| (19) |
 |
|
(11) |
EP 2 507 178 B9 |
| (12) |
CORRECTED EUROPEAN PATENT SPECIFICATION |
|
Note: Bibliography reflects the latest situation |
| (15) |
Correction information: |
|
Corrected version no 1 (W1 B1) |
|
Corrections, see Description |
| (48) |
Corrigendum issued on: |
|
05.08.2015 Bulletin 2015/32 |
| (45) |
Mention of the grant of the patent: |
|
15.04.2015 Bulletin 2015/16 |
| (22) |
Date of filing: 23.11.2010 |
|
| (51) |
International Patent Classification (IPC):
|
| (86) |
International application number: |
|
PCT/US2010/003025 |
| (87) |
International publication number: |
|
WO 2011/068526 (09.06.2011 Gazette 2011/23) |
|
| (54) |
METHOD AND APPARATUS FOR THE BIO-REMEDIATION OF AQUEOUS WASTE COMPOSITIONS
VERFAHREN UND VORRICHTUNG ZUM BIOLOGISCHEN ABBAU VON ABWASSERZUSAMMENSETZUNGEN
PROCEDE ET APPAREIL DE BIORESTAURATION DE COMPOSITIONS DE DECHETS AQUEUX
|
| (84) |
Designated Contracting States: |
|
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL
NO PL PT RO RS SE SI SK SM TR |
| (30) |
Priority: |
01.12.2009 US 283234 P 30.09.2010 US 924613
|
| (43) |
Date of publication of application: |
|
10.10.2012 Bulletin 2012/41 |
| (73) |
Proprietor: Imet Corporation |
|
Cleveland, Ohio 44147 (US) |
|
| (72) |
Inventors: |
|
- GENCER, Mehmet A.
Brecksville, Ohio 44141 (US)
- ZAKRISKI, Paul M.
Broadview Heights, Ohio 44147 (US)
- LANGMACK, Clark B.
Gates Mills, Ohio 44040 (US)
|
| (74) |
Representative: Mehler Achler |
|
Patentanwälte
Bahnhofstraße 67 65185 Wiesbaden 65185 Wiesbaden (DE) |
| (56) |
References cited: :
WO-A1-93/02971 US-A- 4 814 125 US-A- 5 217 616 US-A- 6 159 365 US-A1- 2006 163 149
|
US-A- 3 433 600 US-A- 4 925 552 US-A- 6 153 094 US-A1- 2005 269 252 US-A1- 2007 007 201
|
|
| |
|
|
- 'What is Fungus, What are Fungi?' MEDICAL NEWS TODAY, [Online] 21 July 2009, Retrieved
from the Internet: <URL:http://www.medicalnewstoday.com/articl es/158134.php> [retrieved
on 2011-01-12]
|
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
FIELD OF THE INVENTION
[0001] The present invention relates to aerobic bio-remediation of waste compositions desirably
in an aqueous environment so that they are converted or reacted into non-harmful and/or
desirable end products. The conversion is generally carried out in reactors containing
multiple and often numerous different types of packing substrates therein of various
sizes, shapes, etc. to maximize dissolving of oxygen as from air into water. The substrates
have very high surface areas and varying surface chemistries and physics to incorporate,
bind, or attach a highly diverse and multiple microorganisms to effectively treat
a maximum amount of different components of the wastewater as possible. An important
aspect of the packing substrates is that they are highly porous and have numerous
micro-pores therein to help maintain the microorganisms therein. The reactors have
multiple stages to effectively treat or react different types of components of the
aqueous waste compositions.
BACKGROUND OF THE INVENTION
[0002] Heretofore, waste treatment systems were generally specialized with regard to the
decontamination, immobilization, etc, of narrow or specific types of compounds, and
generally were not efficient.
[0003] U.S. Patent 4,810,385 relates to a device suitable for seeding bacterial cultures to waste flowing through
or which has accumulated in a collection system which comprises a porous outer covering
member which forms an enclosed package with a source of bacterial cultures contained
within said package, said cultures suitable for seeding a collection system as a waste
stream flows through the porous covering member of said enclosed package causing the
bacteria to be released into said waste stream.
[0004] U.S. Patent 4,859,594 relates to a novel microorganisms separated from natural environments and purified
and genetically modified, process for immobilizing these microorganisms by affixing
then to substrates, the biocatalytic compositions formed by these microorganisms affixed
to substrates, and the use of the biocatalytic compositions for the detoxification
of toxin-polluted streams. The microorganisms are (1) Pseudomonas fluorescens (ATCC
SD 904); (2) Pseudomonas fluorescens (ATCC SD 903); (3) Pseudomonas cepacia (ATCC
SD 905); (4) Methylobacter rhodinum (ATCC 113-X); and (5) Methylobacter species (ATCC
16 138-X).
[0005] U.S. Patent 4,882,066 relates to compositions characterized as porous solids on the surfaces of which thin
films of chitinous material are dispersed, and to a process employing chitin per se,
and preferably the chitin coated compositions, supra, as contact masses for the removal
of metals contaminants, or halogenated organic compounds, from liquid streams contaminated
or polluted with these materials.
[0006] U.S. Patent 5,021,088 relates to a process for the separation and recovery from an ore of a metal, or metals,
particularly strategic and precious metals, notably gold. A carbon-containing, gold-bearing
ore, notably a carbonaceous or carbonaceous pyritic ore, is contacted and microbially
pretreated and leached with a heterotrophic microorganism, or admixture of microoganisms,
at heterotrophic conditions to cultivate and grow and said microorganism, or microorganisms,
and reduce the carbon content of the ore by consumption of the carbon. The ore, as
a result of the heterotrophic pretreatment is subsequently more advantageously colonized
by an autotrophic microorganism, or microorganisms, at autotrophic conditions, or
hydrometallurgically treated, or both, to facilitate, enhance and increase the amount
of gold recovered vis-a-vis a process wherein the gold is recovered (1) by hydrometallurgical
processing alone at otherwise similar conditions, or (2), in treating a pyritic ore,
by the combination of the autotrophic/hydrometallurgical processing, at otherwise
similar conditions.
[0007] U.S. Patent 5,211,848 relates to a continuous flow, immobilized cell reactor, and bioprocess, for the detoxification
and degradation of volatile toxic organic compounds. The reactor is closed, and provided
with biocatalysts constituted of specific adapted microbial strains immobilized and
attached to an inert porous packing, or carrier. A contaminated groundwater, industrial
or municipal waste, which is to be treated, is diluted sufficiently to achieve biologically
acceptable toxicant concentrations, nutrients are added, and the pH and temperature
are adjusted. The contaminated liquid is introduced as an influent to the closed reactor
which is partitioned into two sections, or compartments. Air is sparged into the influent
to the first compartment to mix with and oxygenate the influent with minimal stripping
out of the toxic organic compounds. The second section, or compartment, is packed
with the biocatalyst. The oxygenated liquid influent is passed through the second
compartment substantially in plug flow, the biocatalyst biodegrading and chemically
changing the toxic component, thereby detoxifying the influent. Non toxic gases, and
excess air from the first compartment, if any, are removed through a condenser located
in the overhead of the reactor. Liquids are recondensed back to the aqueous phase
via the condenser.
[0008] U.S. Patent 5,240,598 relates to a microbubble generator is disclosed for optimizing the rate and amount
of oxygen transfer to microbial inocula or biocatalysts in bioreactor systems. The
microbubble generator, and an associated immobilized cell reactor, are useful in the
detoxification and cleanup of non-volatile polymeric and volatile organic-contaminated
aqueous streams. In particular, they are useful in the continuous mineralization and
biodegradation of toxic organic compounds, including volatile organic compounds, associated
with industrial and municipal effluents, emissions, and ground water and other aqueous
discharges. One embodiment of the invention includes a microbubble chamber packed
with small inert particles through which a liquid effluent and oxygen or another gas
are admitted under pressure, followed by a venturi chamber to further reduce the size
of bubbles.
[0009] U.S. Patent 5,403.487 relates to the biochemical oxidation of two wastewater feeds, one containing at least
ten times more ammonia nitrogen, and the other at least ten times more chlorinated
hydrocarbons, than present in a conventional municipal wastewater stream were treated
in an aerated packed bed bioreactor inoculated with microorganisms ("cells") especially
cultured and acclimated to the task. Arbitrarily shaped pieces of numerous microporous
synthetic resinous materials (familiarly referred to as "porous plastics") supposedly
provide not only a packing for the bioreactor, but also a peculiar catalytic function
not normally associated with a bio-support.
[0010] U.S. Patent 5,534,143 relates to a microbubble generator is disclosed for optimizing the rate and amount
of oxygen transfer to microbial inocula or biocatalysts in bioreactor systems. The
microbubble generator, and an associated immobilized cell reactor, are useful in the
detoxification and cleanup of non-volatile polymeric and volatile organic-contaminated
aqueous streams. In particular, they are useful in the continuous mineralization and
biodegradation of toxic organic compounds, including volatile organic compounds, associated
with industrial and municipal effluents, emissions, and ground water and other aqueous
discharges. One embodiment of the invention includes a microbubble chamber packed
with small inert particles through which a liquid effluent and oxygen or another gas
are admitted under pressure, followed by a venturi chamber to further reduce the size
of bubbles.
[0011] U.S. Patent 5,569,634 relates to porous bodies produced which are suitable for use as supports for catalysts,
including living cells, such as bacteria and which are upset resistant to acids and
bases. The bodies have a significantly large average pore diameter of about 0.5 to
100 microns, (i.e. 5,000 to 1,000,000 .ANG.) and a total pore volume of about 0.1
to 1.5 cc/g with the large pores contributing a pore volume of from about 0.1 to 1.0
cc/g. The bodies are made by preparing a mixture of ultimate particles containing
a zeolite and one or more optional ingredients such as inorganic binders, extrusion
or forming aids, burnout agents, or a forming liquid, such as water.
[0012] U.S. Patent 5,747,311 relates to a method for chemically modifying a reactant using microbes. The method
includes providing a particulate material which includes a plastic carrier and microbes
attached to the carrier. The particulate material is dispersed in a dispersing fluid
and has a specific gravity less than that of the dispersing fluid. When the microbe
is anaerobic the particulate material has an operating interfacial surface area of
from about 2,000 to about 240,000 square meters per cubic meter of reactor volume.
When the microbe is aerobic the particulate material has an operating interfacial
surface area of from about 1,000 to about 30,000 square meters per cubic meter of
reactor volume. The method further includes establishing a flow of the reactant through
the particulate material effective to contact the reactant with the microbes for a
time sufficient to chemically modify the reactant.
[0013] The article Carbon and Nitrogen Removal by Biomass Immobilized in Ceramic Carriers
by I. Wojnowski-Baryla, et al., relates to an experiment conducted in a bioreactor
with biomass immobilization in ceramic carriers. The influence of hydraulic retention
time (HRT), carrier structure and intrinsic circulation rate on carbon and nitrogen
removal from municipal wastewater were investigated. Two types of ceramic carriers
were used at HRT 70, 60, 40, 30 min for carrier I, and 70, 60, 30, 15 min for carrier
II, and at the circulation rate of 60, 40, and 20 dm
3 h
-1. The highest nitrogen removal efficiency was achieved in carrier II at 30 min of
reaction. The carbon removal efficiency was similar for both carriers. An increase
in internal circulation rate from 20 to 60 dm
3 h
-1 enhanced nitrogen removal efficiency from 33.0 to 47.2% and decreased in the production
of surplus sludge in carrier II.
[0014] The article The Biodegradation of Brewery Wastes in a Two-Stage Immobilized System
by I. Wojnowski-Baryla, et al, relates to the investigation in a loop bioreactor,
where biomass was immobilized in the ceramic carrier. The influence of the internal
circulation rate on the biodegradation efficiency of brewery wastes by immobilized
biomass and on production of surplus sludge was examined. The rates of the internal
circulation were 12, 38, 50 dm
3 h
-1. The experiments were performed at constant loading rate of the carrier of 17.9 caused
enhancement of the removal rate from 0.40 to 0.48 gCOD dm
3 h
-1 and limitation of surplus sludge productivity from 0.67 to 0.27 g g
-1 COD removed. The biodegradation rate of brewery wastes in a two-stage immobilized
system was determined. The hydraulic retention time in this two-stage immobilized
system was 6 h, which was enough to get a COD below 150 mg dm
-3 in the effluent.
