Technical Field
[0001] The present invention relates to a radio communication system, a base station apparatus,
a mobile station apparatus, a radio communication method, and an integrated circuit
in which the mobile station apparatus transmits a reference signal for measuring an
uplink channel (an SRS (Sounding Reference Signal)) to the base station apparatus.
Background Art
[0002] Conventionally, in 3GPP (3rd Generation Partnership Project), a radio access system
and a radio network which achieve higher-speed data communication (hereinafter referred
to as "LTE-A (Long Term Evolution-Advanced)" or "A-EUTRA (Advanced Evolved Universal
Terrestrial Radio Access)".) have been discussed utilizing evolution of a radio access
system and a radio network of cellular mobile communication (hereinafter referred
to as "LTE (Long Term Evolution)" or "EUTRA (Evolved Universal Terrestrial Radio Access)
".), and a more broadband frequency band than the LTE.
[0003] In the LTE, an OFDM (Orthogonal Frequency Division Multiplexing) system, which is
multicarrier transmission, is used as a communication system for radio communication
from a base station apparatus to a mobile station apparatus (downlink). In addition,
an SC-FDMA (Single-Carrier Frequency Division Multiple Access) system, which is single
career transmission, is used as a communication system for radio communication from
the mobile station apparatus to the base station apparatus (uplink).
[0004] In an uplink of the LTE, the base station apparatus determines radio resource allocation,
a coding rate, and a modulation scheme of a PUSCH, which is a channel for data transmission,
by utilizing a reference signal for measuring an uplink channel (an SRS (Sounding
Reference Signal)) which is transmitted by the mobile station apparatus.
[0005] In the uplink of the LTE, TPC (Transmit Power Control) is performed for the purpose
of suppressing power consumption of the mobile station apparatus, and reducing given
interference to other cells. Shown is a formula used to determine a transmit power
value of the SRS specified in the LTE.
[0006] 
In Formula (1), P
SRS(i) indicates a transmit power value of the SRS in an i-th subframe. min {X, Y} is
a function for selecting a minimum value of X and Y. P
O_PUSCH is a transmit power as the basis of the PUSCH, and is a value specified by a higher
layer. P
SRS_OFFSET is an offset indicating a difference of transmit powers as the basis of the PUSCH
and that of the SRS, and is a value specified by the higher layer. M
SRS indicates the number of PRBs (Physical Resource Blocks), which is a unit for allocation
of a radio resource used for SRS transmission, etc., and indicates that a transmit
power becomes larger as the number of PRBs used for SRS transmission increases.
[0007] In addition, PL indicates a path loss, and α is a coefficient multiplied to the path
loss and is specified by the higher layer. f is an offset value (TPC value by a closed
loop or an open loop) calculated based on a TPC command transmitted by DCI (Downlink
Control Information). In addition, P
CMAX is a maximum transmit power value, and may be a physical maximum transmit power or
may be specified by the higher layer.
[0008] In the LTE-A, it is required that the LTE-A has backward compatibility with the LTE,
i.e., a base station apparatus of the LTE-A is able to simultaneously perform radio
communication with both a mobile station apparatus of the LTE-A and a mobile station
apparatus of the LTE, and that the mobile station apparatus of the LTE-A is able to
perform radio communication with both the base station apparatus of the LTE-A and
the base station apparatus of the LTE, and it has been discussed that the LTE and
the LTE-A use a same channel structure.
[0009] Non-Patent Document 1 has proposed to introduce a technology in which a mobile station
apparatus transmits an SRS only once in addition to periodic SRS transmission when
requested to transmit the SRS by a base station apparatus in order to improve accuracy
of the SRS in the LTE-A. Hereinafter, an SRS which a conventional mobile station apparatus
transmits periodically is referred to as a periodic SRS, and an SRS which the conventional
mobile station apparatus transmits only once when requested to transmit the SRS by
the base station apparatus is referred to as an aperiodic SRS (or a one shot SRS,
a scheduled SRS). Specifically, the base station apparatus performs setting of a radio
resource regarding the aperiodic SRS to the mobile station apparatus in addition to
setting of a period and radio resources (a frequency band and a cyclic shift) regarding
the periodic SRS, includes an indicator requesting an SRS in DCI to be transmitted
via a PDCCH, and transmits the DCI to the mobile station apparatus. When the SRS is
requested by the indicator, the mobile station apparatus transmits the SRS only once
in accordance with the setting regarding the aperiodic SRS.
Citation List
Non-Patent Document
Disclosure of the Invention
Problem to be Solved by the Invention
[0011] However, when TPC of the periodic SRS and the aperiodic SRS is performed using Formula
(1) as is conventionally done, transmit powers of the periodic SRS and the aperiodic
SRS with respect to one PRB become the same as each other. In addition, since a transmit
power becomes higher according to the number of PRBs used for SRS transmission, a
transmit power of the aperiodic SRS reaches ten times larger as compared with a transmit
power of the periodic SRS when a bandwidth used for transmission of the aperiodic
SRS is ten times larger as compared with a bandwidth used for transmission of the
periodic SRS.
[0012] As described above, there has been a problem that the transmit powers of the periodic
SRS and the aperiodic SRS cannot be controlled individually when TPC of the SRS is
performed using the conventional Formula (1).
[0013] The present invention is made in view of such a situation, and has an object to provide
a radio communication system, a mobile station apparatus, a base station apparatus,
a radio communication method, and an integrated circuit in which optimal TPC can be
performed on each of a periodic SRS and an aperiodic SRS.
Means for Solving the Problem
[0014] (1) In order to achieve the above-described object, the present invention has taken
the following measures. Namely, a radio communication system of the present invention
is the radio communication system which is configured with a base station apparatus
and a mobile station apparatus, and in which the mobile station apparatus transmits
a first reference signal or a second reference signal of a plurality of reference
signals to the base station apparatus, wherein the base station apparatus sets a first
parameter used for TPC of the first reference signal and a second parameter used for
TPC of the second reference signal, and notifies the mobile station apparatus of the
set first parameter and second parameter, and wherein the mobile station apparatus
receives the first parameter and the second parameter, performs TPC of the first reference
signal using the first parameter and also performs TPC of the second reference signal
using the second parameter, and transmits to the base station apparatus the first
reference signal and/or the second reference signal on which the TPC has been performed.
[0015] This configuration allows the base station apparatus to set the first parameter and
the second parameter to each of the first reference signal and the second reference
signal according to bandwidths (the number of PRBs) of the first reference signal
and the second reference signal, etc., and to perform optimal TPC on each of the first
reference signal or the second reference signal which is transmitted by the mobile
station apparatus.
[0016] (2) In addition, in the radio communication system of the present invention, the
mobile station apparatus includes a plurality of transmission antenna ports, the base
station apparatus sets the first parameter and the second parameter to each of the
plurality of transmission antenna ports included in the mobile station apparatus,
the mobile station apparatus performs TPC of the first reference signal using the
first parameter for each the transmission antenna port when transmitting the first
reference signal, and the mobile station apparatus performs TPC of the second reference
signal using the second parameter for each the transmission antenna port when transmitting
the second reference signal.
[0017] This configuration makes it possible to increase a transmit power of a transmission
antenna port with a high priority of the mobile station apparatus, for example, a
transmission antenna port through which a signal is transmitted, and also makes it
possible to decrease a transmit power of a transmission antenna port with a low priority,
for example, an antenna port through which the signal is not transmitted. Thereby,
it becomes possible to perform flexible TPC according to a priority of the transmission
antenna port.
[0018] (3) In addition, in the radio communication system of the present invention, the
first reference signal is transmitted from the mobile station apparatus at a timing
set by the base station apparatus in order that the base station apparatus performs
uplink channel measurement, and the second reference signal is transmitted from the
mobile station apparatus only the specific number of times when the base station apparatus
requests transmission of the second reference signal from the mobile station apparatus
in order that the base station apparatus performs the uplink channel measurement.
[0019] This configuration allows the radio communication system of the present invention
to be applied to a radio communication system of LTE-A (Long Term Evolution-Advanced).
[0020] (4) In addition, a mobile station apparatus of the present invention is the mobile
station apparatus applied to a radio communication system which is configured with
a base station apparatus and the mobile station apparatus, and in which the mobile
station apparatus transmits a first reference signal or a second reference signal
of a plurality of reference signals to the base station apparatus, wherein the mobile
station apparatus includes: a mobile station side reception unit which is set by the
base station apparatus, and which receives a first parameter used for TPC of the first
reference signal and a second parameter used for TPC of the second reference signal;
a mobile station side higher layer processing unit which performs TPC of the first
reference signal using the first parameter while performing TPC of the second reference
signal using the second parameter; and a mobile station side transmission unit which
transmits to the base station apparatus the first reference signal and/or the second
reference signal on which the TPC has been performed.
[0021] This configuration allows the base station apparatus to set the first parameter and
the second parameter to each of the first reference signal and the second reference
signal according to bandwidths (the number of PRBs) of the first reference signal
and the second reference signal, etc., and to perform optimal TPC on each of the first
reference signal or the second reference signal which is transmitted by the mobile
station apparatus.
[0022] (5) In addition, the mobile station apparatus of the present invention includes a
plurality of transmission antenna ports, the mobile station side reception unit receives
a first parameter and a second parameter to each of the plurality of transmission
antenna ports transmitted by the base station apparatus, and the mobile station side
higher layer processing unit performs TPC of the first reference signal using the
first parameter for each the transmission antenna port when transmitting the first
reference signal, and performs TPC of the second reference signal using the second
parameter for each the transmission antenna port when transmitting the second reference
signal.
