(12)

(11) EP 2 523 371 A2

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

14.11.2012 Patentblatt 2012/46

(51) Int Cl.:

H04H 20/63 (2008.01)

(21) Anmeldenummer: 12003816.1

(22) Anmeldetag: 14.05.2012

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

(30) Priorität: 13.05.2011 ES 201100546

19.12.2011 ES 201101348 19.12.2011 ES 201101218 U

(71) Anmelder: Televés, S.A.

15706 Santiago de Compostela (ES)

(72) Erfinder:

- Rodal Perez, Justo 15706 Santiago de Compostela (ES)
- Blanco Queiro, Manuel, Elisardo 15706 Santiago de Compostela (ES)
- (74) Vertreter: Dosterschill, Peter Patentanwalt, Fichtenstrasse 11 85570 Ottenhofen (DE)

(54) Vorrichtung zur Bearbeitung von Telekommunikationssignalen

(57) Die Erfindung betrifft eine Vorrichtung für die Bearbeitung von Telekommunikationssignalen, insbesondere von Radio- und/oder Fernsehsignalen.

Erfindungsgemäß ist vorgesehen, dass die Vorrichtung (1) Frequenzumsetzer (51) aufweist, die empfan-

gene Telekommunikationssignale, die in einem ersten Frequenzband angeordnet sind, in wenigstens ein zweites Frequenzband in Abhängigkeit einer ersten Information transferiert, die wenigstens ein Störsignal innerhalb der empfangenen Telekommunikationssignale identifiziert.

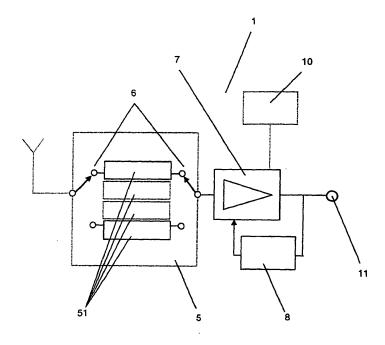


Fig.2

EP 2 523 371 A2

Beschreibung

[0001] Die vorliegende Erfindung betrifft eine Vorrichtung zur Bearbeitung von Telekommunikationssignalen, insbesondere für Radio- und/oder Fernsehsignale in einem MATV/SMATV-System, nach dem Oberbegriff des Anspruchs 1.

1

[0002] Es sind bereits MATV/SMATV-Systeme bekannt, das sind Gemeinschaftssysteme für den Empfang, die Bearbeitung und die Verteilung von Signalen des terrestrischen Fernsehens und des Satellitenfernsehens. Diese Systeme enthalten gemeinschaftliche Komponenten, die den Transport des Fernsehsignals bis zu den Benutzerendgeräten in einer Benutzergemeinschaftsanlage ermöglichen. Diese MATV/SMATV-Systeme weisen im Wesentlichen eine Signalaufnahmeeinheit auf, die unterschiedliche Kanäle des terrestrischen Fernsehens oder des Satellitenfernsehens empfängt, eine Kopfeinheit, die die empfangenen Kanäle bearbeitet, anpasst und verstärkt, sowie ein Verteilungsnetz (MATV/SMATV-Netz), das die Signale bis zu den Benutzerendgeräten transportiert.

[0003] Die Vorrichtung, auf die sich die vorliegende Erfindung bezieht, kann in irgendeiner der vorgenannten Komponenten der MATV/SMATV-Systeme enthalten sein, also in der Signalaufnahmeeinheit, in der Kopfeinheit und in dem Verteilungsnetz.

[0004] In dem ersten Fall hat die Vorrichtung unter anderem die Aufgabe, die von den Antennen kommenden Telekommunikationssignale zu filtern und zu verstärken, um sie so aufzubereiten, dass die in der Kopfeinheit bearbeitet und angepasst werden können.

[0005] Im zweiten Fall hat Vorrichtung der Kopfeinheit unter anderem die Aufgabe, die Signale so zu verstärken und anzupassen, dass sie an das Verteilungsnetz abgegeben werden können.

[0006] Im dritten Fall wird im Verteilungsnetz diese Vorrichtung auch genutzt, um unzulässig große Verluste im Netz auszugleichen. Außerdem kann die Vorrichtung innerhalb von Wohnungen der Benutzer verwendet werden, um die Anzahl möglicher Steckdosen im internen Wohnungsnetz zu erhöhen.