[0015] The international publication
WO 93/02971 relates to a process for reducing the concentration of an organic pollutant such
as phenol in an aqueous stream which comprises passing the stream through a bioreactor
containing a plurality of biologically active particles comprising a hydrophobic polyurethane
substrate having an effective amount of one or more aerobic microorganisms capable
of metabolizing at least one of said organic materials on, in or on and in said substrate
in the absence or in the substantial absence of a carbon absorbent.
[0016] The patent
US 6,153,094 relates to a treatment system for the treatment of polluted water, wherein water
is passed over polyurethane foam blocks, arranged in a heap so that air can circulate
freely around the blocks. The blocks are so arranged that each block has a respective
entry-means through which water can enter the block from above, and a respective drainage-means,
whereby water can drain out from this respective block. A relationship between capillary
sponge action of the treatment material and the constriction in the drainage-means
is such as to cause a substantial residual volume of water to be retained in a lower
zone of the interior of the block, without draining away, even when an upper zone
of the block is dry. Patent
US 6,159,365 relates to a method and apparatus for treating contaminated water, wherein contaminated
natural water or industrial wastewater is treated to remove contaminants in a packaged
modular treatment unit. The unit comprises an input tube, a separation compartment
to separate solids, oil and grease in contaminated water, controlled openings and
conduit means for distributing water, a fluidized bed reactor assembly containing
at least one each of an aeration zone, an internal recirculation zone with portions
of upward and downward flows comprising a fluidized bed zone, a clear effluent zone,
a mixing/degassing zone and a filtration bed compartment, wherein the filtration bed
compartment is hydraulically connected to the clear effluent zone and therein the
fluidized bed contains sups pended viable biomass or a physico-chemical reagent admixture
or mixture of said biomass and said physico-chemical reagent admixture.
[0017] Patent application
US 2005/0269252 A1 relates to a water treatment apparatus comprising a first packed part being arranged
in a packed region, a block of first biomembrane-deposited members are packed in the
first packed part, a second packed part is arranged under the first packed part and
a plurality of second biomembrane-deposited members are packed in the second packed
part. The first biomembrane-deposited members press on the second biomembrane-deposited
members from above, thereby preventing the second biomembrane-deposited members from
moving into the first packed part.
[0018] Patent application
US 2007/0007201 A1 relates to a packed bed reactor having a series of alternating layers of packing.
First packing layer has open body packing elements randomly packed in a layer up to
about 10 packing elements deep. A second packing layer has porous support elements
of hydrophobic foam. The porous support elements are randomly packed up to about 10
porous support elements deep. Further, the packing elements of the first layer include
substantially cylindrical shapes and the porous support elements of the second layer
include substantially rectilinear shapes. In some embodiments, the second layer supports
microbial organisms in a biological reactor, and the first layer of open body packing
provides fluid flow spaces to facilitate fluid flow and distribution, mass transfer
and to minimize channeling.
Patent
US 4,925,552 relates to an arrangement for decontaminating water including at least one reactor
comprising a plurality of treatment chambers oriented in series, each chamber including
an upstream downcomer portion and a downstream column portion separated by a wall
member. Fluid flow is provided between the downcomer portion and the column portion.
The downcomer portion has a passage downwardly to a feed space and a bottom portion
of the column portion of the chamber. The water then flows outwardly from the chamber
into a next downstream chamber.
[0019] Patent
US 5,217,616 relates to an apparatus and a process for reducing the concentration of a pollutant
in a fluid stream which comprises passing the stream through a bioreactor containing
a fixed biologically active biomass comprising an effective number of open or substantially
open spaces in a plurality of biologically active bodies comprising a hydrophobic
polyurethane substrate having an effective amount of one or more microorganisms capable
of metabolizing at least one of the said pollutant on, in or on and in said substrate
in the absence or in the substantial absence of an absorbent.
[0020] Patent
US 3,433,600 relates to an apparatus for carrying out exothermic catalytic reactions, in which
the main process fluid stream is passed downwards through a plurality of catalyst
beds arranged in vertical series in a container. The hot process fluid stream is quenched
to a lower temperature by injection of a cold quenched fluid between beds, by means
of apparatus elements and structure including whirl vanes and baffles or curved whirl
conduits which provide a circular motion during mixing and also divide the fluid streams
into portions during mixing, so as to provide rapid mixing and uniform quench of the
hot process fluid stream between catalyst beds.
SUMMARY OF THE INVENTION
[0021] Different reactors contain multiple reactor stages having multiple substrates that
are microporous and possess high surface areas. Multiple different types of microorganisms
are attached by a variety of different surface characteristics to the porous substrates.
The substrates are desirably selected upon the basis of being able to maximize air
into water to dissolve oxygen therein. Moreover, the reactor contains one or more
chimneys that are perforated and further aid in dissolving oxygen (such as laterally)
into the various reactor stages. The reactors are utilized to bio-remediate various
aqueous waste compositions that contain various undesirable compounds such as nitrogen,
sulfur, and the like.
[0022] In one embodiment of the invention an apparatus for the bio-remediation of an aqueous
waste composition, comprising: a reactor having a plurality of bio-remediation stages
therein; said reactor having multiple packing substrates having a high surface area,
said substrates being porous and having micro-pores therein; said reactor having multiple
types of different microorganisms, said microorganisms being attached to said packing
substrates; said reactor having an inlet capable of admitting an aqueous waste composition
to said reactor and said reactor having an inlet capable of admitting oxygen to said
reactor; said reactor including at least one perforated chimney pipe in at least one
of said bio-remediation stages; and said reactor having an outlet.
[0023] In another embodiment of the present invention a process for the aerobic bio-remediation
of an aqueous waste composition comprising the steps of: supplying a reactor having
multiple bio-remediation stages therein, said reactor also having multiple packing
substrates having a high surface area, said packing substrates having micropores and
a high porosity adding at least one peforated chimney to at least one of said bio-remediation
stages; applying multiple microorganisms to said packing substrates; adding an aqueous
waste composition to said reactor; adding air to said reactor and dissolving oxygen
into said aqueous waste composition; and bio-remediating said aqueous waste composition
with said microorganisms and purifying said aqueous waste composition.
BRIEF DESCRIPTION OF THE DRAWINGS
[0024]
Figure 1 is a cross-section elevation view of a treatment reactor in accordance with
the present invention;
Figure 2 is a cross-section elevation view of a ballast that can optionally be utilized
in association with the reactors of the present invention;
FIG. 3 is an elevation view of a chimney of the reactor of the present invention;
FIG. 4 is an elevation view of a chimney of the reactor of the present invention showing
packing therein;
FIG. 5 is a cross-section elevation view of another treatment reactor of the present
invention containing additional chimneys therein;
FIG. 6 is a cross-section elevation view containing reactors within a tank;
FIG. 7 is a cross-section elevation view of another treatment reactor of the present
invention that contain no chimneys but utilizes a sump pump;
FIGS. 8 and 9 are cross-section elevation views of a tank containing reactors of the
present invention therein;
FIGS. 10, 11, and 12 are cross-section elevation views showing a bio-remediation tank
containing an aqueous waste composition where a reactor outside of the tank is utilized;
FIGS. 13, 14, 15, 16, and 17 are cross-section elevation views of different bio-remediation
embodiments of the present invention wherein two reactors are utilized and are located
outside a tank containing an aqueous waste composition therein;
FIGS 18 and 20 are cross-section elevation views showing additional bio-remediation
embodiments of the present invention wherein five reactors are located within a tank
containing an aqueous waste composition; and
FIGS. 19 and 21 are a cross-section elevation view of further bio-remediation embodiments
of the present invention wherein five reactors are located within an aqueous waste
composition containing tank and one reactor is located outside of the tank.
DETAILED DESCRIPTION OF THE INVENTION
[0025] The waste compositions comprise numerous compounds, waste sources and materials that
are treatable by aerobic remediation with various microorganisms in an aqueous environment
with an oxygen source such as air. Anaerobic remediation is not part of the present
invention. Waste compositions generally include industrial, residential, commercial,
sewage, corrosive compounds, and the like.
[0026] The method and apparatus according to the present invention eliminates carbonaceous
compounds, odors, noxious compounds, toxic compounds, compounds containing ammonia,
ammonium, NO
2, NO
3, H
2S, bio-sludge, natural sources such as algae, and the like. More specifically, examples
of industrial waste include hydrocarbons such as hexane, benzene, toluene, xylene,
and the like, and alcohols such as ethanol, methanol, phenol, and the like, and nitrogen-containing
chemicals such as ammonia, aniline, morphiline, and the like as well as waste from
restaurants and food service operations that generally produce large amounts of fats,
oils, and grease. Such compounds have and can block sewers, pipelines and the like.
Examples of residential waste include dissolved sugar sources, waste food, fats, grease
and oil, and the like and dissolved proteins, starches, and of course human excrement.
Examples of commercial waste include dissolved sugar sources, waste food, fats, grease
and oil and the like and dissolved proteins, starches and the like, as well as excrement
from animals, for example, cows, horses, pigs, chickens, and the like. Examples of
sewage include waste from any industrial, residential, and commercial sources that
are of course piped to a municipal treating plant. Examples of corrosive compounds
include sulfur-containing compounds such as H
2S and the like, and carbonate-containing compounds such as lime and soda and the like,
nitrate-containing compounds such as vinegar, fertilizer and the like, food sources
such as vinegar and the like, and chloride-containing compounds such as table salt
and the like.
[0027] The microorganisms that are utilized in the bio-remediation of the above wastes generally
work through several different mechanisms such as eradication, reaction therewith,
formation of complexes, splitting of molecules, formation of new compounds such as
carbon dioxide, water, sulfur dioxide, nitrites, nitrates, and nitrogen and the like.
As noted above, preferably numerous and different types of microorganisms are utilized
in the reactor so that a highly diverse microbial population exists to effectively
treat most, and even all of the various types of the waste components found in the
aqueous waste composition. Desirably, microorganisms are utilized that are found in
nature such as in the soil, trees, ponds, lakes, streams, rivers, grains, plants,
mold, spores, fungi, and the like. Microorganisms are generally defined as being cellular
and being able to replicate without a host cell. One desired source of microorganisms
are the various bacteria that are known to remediate various waste compositions. The
different types of bacteria are numerous and known to the art and to the literature
and thus include bacteria to biodegrade carbonaceous compounds such as
pseudomonas species such as
Pseudomonas vesicularis, Pseudomonas putida and
Aeromonas hydrophila, Brevibacterium acetylicum, bacteria to biodegrade nitrogen-containing compounds such as
Nitrobacter species such as
Nitrobacter winogradskyi and
Nitrosomonas species such as
Nitrosomonas europaea and bacteria to biodegrade sulphur-contining compounds such as
Thiobacillus species such as
Thiobacillus denitrificans and the like. Other microorganisms include various fungi such as those that naturally
exist in mushrooms, yeasts, and molds. Generally they lack chlorophyll, have a cell
wall composed of polysaccarides, sometimes polypeptides, and chitin, and reproduce
either sexually or asexually. Protozoa are simple microorganisms consisting of unicellular
organisms that range in size from sub-microscopic to macroscopic. Types of protozoa
include sarcomastigophora, labyrinthomorpha, apicomplexa, microspora, acetospora,
myxozoa, and ciliophora. Preferably at least two or three, and even four or more different
types of microorganism exist within the same bio-remediation stage of the apparatus
of the present invention inasmuch as the same has been found to destroy, eradicate,
eliminate, react with, the various carbonaceous compounds, various nitrogen containing
compounds, various sulfur containing compounds, various toxic compounds, and the like.
