

(11)

EP 2 528 808 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Description Paragraph(s) 21

(48) Corrigendum issued on:
10.12.2014 Bulletin 2014/50

(45) Date of publication and mention
of the grant of the patent:
25.06.2014 Bulletin 2014/26

(21) Application number: **11710268.1**

(22) Date of filing: **21.01.2011**

(51) Int Cl.:
B63H 25/38 (2006.01)

(86) International application number:
PCT/IB2011/000106

(87) International publication number:
WO 2011/092568 (04.08.2011 Gazette 2011/31)

(54) RUDDER GROUP FOR BOATS

RUDERGRUPPE FÜR BOOTE
GROUPE DE GOUVERNAIL POUR BATEAUX

(84) Designated Contracting States:
**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

(30) Priority: **29.12.2010 IT MI20102447
26.01.2010 IT MI20100092**

(43) Date of publication of application:
05.12.2012 Bulletin 2012/49

(73) Proprietor: **FB DESIGN S.r.l.
23841 Annone Brianza (Prov. of Lecco) (IT)**

(72) Inventor: **BUZZI, Fabio
23848 Oggiono (LC) (IT)**

(74) Representative: **Cosenza, Simona
Barzanò & Zanardo Milano S.p.A.
Via Borgonuovo, 10
20121 Milano (IT)**

(56) References cited:
**EP-A1- 0 611 195 WO-A1-91/02679
WO-A2-2005/012077 DE-A1-102004 053 063
FR-A1- 2 649 952 US-A- 1 943 288
US-A- 3 269 347 US-A- 4 711 192
US-A1- 2002 098 749 US-A1- 2005 145 153
US-A1- 2008 289 556**

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] The present invention refers to the rudder group for boats.

[0002] In the field of sea travel, problems that can be caused in the case in which the rudder bumps against shallow sea beds, and against objects that are sunk, partially submerged or floating, are well known.

[0003] Indeed the rudder, in most boats, is the portion that extends the most downwards with respect to the keel.

[0004] In the case in which there is an impact, the rudder discharges stress onto the local structure of the hull which can become damaged and/or, in some cases, break. In this last case a leak forms in the hull which can cause the boat to sink.

[0005] It is important to note that such a danger is common to all boats equipped with Rudders, irrespective of the material used for building it, be it wood, fibreglass or metal.

[0006] In order to avoid this problem both active and passive prevention systems have been developed.

[0007] One example of active safety, i.e. that requires the action of the skipper of the boat, is represented by the presence, on board, of echo sounder devices which make it possible to keep track of the depth of the sea bed.

[0008] However, such devices have the great drawback of not indicating the presence of possible objects that are bobbing and/or floating in the water.

[0009] Concerning now passive safety, on the other hand, there are on the market today so called "safety" Rudders, which make it possible to reduce or nullify the tragic consequences that an object bumping against the rudder itself could cause to the hull.

[0010] A first example of a safety rudder is described in the American patent US 3269347.

[0011] In such a patent a rudder is described, which on one side is fixedly connected to the relative pin, like in all common boats, and on the other side it is hinged to astern of the pin.

[0012] In particular such a rudder is kept in operation position by two plates that press against the rudder itself, in which on one plate there is a coupling projection with the slot formed on the rudder.

[0013] When a predetermined force, that can be set by the user, generated due to the bumping of the rudder against a partially submerged or floating object, has been exceeded, the tangential actions disengage the projection of the plate from the slot of the rudder so that the rudder itself can rotate until it engages a second slot which fixedly connects it in a rudder position.

[0014] It is thus avoided that, in the case in which there is bumping against a partially submerged or floating object, forces greater than that which cause the rudder to rotate discharge against the hull of the boat, thus protecting it from becoming damaged or from breaking.

[0015] In the embodiment described in US 3269347 the adjustment of the aforementioned predetermined force, having the same shape and depth of the slot and

of the relative projection, is carried out by acting upon the tightness of a bolt that presses the plates against the rudder.

[0016] Following a bumping such as to free the rudder, in order to reposition it, it is necessary to loosen the locking bolt, bring the rudder back into its operation position and subsequently tighten the bolt like in the condition of before the impact.

[0017] It is clear how problematic it is to carry out the aforementioned operations while the boat is sailing, especially in the case of fast boats, as well as how highly unlikely it is to manually tighten the nut by the correct amount with reference to the predetermined force required at which the rudder must free itself. French patent

FR 2649952 describes another rudder which, once a predetermined force, which has been caused due to the bumping of the rudder against a partially submerged or floating object, has been exceeded, disengages from the relative pin.

[0018] Like above, even in such a case it is thus avoided that, in the case of bumping against a partially submerged or floating object, forces greater than that which causes the rudder to rotate, discharge through the rudder itself onto the hull of the boat.

[0019] Contrarily to US 3269347, in FR 2649952 there is a rubber block that in resting position is engaged with the rudder in the position of use and that in the case of bumping, in which the force exerted onto the rudder exceeds the aforementioned predetermined value, deforms 30 freeing the rudder.

[0020] Disadvantageously, due to the intrinsic properties of rubber, as the number of cycles in which such a predetermined force value at which the rudder becomes free is exceeded, such a value can decrease freeing the rudder even when it is not necessary.

[0021] A third known passive safety rudder is described in the American patent US 6,461,206 in which it is foreseen for there to be a return spring, which during a possible bumping allows the blade to rotate in reverse, 40 whereas, once the obstacle has been overcome, makes the rudder return into the operative position.

[0022] Document US-A-2002/0098749 discloses the features of the preamble of claim 1.

[0023] According to what has been described, all "passive safety" Rudders described have the drawback of not ensuring that the predetermined force value from which the rudder must free itself from the pin is kept substantially constant over time.

[0024] Indeed, in all known examples, the keeping in 50 the position of use of the rudder following a release of the rudder itself is given by the same element, bolt, rubber block or spring, which has already absorbed the previous load that was greater than the set threshold. The purpose of the present invention is that of making a rudder group

for boats that is capable of solving the aforementioned drawbacks of the prior art in an extremely simple, cost-effective and particularly functional manner.

[0025] Another purpose is that of making a rudder

group for boats in which it is ensured, with a high degree of certainty, that the value of minimum load, which will cause the passive safety system of the rudder to activate, is kept constant over time.