[0023] This configuration makes it possible to increase a transmit power of a transmission
antenna port with a high priority of the mobile station apparatus, for example, a
transmission antenna port through which a signal is transmitted, and also makes it
possible to decrease a transmit power of a transmission antenna port with a low priority,
for example, an antenna port through which the signal is not transmitted. Thereby,
it becomes possible to perform flexible TPC according to a priority of the transmission
antenna port.
[0024] (6) In addition, in the mobile station apparatus of the present invention, the first
reference signal is transmitted at a timing set by the base station apparatus in order
that the base station apparatus performs uplink channel measurement, and the second
reference signal is transmitted only the specific number of times when transmission
of the second reference signal is requested from the base station apparatus in order
that the base station apparatus performs the uplink channel measurement.
[0025] This configuration allows the mobile station apparatus of the present invention to
be applied to the radio communication system of LTE-A (Long Term Evolution-Advanced).
[0026] (7) In addition, a base station apparatus of the present invention is the base station
apparatus applied to a radio communication system which is configured with the base
station apparatus and a mobile station apparatus, and in which the mobile station
apparatus transmits a first reference signal or a second reference signal of a plurality
of reference signals to the base station apparatus, wherein the base station apparatus
includes: a base station side higher layer processing unit which sets a first parameter
used for TPC of the first reference signal and a second parameter used for TPC of
the second reference signal; and a base station side transmission unit which notifies
the mobile station apparatus of the set first parameter and second parameter.
[0027] This configuration allows the base station apparatus to set the first parameter and
the second parameter to each of the first reference signal and the second reference
signal according to bandwidths (the number of PRBs) of the first reference signal
and the second reference signal, etc., and to perform optimal TPC to each of the first
reference signal or the second reference signal which is transmitted by the mobile
station apparatus.
[0028] (8) In addition, in the base station apparatus of the present invention, the base
station side higher layer processing unit sets the first parameter and the second
parameter to each of a plurality of transmission antenna ports included in the mobile
station apparatus.
[0029] This configuration makes it possible to increase a transmit power of a transmission
antenna port with a high priority of the mobile station apparatus, for example, a
transmission antenna port through which a signal is transmitted, and also makes it
possible to decrease a transmit power of a transmission antenna port with a low priority,
for example, an antenna port through which the signal is not transmitted. Thereby,
it becomes possible to perform flexible TPC according to a priority of the transmission
antenna port.
[0030] (9) In addition, in the base station apparatus of the present invention, the first
reference signal is transmitted from the mobile station apparatus at a set timing
in order that the own apparatus performs uplink channel measurement, and the second
reference signal is transmitted from the mobile station apparatus only the specific
number of times when the own apparatus requests transmission of the second reference
signal from the mobile station apparatus in order to perform the uplink channel measurement.
[0031] This configuration allows the base station apparatus of the present invention to
be applied to the radio communication system of LTE-A (Long Term Evolution-Advanced).
[0032] (10) In addition, a radio communication method of the present invention is the radio
communication method of a radio communication system which is configured with a base
station apparatus and a mobile station apparatus, and in which the mobile station
apparatus transmits a first reference signal or a second reference signal of a plurality
of reference signals to the base station apparatus, and the radio communication method
includes at least the steps of: in the base station apparatus, setting a first parameter
used for TPC of the first reference signal and a second parameter used for TPC of
the second reference signal; and notifying the mobile station apparatus of the set
first parameter and second parameter; and in the mobile station apparatus, receiving
the first parameter and the second parameter; performing TPC of the first reference
signal using the first parameter while performing TPC of the second reference signal
using the second parameter; and transmitting to the base station apparatus the first
reference signal and/or the second reference signal on which the TPC has been performed.
[0033] This configuration allows the base station apparatus to set the first parameter and
the second parameter to each of the first reference signal and the second reference
signal according to bandwidths (the number of PRBs) of the first reference signal
and the second reference signal, etc., and to perform optimal TPC on each of the first
reference signal or the second reference signal which is transmitted by the mobile
station apparatus.
[0034] (11) In addition, the radio communication method of the present invention further
includes the steps of: in the base station apparatus, setting the first parameter
and the second parameter to each of a plurality of transmission antenna ports included
in the mobile station apparatus; and in the mobile station apparatus, performing TPC
of the first reference signal using the first parameter for each the transmission
antenna port when transmitting the first reference signal, and performing TPC of the
second reference signal using the second parameter for each the transmission antenna
port when transmitting the second reference signal.
[0035] This configuration makes it possible to increase a transmit power of a transmission
antenna port with a high priority of the mobile station apparatus, for example, a
transmission antenna port through which a signal is transmitted, and also makes it
possible to decrease a transmit power of a transmission antenna port with a low priority,
for example, an antenna port through which the signal is not transmitted. Thereby,
it becomes possible to perform flexible TPC according to a priority of the transmission
antenna port.
[0036] (12) In addition, in the radio communication method of the present invention, the
first reference signal is transmitted from the mobile station apparatus at a timing
set by the base station apparatus in order that the base station apparatus performs
uplink channel measurement, and the second reference signal is transmitted from the
mobile station apparatus only the specific number of times when the base station apparatus
requests transmission of the second reference signal from the mobile station apparatus
in order that the base station apparatus performs the uplink channel measurement.
[0037] This configuration allows the radio communication method of the present invention
to be applied to the radio communication system of LTE-A (Long Term Evolution-Advanced).
[0038] (13) In addition, an integrated circuit of the present invention is the integrated
circuit which causes a mobile station apparatus to exhibit a plurality of functions
by being mounted in the mobile station apparatus, and the integrated circuit causes
the mobile station apparatus to exhibit a series of functions including functions
of: transmitting a first reference signal which is transmitted at a timing set by
a base station apparatus in order that the base station apparatus performs uplink
channel measurement, or a second reference signal which is transmitted only the specific
number of times when transmission of the second reference signal is requested from
the base station apparatus in order that the base station apparatus performs the uplink
channel measurement; receiving a first parameter used for TPC of the first reference
signal and a second parameter used for TPC of the second reference signal, the first
parameter and the second parameter being set by the base station apparatus; performing
TPC of the first reference signal using the first parameter while performing TPC of
the second reference signal using the second parameter; and transmitting to the base
station apparatus the first reference signal and/or the second reference signal on
which the TPC has been performed.
[0039] This configuration allows the base station apparatus to set the first parameter and
the second parameter to each of the first reference signal and the second reference
signal according to bandwidths (the number of PRBs) of the first reference signal
and the second reference signal, etc., and to perform optimal TPC on each of the first
reference signal or the second reference signal which is transmitted by the mobile
station apparatus. In addition, this configuration allows the integrated circuit of
the present invention to be applied to the radio communication system of LTE-A (Long
Term Evolution-Advanced).
[0040] (14) In addition, the integrated circuit of the present invention is mounted in the
mobile station apparatus including a plurality of transmission antenna ports, and
further includes functions of: receiving a first parameter and a second parameter
to each of the plurality of transmission antenna ports transmitted by the base station
apparatus; and performing TPC of the first reference signal using the first parameter
for each the transmission antenna port when the first reference signal is transmitted
and performing TPC of the second reference signal using the second parameter for each
the transmission antenna port when the second reference signal is transmitted.
[0041] This configuration makes it possible to increase a transmit power of a transmission
antenna port with a high priority of the mobile station apparatus, for example, a
transmission antenna port through which a signal is transmitted, and also makes it
possible to decrease a transmit power of a transmission antenna port with a low priority,
for example, an antenna port through which the signal is not transmitted. Thereby,
it becomes possible to perform flexible TPC according to a priority of the transmission
antenna port.
[0042] (15) In addition, an integrated circuit of the present invention is the integrated
circuit which causes a base station apparatus to exhibit a plurality of functions
by being mounted in the base station apparatus, and the integrated circuit causes
the base station apparatus to exhibit a series of functions including functions of:
setting a first parameter used for TPC of a first reference signal which is transmitted
from the mobile station apparatus at a set timing in order that the own apparatus
performs uplink channel measurement, or a second parameter used for TPC of a second
reference signal which is transmitted from the mobile station apparatus only the specific
number of times when the own apparatus requests transmission of the second reference
signal from the mobile station apparatus in order to perform the uplink channel measurement;
and notifying the mobile station apparatus of the set first parameter and second parameter.
[0043] This configuration allows the base station apparatus to set a first parameter and
a second parameter to each of a first reference signal and a second reference signal
according to bandwidths (the number of PRBs) of the first reference signal and the
second reference signal, etc., and to perform optimal TPC on each of the first reference
signal or the second reference signal which is transmitted by the mobile station apparatus.
In addition, this configuration allows the integrated circuit of the present invention
to be applied to the radio communication system of LTE-A (Long Term Evolution-Advanced).
[0044] (16) In addition, the integrated circuit of the present invention further includes
a function of setting the first parameter and the second parameter to each of a plurality
of transmission antenna ports included in the mobile station apparatus.
[0045] This configuration makes it possible to increase a transmit power of a transmission
antenna port with a high priority of the mobile station apparatus, for example, a
transmission antenna port through which a signal is transmitted, and also makes it
possible to decrease a transmit power of a transmission antenna port with a low priority,
for example, an antenna port through which the signal is not transmitted. Thereby,
it becomes possible to perform flexible TPC according to a priority of the transmission
antenna port.
Advantage of the Invention
[0046] According to the present invention, a base station apparatus can perform optimal
TPC on each of a first reference signal (periodic SRS) and a second reference signal
(aperiodic SRS) which are transmitted by a mobile station apparatus.