[0007] Zur Zeit besteht eine große Zahl unterschiedlicher Vorrichtungen zur Verstärkung von Radio- und/oder Fernsehsignalen, die entsprechend ihrer Anordnung im Netz drei Kategorien angehören können.

Erstens gibt es die sogenannten Linienverstärker (im Verteilungsnetz angeordnet) oder die Innenraum- oder Wohnungsverstärker (in den Wohnungen der Benutzer angeordnet). Die Verstärker dieser Kategorie sind so ausgestaltet, dass sie im Verteilungsnetz oder in der eigentlichen Wohnung des Benutzers angeordnet sein können und ein Ausgangssignal für eine einzelne Wohnung oder eine kleine Anzahl von Wohnungen liefern.

[0008] Zweitens gibt es die sogenannten Kopfeinheitsverstärker. Diese Verstärker sind so ausgestaltet, dass sie in Kopfeinheiten, entfernt von den Radio- und/oder Fernsehempfangsgeräten installiert werden können, wo-

bei sie auch benutzt werden können, um Radio- und/oder Fernsehsignale für einen einzelne Wohnung bereitzustellen. Regelmäßig werden sie benutzt, um das Signal für eine Mehrzahl von Wohnungen, zum Beispiel in einer Benutzergemeinschaftsanlage bereitzustellen

[0009] Schließlich gibt es die Kategorie der Mastverstärker oder der Vor-Verstärker, die im Allgemeinen in der unmittelbaren Nähe der Antennen außerhalb der Wohnungen oder von Gebäuden angeordnet sind. Ihre

Aufgabe besteht darin, den Pegel des empfangenen Signals anzuheben, damit es angemessen durch die Komponenten der Kopfeinheit verarbeitet werden kann.

[0010] Mit der Einführung des terrestrischen Digitalfernsehens (TDT) und der zukünftigen Entwicklung der 4G-Technologien für das drahtlose mobile Internet, die die aktuellen Frequenzen des TDT verwenden, wird die Anzahl der Kopfeinheiten vergrößert, die die Signale bearbeiten, anpassen und verstärken, die Anzahl der Signalaufnahmeeinheiten bestehend aus den Antennen, die Anzahl der Signale und deren Leistung, was Störungen in den Fernseh- und Radiosignalen verursachen wird, die in dem MATV/SMATV-Netz verteilt werden.

[0011] DIE GSM-Signale, die in der Nähe des UHF-Bandes mit den Fernsehsignalen angeordnet sind, erzeugen große Störungsprobleme, wenn diese GSM-Signale über die Antenne zu den Empfangsgeräten gelangen.

[0012] Neben diesem Effekt werden bei der nächsten Einführung der 4G-Dienste für das mobile Internet und der drahtlosen Breitbandsysteme im Frequenzband von 790 bis 862 MHz (ehemalige Fernsehkanäle 61 bis 69) ohne Zweifel mehrfache Störungen in den benachbarten Fernsehkanälen und in weiteren Fernsehkanälen auftreten.

35 [0013] Diese Systeme benutzen für ihre Einführung das aktuelle UHF-Band. Bei den ersten Einführungen ist vorgesehen, dass die Breitbandzugangssysteme die Kanäle 61 bis 69 (790 - 862 MHz) benutzen, obwohl für die Zukunft eine Erweiterung auf weitere Teile des UHF 40 Spektrums nicht ausgeschlossen wird, dies abhängig von der Verfügbarkeit des Spektrums.

[0014] Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Bearbeitung von Telekommunikationssignalen zu schaffen, insbesondere für Radio und/oder Fernsehsignale in einem MATV/SMATV-System, die Störungen entgegenwirkt, die insbesondere von GSM-Signalen und von Signalen der künftigen 4G-Technologien für drahtlose Breitband- Zugangssysteme ausgehen.

[0015] Diese Aufgabe wird mit einer Vorrichtung gelöst, die in den Ansprüchen definiert ist.

[0016] Die erfindungsgemäße Vorrichtung zur Bearbeitung von Telekommunikationssignalen zeichnet sich durch eine Vielzahl von Vorteilen aus.

