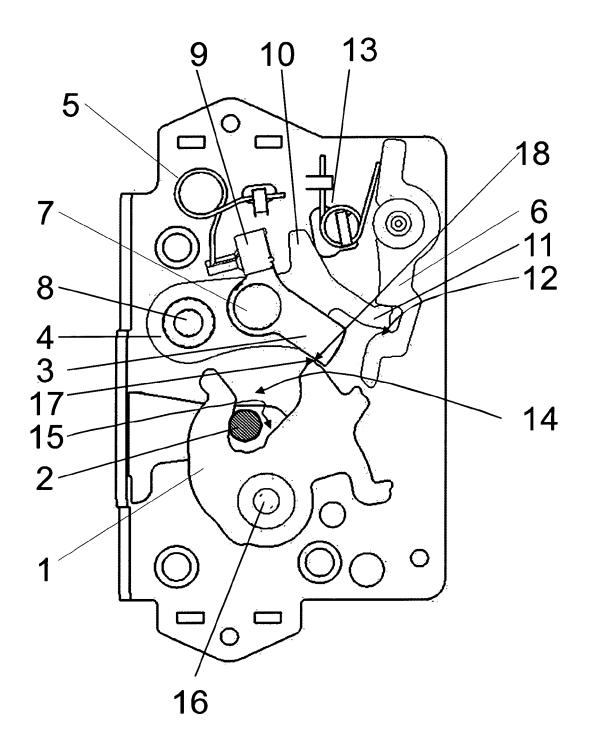


Fig. 2

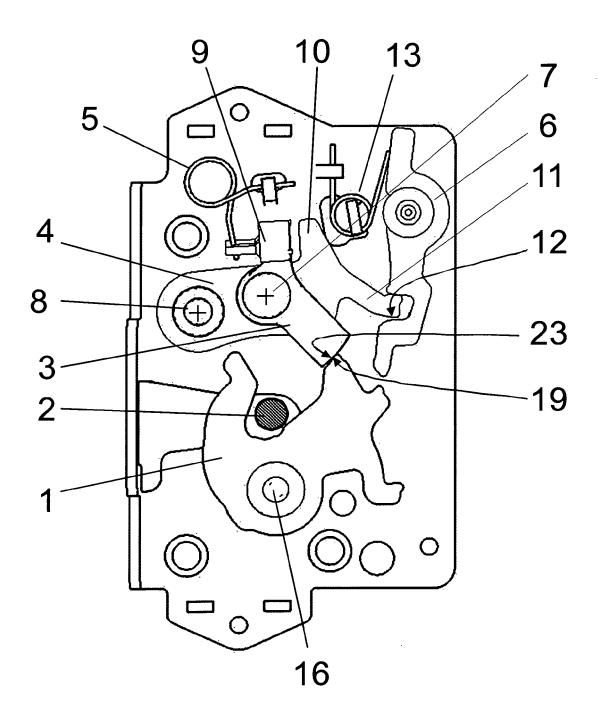


Fig. 3

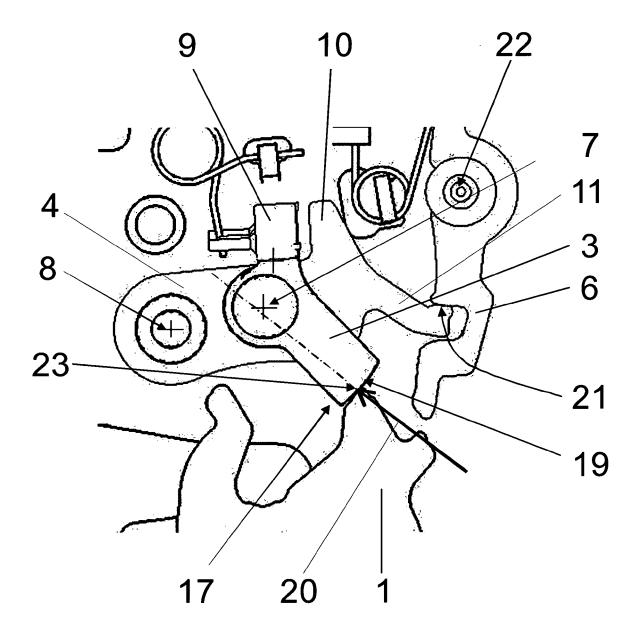


Fig. 4

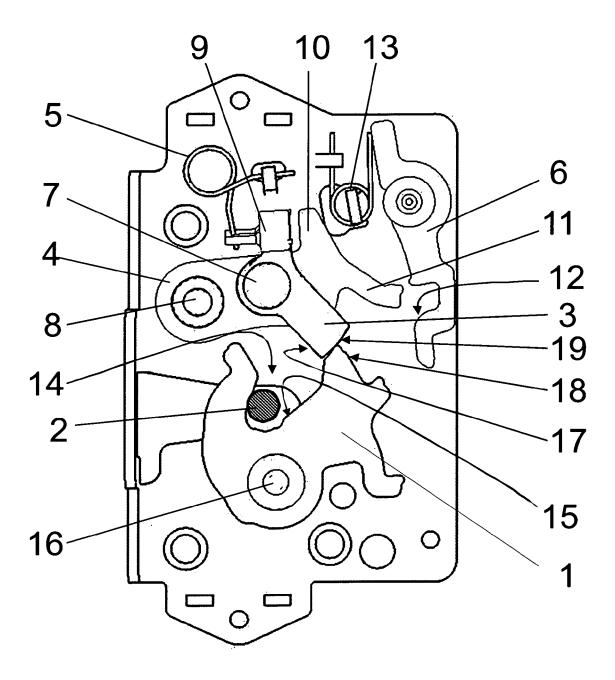


Fig. 5

Fig. 6

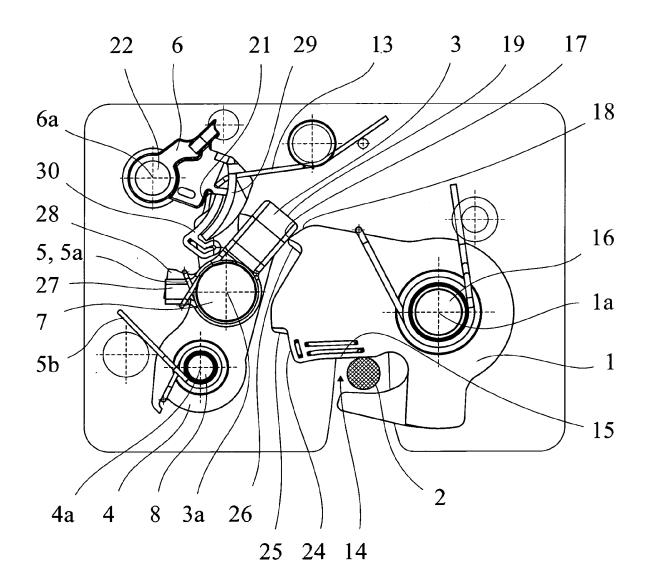


