EP 2 540 405 A2 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

02.01.2013 Patentblatt 2013/01

(51) Int Cl.: B21B 37/74 (2006.01)

(21) Anmeldenummer: 12173868.6

(22) Anmeldetag: 27.06.2012

(84) Benannte Vertragsstaaten:

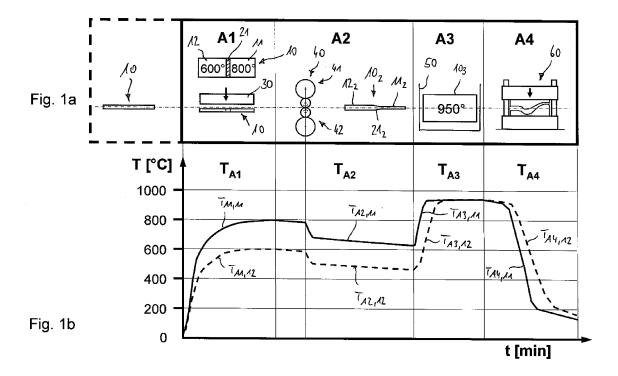
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

(30) Priorität: 27.06.2011 DE 102011051345

(71) Anmelder: Muhr und Bender KG 57439 Attendorn (DE)


(72) Erfinder:

- Hauger, Andreas, Dr. 57439 Attendorn (DE)
- · Elvenkemper, Andreas 51645 Gummersbach (DE)
- (74) Vertreter: Oberwalleney, Stephan et al Neumann Müller Oberwalleney & Partner Patentanwälte Overstolzenstrasse 2a 50677 Köln (DE)

(54)Verfahren und Vorrichtung zum Herstellen von Platinen mit unterschiedlichen Dicken

Die Erfindung betrifft ein Verfahren zum Herstel-(57)len von Platinen mit unterschiedlichen Dicken aus einem metallischen Werkstoff mit den Verfahrensschritten: Fertigen von Platinen 10 aus einem Bandmaterial, Bereichsweises Verändern der Temperatur T der Platinen 10, wobei in den Platinen 10 mehrere Bereiche 11-16 mit unterschiedlichen Temperaturen T₁₁-T₁₆ erzeugt werden; und Walzen der bereichsweise temperaturverän-

derten Platinen 10 in einem Walzwerkzeug 40 mit einer Walzspaltanstellung, wobei die Walzspaltanstellung beim Walzen konstant gehalten wird, wobei in den Platinen 10 aufgrund der unterschiedlichen Temperaturbereiche Abschnitte 11-16 mit unterschiedlicher Dicke D₁₁-D₁₆ erzeugt werden. Die Erfindung betrifft ferner eine entsprechende Vorrichtung zum Herstellen von Platinen mit unterschiedlichen Dicken aus einem metallischen Werkstoff.

EP 2 540 405 A2

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren zum Herstellen von Platinen, die über ihre Länge unterschiedliche Dicken aufweisen.

[0002] Aus der DE 197 04 300 A1 ist ein Verfahren zur Herstellung von Platinen mit unterschiedlichen Dicken durch Verformung eines annähernd gleichmäßig dicken Ausgangsmaterials bekannt. Das Ausgangsmaterial wird zunächst in einer Induktionserwärmungsanlage auf eine Temperatur oberhalb der Rekristallisationstemperatur erwärmt. Anschließend erfolgt eine partiell walzende Verformung des Ausgangsmaterials mit in Walzrichtung bereichsweise wechselnden Dicken.

[0003] Aus der DE 198 46 900 A1 ist ein Verfahren und eine Vorrichtung zum Herstellen eines Metallbandes bekannt. Die unterschiedlich dicken Bereiche des Bandes werden durch Warmwalzen hergestellt, indem das Band vor dem Warmwalzen abschnittsweise durch Kühlen oder Erwärmen auf eine unterschiedliche Temperatur eingestellt werden. Auf diese Weise erfährt das Band in den einzelnen Abschnitten, die aufgrund der unterschiedlichen Temperatureinstellung einen unterschiedlichen Fließspannungswert erhalten haben, bei im wesentlichen konstanter Walzkraft eine unterschiedliche Dickenabnahme. Zum Walzen mit konstanter Walzkraft ist eine hydraulische Zustellung vorgesehen, die den Walzspalt beim Walzen verfährt.