[0017] Eine erste vorteilhafte Ausführungsform der erfindungsgemäßen Vorrichtung für die Bearbeitung von Telekommunikationssignalen, insbesondere von Radiound/oder Fernsehsignalen in einem MATV/SMATV-Sy-

15

20

25

40

stem, weist Mittel auf, die empfangene Telekommunikationssignale, die in einem ersten Frequenzband angeordnet sind, in wenigstens ein zweites Frequenzband in Abhängigkeit einer ersten Information transferiert. Die erste Information identifiziert wenigstens ein Störsignal innerhalb der empfangenen Telekommunikationssignale, wobei die erste Information insbesondere einen Bezug zu dem Pegel wenigstens eines Störsignals bezeichnet. Damit werden die Wirkungen von Störsignalen minimiert beziehungsweise ganz ausgeschlossen.

[0018] Eine weitere vorteilhafte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass die Vorrichtung in der Weise ausgestaltet ist, dass der zweite Frequenzbereich in Abhängigkeit einer zweiten Information bestimmt wird, die die Frequenz des Störsignals identifiziert.

Damit lässt sich in vorteilhafter Weise ein ausreichend großer Frequenzabstand zwischen Störsignalen und Signalen herstellen, die durch die Störsignale nicht beeinflusst werden sollen.

[0019] Eine weitere vorteilhafte Ausführungsform der Erfindung für die Bearbeitung von Telekommunikationssignalen, insbesondere von Radio- und/oder Fernsehsignalen in einem MATV/SMATV-System, weist im Eingangsbereich Filter auf, an deren Eingängen empfangene Telekommunikationssignale anliegen. Die Vorrichtung weist mindestens zwei Filter auf, wobei die Filter parallel geschaltet sind. Weiterhin weist die Vorrichtung einen manuellen oder elektronischen Schalter auf, der genau eines der Filter aktiviert, das einen ersten Teil der empfangenen Telekommunikationssignale durchschaltet und das einen zweiten Teil der empfangenen Telekommunikationssignale nicht durchschaltet, also sperrt. [0020] Diese Ausführungsform der erfindungsgemäßen Vorrichtung zeichnet sich durch eine einfache Gestaltung aus.

[0021] Eine weitere vorteilhafte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass der Schalter ein elektronischer Schalter ist, der in der Weise ausgestaltet ist, dass er in Abhängigkeit von einer ersten Information gesteuert wird, die wenigstens ein Störsignal innerhalb der empfangenen Telekommunikationssignale identifiziert.

[0022] Der elektronische Schalter kann auch in der Weise ausgestaltet sein, dass er von einer zweiten Information gesteuert wird, die die Frequenz eines Störsignals identifiziert.

[0023] Eine weitere vorteilhafte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass der externe Schalter ein manueller oder ein elektronischer Schalter ist. Dies ist mit dem Vorteil verbunden, dass dem Benutzer ermöglicht wird, in einfacher Weise das zweite empfangene Frequenzband der Signale auszuwählen.

[0024] Im Folgenden werden beispielhaft, also nicht einschränkend, vorteilhafte Ausführungsbeispiele anhand der Figuren beschrieben.

[0025] Es zeigt

Figur 1 ein Gehäuse einer Vorrichtung zur Bearbeitung von Telekommunikationssignalen, insbesondere für Radio- und/oder Fernsehsignale in einem MATV/SMATV-System, gemäß der Erfindung;

Figur 2 ein Blockdiagramm einer ersten Ausführungsform der Vorrichtung zur Bearbeitung von Telekommunikationssignalen, insbesondere für Radio- und/oder Fernsehsignale in einem MATV/SMATV-System, gemäß der Erfindung; und

Figur 3 ein Blockdiagramm einer zweiten Ausführungsform der Vorrichtung zur Bearbeitung von Telekommunikationssignalen, insbesondere für Radio- und/oder Fernsehsignale in einem MATV/SMATV-System, gemäß der Erfindung.

[0026] Die in den Figuren 2 und 3 dargestellte Vorrichtung 1 für die Bearbeitung von Telekommunikationssignalen ist in einem Gehäuse 2 angeordnet, das einen vorderen Gehäuseteil 21 und einen hinteren Gehäuseteil 22 hat. Im Inneren des Gehäuses ist eine elektronische Schaltung 4 angeordnet, die die eigentliche Vorrichtung bildet.

[0027] Die erfindungsgemäße Vorrichtung bzw. die elektronische Schaltung 4 ist in den Figuren 2 und 3 in Form eines Blockschaltbildes dargestellt.