[0028] In order to be effective, the various microorganisms have to be attached, contained,
captured, bound, etc., by various substrates so that they are not washed away by the
flow of the aqueous waste composition as it flows through a treating apparatus such
as a reactor. In order to yield effective and efficient results, the packing substrates
of the present invention have various desirable attributes. An important attribute
is a high average surface area such as from at least about 100 square meters per cubic
meter (M
2/M
3) and desirably at least about 500 M
2/M
3to about 1,000 M
2/M
3 and even 200,000 M
2/M
3 where M
2 is the surface area and M
3 is the volume. A more desirable range of the one or more high surface area packing
substrates is from about 500 M
2/M
3 or 800 M
2/M
3 to about 10,000 M
2/M
3. At least one, and desirably a plurality of the bio-remediation stages contain two
or three, or even four or more different types of packing substrates therein.
[0029] Another important attribute is that the substrate be porous and have a large number
of pores therein. The average size of the pores are desirably small but sufficiently
large enough to house one or more microorganisms including a colony of various microorganisms.
The average pore size can vary over a wide range such as from at least about 1 micron
to about 150 microns, or up to about 250 microns, and even up to about 500 microns.
More desirable pore sizes range from about 4, or about 20, or about 30, or about 50
microns to about 75 microns or about 100 microns. The pores desirably exist not only
on the surface of the substrate, but also in the interior thereof and entirely therethrough
such that the substrate often has an "open pore structure".
[0030] As indicated above, another important attribute is that multiple microorganism, e.g.
2, 3, 4, 5, etc. be applied, attached, fixed, etc., to the packing substrate. Such
binding can occur in a number of ways, modes, or surface characteristics such as physically
or physico-chemically. Physical attachment can occur by the substrate having a rough
surface to help mechanically secure the microorganisms thereto. Physico-chemical attachment
can occur through dipolar interaction of the microorganisms to a substrate such as
Vanderwalls forces and the like. Physico-chemical attachment can also occur through
a cation or an anion microorganism portion respectively with an anionic or a cationic
portion of the substrate attachment can also occur through polar or non-polar bonding.
Similarly, ionic or non-ionic portions of the microorganism can be attached via ionic
or non-ionic bonding. Silica (SiO
2) provides anionic surface characteristics while alumina (Al
2O
3) provides cationic surface characteristic. Ion exchange resins (cation, anion) can
also be used to immobilize a variety of microorganisms utilizing anionic and cationic
attractions. Similarly, hydrophobic portions of the microorganism can be attached
to hydrophobic portion of the substrate or via a hydrophilic-hydrophilic alignment,
etc. While polyethylene and Teflon provide hydrophobic surface characteristics acrylic
polymer provides hydrophilic surface characteristics. The above attachment of the
microorganisms to the porous substrates is such that the microorganisms are maintained
in place throughout the bio-remediation process.
[0031] An important aspect of the present invention is that multiple and generally numerous
different types of porous substrates are utilized within a single reactor. Substrates
generally include minerals, carbon substrates, ceramic, metal substrates, polymers
or plastics, and the like. Examples of various minerals include clay, diatomaceous
earth, fuller's earth, titanium dioxide, zirconium dioxide, chromium oxide, zinc oxide,
magnesia, boria, boron nitride, pumice, lava, including crushed lava, celite, slag,
and the like. Examples of carbon substrates include charcoal, coal, pyrolized wood
or wood chips, activated carbon and the like. Ceramics are generally silicates, alumina,
mullite, and include brick, tile, terra cotta, porcelain, glasses of all types such
as sodium glass and boron glass, porcelain enamels, refractories such as alumina,
silicone carbide, boron carbide, and the like. Metal substrates include iron, nickel,
cobalt, zinc, aluminum, and the like.
[0032] Polymers or plastics constitute another class of porous packing substrates and include
homopolymers, copolymers, graph copolymers, and the like such as polystyrene or copolymers
of styrene and/or α-methyl styrene and acrylonitrile, and copolymers of styrene/acrylonitrile
(SAN), terpolymers of styrene, acrylonitrile and diene rubber (ABS), copolymers of
styrene/acrylonitrile modified with acrylate elastomers (ASA), copolymers of styrene/acrylonitrile
modified with ethylene/propylene/diene monomer (EPDM) rubber (ASE), and copolymers
of styrene and maleic anhydride (SMA); polyolefins such as polyethylene and polypropylene;
chlorinated polyvinyl chlorides (CPVC); polycarbonates (PC); thermoplastic polyesters
(TPES) including polybutylene terephthalate (PBT), polyethylene terephthalate (PET),
and aromatic polyesters; polyether-ester segmented copolymers, such as Hytrel* by
DuPont Corp.; polyurethanes (PUR); miscible blends of polystyrenes and polyphenylene
oxides (PPO), commercially available as Norel from General Electric Company; polyacetals
(POM); polymers of acrylic acid, methacrylic acid, acrylic esters, and methacrylic
esters; polyamide-imides; polyacrylonitriles; polyarylsulfones; polyester-carbonates;
polyether-imides; polyether-ketones (PEK); polyether-ether-ketones (PEEK); polyalphaether
ketones (PAEK); polyether sulfones; polyphenylene sulfides; polysulfones; polyethylenes;
mixtures of polyethylenes and polypropylenes; nylons; anionic and cationic exchange
resins, combinations of any of these polymers as well as recycled mixed plastics and
the like.
[0033] The pH of the packing substrate can be important and can range from about 4 to about
10 and preferably from about 6.0 to about 8.
[0034] In order to achieve efficient and thorough bio-remediation of aqueous waste compositions,
it is important that the above-noted aspects of the present invention be incorporated
within the reactors. Moreover, it is an additional important aspect that the packing
substrates be of a size, shape, and type so that it aids in dissolving a high amount
of oxygen into the water such as at least an average of about 1 part by weight, desirably
at least about 2 parts by weight, preferably from about 3 to about 8 parts by weight
per million parts by weight of waste water.
[0035] With respect to the overall reactor design, the individual reactors can have various
shapes and forms but desirably are elongated as in the form of a column or tower containing
the packing substrate therein with the pores thereof containing multiple types of
microorganisms. A variety of microorganisms in liquid form or dry form are obtained
from commercial sources as well as natural sources are added either before or immediately
after inserting into the treatment area. Microorganisms are also added into wastewater
periodically when needed. The waste compositions contained in an aqueous environment
are generally added near the bottom of the reactor with air generally being pumped
in at the bottom of the reactor. The addition of air under slight pressure will naturally
rise through the reactor and encounter the aqueous wastewater composition and cause
the same to rise. The air-wastewater composition then encounters various stages of
the reactor containing multiple types of packing substrate containing multiple types
of microorganisms in the pores thereof. As note above, since high oxygen content is
necessary for efficient operation of the reactor, packing substrates are chosen that
provide good mixing of the air with water and thereby fuse the air into smaller bubbles
and dissolve some of the oxygen within the water. Thus, substrates are chosen that
form a tight packing with one another and have a high packing fraction, i.e. high
volume, e.g. overall or exterior volume, of the substrates to the overall interior
volume of at least one and preferably all of the bio-remediation stages of the reactor
such as at least about 10%, desirably at least about 50%, and preferably about at
least 95% by volume. High packing fraction also generally prevents the formation of
channels that permit air to channel through the reactor and avoid good mixing. During
the course of treatment of the aqueous waste compositions, the dissolved oxygen will
aid or react with the microorganisms to eradicate, attack, react, complex, and otherwise
transform the waste compositions into odorless, detoxified, non-harmful or desired
end products.
[0036] Another aspect of the reactors utilized in the present invention is that due to the
above-noted parameters, long resident times are generally obtained that permits the
microorganisms to bio-remediate or treat the waste compositions in the water. Thus,
resident times of from about 2 hours to about 48 hours and generally from about 6
hours to about 24 hours are desired.
[0037] Due to the utilization of one or more air input chambers, the utilization of multiple
perforated separators or support trays and hence multiple treatment stages, the utilization
of one or more aqueous waste composition feed inputs, multiple different types of
porous substrates containing multiple types of microorganisms, numerous different
types of reactors can be utilized. Accordingly, it is to be understood that the following
description of different reactors only refer to a few of the possible many different
types of reactors.
[0038] Reference is now made to the drawings wherein like names/numerals refer to like parts
throughout. Referring to FIG. 1, reactor R can be of any shape having a cross-section
thereof that can be square, rectangular, cylindrical, and the like. The reactor contains
solid outer walls 11 that are made of a corrosive-free material such as stainless
steel and plastics. The reactor generally has a bottom chamber 18 that receives air
or oxygen-containing gas under a slight pressure. Air is admitted to the reactor via
an air pump, not shown, that supplies air through air supply pipe or conduit 1 and
into the top of the reactor through reactor air inlet pipe 5 that is made of a corrosion-resistant
material such as stainless steel or plastic. Air inlet pipe 5 is solid except at the
bottom portion thereof that has openings or perforations 24 that admits the pressurized
air into air pressure chamber 18. Air inlet pipe 5 is connected to reactor bottom
plate 19 through connection 20 that can be a mechanical fitting, a weld, or the like.
When the air flows into chamber 18 that generally extends throughout the bottom portion
of the reactor, since it is under pressure it is forced through microporous diffuser
16 that has tiny openings so that the air is admitted into aqueous waste composition
chamber 17 in the form of tiny bubbles. Microporous diffusers are known to the art
and to the literature and are commercially readily available.
[0039] Reactor R, that contains lift handle 8, can be inserted into any aqueous waste composition
environment such as a pond, a holding tank, a sewage enclosure or other confined area.
Reactor R can be free standing, that is, simply placed within the aqueous waste composition
enclosure in which situation ballast can be added to the bottom portion of the reactor.
FIG. 2 shows one type of ballast containing a corrosion-resistant bottom 34 have side
walls or housing 32 that form an enclosure that contains a ballast material 33 such
as concrete therein. The optional ballast can be secured to the bottom of reactor
R as through bolts 31 or other fastening members. Alternatively, reactor R can optionally
be attached to a support such as the wall of wastewater treatment tank through holding
lug 7.
[0040] The aqueous waste composition is added to the reactor through wastewater inlet 21
that can be in the shape of an elbow having an opening at the other end thereof and
optionally can be perforated. When placed in a tank containing an aqueous waste composition
therein, the aqueous waste composition will flow into aqueous waste composition chamber
17 wherein it is mixed with air bubbles 10. The aqueous waste composition will be
caused to flow upward through the reactor via drag forces due to forced air flow through
the perforated air carrier pipe, chimney 9. That is, the concept of the reactor is
a bottom input of air as well as the aqueous waste composition that is then caused
to flow upward through various perforated separators 15A, 15B, 15C, etc., that have
perforations 13 therein and thus through various stages of the reactor. The size of
the various perforated openings in the separators is sufficient to allow air and water
to flow therethrough but generally and desirably does not permit the packing substrates
to pass therethrough. Figure 4 shows various substrates with high surface area are
placed in perforated air, chimney pipe 9 to create tortuous paths for air bubbles
improve dissolving oxygen into wastewater.
[0041] Perforated separator 15A is a diffuser that allows bubbles 10 of air in aqueous waste
composition 17 to flow upward therethrough (flow arrows 25) thus providing an additional
mixing of the aqueous waste composition and the air bubbles so that some of the oxygen
in the air is dissolved into the water.
[0042] As noted above, an important aspect of the present invention is that a plurality
of multiple perforated separators exist to create a plurality of bio-remediation stages
throughout the reactor such as anywhere from 2 to about 10 and desirably from about
3 to about 5 stages. The area formed between perforated separators 15A, 15B, and 15C,
are identified as chamber 15AA, 15BB, 15CC, etc. The chambers 15AA, 15BB, 15CC, etc.,
are filled with packing substrate 30 that although can be only one type of packing
but preferably is a plurality of different packings. That is, while each chamber formed
between the various separators may contain only one type of packing, it is highly
preferred that a plurality of different types of packings exist within reactor R and
that a plurality of different packings also exist within each chamber 15AA, 15BB,
15CC, 15DD, etc.
[0043] In accordance with the above-noted aspects of the present invention, chamber 15AA
contains packing substrates that are efficient in mixing the air bubbles and water
to dissolve the oxygen within the water. Packing substrate 30A in accordance with
the aspects of the present invention has high surface area and a high amount of pores
having sizes as noted above. Located within packing substrate 30A is at least one
type of microorganism with the proviso that the entire reactor R contains a plurality
of microorganisms, i.e. at least two and generally several types such as from about
2 to about 300. Numerous microorganisms are utilized so that the reactor is efficient
with regard to eradicating, detoxifying, complexing, or otherwise treating the various
different types of waste contained with the aqueous waste composition and thus produce
a very efficient reactor.