Brief Description of the Drawings
[0047]
Fig. 1 is a conceptual illustration of a radio communication system of the present
embodiment;
Fig. 2 is a schematic chart showing one example of a configuration of an uplink radio
frame of the present embodiment;
Fig. 3 is a chart illustrating a radio resource for transmitting an SRS of the present
embodiment;
Fig. 4 is a chart showing a detailed configuration of a sounding subframe of the present
embodiment;
Fig. 5 is a chart illustrating a transmission method of an SRS of the present embodiment;
Fig. 6 is a schematic block diagram showing a configuration of a base station apparatus
3 of the present embodiment;
Fig. 7 is a schematic block diagram showing a configuration of a mobile station apparatus
1 of the present embodiment;
Fig. 8 is a sequence chart showing one example of operations of the mobile station
apparatus 1 and the base station apparatus 3 of the present embodiment;
Fig. 9 is a flow chart showing one example of operations of the mobile station apparatus
1 of the present embodiment; and
Fig. 10 is a flow chart showing one example of operations of the mobile station apparatus
1 of a modified example of the present embodiment.
Best Modes for Carrying Out the Invention
(First embodiment)
[0048] Hereinafter, a first embodiment of the present invention will be described in detail
with reference to drawings.
<Regarding radio communication system>
[0049] Fig. 1 is a conceptual illustration of a radio communication system of the present
embodiment. In Fig. 1, the radio communication system includes mobile station apparatuses
1A to 1C and a base station apparatus 3. Fig. 1 shows that in radio communication
from the base station apparatus 3 to the mobile station apparatuses 1A to 1C (downlink),
allocated are an SCH (Synchronization Channel), a downlink pilot channel (or, also
referred to as a "DL RS (Downlink Reference Signal)"), a PBCH (Physical Broadcast
Channel), a PDCCH (Physical Downlink Control Channel), a PDSCH (Physical Downlink
Shared Channel), a PMCH (Physical Multicast Channel), a PCFICH (Physical Control Format
Indicator Channel), and a PHICH (Physical Hybrid ARQ Indicator Channel).
[0050] In addition, Fig. 1 shows that in radio communication from the mobile station apparatuses
1A to 1C to the base station apparatus 3 (uplink), allocated are an uplink pilot channel
(or, also referred to as a "UL RS (Uplink Reference Signal)"), a PUCCH (Physical Uplink
Control Channel), a PUSCH (Physical Uplink Shared Channel), and a PRACH (Physical
Random Access Channel). The UL RS includes a reference signal for demodulation of
the PUSCH and the PUCCH (DMRS (Demodulation Reference Signal)) and a reference signal
for uplink channel estimation (SRS (Sounding Reference Signal). Hereinafter, the mobile
station apparatuses 1A to 1C are referred to as a mobile station apparatus 1.
<Regarding uplink radio frame>
[0051] Fig. 2 is a schematic chart showing one example of a configuration of an uplink radio
frame of the present embodiment. Fig. 2 shows a configuration of a certain radio frame
in an uplink. In Fig. 2, a horizontal axis indicates a time domain and a vertical
axis indicates a frequency domain. As shown in Fig. 2, the uplink radio frame is configured
with a plurality of uplink PRB pairs (for example, a region surrounded with a dashed
line in Fig. 2). This uplink PRB pair is a unit of radio resource allocation, etc.
, and is configured with a frequency band with a predetermined width (PRB bandwidth;
180 kHz) and a time zone (two slots are equal to one subframe; 1 ms).
[0052] One uplink PRB pair is configured with two uplink PRBs (PRB bandwidth x slot) contiguous
in the time domain. One uplink PRB (a unit surrounded with a thick line in Fig. 2)
is configured with twelve subcarriers (15 kHz) in the frequency domain and configured
with seven SC-FDMA symbols (71 µs) in the time domain.
[0053] In the time domain, included are a slot (0.5 ms) configured with seven SC-FDMA (Single-Carrier
Frequency Division Multiple Access) symbols (71 µs), a subframe (1 ms) configured
with two slots, and a radio frame (10 ms) configured with ten subframes. In the frequency
domain, a plurality of uplink PRBs is arranged according to an uplink bandwidth. It
is to be noted that a unit configured with one subcarrier and one SC-FDMA symbol is
referred to as an uplink resource element.
[0054] Hereinafter, a channel which is allocated in the uplink radio frame will be described.
In each uplink subframe, for example, a PUCCH, a PUSCH, a DMRS, and an SRS are allocated.
[0055] First, the PUCCH will be described. The PUCCH is allocated to uplink PRB pairs (regions
hatched with rising oblique lines from bottom left to top right) of both ends of an
uplink bandwidth. In the PUCCH, arranged is a signal of UCI (Uplink Control Information),
which is the information used for controlling communication, such as CQI (Channel
Quality Information) indicating a downlink channel quality, an SR (Scheduling Request)
indicating a request for uplink radio resource allocation, and ACK/NACK which are
reception responses to the PDSCH.
[0056] Next, the PUSCH will be described. The PUSCH is allocated to uplink PRB pairs (region
without hatching) other than the uplink PRBs in which the PUCCH is assigned. In the
PUSCH, assigned are signals of the UCI and data information (Transport Block), which
is the information other than the UCI. A radio resource of the PUSCH is allocated
using an uplink grant, and is assigned in an uplink subframe after a predetermined
time from the subframe having received the PDCCH including the uplink grant.
[0057] Next, the SRS and the DMRS will be described. Fig. 3 is a chart illustrating a radio
resource for transmitting an SRS of the present embodiment. In Fig. 3, a horizontal
axis indicates a time domain. The base station apparatus 3 sets a sounding subframe,
which is the subframe for the mobile station apparatus 1 to reserve a radio resource
for transmitting an SRS. Specifically, the sounding subframe is given an offset from
a criterial subframe and a period. In addition, the sounding subframe is common to
all the mobile station apparatuses 1. In addition, the base station apparatus 3 sets
a sounding subframe and a radio resource for the mobile station apparatus 1 to actually
transmit the SRS, and the mobile station apparatus 1 periodically transmits the SRS
in accordance with the setting.
[0058] Fig. 4 is a chart showing a detailed configuration of a sounding subframe of the
present embodiment. However, in Fig. 4, only bands which can be utilized as a PUSCH
are depicted, and frequency bands for transmitting a PUCCH and a PRACH are omitted.
In Fig. 4, a horizontal axis indicates a time domain and a vertical axis indicates
a frequency domain. In the frequency domain, one block represents a subcarrier. As
shown in Fig. 4, each of the SC-FDMA symbols can be utilized for different applications,
and a No. 3 SC-FDMA symbol in each slot is utilized for transmission of the DMRS.
A sixth SC-FDMA symbol in a No. 1 slot is utilized for transmission of the SRS. The
base station apparatus 3 sets a bandwidth of the radio resource reserved for SRS transmission
in addition to a bandwidth which can be utilized as the PUSCH, and a radio resource
which has not been reserved for SRS transmission in the sixth SC-FDMA symbol in the
No. 1 slot can be utilized as the PUSCH.
[0059] SC-FDMA symbols other than the sixth SC-FDMA symbol in the No. 1 slot are utilized
for PUSCH transmission. Here, in the DMRS and the SRS, an orthogonal code is utilized
for multiplexing with other mobile station apparatuses 1, and for identifying an antenna,
and utilized is a sequence obtained by cyclic shifting a CAZAC (Constant Amplitude
and zero-autocorrelation) sequence on a time axis. Although the DMRS is multiplexed
with an SC-FDMA symbol different from the PUSCH when time-multiplexed with the PUCCH,
a detailed description thereof is omitted for simplifying a description.
[0060] Fig. 5 is a chart illustrating a transmission method of an SRS of the present embodiment.
In Fig. 5, a horizontal axis indicates a time domain and a vertical axis indicates
a frequency domain. The base station apparatus 3 performs setting regarding transmission
of an SRS common to the mobile station apparatuses 1. In this setting, the base station
apparatus 3 sets a position of the sounding subframe, which is the subframe for which
the radio resource for SRS transmission has been reserved, and a bandwidth of the
radio resource reserved for SRS transmission.
[0061] In addition, the base station apparatus 3 sets to each of the mobile station apparatuses
1 a subframe which transmits an SRS periodically, a frequency band, and an amount
of cyclic shift used for the CAZAC sequence of a periodic SRS. Hereinafter, the SRS
transmitted periodically is referred to as a periodic SRS. A subframe which transmits
the periodic SRS is a part of the sounding subframe, and a frequency band for transmitting
the periodic SRS is a part of a frequency band reserved for SRS transmission.
[0062] In addition, the base station apparatus 3 sets to each of the mobile station apparatuses
1 setting of an aperiodic SRS (or one shot SRS, or a scheduled SRS) which the mobile
station apparatus 1 transmits only when the base station apparatus requests by an
indicator which requests the SRS, the indicator included in DCI (Downlink Control
Information) transmitted via the PDCCH. In this setting, the base station apparatus
3 sets a frequency band for transmitting the aperiodic SRS and an amount of cyclic
shift used for a CAZAC sequence of the aperiodic SRS.
[0063] It is to be noted that in the description, a periodic SRS is defined to configure
a first reference signal, and an aperiodic SRS is defined to configure a second reference
signal.
[0064] In Fig. 5, subframes of even numbers are sounding subframes, and a band C is a bandwidth
of the radio resource reserved for SRS transmission. In addition, the mobile station
apparatus 1 is configured to transmit a periodic SRS in {fourth, eighth, twelfth,
sixteenth, twentieth, and twenty-fourth} subframes of the sounding subframes, a band
for the mobile station apparatus 1 to transmit the periodic SRS is a band A which
is a part of the band C, and the mobile station apparatus 1 transmits the periodic
SRS by one transmission of the periodic SRS in any one of a band A1, a band A2, and
a band A3, each corresponding to one-third of the bandwidth of the band A. An order
of transmitting the periodic SRS in the band A1, the band A2, and the band A3 is predetermined.