[0026] These purposes according to the present invention are achieved by making a rudder group for boats as outlined in claim 1.

[0027] Further characteristics of the invention are highlighted by the subsequent claims.

[0028] The characteristics and the advantages of a rudder group for boats according to the present invention shall become clearer from the following description, given as an example and not for limiting purposes, with reference to the attached schematic drawings in which:

- figure 1 is a side view of an embodiment of a rudder group according to the present invention associated with the relative boat;
- figure 2 shows a schematic section view of the rudder group of figure 1 along the section line II-II;
- figure 3 shows a schematic section view of the rudder group of figure 1 along the section line III-III;
- figures 4 and 5 show section views of enlarged details of some elements of the rudder group of figure 1 in different usage positions;
- figures 6 and 7 show view from the side and stern of a further embodiment of a rudder group according to the present invention associated with a boat having submerged propellers; and
- figure 8 shows enlarged details of the rudder group of figure 6.

[0029] With reference to the figures, a rudder group for boats is shown with reference numeral 10.

[0030] Such a rudder group 10 comprises a rudder blade 12 releasably coupled to a rudder pin 11 which can rotate along an axis A passing on the plane of the rudder blade 12 to define the forward direction of the boat 100.

[0031] The rudder blade 12 is moreover connected in a rotatable manner to a support element 14 fitted onto the rudder pin 11 above the rudder blade 12 so that the rudder blade 12 itself, if released from the rudder pin 11, can freely rotate between a lowered position, in which it is arranged longitudinally with respect to the rudder pin 11, and a maximum raised position in which it is substantially perpendicular to the rudder pin 11. Figure 1 shows the two positions that the rudder blade 12 can take up when released from the rudder pin 11 thanks to the rotatable coupling with the support element 14.

[0032] According to the invention the releasable coupling of the rudder blade 12 with the rudder pin 11 is obtained through a connection element 13 that can break so as to free the rotation of the rudder blade 12 with respect to the support element 14 at a predetermined load acting upon the rudder blade 12.

[0033] It is thus avoided that, in the case in which there is bumping against a partially submerged or floating object, forces greater than that which determines the break-

ing of the connection element 13 discharge through the rudder blade 12 onto the hull of the boat 100 thus protecting it from becoming damaged or breaking. Following the breaking of the connection element 13 it is sufficient to provide a new connection element 13 to bring the rudder group 10 back into the same configuration which was present before the impact.

[0034] In particular according to the invention it is thus ensured that the value of the predetermined load that will cause the passive safety system of the rudder to activate is kept constant over time since, each time such a predetermined load is exceeded, it is foreseen for there to be the breaking, and then the replacement, of the connection element 13.

[0035] In the embodiment shown in figure 3, the breakable connection element 13 comprises a pin element 13 that is inserted respectively in through holes 21, 20 formed on the rudder blade 12 and on an end portion of the rudder pin 11.

[0036] According to the embodiment shown in figure 3, the pin 13 comprises a bolt locked by a self locking nut, which are preferably both made from stainless steel. Preferably such an end portion of the rudder pin 11 is fork-shaped for receiving the rudder blade 12.

[0037] Of course the throat of the fork has a width such as to allow the insertion of the rudder blade 12 with a tolerance that is sufficient so as to allow it to rotate when it is released from the rudder pin 11.

[0038] In order to make sure that the breaking occurs at the right time and in the correct way, as well as to ensure that the activation occurs without delay when necessary, at the application points of the load in a possible collision, i.e. at the inner edges of the fork for receiving the rudder blade 12, the pin element 13 is preferably equipped with weakenings 30, for example cuts, of any shape, for facilitating its breaking.

[0039] As described, the rudder blade 12 is fixedly connected in a rotatable manner, astern of the rudder pin 11, to the support element 14, with a shape comparable to a parallelepiped, fitted onto the rudder pin 11 through a through hole 31.

[0040] In particular, as visible in figure 2, the support element 14 comprises a fork for receiving the rudder blade 12, in which also such a fork has a width such as to allow the rudder blade 12 to be inserted with a tolerance that is sufficient so as to allow it to rotate when it is released from the rudder pin 11.

[0041] The rotatable coupling between the rudder blade 12 and the fork of the support element 14 is made through a pin 35 inserted respectively in through holes 33, 32 formed on said rudder blade 12 and on the side portions of the fork of the support element 14.

[0042] In particular, the holes 32, 33 have a diameter that is much greater with respect to those for coupling with the breakable pin 13.

[0043] Preferably, as shown in figures 4 and 5, the rear wall 36 of the fork of the support element 14 is shaped so as to prevent the rotation of the rudder blade 12 be-

yond a predetermined limit angle, in the example 90°, thus carrying out the function of a stroke-end.

[0044] Such a limitation of the angle is such as to avoid the rudder blade 12 from bumping against the hull, damaging it.

[0045] In a complementary manner, also the upper profile 37 of the rudder blade 12 is shaped so as to engage the rear shaped wall 36 of the support element 14.

[0046] It is clear how correctly determining the load for activating the safety system is of crucial importance, just as it is very important for practical purposes to have the possibility of carrying out possible adjustments of the size of such a load even at a later moment with respect to the assembly of the rudder group 10.

[0047] In this context it may be simplistic to consider the single case of rectilinear navigation in which the bumping against an object or low sea-bed occurs perpendicularly.

[0048] Considering for example a turning manoeuvre, during such a manoeuvre there are loads acting on the rudder which cause stress.

[0049] Indeed, during the turn, the action of the water causes the flexing-torsion of the blade 12 of the rudder which discharges onto the portions of the rudder group that hold the blade 12 itself.

[0050] In particular, such portions are at the rotation pin 35 and at the sacrificial pin 13.

[0051] Therefore, during a turn, the flexing of the blade 12 discharges, at least partially, onto the sacrificial pin 13 in the form of an axial action that could reduce the strength of the cutting action needed to cause the pin 13 itself to break.

[0052] In other words, during a turn, the safety system could be actuated by smaller bumps than those foreseen for rectilinear movement.

[0053] In order to avoid such a drawback, the transmission of the actions from the blade 12 of the rudder to the sacrificial pin 13 can be reduced by tightening, for example through a dynamometric wrench, the pin 35 for rotating the blade 12 of the rudder.