[0044] Since bubbles 10 are lighter than the water, they flow upward through chamber 15AA
and cause the aqueous waste composition to flow upward so that continuous mixing of
the air and the waste composition occurs thereby continuously causing dissolving of
some of the oxygen into the water. The upward flow of the aqueous waste composition
through the packing substrates 30A causes the dissolved molecular components of the
waste composition to eventually contact a microorganism contained within the pores
of the substrate whereby the waste composition molecule is bio-remediated. The process
of mixing the air bubbles with the aqueous waste stream, the dissolving of oxygen
into the water, and the contacting of various molecular components of the waste composition
with microorganisms is continuous within each chamber 15AA, chamber 15BB, chamber
15CC, etc. Thus overall, oxygen is dissolved into the water within each chamber and
the amount of waste composition from one chamber to the next upper chamber is continuously
reduced as the aqueous waste composition proceeds upwardly through the reactor. Because
of the tortuous path that must be taken by the waste composition through the various
packing beds and the inherent long residence time, the waste composition upon reaching
the top of the reactor is essentially depleted of waste components. That is, the aqueous
waste composition is purified so that only purified water is admitted from the top
of the reactor through perforated top plate 6.
[0045] The various perforated separators 15B, 15C, 15D, can be the same or different than
perforated separator 15A. Generally, the substrates contained within each chamber
15AA, 15BB, 15CC, can be different so that the various stages, i.e. chambers 15AA,
15BB, 15CC, etc., treat different components of the aqueous waste composition. Of
course, the various chambers, inasmuch as they preferably contain multiple different
types of packings, can still contain a packing that is similar or identical to that
found in another chamber. With respect to the microorganisms, the same situation generally
exists within each chamber. That is, while the entire reactor contains at least two
different types of microorganisms, generally a plurality exists within each chamber
and the different chambers can contain a plurality of different microorganisms that
are different from the preceding or following chamber or contain some common microorganisms.
In summary, the described reactor R shown in FIG. 1 constitutes a very efficient bio-remediation
apparatus and process.
[0046] An optional but preferable aspect of the reactor of FIG. 1 is that it contains a
chimney pipe 9 that has perforations 12 therein. Chimney pipe 9 can be located generally
in the center of the reactor such as adjacent to input air pipe 5. In the embodiment
of FIG. 1, there are two chimney pipes 9 located on either side of air pipe 5 with
the chimney pipes being perforated 36 at the bottom thereof and also being perforated
36 at the top thereof at perforated top plate 6. Accordingly, air bubbles 10 and the
aqueous waste composition can enter the bottom of chimney pipe 9 and flow upward through
the pipe. That this upward flow that is not impeded by perforated separators 15A,
15B, 15C, etc., is important to producing continued circulation of the air and aqueous
waste composition upward through the various chambers. Moreover, air bubbles within
chimney pipe 9 exit therefrom into the various chambers and ensure additional mixing
of the air with the aqueous waste composition and more importantly aid in diffusion
of dissolved oxygen into the packed chambers of the apparatus from chimneys within
the water.
[0047] FIGS. 3 and 4 relate to side elevation views of chimney 9. The chimney has a plurality
of perforations therein generally indicated by reference numeral 12 as being oval
shaped. However, the exact shape of perforations 12 can vary so long as it generally
is large enough to permit air bubbles and the aqueous waste composition with dissolved
oxygen therethrough but to inhibit the passage of packing substrates 30 therethrough,
as shown in FIG. 11. The top and bottom of the chimneys contain perforations 36.
[0048] Another reactor of the present invention is shown in FIG. 5 that is very similar
to FIG. 1 wherein like numbers represent like parts, and hence the various parts,
composition, and process description thereof will not be repeated but rather is hereby
fully incorporated by reference.
[0049] The reactor of FIG. 5 is different from FIG. 1 in that two additional chimney pipes
9 exist that are located laterally of the center chimney pipe 9. The additional chimney
pipes are also perforated at their bottom 36 adjacent to separator 15A and at their
top 36 adjacent to perforated top plate 6 so that air and aqueous waste composition
can flow therethrough. As with the embodiment of FIG. 1, the additional chimneys serve
to circulate air and aqueous wastewater throughout the various chambers 15AA, 15BB,
15CC, etc., to ensure further mixing of the air and water within the chambers and
also to promote dissolving oxygen within the water, contact of the waste components
with microorganisms, and the like.
[0050] The embodiment of FIG. 6 relates to use of two reactors each contained within a separate
tank to treat aqueous waste compositions therein whereby the aqueous composition of
the left tank overflows into the composition of the center tank which then over-flows
into the right-hand tank and then out wastewater output line 3. More specifically,
air pump 26 via air supply line 1 supplies air into the reactor of the left-hand tank
as well as to the reactor of the center tank. The two tanks, independently, can be
the same as the tanks described in FIG. 1 and FIG. 5. The operation of each separate
tank is as set forth hereinabove with regard to FIGS. 1 and 5 and thus will not described
for purposes of brevity but rather the above description thereof is fully incorporated
by reference. Accordingly, each tank, independently, treats the aqueous waste composition
within the tank and emits purified wastewater out of the top of the tank. Slowly the
effluent within the left hand tank is cleaned and through an overflow pipe, is transferred
to the center tank. Inasmuch as untreated aqueous waste composition is added through
input pipe 2 to the left-hand tank, equilibrium is eventually reached. The effluent
from the left tank that flows into the center tank is treated by the reactor in that
tank and once again equilibrium is reached wherein the wastewater of the center tank
has been bio-remediated such that the influent thereof is relatively pure. The effluent
from the center tank is then overflowed into the right-hand tank where it can be discharged.
[0051] Another reactor which is not an embodiment of the invention is shown in FIG. 7. Accordingly,
a great majority of the parts numbers in FIG. 7 are the same as in FIGS. 1 and 5 and
thus the description of the parts as well as operation of the reactor of FIG. 7 are
very similar to that of FIGS. 1 and 5 and hence will not be repeated but rather are
hereby fully incorporated by reference with regard to the description as set forth
in FIGS. 1 and 5. The reactor of FIG. 7 is different than the reactors in FIGS. 1
and 5 in that it does not contain any chimney pipes 9. Rather, sump pumps 29 pump
the aqueous waste composition through wastewater inlet pipe 28 and subsequently through
reactor inlet pipe 27 into aqueous wastewater composition chamber 17 where it mixes
with incoming air bubbles from air pressure chamber 18. The reactor design of FIG.
7 is more efficient than the reactors set forth in FIGS. 1 and 5. Inasmuch as the
reactor of FIG. 7 does not contain chimneys, flow of air and aqueous waste composition
from chamber 17 will be forced to flow through the packing from chamber 15AA into
chamber 15BB and subsequently into chamber 15CC, etc., and thus the residence time
is prolonged. Longer residence time allows more air bubbles to be trapped by the packing
substrates 30A, 30B, 30C, etc., to further enhance the level of dissolved oxygen,
therefore bio-remediation. Thus, the effluent admitted from reactor of FIG. 7 is generally
pure water.
[0052] FIGS. 8-20 relate to bio-remediation systems that utilize various reactors such as
the types set forth in FIGS. 1, 5, and 7. All of the systems in FIGS. 8-20 contain
various types of tanks that contain aqueous waste compositions that require remediation.
Additional items include air pumps 26, sump pumps 29, optional nutritional and/or
chemical feeding pumps 14 or essential nutritional or chemical feeding pump 35, and
recirculation pumps 23. As should be apparent to those skilled in the art, the above
combination of reactors, tanks, and various pumps result in a large number of systems
that can be utilized all according to the present invention. For purposes of brevity,
since the description of the various reactors have been described hereinabove, the
components, operation and process thereof will not be repeated but rather is hereby
fully incorporated by reference. As also should be apparent to those skilled in the
art, FIGS. 8-20 relating to different bio-remediation systems can generally be described
as flow diagrams that teach various combinations of the above-noted items of the present
invention. Hence, a brief description of the various figures will be set forth. Such
bio-remediation systems can generally be utilized in a large number of different applications
such as industrial, commercial, municipal, and the like as noted hereinabove. Desirably
the embodiments of FIGS. 6 and 8-15 can be used for septic tanks, grease interceptors,
in lagoons, and ponds. The system set forth in FIG. 16 and 17 can be used to treat
industrial wastewaters whereas the embodiments set forth in FIGS. 18-21 are well suited
for use in wastewater treatment plant aeration basins, pump stations, lagoons, and
ponds.
[0053] FIG. 8 relates to a treatment system very similar to FIG. 6 except that the reactors
of FIG. 8 are those as set forth in FIG. 7, that is, i.e. no chimneys. Accordingly,
air pump 26 pumps air through air line 1 into the left reactor and the center reactor
of FIG. 8. Both the left tank and the center tank of FIG. 8 contain sump pumps 29
therein that force the aqueous waste composition fluid through pipeline 28 and through
reactor inlet pipe 27 into the bottom of the reactor. Bio-remediation thus occurs
as described in FIG. 7 and thus will not be repeated but rather is hereby fully incorporated
by reference. As with FIG. 6, the aqueous waste composition such as fats, oils, or
greases as from a restaurant is pumped into the left tank wherein it is bio-remediated
by the FIG. 7-type reactor. A portion of the treated aqueous waste composition of
the left tank then overflows into the center tank of FIG. 8 wherein it is further
bio-remediated by the reactor therein. Subsequently, a continuous amount of overflow
of the treated aqueous waste composition of the center tank overflows into the right-hand
tank wherein it can be further treated or not treated and is subsequently passed through
outlet wastewater line 3. An optional aspect of FIG. 8 as well as FIG. 6 is that a
nutrient and/or chemical pump 14 can be utilized to pump various nutrients into the
left-hand tank such as sodium bicarbonate or calcium carbonate solution to adjust
alkalinity for nitrifiers to oxidize ammonia-containing substances to nitrite and
nitrate so that nitrification and denitrification can be achieved. Alternatively,
pump 14 can be utilized to supply various chemicals to the tank to further treat the
waste compositions therein.
[0054] Referring to FIG. 9, the system thereof is similar to FIG. 8 except that instead
of utilizing sump pumps 29 located within the tank, a portion of the aqueous waste
composition in each tank is withdrawn from the tank and recirculated through external
recirculation pump 23 and then to the bottom of the FIG. 7-type reactor.
[0055] Similar bio-remediation systems are shown in FIGS. 10, 11, and 12. As apparent from
the flow diagrams, an aqueous waste composition is withdrawn from the tank by recirculation
pump 23 and is fed via inlet pipe 28 to reactor inlet pipe 27 wherein it is bio-remediated.
The reactor is of the type set forth in FIGS. 1 or 5 inasmuch as air is pumped into
the reactor with the treated or bio-remediated waste composition being recirculated
back into the tank via line 4. Optionally, nutrient or chemical compounds can be added
to the reactor via pump 14. The system of FIG. 11 is similar to FIG. 10 except that
additionally the tank contains a reactor of the type set forth in either FIGS. 1 or
5 and thus has an air pump 26 that feeds air via line 1 into the reactor. The bio-remediation
system of FIG. 12 is similar to that of FIG. 11 except that sump pump 29 is utilized
to pump the aqueous waste composition in the tank via pipe line 28 into the reactor
inlet pipe 27.
[0056] The bio-remediation embodiments of FIGS. 13-15 are similar. In FIG. 13, aqueous waste
compositions are withdrawn from the tank and via recirculation pump 23 are fed to
a first reactor and after bio-remediation therein, the effluent waste composition
is fed to the bottom of a second reactor. Both reactors are air fed. Thus, both reactors
are of a type set forth in FIGS. 1 and 5. The treated waste composition is then transferred
from the second tank via water return line 4 to the tank. The process continues until
all the waste composition in the tank has been treated so that the remaining water
meets acceptable government regulations, etc. An optional aspect of each FIGS. 13-15
is the utilization of a nutrient and/or chemical pump 14 to pump such compounds into
the bottom of the first tank. The system of FIG. 14 is similar to that of FIG. 13
except that additionally, it contains an air pump type reactor as described in FIGS.