[0065] In addition, in Fig. 5, a band B, which is a part of the band C, is a frequency band
set for aperiodic SRS transmission, and it is requested by the base station apparatus
3 that the mobile station apparatus 1 transmits the aperiodic SRS in {second, sixth
and eighteenth} subframes of the sounding subframes. It is to be noted that the band
A may be the same frequency band as the band B and/or the band C, a number to divide
the band A may be a number other than three, the band A need not be divided, the band
B may not have the same frequency band as the band C, and that the band B need not
include the band A. It is to be noted that the periodic SRS may be set so as to transmit
an SRS only once.
<Regarding TPC (Transmit Power Control)>
[0066] In an uplink of the present embodiment, TPC of a periodic SRS and aperiodic SRS is
performed for the purpose of suppressing power consumption of the mobile station apparatus
1, or reducing given interference to other cells. Shown is a formula used to determine
transmit power values of the periodic SRS and the aperiodic SRS of the present embodiment.
[0067] 
In Formula (2), P
SRS(i) indicates a transmit power value of an SRS in an i-th subframe. min {X, Y} is
a function for selecting a minimum value of X and Y. P
O_PUSCH is a transmit power as the basis of the PUSCH, and is a value specified by a higher
layer. M
SRS indicates the number of PRBs (Physical Resource Blocks), which are units for allocation
of a radio resource used for SRS transmission, etc., and indicates that a transmit
power becomes larger as the number of PRBs used for SRS transmission increases. In
addition, PL indicates a path loss, and α is a coefficient multiplied to the path
loss and is specified by the higher layer. f is an offset value (a TPC value by a
closed loop or an open loop) calculated based on a TPC command transmitted by DCI
assigned in the PDCCH, and is a parameter common to the PUSCH and the SRS. In addition,
P
CMAX is a maximum transmit power value, and may be physical maximum transmit power or
may be specified by the higher layer.
[0068] P
SRS_OFFSET (k) is an offset indicating a difference of transmit powers as the basis of the PUSCH
and that of the SRS, and is a value specified by the higher layer. k indicates the
periodic SRS or the aperiodic SRS, and, for example, it is defined to be k=0 in a
case of the periodic SRS, and k=1 in a case of the aperiodic SRS. Each of P
SRS_OFFSET (0) of the periodic SRS and P
SRS_OFFSET (1) of the aperiodic SRS is specified by the higher layer. As described above, by
setting the P
SRS_OFFSET separately in the periodic SRS and the aperiodic SRS, TPC can be flexibly performed
in consideration of applications of the periodic SRS and the aperiodic SRS, and a
bandwidth (the number of PRBs) M
SRS, and a maximum transmit power value P
CMAX.
[0069] For example, assume that P
SRS_OFFSET is common in the periodic SRS and the aperiodic SRS, P
CMAX=23 [dBm], the periodic SRS P
SRS=20 [dBm], the periodic SRS M
SRS=4, and the aperiodic SRS M
SRS=16, a power which the mobile station apparatus 1 calculates as a transmit power of
the aperiodic SRS becomes 26 [dBm], which exceeds the P
CMAX, and the mobile station apparatus 1 transmits the aperiodic SRS at P
CMAC=23 [dBm]. However, although the base station apparatus 3 cannot perform proper channel
measurement since it does not know a parameter of the PL, and thus does not understand
that the calculated transmit power of the aperiodic SRS exceeds the P
CMAX, and that the aperiodic SRS is transmitted by the power of the P
CMAX, by using the present embodiment, the base station apparatus 3 can set P
SRS_OFFSET separately according to the M
SRS of the periodic SRS and the aperiodic SRS so that values calculated as transmit powers
of the periodic SRS and the aperiodic SRS do not exceed the P
CMAX.
<Regarding configuration of base station apparatus 3>
[0070] Fig. 6 is a schematic block diagram showing a configuration of the base station apparatus
3 of the present embodiment. As shown in the drawing, the base station apparatus 3
includes a higher layer processing unit 101, a control unit 103, a reception unit
105, a transmission unit 107, a channel measurement unit 109, and a transmission/reception
antenna 111. In addition, the higher layer processing unit 101 includes a radio resource
control unit 1011, an SRS setting unit 1013, and a transmit power setting unit 1015.
In addition, the reception unit 105 includes a decoding unit 1051, a demodulation
unit 1053, a demultiplexing unit 1055, and a radio reception unit 1057. In addition,
the transmission unit 107 includes a coding unit 1071, a modulation unit 1073, a multiplexing
unit 1075, a radio transmission unit 1077, and a DL RS generation unit 1079.
[0071] The higher layer processing unit 101 performs processing of a PDCP (Packet Data Convergence
Protocol) layer, an RLC (Radio Link Control) layer, and an RRC (Radio Resource Control)
layer.
[0072] The radio resource control unit 1011 provided in the higher layer processing unit
101 generates information which is assigned in each channel of the downlink, or obtains
the information from an higher node, and outputs it to the transmission unit 107.
In addition, the radio resource control unit 1011 allocates a radio resource in which
the mobile station apparatus 1 assigns the PUSCH (data information) from among uplink
radio resources. In addition, the radio resource control unit 1011 determines a radio
resource in which the PDSCH (data information) is assigned from among downlink radio
resources. The radio resource control unit 1011 generates DCI indicating allocation
of the radio resource, and transmits the DCI to the mobile station apparatus 1 through
the transmission unit 107. The radio resource control unit 1011 preferentially allocates
a radio resource with a good channel quality on the basis of an uplink channel measurement
result having input from the channel measurement unit 109 in allocating the radio
resource in which the PUSCH is assigned.
[0073] The radio resource control unit 1011 generates control information in order to control
the reception unit 105 and the transmission unit 107 based on UCI (ACK/NACK, channel
quality information and an SR) notified from the mobile station apparatus 1 via the
PUCCH, and a buffer condition notified from the mobile station apparatus 1, and various
setting information of each of the mobile station apparatuses 1 set by the radio resource
control unit 1011, and outputs the control information to the control unit 103.
[0074] The SRS setting unit 1013 sets a sounding subframe, which is the subframe for the
mobile station apparatuses 1 to reserve a radio resource for transmitting an SRS,
and a bandwidth of the radio resource reserved to transmit the SRS within the sounding
subframe, generates the setting as system information, and broadcast-transmits it
via the PDSCH through the transmission unit 107. In addition, the SRS setting unit
1013 sets to each of the mobile station apparatuses 1 a subframe for periodically
transmitting a periodic SRS, a frequency band, and an amount of cyclic shift used
for a CAZAC sequence of the periodic SRS, generates the setting as a radio resource
control signal, and notifies each of the mobile station apparatuses 1 of the radio
resource control signal via the PDSCH through the transmission unit 107.
[0075] In addition, the SRS setting unit 1013 sets to each of the mobile station apparatuses
1 a frequency band for transmitting an aperiodic SRS, and an amount of cyclic shift
used for a CAZAC sequence of the aperiodic SRS, generates the setting as a radio resource
control signal, and notifies each of the mobile station apparatuses 1 of the radio
resource control signal via the PDSCH through the transmission unit 107. In addition,
the SRS setting unit 1013, when requesting an aperiodic SRS from the mobile station
apparatus 1, generates an SRS indicator which indicates requesting the aperiodic SRS
from the mobile station apparatus 1, and notifies the mobile station apparatus 1 of
the SRS indicator via the PDCCH through the transmission unit 107.
[0076] The transmit power setting unit 1015 sets transmit powers of the PUCCH, the PUSCH,
the periodic SRS, and the aperiodic SRS. Specifically, the transmit power setting
unit 1015 sets a transmit power so that the PUSCH etc. satisfy a predetermined channel
quality, also in consideration of interference to the adjacent base station apparatus
3 and power consumption of the mobile station apparatus 1 according to information
indicating an interference amount from an adjacent base station apparatus 3, information
indicating the interference amount given to the adjacent base station apparatus 3
which has been notified from the adjacent base station apparatus 3, and a channel
quality having input from the channel measurement unit 109, etc., and transmits information
indicating the setting to the mobile station apparatus 1 through the transmission
unit 107.
[0077] Specifically, the transmit power setting unit 1015 sets P
O_PUSCH, α, P
SRS_OFFSET (0) for the periodic SRS (a first parameter), P
SRS_OFFSET (1) for the aperiodic SRS (a second parameter) in Formula (2), generates the setting
as a radio resource control signal, and notifies each of the mobile station apparatuses
1 of the radio resource control signal via the PDSCH through the transmission unit
107. In addition, the transmit power setting unit 1015 sets a TPC command for calculating
f in Formula (2), generates a TPC command, and notifies each of the mobile station
apparatuses 1 of the TPC command via the PDCCH through the transmission unit 107.
[0078] The control unit 103 generates a control signal which performs control of the reception
unit 105 and the transmission unit 107 based on the control information from the higher
layer processing unit 101. The control unit 103 outputs the generated control signal
to the reception unit 105 and the transmission unit 107, and performs control of the
reception unit 105 and the transmission unit 107.