[0028] Die Schaltung 4 besteht aus einem Verstärker 7, einer automatischen Gewinnsteuerungsschaltung 8 sowie aus Mitteln 5, die in einer ersten Ausführungsform der erfindungsgemäßen Vorrichtung aus Frequenzumsetzern 51 und in einer zweiten Ausführungsform der erfindungsgemäßen Vorrichtung aus Filtern 51 bestehen.

[0029] Die in der ersten Ausführungsform vorgesehenen Mittel 5, die Frequenzumsetzer sind, transferieren von der Vorrichtung empfangene bzw. ihr zugeführte Telekommunikationssignale RECTS, die in einem ersten Frequenzband FR1 angeordnet sind, in wenigstens ein zweites Frequenzband FR2, dies in Abhängigkeit einer ersten Information INF1.

Die erste Information INF1 identifiziert wenigstens ein Störsignal DS innerhalb der empfangenen Telekommunikationssignale RECTS. Insbesondere bezeichnet die erste Information INF1 einen Bezug zu dem Pegel LDS wenigstens eines Störsignals DS.

[0030] Dabei wird der zweite Frequenzbereich FR2 in Abhängigkeit einer zweiten Information INF2 bestimmt, wobei die zweite Information INF2 die Frequenz FDS des Störsignals DS identifiziert.

[0031] Die erfindungsgemäße Vorrichtung kann im Eingangsbereich auch Filter 5 aufweisen, an deren Eingängen empfangene Telekommunikationssignale RECTS anliegen. Insbesondere kann die Vorrichtung mindestens zwei Filter 51 aufweisen, wobei die Filter 51 parallel geschaltet sind. Mit einem manuellen oder elektronischen Schalter 6 wird genau eines der Filter 51 aktiviert. Das aktivierte Filter 51 schaltet einen ersten Teil

6

der empfangenen Telekommunikationssignale RECTS durch und sperrt einen zweiten Teil der empfangenen Telekommunikationssignale RECTS, schaltet also diesen zweiten Teil der empfangenen Telekommunikationssignale RECTS nicht durch.

[0032] Der Schalter 6 kann ein elektronischer Schalter sein, wobei in diesem Fall der Schalter 6 in der Weise ausgestaltet ist, dass er in Abhängigkeit von einer ersten Information INF1 gesteuert wird. Diese erste Information INF1 identifiziert/bezeichnet ein Störsignal DS innerhalb der empfangenen Telekommunikationssignale RECTS. [0033] Der elektronische Schalter 6 kann auch in der Weise ausgestaltet sein, dass er von einer zweiten Information INF2 gesteuert wird. Diese zweite Information INF2 identifiziert/bezeichnet die Frequenz eines Störsignals DS.

[0034] Im Folgenden wird davon ausgegangen, dass sich in dem zweiten Teil der empfangenen Telekommunikationssignale RECTS ein Störsignal DS befindet. Der zweite Teil der empfangenen Telekommunikationssignale RECTS hat beispielsweise eine Bandbreite von etwa 750 bis 862 MHz oder eine Bandbreite von etwa 761 bis 862 MHz. Weiter wird in diesem Beispiel davon ausgegangen, dass eines der Filter 51 einen Sperr-Frequenzbereich in der Bandbreite von etwa 750 bis 862 MHz oder einen Sperr-Frequenzbereich in der Bandbreite von etwa 761 bis 862 MHz hat.

[0035] Das Signal am Eingang der Vorrichtung wird mittels eines Filters 51 gefiltert, wobei das Filter 51 mittels des Schalters 6 ausgewählt wird. In Abhängigkeit des Durchlassbandbereichs des ausgewählten Filters 51 ergibt sich am Ausgang dieses Filters, das heißt am Ausgang 11 der Vorrichtung ein Signal, dessen Frequenzband ("zweites Frequenzband") durch das ausgewählte Filter 51 ausgewählt wird,

[0036] Der Schalter 6 kann ein manueller Schalter oder ein elektronischer Schalter sein. Im letztgenannten Fall wählt der Schalter 6 die Filter 51 in Abhängigkeit der Pegel der in dem Frequenzband vorliegenden Signale aus, die eliminiert werden sollen.

[0037] Die Stromspeisung der elektronischen Schaltung 4 der Vorrichtung 1 erfolgt mittels einer internen oder externen Spannungs- bzw. Speisequelle 10, wobei ein die Anbindung der externen Speisequelle über einen Signalausgangsstecker/ein Signalausgangsverbindungselement 11 erfolgt.