1 and 5 wherein through air pump 26 and feed line 1 the air is admitted to the reactor
that is located within the tank. The embodiment of system of FIG. 15 is similar to
that of FIG. 14 except that sump pump 29 is utilized to pump the waste composition
through feed pipe 28 into the reactor inlet pipe 27. The remediation system of FIGS.
16 and 17 are similar to FIGS. 13 and 15, respectively, except that instead of recycling
the treated waste composition from the second reactor back to the tank, it is merely
transferred out of the upper portion of the second reactor through outlet pipe 3 to
any desired location. This system is proposed for industrial wastewater treatment
in which industrial wastewater will contain unusual combinations of chemicals, hydrocarbons
requiring special microorganisms to biodegrade. In these systems different types of
microorganisms and their mutants can be housed in bottom-fed upward-designed packed
column reactor.
[0057] The bio-remediation system of FIGS. 18-21 is similar. In the system of FIG. 18, five
reactors are contained in an elongated tank containing an aqueous waste composition.
Air pump 26 feeds air into each of the five reactors that are of a type as set forth
in either FIGS. 1 or 5. Input of the waste composition is through tank inlet line
2 and the treated aqueous wastewater exits through outlet line 3. Naturally, each
of the five reactors draws the aqueous waste composition into the bottom of the reactor
and expels purified wastewater through the top of the reactor. Since the flow of the
aqueous wastewater composition is from the left to the right of the elongated tank,
each successive reactor will further cleanse the wastewater until it is purified at
the right side of the tank and expelled through outlet line 3. The bio-remediation
system shown in FIG. 20 as apparent from the flow diagram thereof is similar to that
of FIG. 18 except that sump pumps are utilized with respect to each reactor to transfer
the waste composition into the bottom of the reactor via pipe 28 and into reactor
inlet pipe 27. The bio-remediation system disclosed in FIG. 19 as apparent from the
flow diagram thereof is similar to FIG. 18 except that a portion of the aqueous waste
composition is transferred via recirculation pump 23 and pipe line 28 to inlet pipe
27 of a reactor. The reactor has air pumped therein via pump 26 and line 1 and thus
the reactor is of a type as set forth in either FIGS. 1 or 5. After treatment in the
reactor, the treated waste composition is recirculated back into the elongated tank.
In this embodiment, once again nutrients or chemicals can be optionally added to the
reactor via pump 14. The bio-remediation embodiment shown in FIG. 20 is very similar
to that shown in FIG. 19 in that it includes a reactor located outside of the tank.
However, in lieu of wastewater flow into the bottom of the reactors located within
the tank, sump pumps 29 are utilized to feed the aqueous waste composition via inlet
pipe 28 into reactor inlet pipe 27.
[0058] As should be apparent from FIGS. 8-21, numerous different types of bio-remediation
systems exist according to the concepts of the present invention utilizing reactors
having chimneys or reactors not having chimneys therein in association with various
items such as sump pump, air pumps, nutrient pumps, additional reactors, and the like.
[0059] While in accordance with the patent statutes, the best mode and preferred embodiment
have been set forth, the scope of the invention is not limited thereto, but rather
by the scope of the attached claims.
1. An apparatus for the bio-remediation of an aqueous waste composition, comprising:
a reactor (R) having a plurality of bio-remediation stages therein;
said reactor (R) having multiple packing substrates (30A, 30B, 30C, 30D, 30E) having
a high surface area, said substrates being porous and having micro-pores therein;
said reactor (R) having multiple types of different microorganisms, said microorganisms
being attached to said packing substrates;
said reactor (R) having an inlet (21) capable of admitting an aqueous waste composition
to said reactor (R) and said reactor having an inlet (5) capable of admitting oxygen
to said reactor (R);
said reactor (R) including at least one perforated chimney pipe (9) in at least one
of said bio-remediation stages; and
said reactor (R) having an outlet.
2. The apparatus of claim 1, wherein the average surface area of said multiple packing
porous substrates (30A, 30B, 30C, 30D, 30E) is at least 100 square meters per cubic
meter; and including at least one separator (15A, 15B, 15C, 15D, 15E) located between
said bio-remediation stages, said separator having an average perforation size sufficient
to allow air to pass therethrough but not said packing substrate.
3. The apparatus of claim 2, wherein said average surface area of said porous substrate
(30A, 30B, 30C, 30D, 30E) is from at least 500 to 200,000 square meters per cubic
meter; wherein at least one said bio-remediation stage has a packing fraction of said
packing substrates of at least 50% by volume; wherein said packing substrates have
an average pore size of from 1 micron to 500 microns; and wherein said reactor (R)
has a plurality of different packing substrates; and
wherein said multiple different microorganisms are attached by a variety of different
surface characteristics comprising mechanically, physico-chemically, polarly and/or
non-polarly, ionically and/or non-ionically, hydrophobically and/or hydrophillically,
or any combination thereof.
4. The apparatus of claim 3 , wherein the average surface area of said porous packing
substrate (30A, 30B, 30C, 30D, 30E) is from 500 to 10,000 square meters per cubic
meter; wherein at least one said bio-remediation stage has a packing fraction of said
packing substrates of at least 95% by volume; wherein said packing substrates have
an average pore size of from 20 micron to 75 microns; and wherein at least one of
said bio-remediation stages has at least three different types of packing substrates,
wherein at least one of said bio-remediation stages has at least three different types
of microorganisms.
5. The apparatus of claim 2, wherein said porous substrate (30A, 30B, 30C, 30D, 30E)
comprises a mineral, a carbon substance, a ceramic, a metal, a polymer or a plastic,
or any combination thereof; and wherein said microorganism comprises a compound that
is cellular and is able to replicate without a host cell.
6. The apparatus of claim 3, wherein said porous packing substrate (30A, 30B, 30C, 30D,
30E) comprises a mineral, a carbon substance, a ceramic, a metal, a polymer or a plastic,
or any combination thereof; wherein said mineral substrate comprises diatomaceous
earth, fuller's earth, titanium dioxide, zirconium dioxide, chromium oxide, zinc oxide,
magnesia, boria, boron nitride, pumice, lava including crushed lava, celite, slag,
or any combination thereof; wherein said carbon substrate comprises charcoal, coal,
pyrolyze wood or wood chips, activated carbon, or any combination thereof; wherein
said ceramic comprises silicate, alumina, mullite, brick, tile, terra cotta, porcelain,
a glass such as sodium glass or boron glass, porcelain enamel, a refractory including
alumina, silicon carbide, boron carbide, or any combination thereof; wherein said
metal substrates comprise iron, nickel, cobalt, zinc, aluminum, or any combination
thereof; and wherein said polymers and plastics comprise a homopolymer, a copolymer,
or a graph copolymer, including polystyrene or copolymer of styrene and/or α-methyl
styrene and acrylonitrile, copolymer of styrene/acrylonitrile (SAN), terpolymer of
styrene, copolymer of acrylonitrile and diene rubber (ABS), copolymer of styrene/acrylonitrile
modified with acrylate elastomer (ASA), copolymer of styrenelacryionitrile modified
with ethylene/propylene/diene monomer (EPDM) rubber, and copolymer of styrene and
maleic anhydride (SMA), polyolefin, polyethylene, polypropylene, chlorinated polyvinyl
chloride (CPVC), polycarbonate (PC), thermoplastic aromatic polyester (TPES) including
polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyether-ester
segmented copolymer, polyurethane (PUR), miscible blends of polystyrene and polyphenylene
oxide (PPO), polyacetal (POM), poly acrylic acid, polymethacrylic acid, acrylic ester,
methacrylic ester, polyamide-imide, polyacrylonitrile, polyarylsulfone, polyester-carbonate,
polyether-imide, polyether-ketone (PEK), polyether-ether-ketone (PEEK), polyalphaether
ketone (PAEK), polyether sulfone, polyphenylene sulfide, polysulfone, polyethylene,
mixture of polyethylene and polypropylene, nylon, anionic or cationic exchange resin,
or any combination thereof; and wherein said microorganism comprises a bacteria, a
fungi, or a protozoa, or any combination thereof.
7. The apparatus of claim 4, wherein said porous packing substrate (30A, 30B, 30C, 30D,
30E) comprises diatomaceous earth, lava including crushed lava, ceramic, microporous
polystyrene, microporous polyethylene, microporous polypropylene, or any combination
thereof; and wherein said microorganism comprises a pseudomonas species including
Pseudomonas vesicularis, Pseudomonas putida and Aeromonas hydrophila, Brevibacterium
acetylicum; Nitrobacter species including Nitrobacter winogradskyi; Nitrosomonas species
including Nitrosomonas europaea; sulfur containing compound including Thiobacillus
species or Thiobacillus denitrificans; a fungi that naturally exists in mushrooms,
yeasts, and molds; or protozoa including sarcomastigophora, labyrinthomorpha, apicomplexa,
microspora, acetospora, myxozoa, and ciliophora; or any combination thereof.
8. The apparatus of any of claims 1 or 2, wherein a mixture of said multiple microorganisms
are attached to said multiple porous, high surface area packing substrates (30A, 30B,
30C, 30D, 30E) in a variety of modes comprising mechanically, physico-chemically,
polarly and/or non-polarly, ionically and/or non-ionically, hydrophobically and/or
hydrophillically, or any combination thereof.
9. A process for the aerobic bio-remediation of an aqueous waste composition comprising
the steps of:
supplying a reactor (R) having multiple bio-remediation stages therein, said reactor
also having multiple packing substrates (30A, 30B, 30C, 30D, 30E) having a high surface
area, said packing substrates having micropores and a high porosity;
adding at least one perforated chimney (9) to at least one of said bio-remediation
stages;
applying multiple microorganisms to said packing substrates;
adding an aqueous waste composition to said reactor (R);
adding air to said reactor (R) and dissolving oxygen into said aqueous waste composition;
and
bio-remediating said aqueous waste composition with said microorganisms and purifying
said aqueous waste composition.
10. A process according to claim 9, wherein said reactor (R) includes at least one separator
(15A, 15B, 15C, 15D, 15E) located between said bio-remediation stages, said separator
having an average perforation size sufficient to allow air to pass therethrough but
not said packing substrate (30A, 30B, 30C, 30D, 30E); wherein at least one said bio-remediation
stage has a packing fraction of said porous packing substrates of at least 50% by
volume; wherein said reactor (R) has a plurality of different packing substrates.
11. A process according to claim 10, wherein at least one said bio-remediation stage has
a packing fraction of said porous packing substrates (30A, 30B, 30C, 30D, 30E) of
at least 95% by volume; wherein the average surface area of said multiple packing
substrates is at least 100 square meters per cubic meter; wherein said packing substrates
have an average pore size of from 1 micron to 500 microns; wherein said packing substrate
aids in dissolving oxygen into said waste water and obtaining a dissolved oxygen content
of at least one part by weight per million parts by weight of said waste composition;
and
wherein said multiple different microorganisms are attached by a variety of different
surface characteristics comprising mechanically, physico-chemically, polarly and/or
non-polarly, ionically and/or non-ionically, hydrophobically and/or hydrophillically,
or any combination thereof.
12. A process of claim 11, wherein said average surface area of said porous substrate
(30A, 30B, 30C, 30D, 30E) is from about least 500 to 200,000 square per cubic meter;
wherein said packing substrates have an average pore size of from 4 micron to 100
microns; and wherein the amount of dissolved oxygen is from 3 to 8 parts by weight
per million parts by weight of said waste composition.