[0079] The reception unit 105 separates, demodulates, and decodes the received signal received
from the mobile station apparatus 1 through the transmission/reception antenna 111
in accordance with the control signal input from the control unit 103, and outputs
the decoded information to the higher layer processing unit 101. The radio reception
unit 1057 converts (down-converts) into an intermediate frequency the uplink signal
received through the transmission/reception antenna 111, removes an unnecessary frequency
component, controls an amplification level so that a signal level is maintained appropriately,
orthogonally demodulates the signal based on an in-phase component and an orthogonal
component of the received signal, and converts the orthogonally demodulated analog
signal into a digital signal. The radio reception unit 1057 removes a portion corresponding
to a GI (Guard Interval) from the converted digital signal. The radio reception unit
1057 performs FFT (Fast Fourier Transform) on the signal from which the GI has been
removed to extract a signal in the frequency domain, and outputs the signal to the
demultiplexing unit 1055.
[0080] The demultiplexing unit 1055 separates the signals input from the radio reception
unit 1057 into signals, such as a PUCCH, a PUSCH, a DMRS, and an SRS, respectively.
It is to be noted that this separation is performed based on the allocation information
of the radio resource which has been previously determined and notified to each mobile
station apparatus 1 by the base station apparatus 3. In addition, the demultiplexing
unit 1055 compensates a channel of the PUCCH and the PUSCH based on an estimate value
input from the channel measurement unit 109. In addition, the demultiplexing unit
1055 outputs the separated DMRS and SRS to the channel measurement unit 109.
[0081] The demodulation unit 1053 performs IDFT (Inverse Discrete Fourier Transform) on
the PUSCH, obtains a modulation symbol, and demodulates the received signal with respect
to the respective modulation symbols of the PUCCH and the PUSCH using a predetermined
modulation scheme, such as BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase
Shift Keying), 16QAM (16Quadrature Amplitude Modulation), and 64QAM (64Quadrature
Amplitude Modulation), or a modulation scheme which has been previously notified from
the base station apparatus 3 to each of the mobile station apparatuses 1 by downlink
control information.
[0082] The decoding unit 1051 decodes the demodulated encoded bits of the PUCCH and the
PUSCH using a predetermined coding rate of a predetermined coding scheme or using
a coding rate preliminarily notified from the base station apparatus 3 to the mobile
station apparatus 1 by the uplink grant, and outputs the decoded data information
and the UCI to the higher layer processing unit 101.
[0083] The channel measurement unit 109 measures an estimate value of a channel, a channel
quality, etc. based on the DMRS and the SRS input from the demultiplexing unit 1055,
and outputs them to the demultiplexing unit 1055 and the higher layer processing unit
101.
[0084] The transmission unit 107 generates a DL RS in accordance with the control signal
input from the control unit 103, encodes and modulates the data information and the
DCI which have been input from the higher layer processing unit 101, multiplexes the
PDCCH, the PDSCH, and the DL RS, and transmits the signal to the mobile station apparatus
1 through the transmission/reception antenna.
[0085] The coding unit 1071 performs coding, such as turbo coding, convolution coding, block
coding, on the DCI and the data information which have been input from the higher
layer processing unit 101. The coding unit 1071 modulates the coded bit using a modulation
scheme, such as QPSK, 16QAM, and 64QAM. The DL RS generation unit 1079 generates as
a DL RS a known sequence of the mobile station apparatus 1 which can be calculated
by a rule predetermined based on a cell ID for identifying the base station apparatus
3. The multiplexing unit 1075 multiplexes each modulated channel and the generated
DL RS.
[0086] The radio transmission unit 1077 performs IFFT (Inverse Fast Fourier Transform) on
the multiplexed modulation symbol to perform modulation of an OFDM system, adds a
GI to the OFDM-modulated OFDM symbol, generates a digital signal of a baseband, converts
the digital signal of the baseband into an analog signal, generates an in-phase component
and an orthogonal component of an intermediate frequency from the analog signal, removes
an excessive frequency component with respect to an intermediate frequency band, converts
(up-converts) a signal of the intermediate frequency into a high-frequency signal,
removes an excessive frequency component, amplifies power, and outputs the resultant
signal to the transmission/reception antenna 111 for transmission.
<Regarding configuration of mobile station apparatus 1>
[0087] Fig. 7 is a schematic block diagram showing a configuration of the mobile station
apparatus 1 according to the embodiment. As shown in the drawing, the mobile station
apparatus 1 includes a higher layer processing unit 201, a control unit 203, a reception
unit 205, a transmission unit 207, a channel measurement unit 209, and a transmission/reception
antenna 211. In addition, the higher layer processing unit 201 includes a radio resource
control unit 2011, an SRS control unit 2013, and a transmit power control unit 2015.
In addition, the reception unit 205 includes a decoding unit 2051, a demodulation
unit 2053, a demultiplexing unit 2055, and a radio reception unit 2057. In addition,
the transmission unit 207 includes a coding unit 2071, a modulation unit 2073, a multiplexing
unit 2075, and a radio transmission unit 2077.
[0088] The higher layer processing unit 201 outputs uplink data information generated by
user operation etc. to the transmission unit 207. In addition, the higher layer processing
unit 201 performs processing on the PDCP layer, the RLC layer, and the RRC layer.
[0089] The radio resource control unit 2011 provided in the higher layer processing unit
201 manages various setting information of the mobile station apparatus 1 itself.
In addition, the radio resource control unit 2011 generates information to be assigned
in each uplink channel, and outputs it to the transmission unit 207. The radio resource
control unit 2011 generates control information in order to control the reception
unit 205 and the transmission unit 207 based on various setting information of the
mobile station apparatus 1 itself which is set by the DCI notified from the base station
apparatus 3 via the PDCCH and radio resource control information notified from the
base station apparatus 3 via the PDSCH, and which is managed by the radio resource
control unit 2011, and outputs the control information to the control unit 203.
[0090] The SRS control unit 2013 provided in the higher layer processing unit 201 obtains
from the reception unit 205 information indicating a sounding subframe, which is the
subframe for the base station apparatus 3 to reserve a radio resource for transmitting
an SRS broadcasted by the base station apparatus 3, and a bandwidth of a radio resource
which is reserved to transmit the SRS within the sounding subframe, and information
indicating the subframe and a frequency band for transmitting a periodic SRS notified
from the base station apparatus 3 to the mobile station apparatus 3 itself, and the
amount of cyclic shift used for the CAZAC sequence of the periodic SRS, and information
indicating a frequency band for transmitting an aperiodic SRS notified from the base
station apparatus 3 to the mobile station apparatus 3 itself, and the amount of cyclic
shift used for a CAZAC sequence of the aperiodic SRS.
[0091] The SRS control unit 2013 controls SRS transmission in accordance with the information.
Specifically, the SRS control unit 2013 controls the transmission unit 207 so as to
transmit the periodic SRS once or periodically in accordance with information on the
periodic SRS. In addition, when transmission of an aperiodic SRS is requested by the
SRS indicator input from the transmission unit 207, the SRS control unit 2013 transmits
the aperiodic SRS only a predetermined number of times (for example, once) in accordance
with information on the aperiodic SRS.
[0092] The transmit power control unit 2015 provided in the higher layer processing unit
201 outputs control information to the control unit 203 so as to perform control of
a transmit power on the basis of information indicating setting of transmit powers
of the PUCCH, the PUSCH, the periodic SRS, and the aperiodic SRS. Specifically, the
transmit power control unit 2015 controls each of the transmit power of the periodic
SRS, and the transmit power of the aperiodic SRS from Formula (2) based on P
O_PUSCH obtained from the transmission unit 207, α, P
SRS_OFFSET (0) for the periodic SRS (a first parameter), P
SRS_OFFSET (1) for the aperiodic SRS (a second parameter), and a TPC command. It is to be noted
that P
SRS_OFFSET switches a parameter according to the periodic SRS or the aperiodic SRS.
[0093] The control unit 203 generates a control signal which performs control of the reception
unit 205 and the transmission unit 207 based on the control information from the higher
layer processing unit 201. The control unit 203 outputs the generated control signal
to the reception unit 205 and the transmission unit 207, and performs control of the
reception unit 205 and the transmission unit 207.
[0094] The reception unit 205 separates, demodulates, and decodes the received signal received
from the base station apparatus 3 through the transmission/reception antenna 211 in
accordance with the control signal input from the control unit 203, and outputs the
decoded information to the higher layer processing unit 201.
[0095] The radio reception unit 2057 converts (down-converts) into an intermediate frequency
the downlink signal received through each reception antenna, removes an unnecessary
frequency component, controls an amplification level so that a signal level is maintained
appropriately, orthogonally demodulates the signal based on an in-phase component
and an orthogonal component of the received signal, and converts the orthogonally
demodulated analog signal into a digital signal. The radio reception unit 2057 removes
a portion corresponding to a GI from the converted digital signal, performs FFT with
respect to the signal from which the GI has been removed, and extracts signals of
the frequency domain.
[0096] The demultiplexing unit 2055 separates the extracted signals into a PDCCH, a PDSCH,
and a DL RS, respectively. It is to be noted that this separation is performed based
on the radio resource allocation information notified by the DCI. In addition, the
demultiplexing unit 2055 compensates a channel of the PUCCH and the PUSCH based on
a channel estimate value input from the channel measurement unit 209. In addition,
the demultiplexing unit 2055 outputs the separated DL RS to the channel measurement
unit 209.
[0097] The demodulation unit 2053 demodulates the PDCCH in a QPSK modulation scheme, and
outputs it to the decoding unit 2051. The demodulation unit 2053 performs demodulation
on the PDSCH in the modulation scheme notified by the DCI, such as QPSK, 16QAM, and
64QAM, and outputs the demodulated PDSCH to the decoding unit 2051. When the decoding
unit 2051 tries to decode the PDCCH to succeed in decoding, it outputs the decoded
DCI to the higher layer processing unit 201. The decoding unit 2051 performs decoding
on a coding rate notified by the DCI, and outputs the decoded data information to
the higher layer processing unit 201.