[0038] Wie in Figur 3 dargestellt, weist die dort dargestellte Ausführungsform Vorrichtung gemäß der Erfindung ein Eingangsfilter 2.1 am UHF-Eingang (470-862 MHz, Kanäle 21 bis 69) auf, ein Dämpfungsglied/Isolator 2.2, ein erstes Filter 2.3, bestehend aus einem Hochpaß (791-862 MHz. Kanäle 61 bis 69), eine Leistungsmeßvorrichtung/Detektor 2.4, eine Vergleichsschaltung/Entscheider 2.5, zwei Schalter 2.6, einen Tiefpaß 2.7 (470-790 MHz, Kanäle 21 bis 60) und einem Signalverstärker 2.8.

[0039] Wie in Figur 3 weiter dargestellt, wird das Eingangssignal I1, das von einer Signalaufnahmevorrich-

tung (Telekommunikationsantenne oder ähnliches) stammt, über einen Stecker am Eingang IN in die erfindungsgemäße Vorrichtung eingeführt. Dieses Eingangssignal I1 besteht unter anderem aus Signalen des terrestrischen Digitalfernsehens und gegebenenfalls aus Signalen des Typs LTE. Aufgrund der Aufteilung des UHF-Frequenzbandes in Fernsehsignale und Daten der sogenannten vierten Internetgeneration (Digitale Dividende), nehmen die Signale des terrestrischen Digitalfernsehens die Kanäle des UHF-Bandes 21 bis 60 (470 bis 790 MHz) ein und die LTE-Signale nehmen die Kanäle des UHF-Bandes 61 bis 69 (791 a 862 MHz) ein.

[0040] Das Eingangssignal I1 wird durch das UHF-Eingangsfilter 2.1 (470 bis 862 MHz, Kanäle 21 bis 69) geschaltet, so dass an seinem Ausgang das filtrierte Eingangssignal (I2) (Fernsehsignale und gegebenenfalls LTE-Signale) erhalten werden. Im Anschluss daran wird mittels des Dämpfungsgliedes/Isolator 2.2 ein Muster I3 (Fernsehsignale und gegebenenfalls LTE-Signale) des Signals I2, das am Ausgang des Eingangsfilters 2.1 anliegt, extrahiert. Die Extraktion dieses Musters I3 des Signals I2 wird durchgeführt, ohne Verluste im Signal I2 einzuführen, womit vermieden wird, dass die Qualität des Signals I2 reduziert wird, das in die Schalter 2.6 eingeführt wird.

[0041] Das Signal I3 am Ausgang des Dämpfungsgliedes/Isolators 2.2 wird an ein erstes Filter 2.3 geführt, das einen Hochpass (791 bis 862 MHz, Kanäle 61 bis 69) bildet, der die Aufgabe hat, das Signal I22 auszuwählen, das in dieser Bandbreite angeordnet ist und das Fernsehsignale sein werden vor der Einführung der LTE-Dienste oder LTE-Signale nach der Einführung dieser Dienste.

[0042] Am Ausgang dieses Filters 2.3 wird das Signal I22 gemessen und/oder detektiert mittels der Meßeinrichtung/Leistungsdetektors 2.4. Der von der Meßeinrichtung-/Leistungsdetektor 2.4 gemessene oder detektierte Pegel Vdetec wird mit einem vorbestimmten Bezugspegel Vref verglichen.

[0043] Der vorbestimmte Bezugspegel Vref ist der Pegel der Spannung bzw. Leistung der möglichen (LTE-) Störsignale, die gegebenenfalls im Signal I2 vorhanden sind. Geht man davon aus, dass zum Beispiel ein erstes Störsignal einen Pegel von 1,2 x Volt hat, eine zweites Störsignal einen Pegel von 1,0x Volt und ein drittes Störsignal einen Pegel von 1,15 Volt hat, so ist Vref gleich (1,0) x Volt. Ein Signal, das einen Pegel größer als oder gleich 1,0x Volt, ist ein Störsignal, während ein Signal, das einen Pegel kleiner al 1,0xVolt ist, kein Störsignal ist. Allgemein gilt, dass der Wert des Bezugspegels Vref aus dem Wert von Störsignalpegeln abgeleitet ist.

[0044] Der Vergleich wird in dem Vergleicher/Entscheider 2.5 entsprechend der Vergleichsspannung Vc durchgeführt; die sich am Ausgang des Vergleichers/Entscheiders 2.5 ergibt, und es werden die Signalschalter 2.6 aktiviert.