Fig. 7

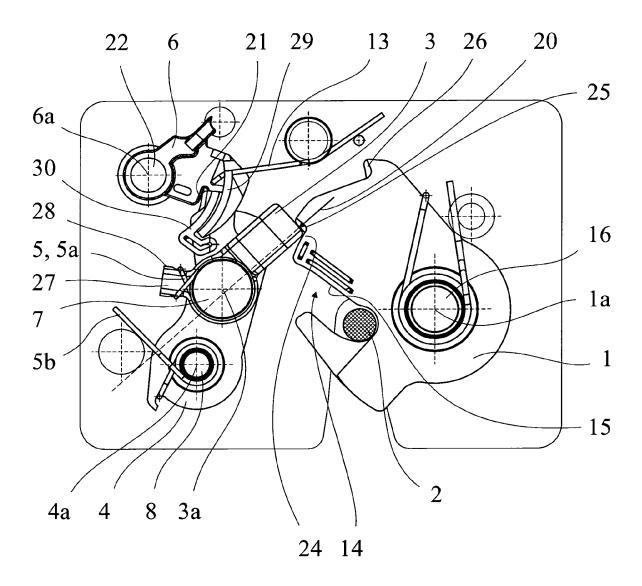


Fig. 8

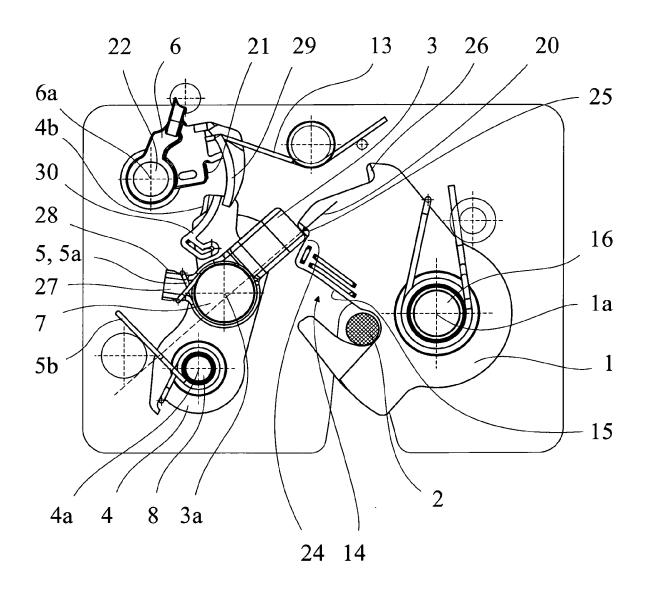


Fig. 9

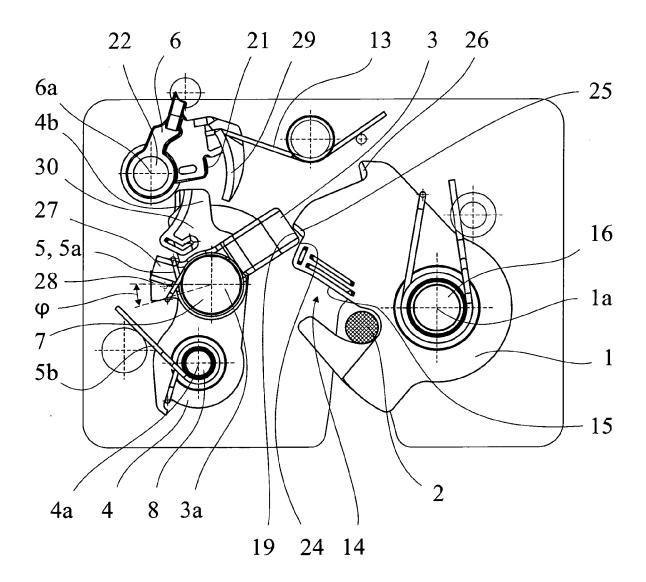


Fig. 10

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• US 3386761 A [0002] [0003]