13. A process of claim 9, wherein said porous packing substrate (30A, 30B, 30C, 30D, 30E)
comprises a mineral, a carbon substance, a ceramic, a metal, a polymer or a plastic,
or any combination thereof; wherein said mineral substrate comprises diatomaceous
earth, fuller's earth, titanium dioxide, zirconium dioxide, chromium oxide, zinc oxide,
magnesia, boria, boron nitride, pumice, lava including crushed lava, celite, slag,
or any combination thereof; wherein said carbon substrate comprises charcoal, coal,
pyrolyze wood or wood chips, activated carbon, or any combination thereof; wherein
said ceramic comprises silicate, alumina, mullite, brick, tile, terra cotta, porcelain,
a glass such as sodium glass or boron glass, porcelain enamei, a refractory including
alumina, silicon carbide, boron carbide, or any combination thereof; wherein said
metal substrates comprise iron, nickel, cobalt, zinc, aluminum, or any combination
thereof; and wherein said polymers and plastics comprise a homopolymer, a copolymer,
or a graph copolymer, including polystyrene or copolymer of styrene and/or α-methyl
styrene and acrylonitrile, copolymer of styrene/acrylonitrile (SAN), terpolymer of
styrene, copolymer of acrylonitrile and diene rubber (ABS), copolymer of styrene/acrylonitrile
modified with acrylate elastomer (ASA), copolymer of styrene/acrylonitrile modified
with ethylene/propylene/diene monomer (EPDM) rubber, and-copolymer of styrene and
maleic anhydride (SMA), polyolefin, polyethylene, polypropylene, chlorinated polyvinyl
chloride (CPVC), polycarbonate (PC), thermoplastic aromatic polyester (TPES) including
polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyether-ester
segmented copolymer, polyurethane (PUR), miscible blends of polystyrene and polyphenylene
oxide (PPO), polyacetal (POM), poly acrylic acid, polymethacrylic acid, acrylic ester,
methacrylic ester, polyamide-imide, polyacrylonitrile, polyarylsulfone, polyester-carbonate,
polyether-imide, polyether-ketone (PEK), polyether-ether-ketone (PEEK), polyalphaether
ketone (PAEK), polyether sulfone, poiyphenyiene sulfide, polysulfone, polyethylene,
mixture of polyethylene and polypropylene, nylon, anionic or cationic exchange resin,
or any combination thereof; and wherein said microorganism comprises a bacteria, a
fungi, or a protozoa, or any combination thereof.
14. A process of claim 11, wherein said porous packing substrate (30A, 30B, 30C, 30D,
30E) comprises diatomaceous earth, lava including crushed lava, a ceramic, microporous
polystyrene, microporous polyethylene, microporous polypropylene, or any combination
thereof; and wherein said microorganism comprises a pseudomonas species including
Pseudomonas vesicularis, Pseudomonas putida and Aeromonas hydrophila, Brevibacterium
acetylicum; Nitrobacter species including Nitrobacter winogradskyi; Nitrosomonas species
including Nitrosomonas europaea; sulfur containing compound including Thiobacillus
species or Thiobacillus denitrificans; a fungi that naturally exists in mushrooms,
yeasts, and molds; or protozoa including sarcomastigophora, labyrinthomorpha, apicomplexa,
microspora, acetospora, myxozoa, and ciliophora; or any combination thereof.
15. A process of any of claims 9 or 13, wherein a mixture of said multiple microorganisms
are attached to said multiple porous, high surface area packing substrates (30A, 30B,
30C, 30D, 30E) in a variety of modes comprising mechanically, physico-chemically,
polarly and/or non-polarly, ionically and/or non-ionically, hydrophobically and/or
hydrophillically, or any combination thereof.
1. Vorrichtung zur Bioremediation einer wässrigen Abfallzusammensetzung, mit:
einem Reaktor (R) mit mehreren darin angeordneten Bioremediationsstufen,
wobei der Reaktor (R) mehrere Füllsubstrate (30A, 30B, 30C, 30D, 30E) mit einer großen
Oberfläche aufweist, wobei die Substrate porös sind und Mikroporen aufweisen,
wobei der Reaktor (R) mehrere Arten verschiedener Mikroorganismen enthält, wobei die
Mikroorganismen an den Füllsubstraten befestigt sind,
wobei der Reaktor (R) einen Einlass (21) aufweist, der dazu geeignet ist, dem Reaktor
(R) eine wässrige Abfallzusammensetzung zuzuführen, und wobei der Reaktor einen Einlass
(5) aufweist, der dazu geeignet ist, dem Reaktor (R) Sauerstoff zuzuführen,
wobei der Reaktor (R) mindestens ein perforiertes Kaminrohr (9) in mindestens einer
der Bioremediationsstufen aufweist, und
wobei der Reaktor (R) einen Auslass aufweist.
2. Vorrichtung nach Anspruch 1, wobei die mittlere Oberfläche der mehreren porösen Füllsubstrate
(30A, 30B, 30C, 30D, 30E) mindestens 100 Quadratmeter pro Kubikmeter beträgt, und
mit mindestens einer zwischen den Bioremediationsstufen angeordneten Trenneinrichtung
(15A, 15B, 15C, 15D, 15E), wobei die Trenneinrichtung eine mittlere Perforierungsgröße
hat, die ausreicht, um Luft durch die Perforierungen passieren zu lassen, nicht aber
das Füllsubstrat.
3. Vorrichtung nach Anspruch 2, wobei die mittlere Oberfläche des porösen Substrats (30A,
30B, 30C, 30D, 30E) im Bereich von mindestens 500 bis 200.000 Quadratmeter pro Kubikmeter
liegt, wobei mindestens eine der Bioremediationsstufen einen Füllanteil der Füllsubstrate
von mindestens 50 Volumen-% hat, wobei die Füllsubstrate eine mittlere Porengröße
von 1 µm bis 500 µm haben, und wobei der Reaktor mehrere verschiedene Füllsubstrate
aufweist, und
wobei die mehreren verschiedenen Mikroorganismen basierend auf einer Vielzahl verschiedener
Oberflächeneigenschaften befestigt sind, die mechanische, physikalisch-chemische,
polare und/oder unpolare, ionische und/oder nichtionische, hydrophobe und/oder hydrophile
Eigenschaften oder eine beliebige Kombination davon beinhalten.
4. Vorrichtung nach Anspruch 3, wobei die mittlere Oberfläche des porösen Füllsubstrats
(30A, 30B, 30C, 30D, 30E) im Bereich von 500 bis 10.000 Quadratmeter pro Kubikmeter
liegt, wobei mindestens eine der Bioremediationsstufen einen Füllanteil der Füllsubstrate
von mindestens 95 Volumen-% aufwist, wobei die Füllsubstrate eine mittlere Porengröße
von 20 µm bis 75 µm haben, und wobei mindestens eine der Bioremediationsstufen mindestens
drei verschiedene Arten von Füllsubstraten aufweist, und wobei mindestens eine der
Bioremediationsstufen mindestens drei verschiedene Arten von Mikroorganismen aufweist.
5. Vorrichtung nach Anspruch 2, wobei das poröse Substrat (30A, 30B, 30C, 30D, 30E) ein
Mineral, eine Kohlenstoffsubstanz, ein Keramikmaterial, ein Metall, ein Polymer oder
einen Kunststoff oder eine beliebige Kombination davon aufweist, und wobei der Mikroorganismus
eine Verbindung aufweist, die zellulär und in der Lage ist, sich ohne eine Wirtszelle
zu reproduzieren.
6. Vorrichtung nach Anspruch 3, wobei das poröse Füllsubstrat (30A, 30B, 30C, 30D, 30E)
ein Mineral, eine Kohlenstoffsubstanz, ein Keramikmaterial, ein Metall, ein Polymer
oder einen Kunststoff oder eine beliebige Kombination davon aufweist, wobei das Mineralsubstrat
Diatomeenerde, Fullererde, Titandioxid, Zirconiumdioxid, Chromoxid, Zinkoxid, Magnesiumoxid,
Boroxid, Bornitrid, Bimsstein, Lava einschließlich Lavagrus, Kieselgur, Schlacke oder
eine beliebige Kombination davon aufweist, wobei das Kohlenstoffsubstrat Holzkohle,
Steinkohle, pyrolysiertes Holz oder Holzspäne, Aktivkohle oder eine beliebige Kombination
davon aufweist, wobei das Keramikmaterial Silikat, Aluminiumoxid, Mullit, Backstein,
Ziegel, Terrakotta, Porzellan, ein Glas, wie beispielsweise Natronglas oder Borglas,
Emaille, ein Feuerfestmaterial wie Aluminiumoxid, Siliciumcarbid, Borcarbid oder eine
beliebige Kombination davon aufweist, wobei die Metallsubstrate Eisen, Nickel, Kobalt,
Zink, Aluminium oder eine Kombination davon aufweisen, und wobei die Polymere und
Kunststoffe ein Homopolymer, ein Copolymer oder ein Graph-Copolymer, einschließlich
Polystyrol oder ein Copolymer von Styrol und/oder α-Methylstyrol und Acrylnitril,
ein Copolymer von Styrol/Acrylnitril (SAN), ein Terpolymer von Styrol, ein Copolymer
von Acrylnitril und Dien-Kautschuk (ABS), ein Copolymer von Styrol/Acrylnitril, modifiziert
mit Acrylatelastomer (ASA), ein Copolymer von Styrol/Acrylnitril, modifiziert mit
Ethylen/Propylen/Dien-Monomer- (EPDM) Kautschuk und ein Copolymer von Styrol und Maleinsäureanhydrid
(SMA), Polyolefin, Polyethylen, Polypropylen, chloriertes Polyvinylchlorid (CPVC),
Polycarbonat (PC), thermoplastisches aromatisches Polyester (TPE), wie beispielsweise
Polybutylenterephthalat (PBT), Polyethylenterephthalat (PET), segmentiertes Polyether-Ester-Copolymer,
Polyurethan (PUR), mischbare Blends von Polystyrol und Polyphenylenoxid (PPO), Polyacetal
(POM), Polyacrylsäure, Polymethacrylsäure, Acrylester, Methacrylester, Polyamidimid,
Polyacrylnitril, Polyarylsulfon, Polyestercarbonat, Polyetherimid, Polyetherketon
(PEK), Polyetheretherketon (PEEK), Polyalphaetherketon (PAEK), Polyethersulfon, Polyphenylensulfid,
Polysulfon, Polyethylen, eine Mischung aus Polyethylen und Polypropylen, Nylon, anionisches
oder kationisches Austauschharz oder eine Kombination davon aufweisen, und wobei der
Mikroorganismus ein Bakterium, einen Pilz oder ein Protozoon oder eine beliebige Kombination
davon aufweist.
7. Vorrichtung nach Anspruch 4, wobei das poröse Füllsubstrat (30A, 30B, 30C, 30D, 30E)
Diatomeenerde, Lava einschließlich Lavagrus, ein Keramikmaterial, mikroporöses Polystyrol,
mikroporöses Polyethylen, mikroporöses Polypropylen oder eine Kombination davon aufweist,
und wobei der Mikroorganismus eine Pseudomonas-Spezies wie Pseudomonas vesicularis,
Pseudomonas putida und Aeromonas hydrophila, Brevibacterium acetylicum, eine Nitrobacter-Spezies
wie Nitrobacter winogradskyi, eine Nitrosomonas-Spezies wie Nitrosomonas europaea,
eine schwefelhaltige Verbindung wie eine Thiobacillus-Spezies oder Thiobacillus denitrificans,
einen Fungus, der in Pilzen, Hefen und Schimmelpilzen natürlich vorkommt, oder Protozoen
wie Sarcomastigophora, Labyrinthomorpha, Apicomplexa, Microspora, Acetospora, Myxozoa
und Ciliophora oder eine Kombination davon aufweist.
8. Vorrichtung nach Anspruch 1 oder 2, wobei eine Mischung aus den mehreren Mikroorganismen
an den mehreren porösen Füllsubstraten (30A, 30B, 30C, 30D, 30E) mit großer Oberfläche
in vielfältiger Weise befestigt ist, einschließlich mechanisch, physikalisch-chemisch,
polar und/oder unpolar, ionisch und/oder nichtionisch, hydrophob und/oder hydrophil
oder eine Kombination davon.