[0045] Wenn der Bezugspegel Vref größer ist als der detektierte Pegel Vdetec würden die möglichen LTE-Si-

gnale des Signals I2 die Fernsehsignale dieses Signals I2 nicht stören und folglich werden die Schalter 2.6 das Signal I2 (470 bis 862 MHz. Kanäle 21 bis 69) direkt zum Signalverstärker 2. 8 durchschalten.

[0046] In dem Fall, dass der Bezugspegel Vref kleiner ist als der detektierte Pegel Vdetec, würden die Signale LTE des Signals I2 die Fernsehsignale dieses Signals I2 stören, und folglich werden die Schalter 2.6 dieses Signal I2 über ein Tiefpaßfilter 2.7 (470 bis 790 MHz. Kanäle 21 bis 60) umleiten. Dieses Tiefpaßfilter 2.7 eliminiert die höherfrequenten Signale, die in dem Frequenzband der UHF-Kanäle 61 bis 69 (791 bis 862 MHz), das heißt die LTE-Signale, liegen und die stören, während nur die tieferfrequenten Fernsehsignale (470 bis 790 MHz, Kanäle 21 bis 60) des Signals I2 in den Verstärker 2. 8 eingeführt und von diesem verstärkt werden, wobei sie anschließend dem Ausgang OUT der erfindungsgemäßen Vorrichtung zugeführt werden.

[0047] Auf diese Art und Weise arbeitet in einer Situation, in der keine störenden LTE-Signale vorliegen (Pegel Vdetec des störenden Signals LTE liegt unter dem Bezugspegel), die erfindungsgemäße Vorrichtung in der Weise, dass das Signal (470 bis 862 MHz, Kanäle 21 bis 69) direkt dem Verstärker 2.8 zugeführt wird, um es dort zu verstärken und später dem Ausgang OUT zuzuführen. [0048] In dem gegenteiligen Fall, bei dem die störenden LTE-Signal mit einem Pegel vorliegen, der über einer Leistung liegt, die in der Lage ist die Fernsehsignale zu stören (Pegel Vdetec des störenden LTE-Signals liegt oberhalb eines Referenzpegels Vref) arbeitet die erfindungsgemäße Vorrichtung in der Weise, dass das Signal 12 (470 bis 862 MHz, Kanäle 21 bis 69) über den Tiefpaß 2.7 (Durchlassbereich: 470 bis 790 MHz, Kanäle 21 bis 60) durchgeschaltet wird. Dieser Tiefpaß 2.7 eliminiert die Signale, die im Frequenzband der UHF-Kanäle 61 bis 69 (791 bis a 862 MHz) liegen, das heißt die störenden LTE-Signale und nur die Fernsehsignale (470 bis 790 MHz, Kanäle 21 bis 60) des Signals I2 werden in den Verstärker 2.8 eingeführt und dort verstärkt und später dem Ausgang OUT der erfindungsgemäßen Vorrichtung zugeführt.

Bezugszeichenliste

[0049]

- 1 Vorrichtung zur Bearbeitung von Fernseh- und/ oder Radiosignalen
- 2 Gehäuse
- 21 Vordere Seite des Gehäuses
- 22 Hintere Seite des Gehäuses
- 4 Elektronischer Stromkreis
- 5 Mittel
- 51 Frequenzumsetzer; Filter
- 6 (Externer) Schalter
- 7 Verstärkungsschaltung
- 8 Automatische Gewinnsteuerung
- 10 Spannungsquelle

- 11 Ausgangsstecker/Ausgangsverbindungselement
- 2.1 Filter am UHF-Eingang
- 2.2. Dämpfungsglied/Isolator
- 5 2.3. Erstes Filter
 - 2.4 Leistungsmeßvorrichtung /Detektor
 - 2.5. Vergleichsschaltung/Entscheider
 - 2.6 Schalter
 - 2.7 Tiefpaß
- 2.8. Verstärkersignal
 - IN Eingangsstecker/ Eingangsverbindungselement
 - OUT Ausgangsstecker/Verbindungselement
 - I1 Hochfrequenzsignal am Eingang der Vorrichtung
- I2 Filtriertes Eingangssignal: Hochfrequenzsignal (470-862 MHz, Kanäle 21 bis 69), bestehend aus I21 und I22
- Hochfrequenzsignal von 470 bis 790 MHz, Kanäle 21 bis 60, ausschließlich Fernsehsignale
 - Hochfrequenzsignal von 791 bis 862 MHz, Kanäle 61 bis 69, - vor der Digitalen Dividende: ausschließlich Signale des terrestrischen Digitalfernsehens - nach der digitalen Dividende: ausschließlich LTE-Signale
- Muster des Signals 12
 - RECTS Empfangene Telekommunikationssignale
 - DS Störsignal