[0054] The inner surface of the fork inside which the blade 12 is inserted, under the action of the aforementioned locking of the pin 35, behaves like a clamp that tightens the blade 12 of the rudder fixedly connecting it, from the flexing point of view, similarly to a coupling. Of course the sliding friction which is created between the inner surfaces of the fork-clamp and the outer surfaces of the blade 12 of the rudder, does not prevent the actuation of the safety system and rotation of the blade 12 but only raises the threshold of actuation of the safety system.

[0055] Similarly, it is possible to apply a further tightening also to the sacrificial pin 13.

[0056] In such a case this pre-load or axial tension applied to the sacrificial pin 13, with respect to the non preloaded case, will reduce the value of the cutting action necessary and sufficient to cause the breaking of the sacrificial pin 13.

[0057] The two aforementioned adjustment examples, that can be respectively actuated by acting upon the sacrificial pin 13 and on the rotation pin 35, clarify how the rudder group 10 according to the present invention, even at a later moment with respect to the assembly, can be adapted to the various requirement of the user increasing or lowering the actuation threshold of the safety system.

[0058] The embodiment shown in figure 1 concerns a type of propulsion defined as "surface drive", which is usually used in fast planing hulls.

[0059] However, the rudder group 10 according to the present invention can also be used coupled with all the other types of propulsion boats or boats that exploit "surface drive", but which have rudders applied to the transom, since they have the same problem of bumping against partially submerged objects.

[0060] Figures 6-8 show the rudder group 10 of the present invention applied to boats using conventional propulsion, with a submerged propeller.

[0061] Such types of boats, without affecting the inventive principles of the rudder group 10 described previously, require particular provisions.

[0062] Indeed, in the case of propulsion with a submerged propeller, in view of the high stresses, the support element 14 must necessarily be of considerable size reaching thicknesses that are greater with respect to the rudder blade.

[0063] Moreover, such sizes increase as the size of the boat increases with the consequent requirement of having bigger and stronger rudders.

[0064] In the case in which in such boats a rudder group like that of figure 1 is installed, in which in addition to the blade 12 also the support element 14 is under water, there could be a considerable increase of the hydrodynamic resistance, with consequent reduction of the overall efficiency of the hull.

[0065] Such an increase of the hydrodynamic resistance also leads to an increase in fuel consumption with the same performance or a reduction of performance with the same fuel consumption.

[0066] It is therefore preferable, in a hull of this type, to install the safety rudder 10 of the present invention in a different manner.

[0067] In particular, as shown in figures 6-8, in such cases the rudder group 10 is mounted on the transom so that the support of the rudder 14 and the rudder pin 11 take up a raised position that is emerged from the water 23. In nautical jargon the support of the rudder 14 thus appears "shaded" with respect to the flow of the water which indeed does not hit the support of the rudder 14 during cruise speed navigation.

[0068] Furthermore, in order to avoid such a contact even at high speeds, between the support 14 and the blade 12 it is possible to insert a separation tab 22 comprising a plane, preferably fixedly attached to the support 14, which has the function of giving a direction to the flow of water.

[0069] The function of the separation tab 22 is that of

preventing that the water flow, "sticking" on to the blade 12, rises onto the support 14 nullifying the advantage of having arranged the support 14 itself in the raised position.

[0070] The separation tab 22 thus contributes towards keeping, locally, the flow of water facing towards the stern.

[0071] Figure 6 shows a side view of the portion of stern of a hull equipped with conventional drives with under water propellers.

[0072] The continuous horizontal line 23 represents the line of the water in conditions at cruise speed movement.

[0073] In such an embodiment it can be observed that the propeller is completely under water and the rudder group 10 is directly fixed to the transom, for example, through a sheet metal box made from stainless steel, or through a cast body, for example bronze, resistant to corrosion, according to known techniques, so as to maintain the watertight seal.

[0074] As visible, in such an embodiment the support of the rudder 14 is completely out from the water 23 in dynamic conditions.

[0075] Therefore, as described previously, in such boats the support of the rudder 14, although having greater dimensions, does not add any further dynamic resistance since it is in the surfaced position.

[0076] Figure 7 shows a view from the stern of the same hull where it is possible to see that it is not necessary for the so-called separation tab 22 to have a cross section that is much greater with respect to the support of the rudder 14.

[0077] Indeed, if the surface of the separation tab 22 was increased, there could be an increase of resistance that would be greater with respect to that which is desired to be avoided.

[0078] Figure 8 shows an enlarged view of the portion of rudder 10 provided with the tab 22.

[0079] Such a side view shows how also at fast speeds the flow of water that hits the blade 12 is directed by the tab 22 towards the stern, preventing it from hitting the support of the rudder 14 with the possible consequent increase of dynamic resistance.

[0080] The separation tab 22 will of course be fork-shaped so as to include a cut or opening to allow, as foreseen by the present invention, rotation towards the stern of the rudder blade 12 in the case in which there is an accidental bumping against a partially submerged object.

[0081] It should be very simple to understand how the rudder group for boats object of the present invention operates.

[0082] It can occur that during the forward movement of the boat 100 the rudder blade 12 collides against a floating object.

[0083] In the case in which such a collision develops a load that is greater than a predetermined threshold, equal to that of breaking of the pin 13, the rudder blade

12, indeed due to the breaking of the pin 13 which fixedly connects it to the rudder pin 11, is pushed towards the stern carrying out a rotation, indicated with F in figures 1 and 5.

[0084] In particular, the rotation F occurs around the pin 35 that connects the rudder blade 12 to a support 14 in a rotatable manner, astern of the rudder pin 11.

[0085] It is thus avoided that, in the case of bumping against a partially submerged or floating object, forces greater than that which causes the breaking of the connection element 13 are discharged through the rudder blade 12 onto the hull of the boat 100 thus protecting it from becoming damaged or breaking.

[0086] In order to bring the rudder group 10 back into the same configuration that there was before such an impact, it is sufficient to replace the connection element 13 with a new analogous element 13.

[0087] It has thus been seen that a rudder group for boats according to the present invention achieves the previously highlighted purposes.