9. Verfahren zur aeroben Bioremediation einer wässrigen Abfallzusammensetzung, mit den
Schritten:
Bereitstellen eines Reaktors (R) mit mehreren Bioremediationsstufen, wobei der Reaktor
außerdem mehrere Füllsubstrate (30A, 30B, 30C, 30D, 30E) mit einer großen Oberfläche
aufweist, wobei die Füllsubstrate Mikroporen und eine hohe Porosität aufweisen;
Hinzufügen mindestens eines perforierten Kamins (9) zu mindestens einer der Bioremediationsstufen;
Zuführen mehrerer Mikroorganismen zu den Füllsubstraten;
Zuführen einer wässrigen Abfallzusammensetzung zum Reaktor (R);
Zuführen von Luft zum Reaktor (R) und Lösen von Sauerstoff in der wässrigen Abfallzusammensetzung;
und
biologisches Sanieren der wässrigen Abfallzusammensetzung durch die Mikroorganismen
und Reinigen der wässrigen Abfallzusammensetzung.
10. Verfahren nach Anspruch 9, wobei der Reaktor (R) mindestens eine zwischen den Bioremediationsstufen
angeordnete Trenneinrichtung (15A, 15B, 15C, 15D, 15E) aufweist, wobei die Trenneinrichtung
eine mittlere Perforierungsgröße hat, die ausreichend ist, Luft durch die Perforierungen
passieren zu lassen, nicht aber die Füllsubstrate (30A, 30B, 30C, 30D, 30E), wobei
mindestens eine der Bioremediationsstufen einen Füllanteil der porösen Füllsubstrate
von mindestens 50 Volumen-% aufweist, und wobei der Reaktor (R) mehrere verschiedene
Füllsubstrate aufweist.
11. Verfahren nach Anspruch 10, wobei mindestens eine der Bioremediationsstufen einen
Füllanteil der porösen Füllsubstrate (30A, 30B, 30C, 30D, 30E) von mindestens 95 Volumen-%
aufweist, wobei die mittlere Oberfläche der mehreren Füllsubstrate mindestens 100
Quadratmeter pro Kubikmeter beträgt, wobei die Füllsubstrate eine mittlere Porengröße
von 1 µm bis 500 µm haben, und wobei das Füllsubstrat dazu beiträgt, Sauerstoff in
der wässrigen Abfallzusammensetzung zu lösen und einen gelösten Sauerstoffgehalt von
wenigstens einem Gewichtsteil pro einer Million Gewichtsteilen der Abfallzusammensetzung
zu erhalten, und
wobei die mehreren verschiedenen Mikroorganismen durch mehrere verschiedene Oberflächeneigenschaften
befestigt sind, die mechanische, physikalisch-chemische, polare und/oder unpolare,
ionische und/oder nichtionische, hydrophobe und/oder hydrophile Eigenschaften oder
eine beliebige Kombination davon beinhalten.
12. Verfahren nach Anspruch 11, wobei die mittlere Oberfläche des porösen Substrats (30A,
30B, 30C, 30D, 30E) im Bereich von mindestens 500 bis 200.000 Quadratmeter pro Kubikmeter
liegt, wobei die Füllsubstrate eine mittlere Porengröße von 4 µm bis 100 µm haben,
und wobei die Menge des gelösten Sauerstoffs 3 bis 8 Gewichtsteile pro einer Million
Gewichtsteilen der Abfallzusammensetzung beträgt.
13. Verfahren nach Anspruch 9, wobei das poröse Füllsubstrat (30A, 30B, 30C, 30D, 30E)
ein Mineral, eine Kohlenstoffsubstanz, ein Keramikmaterial, ein Metall, ein Polymer
oder einen Kunststoff oder eine beliebige Kombination davon aufweist, wobei das Mineralsubstrat
Diatomeenerde, Fullererde, Titandioxid, Zirkondioxid, Chromoxid, Zinkoxid, Magnesiumoxid,
Boroxid, Bornitrid, Bimsstein, Lava einschließlich Lavagrus, Celite, Schlacke oder
eine beliebige Kombination davon aufweist, wobei das Kohlenstoffsubstrat Holzkohle,
Steinkohle, pyrolysiertes Holz oder Holzspäne, Aktivkohle oder eine beliebige Kombination
davon aufweist, wobei das Keramikmaterial Silikat, Aluminiumoxid, Mullit, Backstein,
Ziegel, Terrakotta, Porzellan, ein Glas, wie beispielsweise Natronglas oder Borglas,
Emaille, ein Feuerfestmaterial wie Aluminiumoxid, Siliciumcarbid, Borcarbid oder eine
beliebige Kombination davon aufweist, wobei die Metallsubstrate Eisen, Nickel, Kobalt,
Zink, Aluminium oder eine Kombination davon aufweisen, und wobei die Polymere und
Kunststoffe ein Homopolymer, ein Copolymer oder ein Graft-Copolymer, einschließlich
Polystyrol oder ein Copolymer von Styrol und/oder α-Methylstyrol und Acrylnitril,
ein Copolymer von Styrol/Acrylnitril (SAN), ein Terpolymer von Styrol, ein Copolymer
von Acrylnitril und Dien-Kautschuk (ABS), ein Copolymer von Styrol/Acrylnitril, modifiziert
mit Acrylatelastomer (ASA), ein Copolymer von Styrol/Acrylnitril, modifiziert mit
Ethylen/Propylen/Dien-Monomer- (EPDM) Kautschuk und ein Copolymer von Styrol und Maleinsäureanhydrid
(SMA), Polyolefin, Polyethylen, Polypropylen, chloriertes Polyvinylchlorid (CPVC),
Polycarbonat (PC), thermoplastisches aromatisches Polyester (TPES), wie beispielsweise
Polybutylenterephthalat (PBT), Polyethylenterephthalat (PET), segmentiertes Polyether-Ester-Copolymer,
Polyurethan (PUR), mischbare Blends von Polystyrol und Polyphenylenoxid (PPO), Polyacetal
(POM), Polyacrylsäure, Polymethacrylsäure, Acrylester, Methacrylester, Polyamidimid,
Polyacrylnitril, Polyarylsulfon, Polyestercarbonat, Polyetherimid, Polyetherketon
(PEK), Polyetheretherketon (PEEK), Polyalphaetherketon (PAEK), Polyethersulfon, Polyphenylensulfid,
Polysulfon, Polyethylen, eine Mischung aus Polyethylen und Polypropylen, Nylon, anionisches
oder kationisches Austauschharz oder eine Kombination davon aufweisen, und wobei der
Mikroorganismus ein Bakterium, einen Pilz oder ein Protozoon oder eine beliebige Kombination
davon aufweist.
14. Verfahren nach Anspruch 11, wobei das poröse Füllsubstrat (30A, 30B, 30C, 30D, 30E)
Diatomeenerde, Lava einschließlich Lavagrus, ein Keramikmaterial, mikroporöses Polystyrol,
mikroporöses Polyethylen, mikroporöses Polypropylen oder eine Kombination davon aufweist,
und wobei der Mikroorganismus eine Pseudomonas-Spezies wie Pseudomonas vesicularis,
Pseudomonas putida und Aeromonas hydrophila, Brevibacterium acetylicum, eine Nitrobacter-Spezies
wie Nitrobacter winogradskyi, eine Nitrosomonas-Spezies wie Nitrosomonas europaea,
eine schwefelhaltige Verbindung wie Thiobacillus-Spezies oder Thiobacillus denitrificans,
einen Fungus, der in Pilzen, Hefen und Schimmelpilzen natürlich vorkommt, oder Protozoen
wie Sarcomastigophora, Labyrinthomorpha, Apicomplexa, Microspora, Acetospora, Myxozoa
und Ciliophora oder eine Kombination davon aufweist.
15. Verfahren nach Anspruch 9 oder 13, wobei eine Mischung aus den mehreren Mikroorganismen
an den mehreren porösen Füllsubstraten (30A, 30B, 30C, 30D, 30E) mit großer Oberfläche
in vielfältiger Weise befestigt ist, einschließlich mechanisch, physikalisch-chemisch,
polar und/oder unpolar, ionisch und/oder nichtionisch, hydrophob und/oder hydrophil
oder eine Kombination davon aufweisen.
1. Appareil de biorestauration d'une composition de déchets aqueux, comprenant :
un réacteur (R) présentant une pluralité d'étages de biorestauration en son sein ;
ledit réacteur (R) présentant de multiples substrats de conditionnement (30A, 30B,
30C, 30D, 30E) ayant une aire de surface élevée, lesdits substrats étant poreux et
ayant des micropores en leur sein ;
ledit réacteur (R) présentant de multiples types de micro-organismes différents, les
micro-organismes étant fixés sur lesdits substrats de conditionnement ;
ledit réacteur (R) présentant une entrée (21) permettant d'introduire une composition
de déchets aqueux dans ledit réacteur (R) et ledit réacteur (R) présentant une entrée
(5) permettant d'introduire de l'oxygène dans ledit réacteur (R) ;
ledit réacteur (R) incluant au moins un conduit de cheminée perforé (9) dans au moins
un étage parmi lesdits étages de biorestauration ; et
ledit réacteur (R) présentant une sortie.
2. Appareil selon la revendication 1, dans lequel l'aire de surface moyenne desdits multiples
substrats poreux de conditionnement (30A, 30B, 30C, 30D, 30E) est d'au moins 100 mètres
carrés par mètre cube ; et incluant au moins un séparateur (15A, 15B, 15C, 15D, 15E)
positionné entre lesdits étages de biorestauration, ledit séparateur ayant une taille
de perforation moyenne suffisante pour permettre à de l'air de le traverser sans pour
autant traverser lesdits substrats de conditionnement.
3. Appareil selon la revendication 2, dans lequel ladite aire de surface moyenne dudit
substrat poreux (30A, 30B, 30C, 30D, 30E) est comprise entre au moins 500 et 200 000
mètres carrés par mètre cube ; dans lequel au moins un dit étage de biorestauration
comporte une fraction de conditionnement desdits substrats de conditionnement d'au
moins 50 % en volume ; dans lequel lesdits substrats de conditionnement ont une taille
de pores moyenne comprise entre 1 micron et 500 microns ; et où ledit réacteur (R)
présente une pluralité de substrats de conditionnement différents ; et
dans lequel lesdits multiples micro-organismes différents sont fixés par une variété
de caractéristiques de surface différentes comprenant une caractéristique mécanique,
une caractéristique physico-chimique, une caractéristique polaire et/ou apolaire,
une caractéristique ionique et/ou anionique, une caractéristique hydrophobe et/ou
hydrophile, ou toute combinaison de celles-ci.
4. Appareil selon la revendication 3, dans lequel l'aire de surface moyenne dudit substrat
de conditionnement poreux (30A, 30B, 30C, 30D, 30E) est comprise entre 500 et 10 000
mètres carrés par mètre cube; dans lequel au moins un dit étage de biorestauration
comporte une fraction de conditionnement desdits substrats de conditionnement d'au
moins 95 % en volume ; dans lequel lesdits substrats de conditionnement ont une taille
de pores moyenne comprise entre 20 microns et 75 microns ; et dans lequel au moins
un étage parmi lesdits étages de biorestauration comporte au moins trois types différents
de substrats de conditionnement, où au moins un étage parmi lesdits étages de biorestauration
comporte au moins trois types différents de micro-organismes.
5. Appareil selon la revendication 2, dans lequel ledit substrat poreux (30A, 30B, 30C,
30D, 30E) comprend un minéral, une substance carbonée, une céramique, un métal, un
polymère ou une matière plastique, ou toute combinaison de ceux-ci ; et dans lequel
ledit micro-organisme comprend un composant qui est cellulaire et est en mesure de
se répliquer sans cellule hôte.