[0098] The channel measurement unit 209 measures a downlink path loss based on the DL RS
input from the demultiplexing unit 2055, and outputs the measured path loss to the
higher layer processing unit 201. In addition, the channel measurement unit 209 calculates
an estimate value of a downlink channel based on the DL RS, and outputs it to the
demultiplexing unit 2055.
[0099] The transmission unit 207 generates a DMRS and/or an SRS in accordance with the control
signal input from the control unit 203, encodes and modulates the data information
input from the higher layer processing unit 201, multiplexes the PUCCH, the PUSCH,
and the generated DMRS and/or SRS, adjusts the transmit powers of the PUCCH, the PUSCH,
the DMRS, and the SRS, and transmits them to the base station apparatus 3 through
the transmission/reception antenna.
[0100] The coding unit 2071 performs coding, such as turbo coding, convolution coding, block
coding, of the UCI and the data information which have been input from the higher
layer processing unit 201. The modulation unit 2073 modulates the encoded bit input
from the coding unit 2071 in the modulation scheme, such as BPSK, QPSK, 16QAM, and
64QAM.
[0101] A UL RS generation unit 2079 generates a known CAZAC sequence of the base station
apparatus 3 which is calculated by a rule predetermined based on a cell ID for identifying
the base station apparatus 3, a bandwidth in which the DMRS and the SRS are assigned,
etc. In addition, the UL RS generation unit 2079 gives a cyclic shift to the generated
CAZAC sequence of the DMRS and the SRS in accordance with the control signal input
from the control unit 203.
[0102] The multiplexing unit 2075 performs DFT (Discrete Fourier Transform) after rearranging
the modulation symbols of the PUSCH in parallel in accordance with the control signal
input from the control unit 203, and multiplexes the signals of the PUCCH and the
PUSCH, and the generated DMRS and SRS.
[0103] The radio transmission unit 2077 performs IFFT on the multiplexed signal to perform
modulation of an SC-FDMA system, adds a GI to the SC-FDMA-modulated SC-FDMA symbol,
generates a baseband digital signal, converts the baseband digital signal into an
analog signal, generates an in-phase component and an orthogonal component of an intermediate
frequency from the analog signal, removes an excessive frequency component with respect
to an intermediate frequency band, converts (up-converts) the intermediate frequency
signal into a high-frequency signal, removes an excessive frequency component, amplifies
power, and outputs the resultant signal to the transmission/reception antenna for
transmission.
<Regarding operation of radio communication system>
[0104] Fig. 8 is a sequence chart showing one example of operations of the mobile station
apparatus 1 and the base station apparatus 3 of the present embodiment. The base station
apparatus 3 sets P
O_PUSCH, α, P
SRS_OFFSET (0) for the periodic SRS (a first parameter), P
SRS_OFFSET (1) for the aperiodic SRS (a second parameter) in Formula (2), and notifies the mobile
station apparatus 1 of the setting (step S100). The base station apparatus 3 sets
a sounding subframe, which is the subframe for the mobile station apparatus 1 to reserve
a radio resource for transmitting an SRS, and a bandwidth of the radio resource which
is reserved to transmit the SRS within the sounding subframe, and notifies the mobile
station apparatus 1 of the setting (step S101).
[0105] The base station apparatus 3 sets a subframe and a frequency band for transmitting
a periodic SRS, and an amount of cyclic shift used for a CAZAC sequence of the periodic
SRS, and notifies the mobile station apparatus 1 of the setting (step S102) The base
station apparatus 3 sets a frequency band for transmitting an aperiodic SRS, and an
amount of cyclic shift used for a CAZAC sequence of the aperiodic SRS, and notifies
the mobile station apparatus 1 of the setting (step S103). The mobile station apparatus
1 sets parameters notified in steps S100 to S103 (step S104).
[0106] The mobile station apparatus 1 transmits the periodic SRS once or periodically in
accordance with the parameter on the periodic SRS set in step S104 (step S105). It
is to be noted that a transmit power of the periodic SRS is calculated using the P
SRS_OFFSET (0) (first parameter) for the periodic SRS notified in step S100.
[0107] The base station apparatus 3 transmits an SRS indicator indicating a request for
transmission of the aperiodic SRS (step S106), and when the mobile station apparatus
1 determines that transmission of the aperiodic SRS is requested via the SRS indicator
(step S107), it transmits the aperiodic SRS a predetermined number of times (for example,
once) in accordance with the parameter on the aperiodic SRS set in step S104 (step
S108). It is to be noted that a transmit power of the aperiodic SRS is calculated
using the P
SRS_OFFSET (1) (second parameter) for the aperiodic SRS notified in step S100.
[0108] The mobile station apparatus 1 and the base station apparatus 3 finish processing
regarding transmission and reception of the aperiodic SRS after step S108. It is to
be noted that when the base station apparatus 3 has configured the mobile station
apparatus 1 so as to periodically transmit the periodic SRS, the mobile station apparatus
1 continues to periodically transmit the periodic SRS also after step S108 (step S109).
[0109] Fig. 9 is a flow chart showing one example of operations of the mobile station apparatus
1 of the present embodiment. The mobile station apparatus 1 receives the parameter
P
SRS_OFFSET (0) (first parameter) regarding the transmit power of the periodic SRS and the parameter
P
SRS_OFFSET (1) (second parameter) regarding the transmit power of the aperiodic SRS which have
been transmitted by the base station apparatus 3 (step S200) . When the mobile station
apparatus 1 transmits the aperiodic SRS (aperiodic SRS in step S201), it calculates
the transmit power of the aperiodic SRS using at least the P
SRS_OFFSET (1) (step S202) . When the mobile station apparatus 1 transmits the periodic SRS
(periodic SRS in step S201) in step S201, it calculates the transmit power of the
periodic SRS using at least the P
SRS_OFFSET (0) (step S203).
[0110] The mobile station apparatus 1 transmits the aperiodic SRS and/or the periodic SRS
with the transmit power calculated in step S202 and/or step S203 (step S204) . The
mobile station apparatus 1 finishes processing regarding TPC of the aperiodic SRS
and/or the periodic SRS after step S204.
[0111] As described above, according to the present embodiment, the base station apparatus
3 sets to the mobile station apparatus 1 the parameter P
SRS_OFFSET (0) (first parameter) used for TPC of the periodic SRS transmitted by the mobile
station apparatus 1 in accordance with the setting set by the base station apparatus
3 and notified to the mobile station apparatus 1, and the parameter P
SRS_OFFSET (1) (second parameter) used for TPC of the aperiodic SRS transmitted by the mobile
station apparatus 1 when the base station apparatus 3 requests transmission using
the SRS indicator, and the mobile station apparatus 1 performs TPC of the periodic
SRS using at least the P
SRS_OFFSET (0) (first parameter) in transmitting the periodic SRS, performs TPC of the aperiodic
SRS using at least the P
SRS_OFFSET (1) (second parameter) in transmitting the aperiodic SRS, and transmits the periodic
SRS and/or the aperiodic SRS.
[0112] As a result of this, the base station apparatus 3 can set a P
SRS_OFFSET to each of a periodic SRS and an aperiodic SRS according to bandwidths (the number
of PRBs) M
SRS of the periodic SRS and the aperiodic SRS, etc., and can perform optimal TPC on each
of the periodic SRS and the aperiodic SRS which are transmitted by the mobile station
apparatus 1.
(Modified example)
[0113] Hereinafter, a modified example of the present embodiment will be described. In the
modified example of the present embodiment, a case will be described where the mobile
station apparatus 1 includes a plurality of transmission antenna ports and the base
station apparatus 3 sets a P
SRS_OFFSET for each transmission antenna port of the mobile station apparatus 1. In an uplink
of the modified example of the present embodiment, TPC of a periodic SRS and an aperiodic
SRS is performed for each transmission antenna port. Shown is a formula used to determine
transmit power values of the periodic SRS and the aperiodic SRS for each transmission
antenna port of the present embodiment.
[0114] 
In Formula (3), P
SRS_OFFSET (k, p) is an offset indicating a difference of transmit powers as the basis of the
PUSCH and that of the SRS, and is a value specified by the higher layer. k indicates
the periodic SRS or the aperiodic SRS, and p indicates the transmission antenna port
of the mobile station apparatus 1. For example, assume that the mobile station apparatus
1 includes two transmission antenna ports of p=0 and p=1, and assume to be k=0 in
a case of the periodic SRS, and k=1 in a case of the aperiodic SRS, the base station
apparatus 3 notifies the mobile station apparatus 1 of four values: a P
SRS_OFFSET (0, 0) with respect to the transmission antenna port of p=0 and a P
SRS_OFFSET (0, 1) with respect to the transmission antenna port of p=1 in transmission of the
periodic SRS; and a P
SRS_OFFSET (1, 0) with respect to the transmission antenna port of p=0, and a P
SRS_OFFSET (1, 1) with respect to the transmission antenna port of p=1 in transmission of the
aperiodic SRS. Since other variables of Formula (3) are the same as those of Formula
(2), descriptions of the same variables are omitted.
[0115] Fig. 10 is a flow chart showing one example of operations of the mobile station apparatus
1 of the modified example of the present embodiment. The mobile station apparatus
1 receives a parameter P
SRS_OFFSET (0, p) (first parameter) for each transmission antenna port regarding the transmit
power of the periodic SRS, and a parameter P
SRS_OFFSET (1, p) (second parameter) for each transmission antenna port regarding the transmit
power of the aperiodic SRS, the parameters having been transmitted by the base station
apparatus 3 (step S300). When the mobile station apparatus 1 transmits the aperiodic
SRS (aperiodic SRS in step S301), it calculates the transmit power of the aperiodic
SRS for each transmission antenna port using at least the P
SRS_OFFSET (1, p) (step S302). When the mobile station apparatus 1 transmits the periodic SRS
(periodic SRS in step S301) in step S301, it calculates the transmit power of the
periodic SRS for each transmission antenna port using at least the P
SRS_OFFSET (0, p) (step S303) .