[0088] Indeed, according to the invention, the same predetermined load value that will cause the passive safety system of the rudder to activate is ensured over time since, each time such a predetermined load is exceeded, it is foreseen for the connection element 13 to break and then be replaced.

[0089] The rudder group for boats of the present invention thus conceived can undergo numerous modifications and variants, all covered by the same inventive concept; moreover, all the details can be replaced by technically equivalent elements. In practice the materials used, as well as their sizes, can be any according the technical requirements.

35

Claims

1. Rudder group (10) for boats (100) comprising a rudder blade (12) releasably coupled to a rudder pin (11), said rudder pin (11) being able to rotate along an axis (A) passing on the plane of said rudder blade (12) to define the forward direction of said boat (100), said rudder blade (12) also being connected in a rotatable manner to a support element (14) fitted onto said rudder pin (11) so that said rudder blade (12), when it is released from said rudder pin (11), can freely rotate between a lowered position, wherein it is arranged longitudinally with respect to said rudder pin (11), and a maximum raised position wherein it is substantially perpendicular to said rudder pin (11), **characterised in that** said releasable coupling of said rudder blade (12) with said rudder pin (11) is obtained through a connection element (13) that can break at a predetermined load to free the rotation of said rudder blade (12) with respect to said support element (14).

2. Rudder group (10) according to claim 1, **character-**

ised in that said breakable connection element (13) comprises a pin element (13), said pin element (13) being inserted respectively in through holes (20, 21) formed on said rudder blade (12) and on an end portion of said rudder pin (11).

3. Rudder group (10) according to claim 2, **characterised in that** the end portion of said rudder pin (11) coupled with said rudder blade (12) is shaped like a fork to receive said rudder blade (12), said fork having a width such as to allow the insertion of said rudder blade (12) with a tolerance that is sufficient to allow it to rotate when it is released by said rudder pin (11).
4. Rudder group (10) according to claim 3, **characterised in that** said pin element (13) is equipped with weakenings at the inner edges of said fork for receiving said rudder blade (12).
5. Rudder group (10) according to claim 4, **characterised in that** said weakenings comprise cuts for facilitating its breaking.
6. Rudder group (10) according to any one of the previous claims, **characterised in that** said support element (14) comprises a through hole for coupling said rudder pin (11) and on the other side with a fork for receiving said rudder blade (12), said rudder blade (12) being coupled in a rotatable manner to said support element (14) at said fork.
7. Rudder group (10) according to claim 6, **characterised in that** said rotatable coupling between said rudder blade (12) and said fork of said support element (14) is obtained through a through pin inserted respectively in through holes (32, 33) formed on said rudder blade (12) and on said fork portion of said support element (14).
8. Rudder group (10) according to claim 7, **characterised in that** inside of said fork of said support element (14) an element is foreseen shaped so as to prevent the rotation of said rudder blade (12) beyond a predetermined limit angle.
9. Rudder group (10) according to claim 8, **characterised in that** the upper profile of said rudder blade (12) is shaped so as to engage said shaped element of said support element (14).
10. Rudder group (10) according to any one of the previous claims, **characterised in that** it is mounted on the transom in a configuration so that said support element (14) is in a position that is out of the water with respect to the water line (23), said rudder group (10) also comprising a separation tab (22) that is fixedly attached to said support (14) arranged be-

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750

Ansprüche, **dadurch gekennzeichnet, dass** das Tragelement (14) ein Durchgangsloch zum Verbinden des Ruderzapfens (11) und auf der anderen Seite mit einer Gabel zum Aufnehmen des Ruderblatts (12) umfasst, wobei dieses Ruderblatt (12) drehbar mit dem Tragelement (14) an der Gabel verbunden ist.

7. Rudergruppe (10) nach Anspruch 6, **dadurch gekennzeichnet, dass** die drehbare Verbindung zwischen dem Ruderblatt (12) und der Gabel des Tragelements (14) durch einen Durchgangszapfen erhalten wird, der jeweils in Durchgangslöcher (32, 33) eingeführt ist, die im Ruderblatt (12) und im Gabelabschnitt des Tragelements (14) ausgebildet sind.

8. Rudergruppe (10) nach Anspruch 7, **dadurch gekennzeichnet, dass** innerhalb der Gabel des Tragelements (14) ein Element vorgesehen ist, das so geformt ist, dass es die Drehung des Ruderblatts (12) über einen vorbestimmten Grenzwinkel hinaus verhindert.

9. Rudergruppe (10) nach Anspruch 8, **dadurch gekennzeichnet, dass** das obere Profil des Ruderblatts (12) so geformt ist, dass es in das geformte Element des Tragelements (14) eingreift.

10. Rudergruppe (10) nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet, dass** sie in einer derartigen Konfiguration auf den Heckspiegel montiert ist, dass sich das Tragelement (14) in einer Position befindet, die außerhalb des Wassers bezogen auf die Wasserlinie (23) ist, wobei diese Rudergruppe (10) außerdem einen Trennstreifen (22) umfasst, der fest an der Stütze (14) angebracht ist, die zwischen dem Tragelement (14) und dem Ruderblatt (12) angeordnet ist, um den Strom des Wassers heckwärts zu leiten, wobei dieser Trennstreifen (22) gabelförmig ist, um die Drehung des Ruderblatts (12) gegenüber dem Tragelement (14) zu ermöglichen.

relevée maximale dans laquelle il est sensiblement perpendiculaire audit axe de gouvernail (11), **caractérisé en ce que** ledit accouplement libérable dudit safran (12) avec ledit axe de gouvernail (11) est obtenu par l'intermédiaire d'un élément de connexion (13) qui peut se rompre à une charge prédéterminée pour libérer la rotation dudit safran (12) par rapport audit élément de support (14).

10 2. Groupe de gouvernail (10) selon la revendication 1, **caractérisé en ce que** ledit élément de connexion cassable (13) comprend un élément de goupille (13), ledit élément de goupille (13) étant inséré respectivement dans des trous passants (20, 21) formés sur ledit safran (12) et sur une portion d'extrémité dudit axe de gouvernail (11).