6. Appareil selon la revendication 3, dans lequel ledit substrat de conditionnement poreux
(30A, 30B, 30C, 30D, 30E) comprend un minéral, une substance carbonée, une céramique,
un métal, un polymère ou une matière plastique, ou toute combinaison de ceux-ci ;
où ledit substrat minéral comprend de la terre de diatomées, de la terre de Fuller,
du dioxyde de titane, du dioxyde de zirconium, de l'oxyde de chrome, de l'oxyde de
zinc, de la magnésie, du trioxyde de bore, du nitrure de bore, de la pierre ponce,
de la lave incluant de la lave broyée, de la célite, une scorie, ou toute combinaison
de ceux-ci ; où ledit substrat carboné comprend du charbon de bois, du charbon, du
bois ou des copeaux de bois pyrolysés, du charbon actif, ou toute combinaison de ceux-ci
; où ladite céramique comprend du silicate, de l'alumine, de la mullite, de la brique,
un carreau, de la terre-cuite, de la porcelaine, un verre tel que le verre de sodium
ou le verre de bore, de l'émail de porcelaine, un matériau réfractaire incluant l'alumine,
le carbure de silicium, le carbure de bore, ou toute combinaison de ceux-ci ; où lesdits
substrats métalliques comprennent du fer, du nickel, du cobalt, du zinc, de l'aluminium,
ou toute combinaison de ceux-ci ; et où lesdits polymères et matières plastiques comprennent
un homopolymère, un copolymère, ou un copolymère greffé, incluant un polystyrène ou
un copolymère de styrène et/ou d'α-méthylstyrène et d'acrylonitrile, un copolymère
de styrène/acrylonitrile (SAN), un terpolymère de styrène, un copolymère d'acrylonitrile
et de caoutchouc diénique (ABS), un copolymère de styrène/acrylonitrile modifié avec
un élastomère d'acrylate (ASA), un copolymère de styrène/acrylonitrile modifié avec
un caoutchouc de monomère éthylène/propylène/diène (EPDM), et un copolymère de styrène
et d'anhydrure maléique (SMA), une polyoléfine, un polyéthylène, un polypropylène,
un polychlorure de vinyle chloré (CPVC), un polycarbonate (PC), un polyester aromatique
thermoplastique (TPES) incluant un polytéréphtalate de butylène (PBT), un polytéréphtalate
d'éthylène (PET), un copolymère segmenté polyéther-ester, un polyuréthane (PUR), des
mélanges miscibles de polystyrène et de polyoxyde de phénylène (PPO), un polyacétal
(POM), un polyacide acrylique, un polyacide méthacrylique, un ester acrylique, un
ester méthacrylique, un polyamide-imide, un polyacrylonitrile, un polyarylsulfone,
un polycarbonate d'ester, un polyéther-imide, un polyéther-cétone (PEK), un polyéther-éther-cétone
(PEEK), un polyalphaéther-cétone (PAEK), un polyéther-sulfone, un polysulfure de phénylène,
une polysulfone, un polyéthylène, un mélange de polyéthylène et de polypropylène,
du nylon, une résine d'échange anionique ou cationique, ou toute combinaison de ceux-ci
; et où ledit micro-organisme comprend une bactérie, un champignon, ou un protozoaire,
ou toute combinaison de ceux-ci.
7. Appareil selon la revendication 4, dans lequel ledit substrat de conditionnement poreux
(30A, 30B, 30C, 30D, 30E) comprend de la terre de diatomées, de la lave incluant de
la lave broyée, une céramique, un polystyrène microporeux, un polyéthylène microporeux,
un polypropylène microporeux, ou toute combinaison de ceux-ci ; et où ledit micro-organisme
comprend le genre Pseudomonas incluant Pseudomonas vesicularis, Pseudomonas putida
et Aeromonas hydrophila, Brevibacterium acetylicum ; le genre Nitrobacter incluant
Nitrobacter winogradskyi ; le genre Nitrosomonas incluant Nitrosomonas europaea ;
le genre Thiobacillus incluant des composants contenant du soufre ou Thiobacillus
denitrificans ; un champignon naturellement présent dans les champignons, les levures,
et les moisissures ; ou un protozoaire incluant un sarcomastigophora, un labyrinthomorpha,
un apicomplexa, un microspora, un acetospora, un myxozoa, et un ciliophora ; ou toute
combinaison de ceux-ci.
8. Appareil selon l'une quelconque des revendications 1 ou 2, dans lequel un mélange
desdits multiples micro-organismes est fixé sur lesdits multiples substrats de conditionnement
poreux d'aire de surface élevée (30A, 30B, 30C, 30D, 30E) selon une variété de modes
comprenant un mode mécanique, un mode physico-chimique, un mode polaire et/ou apolaire,
un mode ionique et/ou anionique, un mode hydrophobe et/ou hydrophile, ou toute combinaison
de ceux-ci.
9. Procédé de biorestauration aérobie d'une composition de déchets aqueux comprenant
les étapes consistant à :
fournir un réacteur (R) présentant de multiples étages de biorestauration en son sein,
ledit réacteur comportant également de multiples substrats de conditionnement (30A,
30B, 30C, 30D, 30E) ayant une aire de surface élevée, lesdits substrats de conditionnement
ayant des micropores et une porosité élevée ;
ajouter au moins une cheminée perforée (9) à au moins un étage parmi lesdits étages
de biorestauration ;
appliquer de multiples micro-organismes sur lesdits substrats de conditionnement ;
ajouter une composition de déchets aqueux dans ledit réacteur (R) ;
ajouter de l'air dans ledit réacteur (R) et dissoudre de l'oxygène dans ladite composition
de déchets aqueux ; et
réaliser une biorestauration de ladite composition de déchets aqueux avec lesdits
micro-organismes et une purification de ladite composition de déchets aqueux.
10. Procédé selon la revendication 9, dans lequel ledit réacteur (R) inclut au moins un
séparateur (15A, 15B, 15C, 15D, 15E) positionné entre lesdits étages de biorestauration,
ledit séparateur ayant une taille de perforation moyenne suffisante pour permettre
à de l'air de le traverser sans pour autant traverser lesdits substrats de conditionnement
(30A, 30B, 30C, 30D, 30E) ; où au moins un dit étage de biorestauration comporte une
fraction de conditionnement desdits substrats de conditionnement poreux d'au moins
50 % en volume ; où ledit réacteur (R) comporte une pluralité de substrats de conditionnement
différents.
11. Procédé selon la revendication 10, dans lequel au moins un dit étage de biorestauration
comporte une fraction de conditionnement desdits substrats de conditionnement poreux
(30A, 30B, 30C, 30D, 30E) d'au moins 95 % en volume ; où l'aire de surface moyenne
desdits multiples substrats de conditionnement est d'au moins 100 mètres carrés par
mètre cube ; où lesdits substrats de conditionnement ont une taille de pores moyenne
comprise entre 1 micron et 500 microns ; où ledit substrat de conditionnement facilite
la dissolution de l'oxygène dans ladite eau usée et l'obtention d'une teneur en oxygène
dissous d'au moins une partie en poids par million par rapport à la masse de ladite
composition de déchets ; et
où lesdits multiples micro-organismes différents sont fixés par une variété de caractéristiques
de surface différentes comprenant une caractéristique mécanique, une caractéristique
physico-chimique, une caractéristique polaire et/ou apolaire, une caractéristique
ionique et/ou anionique, une caractéristique hydrophobe et/ou hydrophile, ou toute
combinaison de celles-ci.
12. Procédé selon la revendication 11, dans lequel ladite aire de surface moyenne dudit
substrat poreux (30A, 30B, 30C, 30D, 30E) est comprise entre au moins 500 et 200 000
mètres carrés par mètre cube ; dans lequel lesdits substrats de conditionnement ont
une taille de pores moyenne comprise entre 4 microns et 100 microns ; et où la quantité
d'oxygène dissous est comprise entre 3 et 8 parties en poids par million par rapport
à la masse de ladite composition de déchets.
13. Procédé selon la revendication 9, dans lequel ledit substrat de conditionnement poreux
(30A, 30B, 30C, 30D, 30E) comprend un minéral, une substance carbonée, une céramique,
un métal, un polymère ou une matière plastique, ou toute combinaison de ceux-ci ;
où ledit substrat minéral comprend de la terre de diatomées, de la terre de Fuller,
du dioxyde de titane, du dioxyde de zirconium, de l'oxyde de chrome, de l'oxyde de
zinc, de la magnésie, du trioxyde de bore, du nitrure de bore, de la pierre ponce,
de la lave incluant de la lave broyée, de la célite, une scorie, ou toute combinaison
de ceux-ci ; où ledit substrat carboné comprend du charbon de bois, du charbon, du
bois ou des copeaux de bois pyrolysés, du charbon actif, ou toute combinaison de ceux-ci
; où ladite céramique comprend du silicate, de l'alumine, de la mullite, de la brique,
un carreau, de la terre-cuite, de la porcelaine, un verre tel que le verre de sodium
ou le verre de bore, de l'émail de porcelaine, un matériau réfractaire incluant l'alumine,
le carbure de silicium, le carbure de bore, ou toute combinaison de ceux-ci ; où lesdits
substrats métalliques comprennent du fer, du nickel, du cobalt, du zinc, de l'aluminium,
ou toute combinaison de ceux-ci ; et où lesdits polymères et matières plastiques comprennent
un homopolymère, un copolymère, ou un copolymère greffé, incluant un polystyrène ou
un copolymère de styrène et/ou d'α-méthylstyrène et d'acrylonitrile, un copolymère
de styrène/acrylonitrile (SAN), un terpolymère de styrène, un copolymère d'acrylonitrile
et de caoutchouc diénique (ABS), un copolymère de styrène/acrylonitrile modifié avec
un élastomère d'acrylate (ASA), un copolymère de styrène/acrylonitrile modifié avec
un caoutchouc de monomère éthylène/propylène/diène (EPDM), et un copolymère de styrène
et d'anhydrure maléique (SMA), une polyoléfine, un polyéthylène, un polypropylène,
un polychlorure de vinyle chloré (CPVC), un polycarbonate (PC), un polyester aromatique
thermoplastique (TPES) incluant un polytéréphtalate de butylène (PBT), un polytéréphtalate
d'éthylène (PET), un copolymère segmenté polyéther-ester, un polyuréthane (PUR), des
mélanges miscibles de polystyrène et de polyoxyde de phénylène (PPO), un polyacétal
(POM), un polyacide acrylique, un polyacide méthacrylique, un ester acrylique, un
ester méthacrylique, un polyamide-imide, un polyacrylonitrile, un polyarylsulfone,
un polycarbonate d'ester, un polyéther-imide, un polyéther-cétone (PEK), un polyéther-éther-cétone
(PEEK), un polyalphaéther-cétone (PAEK), un polyéther-sulfone, un polysulfure de phénylène,
une polysulfone, un polyéthylène, un mélange de polyéthylène et de polypropylène,
du nylon, une résine d'échange anionique ou cationique, ou toute combinaison de ceux-ci
; et où ledit micro-organisme comprend une bactérie, un champignon, ou un protozoaire,
ou toute combinaison de ceux-ci.
14. Procédé selon la revendication 11, dans lequel ledit substrat de conditionnement poreux
(30A, 30B, 30C, 30D, 30E) comprend de la terre de diatomées, de la lave incluant de
la lave broyée, une céramique, un polystyrène microporeux, un polyéthylène microporeux,
un polypropylène microporeux, ou toute combinaison de ceux-ci ; et où ledit micro-organisme
comprend le genre Pseudomonas incluant Pseudomonas vesicularis, Pseudomonas putida
et Aeromonas hydrophila, Brevibacterium acetylicum ; le genre Nitrobacter incluant
Nitrobacter winogradskyi ; le genre Nitrosomonas incluant Nitrosomonas europaea ;
le genre Thiobacillus incluant des composants contenant du soufre ou Thiobacillus
denitrificans ; un champignon naturellement présent dans les champignons, les levures,
et les moisissures ; ou un protozoaire incluant un sarcomastigophora, un labyrinthomorpha,
un apicomplexa, un microspora, un acetospora, un myxozoa, et un ciliophora ; ou toute
combinaison de ceux-ci.
15. Procédé selon l'une quelconque des revendications 9 ou 13, dans lequel un mélange
desdits multiples micro-organismes est fixé sur lesdits multiples substrats de conditionnement
poreux d'aire de surface élevée (30A, 30B, 30C, 30D, 30E) selon une variété de modes
comprenant un mode mécanique, un mode physico-chimique, un mode polaire et/ou apolaire,
un mode ionique et/ou anionique, un mode hydrophobe et/ou hydrophile, ou toute combinaison
de ceux-ci.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only.
It does not form part of the European patent document. Even though great care has
been taken in compiling the references, errors or omissions cannot be excluded and
the EPO disclaims all liability in this regard.
Patent documents cited in the description