[0116] The mobile station apparatus 1 transmits the aperiodic SRS and/or the periodic SRS
with the transmit power for each transmission antenna port calculated in step S302
and/or step S303 (step S304). The mobile station apparatus 1 finishes processing regarding
TPC of the aperiodic SRS and/or the periodic SRS after step S304.
[0117] According to the modified example of the present embodiment as described above, the
base station apparatus 3 sets a P
SRS_OFFSET (k, p) to each of the plurality of transmission antenna ports provided in the mobile
station apparatus 1, and the mobile station apparatus 1 performs TPC of the periodic
SRS and the aperiodic SRS using at least the P
SRS_OFFSET (k, p) for each transmission antenna port in transmitting the periodic SRS and/or
the aperiodic SRS. As a result of this, the mobile station apparatus 1 can perform
control so as to increase a transmit power of a transmission antenna port with a high
priority (for example, a transmission antenna port transmitting a signal), and decrease
a transmit power of a transmission antenna port with a low priority (for example,
a transmission antenna port not transmitting a signal), thus enabling to perform flexible
control of a transmit power according to a priority of the transmission antenna port.
[0118] It is to be noted that although the P
SRS_OFFSET (0) for the periodic SRS (first parameter), and the P
SRS_OFFSET (1) for the aperiodic SRS (second parameter) are transmitted and received as parameters
regarding TPC in step S100 in Fig. 8 in the present embodiment, the P
SRS_OFFSET (0) (first parameter) for periodic SRS may be transmitted together with the parameter
regarding the periodic SRS in step S103, or the P
SRS_OFFSET (1) (second parameter) for aperiodic SRS may be transmitted together with the parameter
regarding the aperiodic SRS in step S102, or the P
SRS_OFFSET (0) (first parameter) and the P
SRS_OFFSET (1) (second parameter) may be transmitted together with any other parameters.
[0119] In addition, although in the present embodiment, the base station apparatus 3 transmits
the SRS indicator which requests the aperiodic SRS using the PDCCH when requesting
aperiodic SRS transmission from the mobile station apparatus 1, a transmission method
of the SRS indicator is not limited to this, and the SRS indicator may be transmitted
by a radio resource control signal, MAC (Medium Access Control), a CE (Control Element),
etc.
[0120] In addition, in the modified example of the present embodiment, the mobile station
apparatus 1 notifies the base station apparatus 3 of the number of transmission antenna
ports of the mobile station apparatus 1 itself, and thereby the base station apparatus
3 may be enabled to discriminate the number of transmission antenna ports of the mobile
station apparatus 1.
[0121] Characteristic means of the present invention described above can be achieved also
by mounting the means on an integrated circuit and controlling them. Namely, an integrated
circuit of the present invention is the integrated circuit applied to a radio communication
system having the base station apparatus 3 and the mobile station apparatus 1 which
transmits a first reference signal for uplink channel measurement at a timing set
by the base station apparatus 3, and which transmits a second reference signal for
the uplink channel measurement only the specific number of times when transmission
is requested by the base station apparatus 3, and the integrated circuit is characterized
by having: in the base station apparatus 3, means which sets a first parameter used
for TPC of the first reference signal and a second parameter used for TPC of the second
reference signal; and means which notifies the mobile station apparatus of the first
parameter and the second parameter; and in the mobile station apparatus 1, means which
performs TPC of the first reference signal using at least the first parameter in transmitting
the first reference signal, and which performs TPC of the second reference signal
using at least the second parameter in transmitting the second reference signal; and
means which transmits the first reference signal and/or the second reference signal.
[0122] As described above, in the radio communication system using the integrated circuit
of the present invention, the base station apparatus 3 can set a P
SRS_OFFSET to each of a periodic SRS and an aperiodic SRS according to bandwidths (the number
of PRBs) M
SRS of the periodic SRS and the aperiodic SRS, etc., and can perform optimal TPC to each
of the periodic SRS and the aperiodic SRS transmitted by the mobile station apparatus
1.
[0123] In addition, the integrated circuit of the present invention is characterized by
having: in the base station apparatus 3, means which sets a first parameter and a
second parameter to each of a plurality of transmission antenna ports provided in
the mobile station apparatus 1; and in the mobile station apparatus 1, means which
performs TPC of the first reference signal using at least the first parameter for
each transmission antenna port in transmitting the first reference signal, and which
performs TPC of the second reference signal using at least the second parameter for
each transmission antenna port in transmitting the second reference signal.
[0124] As described above, in the radio communication system using the integrated circuit
of the present invention, the base station apparatus 3 can perform control so as to
increase a transmit power of a transmission antenna port with a high priority (for
example, a transmission antenna port transmitting a signal) of the mobile station
apparatus 1, and decrease a transmit power of a transmission antenna port with a low
priority (for example, a transmission antenna port not transmitting a signal) thereof,
thus enabling to perform flexible control of a transmit power according to a priority
of the transmission antenna port.
[0125] A program that operates in the base station apparatus 3 and the mobile station apparatus
1 according to the present invention may be the program (program causing a computer
to operate) that controls a CPU (Central Processing Unit) etc. so as to achieve a
function in the above-mentioned embodiment according to the present invention. Additionally,
information dealt with in these apparatuses is temporarily stored in RAM (Random Access
Memory) at the time of processing thereof, subsequently stored in various ROMs, such
as a Flash ROM (Read Only Memory), and a HDD (Hard Disk Drive), and the information
is read, corrected/written by the CPU if needed.
[0126] It is to be noted that part of the mobile station apparatus 1 and the base station
apparatus 3 in the above-mentioned embodiment may be achieved with a computer. In
that case, the part of the apparatus may be achieved by recording a program for achieving
the above-described control function in a computer-readable recording medium, and
causing a computer system to read the program recorded in this recording medium and
execute it. It is to be noted that a "computer system" referred to herein shall be
the computer system incorporated in the mobile station apparatus 1 or the base station
apparatus 3, and shall include hardware, such as an OS and a peripheral device.
[0127] In addition, a "computer-readable recording medium" means a portable medium, such
as a flexible disk, a magnetic optical disk, a ROM, and a CD-ROM, and a memory storage
incorporated in the computer system, such as a hard disk. Further, the "computer-readable
recording medium" may also include a medium that dynamically holds a program for a
short time, and a medium that holds a program for a certain time as a volatile memory
inside the computer system serving as a server or a client when the program is dynamically
held for the short time as a communication wire used when the program is transmitted
through a communication line, such as a network like the Internet, and a telephone
line. In addition, the above-described program may be the program for achieving a
part of the above-mentioned functions and further, it may be the program in which
the above-mentioned functions can be achieved in combination with the program having
been already recorded in the computer system.
[0128] In addition, part or all of the mobile station apparatus 1 and the base station apparatus
3 in the above-mentioned embodiment may be achieved as an LSI, which typically is
an integrated circuit. Each functional block of the mobile station apparatus 1 and
the base station apparatus 3 may be individually formed into chips, or part or all
of the functional blocks may be integrated to form a chip. In addition, a technique
for making the functional blocks into an integrated circuit may be achieved not only
as the LSI but as a dedicated circuit or a general-purpose processor. In addition,
when a technology for making the functional blocks into the integrated circuit as
an alternative to the LSI appears due to progress of a semiconductor technology, it
is also possible to use an integrated circuit made by the technology.
[0129] As described above, although one embodiment of the present invention has been described
in detail with reference to the drawings, a specific configuration is not limited
to the above, and various changes of a design etc. can be made without departing from
the scope of the present invention.
Description of Symbols
[0130]
- 1 (1A to 1C)
- mobile station apparatus
- 3
- base station apparatus
- 101
- higher layer processing unit (base station side higher layer processing unit)
- 103
- control unit
- 105
- reception unit (base station side reception unit)
- 107
- transmission unit (base station side transmission unit)
- 109
- channel measurement unit
- 111
- transmission/reception antenna
- 201
- higher layer processing unit (mobile station side higher layer processing unit)
- 203
- control unit
- 205
- reception unit (mobile station side reception unit)
- 207
- transmission unit (mobile station side transmission unit)
- 209
- channel measurement unit
- 211
- transmission/reception antenna
- 1011
- radio resource control unit
- 1013
- SRS setting unit
- 1015
- transmit power setting unit
- 1051
- decoding unit
- 1053
- demodulation unit
- 1055
- demultiplexing unit
- 1057
- radio reception unit
- 1071
- coding unit
- 1073
- modulation unit
- 1075
- multiplexing unit
- 1077
- radio transmission unit
- 1079
- uplink reference signal generation unit
- 2011
- radio resource control unit
- 2013
- SRS control unit
- 2015
- transmit power control unit
- 2051
- decoding unit
- 2053
- demodulation unit
- 2055
- demultiplexing unit
- 2057
- radio reception unit
- 2071
- coding unit
- 2073
- modulation unit
- 2075
- multiplexing unit
- 2077
- radio transmission unit
- 2079
- uplink reference signal generation unit
1. A radio communication system in which a mobile station apparatus transmits a first
reference signal or a second reference signal to a base station apparatus, wherein
the base station apparatus
notifies the mobile station apparatus of a first parameter used for setting of a transmit
power for transmission of the first reference signal, and a second parameter used
for setting of a transmit power for transmission of the second reference signal, and
wherein
the mobile station apparatus
sets a transmit power for transmission of the first reference signal using the first
parameter while setting a transmit power for transmission of the second reference
signal using the second parameter.