20 3. Groupe de gouvernail (10) selon la revendication 2, **caractérisé en ce que** la portion d'extrémité dudit axe de gouvernail (11) accouplée avec ledit safran (12) est profilée sous la forme d'une fourche pour recevoir ledit safran (12), ladite fourche ayant une largeur telle qu'elle permette l'insertion dudit safran (12) avec une tolérance qui est suffisante pour lui permettre de pivoter quand il est libéré par ledit axe de gouvernail (11).

25 4. Groupe de gouvernail (10) selon la revendication 3, **caractérisé en ce que** ledit élément de goupille (13) est pourvu d'affleurements au niveau des bords intérieurs de ladite fourche pour recevoir ledit safran (12) .

30 5. Groupe de gouvernail (10) selon la revendication 4, **caractérisé en ce que** lesdits affleurements comprennent des découpes pour faciliter leur rupture.

35 6. Groupe de gouvernail (10) selon l'une quelconque des revendications précédentes, **caractérisé en ce que** ledit élément de support (14) comprend un trou passant pour accoupler ledit axe de gouvernail (11) et de l'autre côté avec une fourche pour recevoir ledit safran (12), ledit safran (12) étant accouplé d'une manière rotative audit élément de support (14) au niveau de ladite fourche.

40 7. Groupe de gouvernail (10) selon la revendication 6, **caractérisé en ce que** ledit accouplement rotatif entre ledit safran (12) et ladite fourche dudit élément de support (14) est obtenu au moyen d'une goupille passante insérée respectivement dans des trous passants (32, 33) formés sur ledit safran (12) et sur ladite partie de fourche dudit élément de support (14).

45 8. Groupe de gouvernail (10) selon la revendication 7, **caractérisé en ce qu'à** l'intérieur de ladite fourche dudit élément de support (14) est prévu un élément

Revendications

1. Groupe de gouvernail (10) pour bateaux (100) comprenant un safran (12) accouplé de manière libérable à un axe de gouvernail (11), ledit axe de gouvernail (11) étant capable de pivoter suivant un axe (A) passant sur le plan dudit safran (12) pour définir la direction vers l'avant dudit bateau (100), ledit safran (12) étant également connecté d'une manière rotative à un élément de support (14) monté sur ledit axe de gouvernail (11) de manière que ledit safran (12), quand il est libéré dudit axe de gouvernail (11), puisse pivoter librement entre une position abaissée, dans laquelle il est disposé longitudinalement par rapport audit axe de gouvernail (11), et une position

profilé de manière à empêcher la rotation dudit safran (12) au-delà d'un angle limite prédéterminé.

9. Groupe de gouvernail (10) selon la revendication 8, **caractérisé en ce que** le profil supérieur dudit safran (12) est profilé de manière à engager ledit élément profilé dudit élément de support (14). 5
10. Groupe de gouvernail (10) selon l'une quelconque des revendications précédentes, **caractérisé en ce qu'il est monté sur le tableau arrière dans une configuration telle que ledit élément de support (14) soit dans une position qui est hors de l'eau par rapport à la ligne de flottaison (23), ledit groupe de gouvernail (10) comprenant également une patte de séparation (22) qui est attachée de manière fixe audit support (14), disposée entre ledit élément de support (14) et ledit safran (12) pour diriger l'écoulement de l'eau vers la poupe, ladite patte de séparation (22) étant en forme de fourche de manière à permettre la rotation dudit safran (12) par rapport audit élément de support (14). 10 15 20**