35

45

50

- LDS Störsignalpegel
- FDS Störsignalfreguenz
- INF1 Erste Information
 - INF2 Zweite Information
 - FR1 Erster Frequenzbereich
 - FR2 Zweiter Frequenzbereich

Patentansprüche

- Vorrichtung (1) für die Bearbeitung von Telekommunikationssignalen, insbesondere von Radio- und/ oder Fernsehsignalen in einem MATV/SMATV-System,
- 55 dadurch gekennzeichnet,

dass die Vorrichtung (1) Mittel (5) aufweist, die empfangene Telekommunikationssignale (RECTS), die in einem ersten Frequenzband (FR1) angeordnet

10

15

20

30

sind, in wenigstens ein zweites Frequenzband (FR2) in Abhängigkeit einer ersten Information (INF1) transferiert, die wenigstens ein Störsignal (DS) innerhalb der empfangenen Telekommunikationssignale (RECTS) identifiziert.

- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die erste Information (INF1) einen Bezug zu dem Pegel (LDS) wenigstens eines Störsignals (DS) bezeichnet.
- 3. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung in der Weise ausgestaltet ist, dass der zweite Frequenzbereich (FR2) in Abhängigkeit einer zweiten Information (INF2) bestimmt wird, die die Frequenz (FDS) des Störsignals (DS) identifiziert.
- **4.** Vorrichtung nach einem der vorstehenden Ansprüche, **dadurch gekennzeichnet**, **dass** die Mittel (5) Frequenzumsetzer (51) sind.
- 5. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung eine Vergleichsschaltung (2.5) aufweist, die die Pegel der empfangenen Telekommunikationssignale (RECTS) mit einem Bezugspegel (Vref) vergleicht.
- Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der Wert des Bezugspegels (Vref) aus dem Wert von Störsignalpegeln abgeleitet ist.
- 7. Vorrichtung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die Frequenzumsetzer (51) in der Weise ausgestaltet sind, dass sie mittels eines manuellen oder elektronischen Schalters (6) ausgewählt werden.
- 8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Schalter (6) ein elektronischer Schalter ist, und dass der elektronische Schalter (6) in der Weise ausgestaltet ist, dass er von der ersten Information (INF1) gesteuert wird.
- 9. Vorrichtung nach Anspruch nach einem der Ansprüche 2 und 7 oder 8, dadurch gekennzeichnet, dass der Schalter (6) ein elektronischer Schalter ist, und dass der elektronische Schalter (6) in der Weise ausgestaltet ist, dass er von der zweiten Information (INF2) gesteuert wird.
- 10. Vorrichtung (1) für die Bearbeitung von Telekommunikationssignalen, insbesondere von Radio- und/ oder Fernsehsignalen in einem MATV/SMATV-System, wobei die Vorrichtung im Eingangsbereich Filter (5) aufweist, an deren Eingängen empfangene Telekommunikationssignale (RECTS) anliegen, da-

durch gekennzeichnet,

dass die Vorrichtung (1) mindestens zwei Filter (51) aufweist, dass die Filter (51) parallel geschaltet sind, und dass die Vorrichtung einen manuellen oder elektronischen Schalter (6) aufweist, der genau eines der Filter (51) aktiviert, das einen ersten Teil der empfangenen Telekommunikationssignale (RECTS) durchschaltet und das einen zweiten Teil der empfangenen Telekommunikationssignale (RECTS) nicht durchschaltet.