2. The radio communication system according to claim 1, wherein notification of the first
parameter and the second parameter is performed by the base station apparatus using
a radio resource control signal.
3. The radio communication system according to claim 1 or 2, wherein
the base station apparatus
notifies the mobile station apparatus, using a radio resource control signal, of a
first radio resource by which the mobile station apparatus transmits the first reference
signal,
notifies the mobile station apparatus of a second radio resource by which the mobile
station apparatus is capable of transmitting the second reference signal, and
notifies the mobile station apparatus, via a physical downlink control channel, of
downlink control information which requests transmission of the second reference signal,
and wherein
the mobile station apparatus
transmits the first reference signal to the base station apparatus with the set transmit
power using the first radio resource, and
transmits, upon having received the downlink control information, the second reference
signal to the base station apparatus with the set transmit power using the second
radio resource.
4. The radio communication system according to claim 3, wherein notification of the second
radio resource is performed by the base station apparatus using system information.
5. The radio communication system according to claim 1, wherein
the mobile station apparatus includes a plurality of transmission antenna ports,
the base station apparatus notifies the mobile station apparatus of the first parameter
and the second parameter with respect to each of the plurality of transmission antenna
ports included in the mobile station apparatus, and
the mobile station apparatus sets a transmit power for transmission of the first reference
signal using the first parameter for each the transmission antenna port while setting
a transmit power for transmission of the second reference signal using the second
parameter for each the transmission antenna port.
6. A mobile station apparatus which transmits a first reference signal or a second reference
signal to a base station apparatus, the mobile station apparatus comprising
a mobile station side higher layer processing unit which sets a transmit power for
transmission of the first reference signal using a first parameter notified from the
base station apparatus, while setting a transmit power for transmission of the second
reference signal using a second parameter notified from the base station apparatus.
7. The mobile station apparatus according to claim 6, comprising a mobile station side
reception unit which receives the first parameter and the second parameter notified
by the base station apparatus using a radio resource control signal.
8. The mobile station apparatus according to claim 6 or 7, comprising a mobile station
side transmission unit that transmits the first reference signal to the base station
apparatus with the set transmit power using a first radio resource notified by the
base station apparatus using a radio resource control signal, and that transmits the
second reference signal to the base station apparatus with the set transmit power
using a second radio resource which has been notified by the base station apparatus
and by which the second reference signal is transmittable upon having received, via
a physical downlink control channel, downlink control information requesting transmission
of the second reference signal.
9. The mobile station apparatus according to claim 8, wherein notification of the second
radio resource is performed by the base station apparatus using system information.
10. The mobile station apparatus according to claim 6, comprising a plurality of transmission
antenna ports, wherein
the mobile station side higher layer processing unit sets a transmit power for transmission
of the first reference signal using the first parameter for each the transmission
antenna port, while setting a transmit power for transmission of the second reference
signal using the second parameter for each the transmission antenna port.
11. A base station apparatus which receives a first reference signal or a second reference
signal which is transmitted by a mobile station apparatus, the base station apparatus
comprising
a base station side higher layer processing unit which sets, to the mobile station
apparatus, a first parameter used for setting of a transmit power for transmission
of the first reference signal, and a second parameter used for setting of a transmit
power for transmission of the second reference signal.
12. The base station apparatus according to claim 11, comprising a base station side transmission
unit which notifies the mobile station apparatus of the first parameter and the second
parameter using a radio resource control signal.
13. The base station apparatus according to claim 11 or 12, wherein
the base station side higher layer processing unit sets a first radio resource by
which the mobile station apparatus transmits the first reference signal, and sets
to the mobile station apparatus a second radio resource by which the mobile station
apparatus is capable of transmitting the second reference signal, and wherein
the base station side transmission unit transmits, to the mobile station apparatus,
downlink control information requesting transmission of the second reference signal
via a physical downlink control channel.
14. The base station apparatus according to claim 13, wherein the base station side transmission
unit transmits to the mobile station apparatus information indicating the first radio
resource and information indicating the second radio resource.
15. The base station apparatus according to claim 11, wherein the base station side higher
layer processing unit sets the first parameter and the second parameter to each of
a plurality of transmission antenna ports included in the mobile station apparatus.
16. A radio communication method used for a mobile station apparatus which transmits a
first reference signal or a second reference signal to a base station apparatus, the
radio communication method comprising at least a step of
setting a transmit power for transmission of the first reference signal using a first
parameter notified from the base station apparatus, while setting a transmit power
for transmission of the second reference signal using a second parameter notified
from the base station apparatus.
17. The radio communication method according to claim 16, further comprising a step of
receiving the first parameter and the second parameter notified by the base station
apparatus using a radio resource control signal.
18. The radio communication method according to claim 16 or 17, further comprising the
steps of:
transmitting the first reference signal to the base station apparatus with the set
transmit power using a first radio resource notified by the base station apparatus
using a radio resource control signal; and
transmitting the second reference signal to the base station apparatus with the set
transmit power using a second radio resource which has been notified by the base station
apparatus and by which the second reference signal is transmittable upon having received
downlink control information requesting transmission of the second reference signal
via a physical downlink control channel.
19. The radio communication method according to claim 18, wherein notification of the
second radio resource is performed by the base station apparatus using system information.
20. The radio communication method according to claim 16, further comprising a step of
setting a transmit power for transmission of the first reference signal using the
first parameter for each plurality of transmission antenna ports included in the mobile
station apparatus while setting a transmit power for transmission of the second reference
signal using the second parameter for each the transmission antenna port.
21. A radio communication method used for a base station apparatus which receives a first
reference signal or a second reference signal transmitted by a mobile station apparatus,
the method comprising at least a step of
setting to the mobile station apparatus a first parameter used for setting of a transmit
power for transmission of the first reference signal, and a second parameter used
for setting of a transmit power for transmission of the second reference signal.
22. The radio communication method according to claim 21, further comprising a step of
notifying the mobile station apparatus of the first parameter and the second parameter
using a radio resource control signal.
23. The radio communication method according to claim 21 or 22, further comprising the
steps of:
setting a first radio resource by which the mobile station apparatus transmits the
first reference signal, and setting to the mobile station apparatus a second radio
resource by which the mobile station apparatus is capable of transmitting the second
reference signal, and
transmitting to the mobile station apparatus downlink control information requesting
transmission of the second reference signal via a physical downlink control channel.
24. The radio communication method according to claim 23, further comprising a step of
transmitting to the mobile station apparatus information indicating the first radio
resource and information indicating the second radio resource.
25. The radio communication method according to claim 21, further comprising a step of
setting the first parameter and the second parameter to each of a plurality of transmission
antenna ports included in the mobile station apparatus.
26. An integrated circuit which causes a mobile station apparatus to exhibit a plurality
of functions by being mounted in the mobile station apparatus that transmits a first
reference signal or a second reference signal to a base station apparatus, the integrated
circuit causing the mobile station apparatus to exhibit a series of functions including
functions of:
setting a transmit power for transmission of the first reference signal using a first
parameter notified from the base station apparatus, while setting a transmit power
for transmission of the second reference signal using a second parameter notified
from the base station apparatus;
transmitting the first reference signal to the base station apparatus with the set
transmit power using a first radio resource notified by the base station apparatus
using a radio resource control signal; and
transmitting the second reference signal to the base station apparatus with the set
transmit power using a second radio resource which has been notified by the base station
apparatus and by which the second reference signal is transmittable upon having received
downlink control information requesting transmission of the second reference signal
via a physical downlink control channel.
27. An integrated circuit which causes a base station apparatus to exhibit a plurality
of functions by being mounted in the base station apparatus that receives a first
reference signal or a second reference signal transmitted by a mobile station apparatus,
the integrated circuit causing the base station apparatus to exhibit a series of functions
including functions of:
setting to the mobile station apparatus a first parameter used for setting of a transmit
power for transmission of the first reference signal, and a second parameter used
for setting of a transmit power for transmission of the second reference signal;
setting a first radio resource by which the mobile station apparatus transmits the
first reference signal, and setting to the mobile station apparatus a second radio
resource by which the mobile station apparatus is capable of transmitting the second
reference signal; and
transmitting to the mobile station apparatus downlink control information requesting
transmission of the second reference signal via a physical downlink control channel.
28. A radio communication method used for a mobile station apparatus which transmits a
first reference signal or a second reference signal to a base station apparatus, the
method comprising at least a step of setting a transmit power P
SRS for transmission of the first reference signal and the second reference signal using
the following formula
when P
SRS_OFFSET (k) is defined as a value specified by a higher layer,
P
SRS_OFFSET (0) is defined as a value with respect to the first reference signal transmitted
to the base station apparatus using a first radio resource notified by the base station
apparatus using a radio resource control signal,
P
SRS_OFFSET (1) is defined as a value with respect to the second reference signal transmitted
to the base station apparatus using a second radio resource which has been notified
by the base station apparatus and by which the second reference signal is transmittable
upon having received downlink control information requesting transmission of the second
reference signal via a physical downlink control channel,
min {X, Y} is defined as a function which selects a minimum value of X and Y,
P
CMAX is defined as a maximum transmit power value, P
O_PUSCH is defined as a value specified by the higher layer, M
SRS is defined as the number of physical resource blocks used for SRS transmission,
PL is defined as a downlink path loss calculated by the mobile station apparatus,
α is defined as a coefficient specified by the higher layer, and
f is defined as a value calculated based on a transmit power control command transmitted
via a physical downlink control channel by the base station apparatus.