25

30

35

40

45

50

55

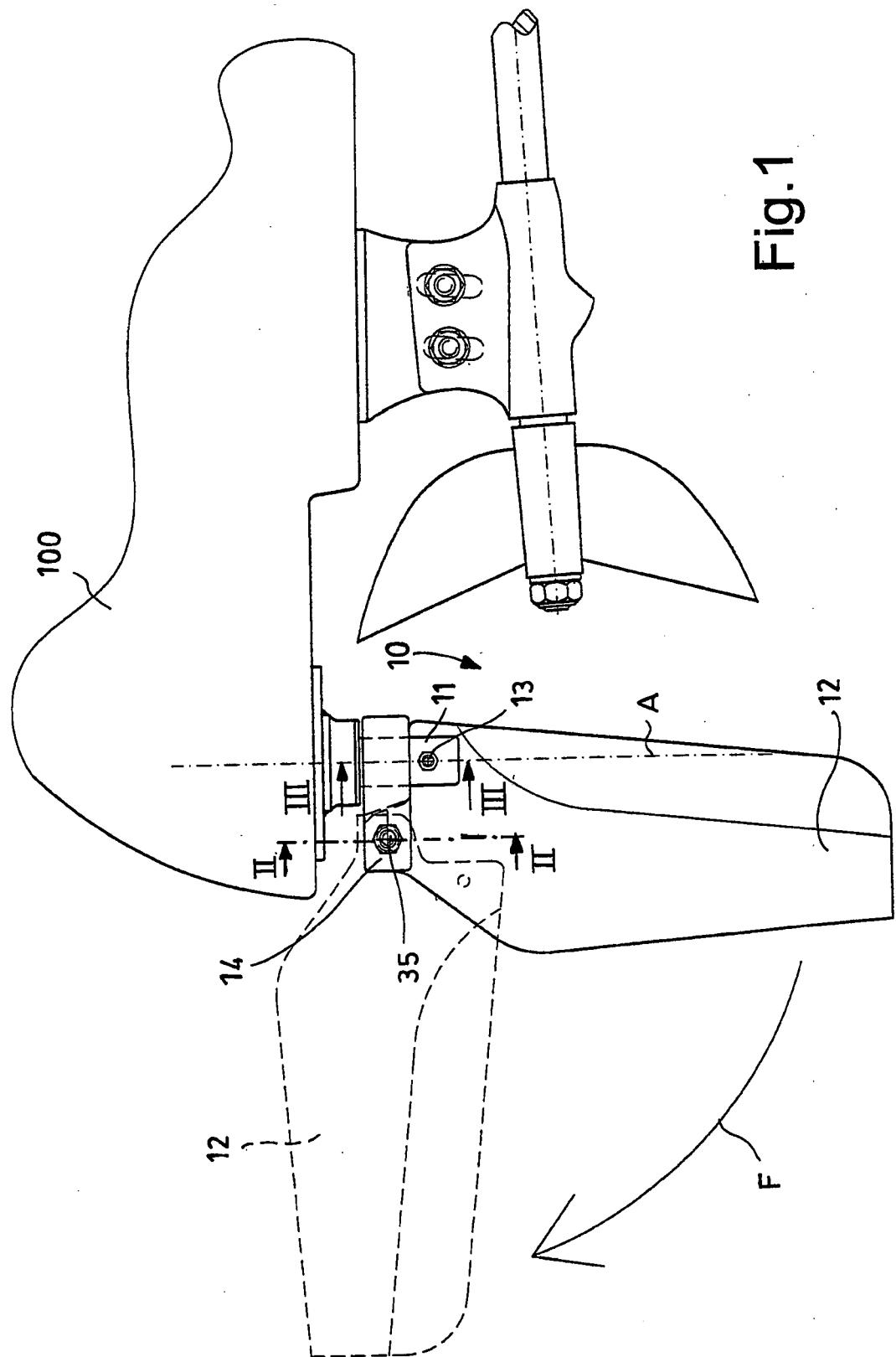


Fig.2

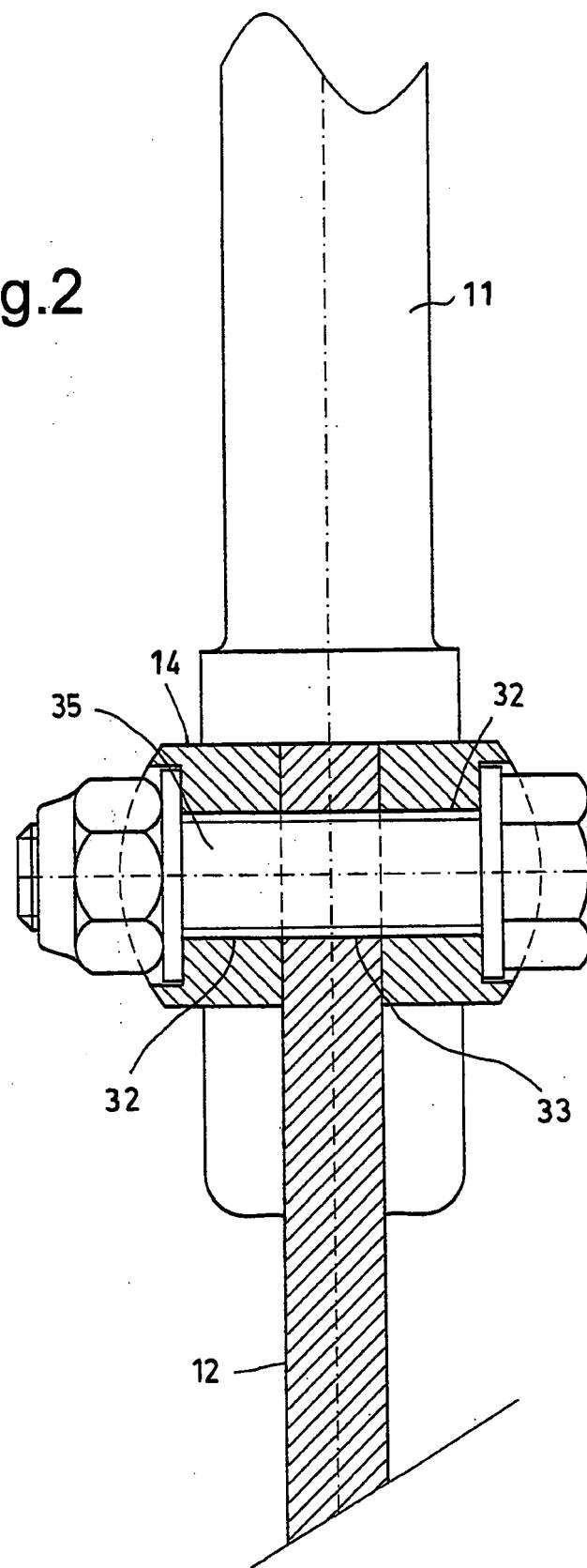


Fig.3

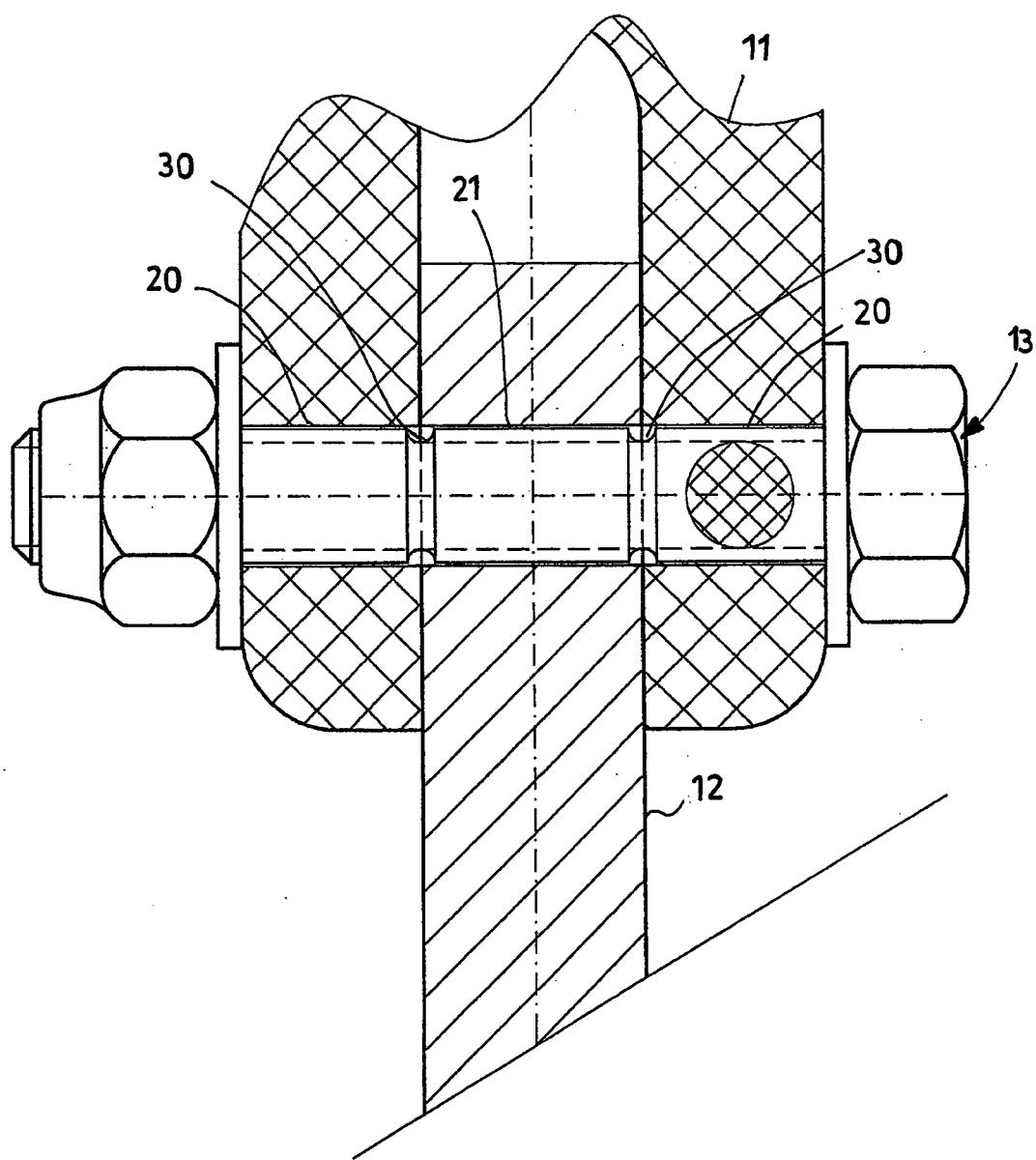


Fig.4