- 11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass der Schalter (6) ein elektronischer Schalter ist, und dass der elektronische Schalter (6) in der Weise ausgestaltet ist, dass er in Abhängigkeit von einer ersten Information (INF1) gesteuert wird, die wenigstens ein Störsignal (DS) innerhalb der empfangenen Telekommunikationssignale (RECTS) identifiziert.
- 12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass der Schalter (6) ein elektronischer Schalter ist, und dass der elektronische Schalter (6) in der Weise ausgestaltet ist, dass er von einer zweiten Information (INF2) gesteuert wird, die die Frequenz (FDS) eines Störsignals (DS) identifiziert.
- 13. Vorrichtung nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass der zweite Teil der empfangenen Telekommunikationssignale (RECTS) eine Bandbreite von etwa 750 bis 862 MHz oder eine Bandbreite von etwa 761 bis 862 MHz hat, dass in dem zweiten Teil der empfangenen Telekommunikationssignale (RECTS) mindestens ein Störsignal (DS) angeordnet ist, und dass ein Filter (51) einen Sperr-Frequenzbereich in der Bandbreite von etwa 750 bis 862 MHz oder einen Sperr-Frequenzbereich in der Bandbreite von etwa 761 bis 862 MHz hat.
- 14. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sie auf einer gedruckten Schaltungsplatine (4) und/oder in einem Gehäuse (2) angeordnet ist.
- 45 15. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ihr eine interne oder externe Spannungsquelle (10) zugeordnet ist.

50

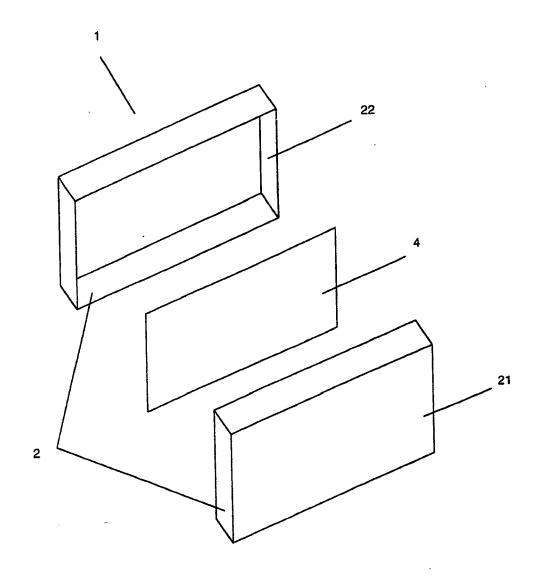


Fig.1

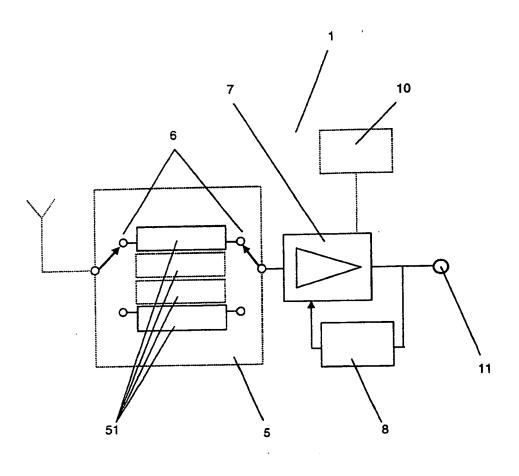


Fig.2

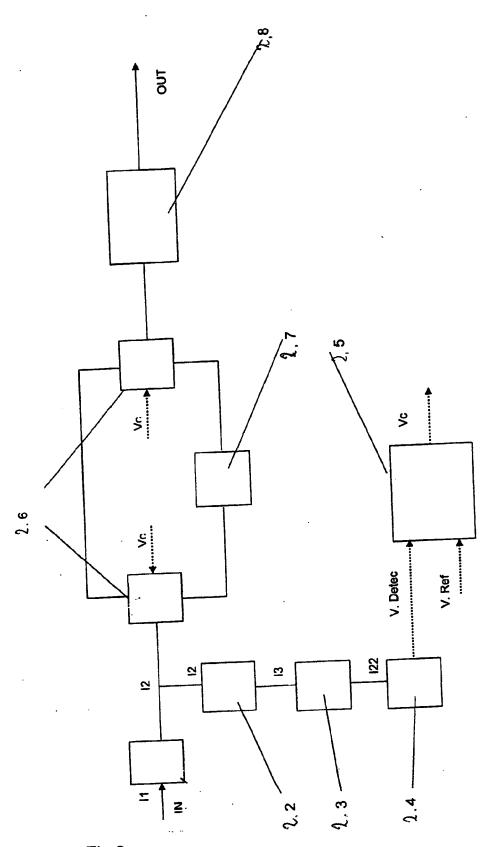


Fig.3