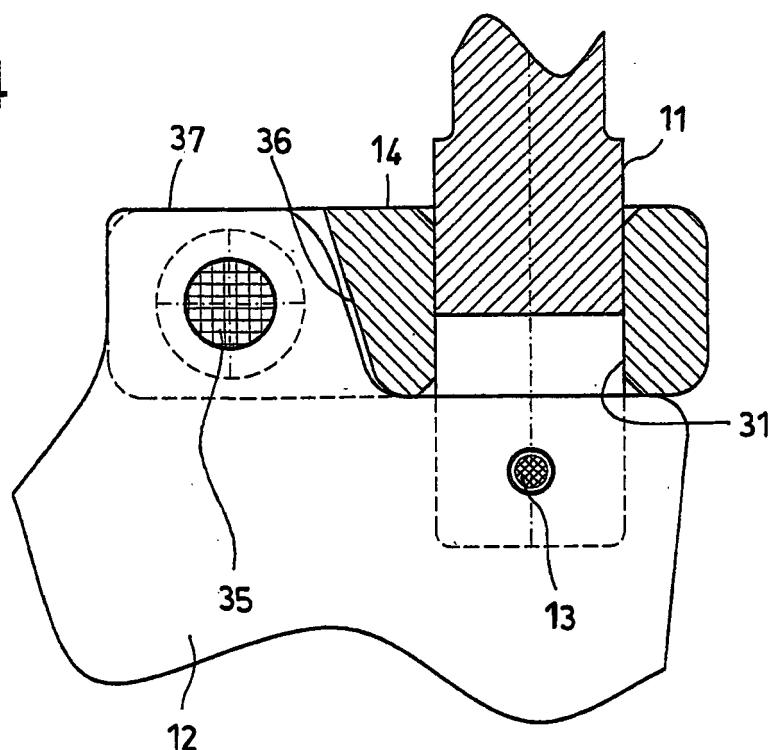


Fig.5

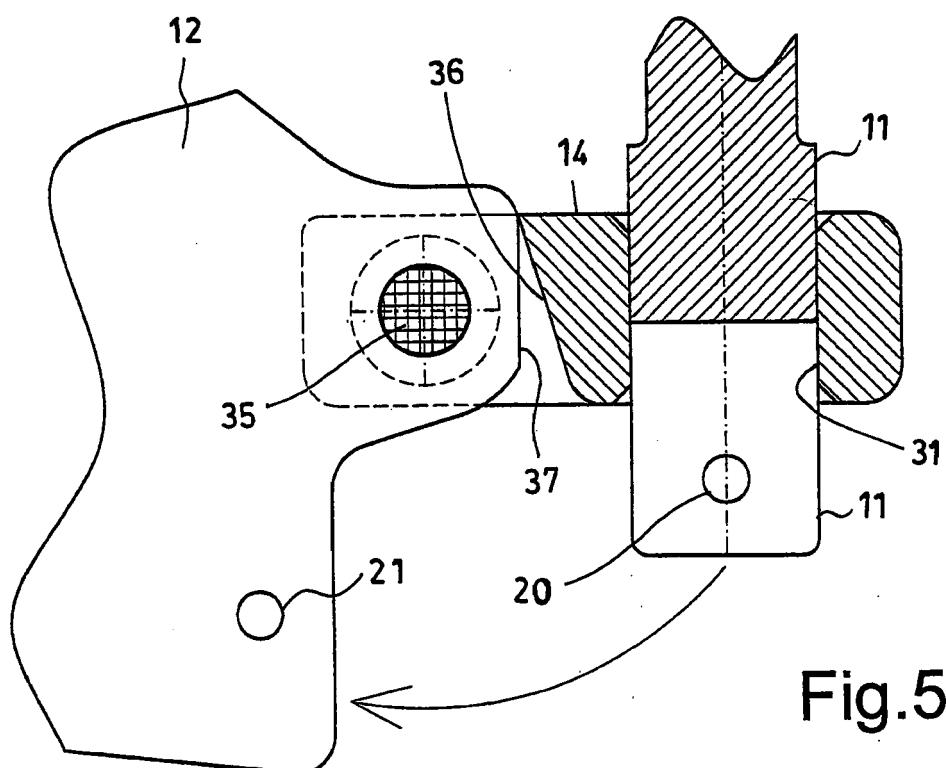


Fig.6

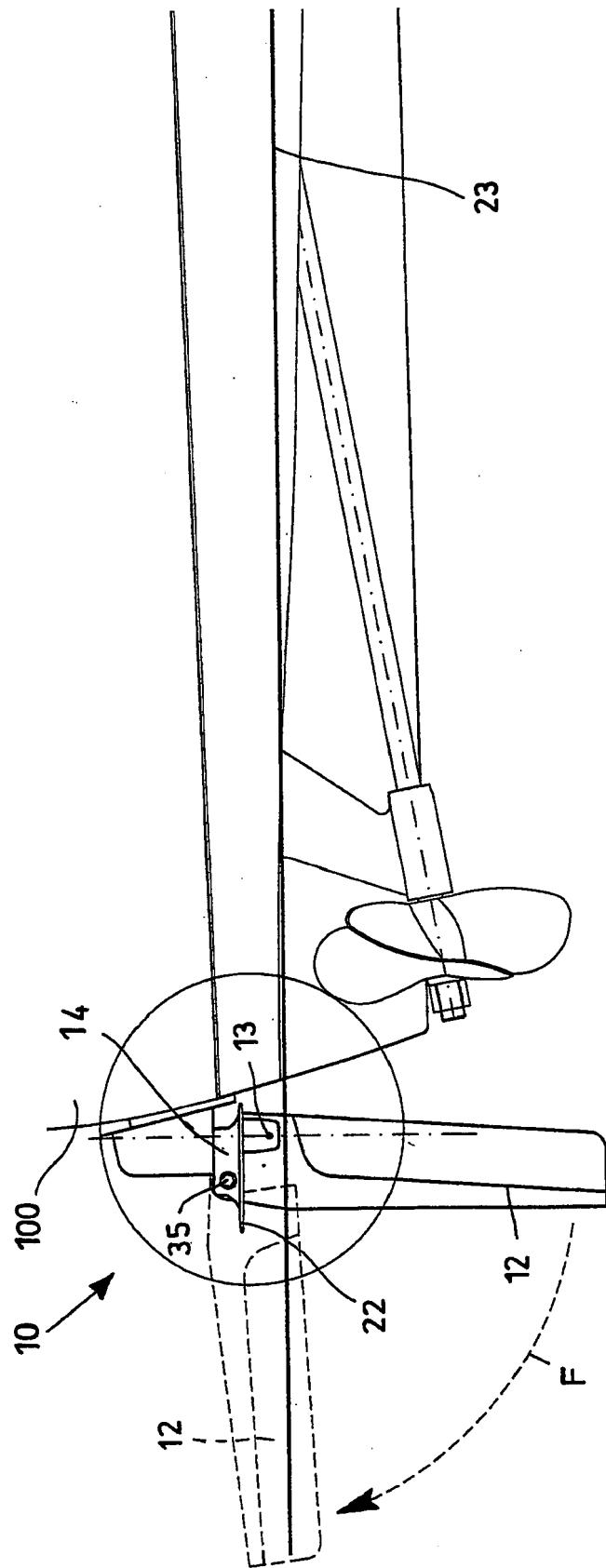
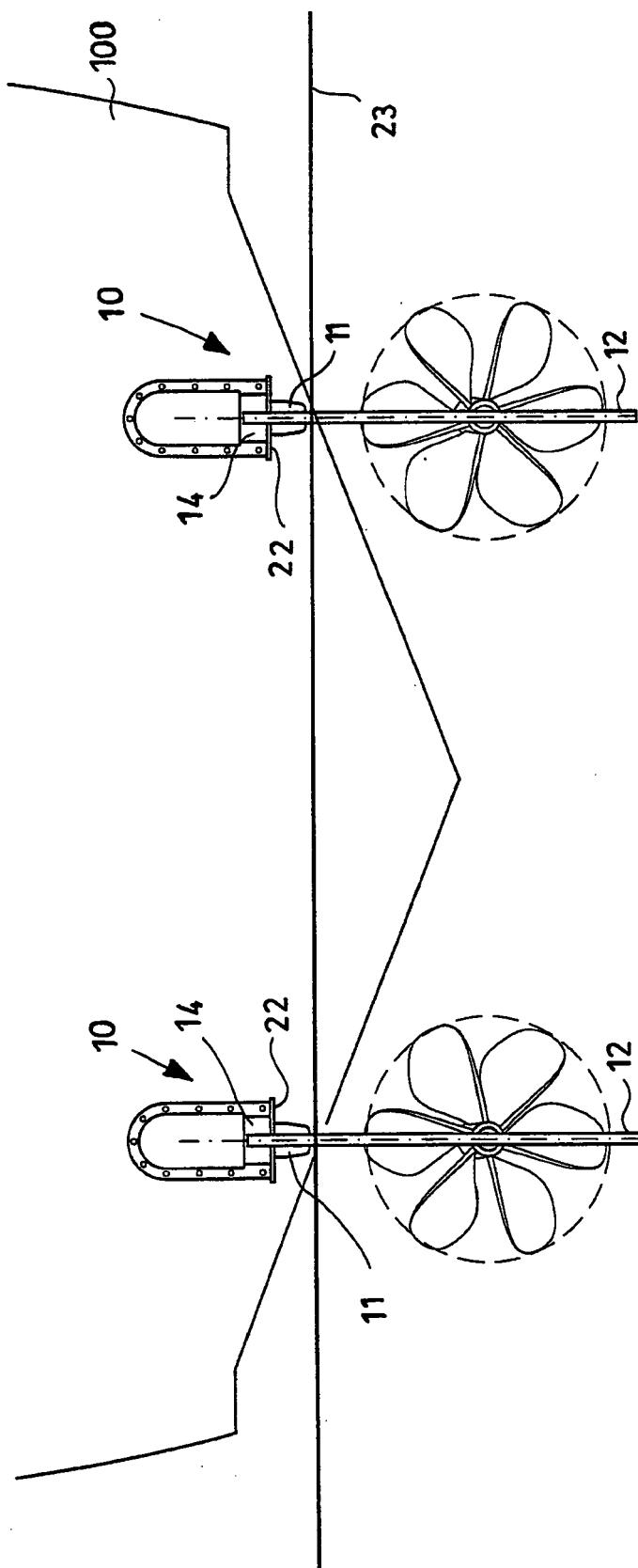




Fig.7

୧୦

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 3269347 A [0010] [0015] [0019]
- FR 2649952 [0017] [0019]
- US 6461206 B [0021]
- US 20020098749 A [0022]