[0004] Nachteilig bei den heute eingesetzten Verfahren ist der hohe Aufwand bei der Erwärmung der Coils sowie die Komplexität der Walzgerüste zum Abwalzen der bereichsweise unterschiedlich erwärmten Coils beziehungsweise Platinen auf bereichsweise unterschiedliche Dicken.

[0005] Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein vereinfachtes Verfahren zum Herstellen von Platinen mit unterschiedlichen Dicken vorzuschlagen, das eine gezielte bereichsweise Erwärmung von Platinen und eine Abwalzung der Platinen mittels eines einfachen und kostengünstigen Walzgerüsts auf bereichsweise unterschiedliche Dicken ermöglicht.

[0006] Die Lösung besteht in einem Verfahren zum Herstellen von Platinen mit unterschiedlichen Dicken aus einem metallischen Werkstoff mit den Verfahrensschritten:

Fertigen von Platinen aus einem Bandmaterial; Bereichsweises Verändern der Temperatur der Platinen, wobei in den Platinen Bereiche mit unterschiedlichen Temperaturen erzeugt werden; und Walzen der bereichsweise temperaturveränderten Platinen in einem Walzwerkzeug mit einer Walzspaltanstellung, wobei die Walzspaltanstellung beim Walzen konstant gehalten wird, wobei in den Platinen aufgrund der unterschiedlichen Temperaturbereiche Abschnitte mit unterschiedlicher Dicke erzeugt werden.

[0007] Der Vorteil des Verfahrens mit der angegebenen Reihenfolge der einzelnen Verfahrensschritte besteht darin, dass durch die bereichsweise Änderung der Temperatur unterschiedliche Temperaturzonen erzeugt werden. Durch die unterschiedlichen Temperaturzonen weisen die verschiedenen Bereiche der Platinen unterschiedliche Fließwiderstände auf. Dabei haben heißere Bereiche einen geringeren Fließwiderstand und werden daher stärker abgewalzt, als kältere Bereiche der Platine. Aufgrund der unterschiedlichen Fließwiderstände werden an der Platine durch das anschließende Walzen Abschnitte mit unterschiedlicher Dicke erzeugt. Dabei haben die vor dem Walzen höher erwärmten Bereiche nach dem Walzen eine geringere Dicke, als die niedriger erwärmten Bereiche. Insgesamt lässt sich mit dem erfindungsgemäßen Verfahren durch entsprechendes Einstellen der Temperaturzonen der Platine vor dem Walzen ein optimierter Dickenverlauf der Platine nach dem Walzen erzeugen, welcher auf die späteren Bauteilanforderungen angepasst ist.

[0008] Unter Platine wird ein Blechelement verstanden, das aus einem Bandmaterial beziehungsweise von einem Coil hergestellt ist. Das heißt dem Verfahrensschritt des bereichsweisen Temperaturveränderns der Platine ist eine Fertigung der Platine aus einem Bandmaterial vorgeschaltet. Dabei versteht es sich, dass zwischen dem Vereinzeln von Platinen aus dem Bandmaterial und der bereichsweisen Temperaturveränderung der Platine noch andere Verfahrensschritte zwischengeschaltet sein können, beispielsweise eine Wärmebehandlung. Das Fertigen der Platinen aus dem Bandmaterial beziehungsweise vom Coil kann beliebig erfolgen und richtet sich nach der zu fertigenden Endkontur der Platine. Beispielsweise können die Platinen durch einfaches Ablängen des Bandmaterials in einzelne Elemente mit zumindest zwei parallelen Seitenkanten erfolgen, oder durch Ausschneiden bzw. Stanzen von einzelnen Elementen mit individueller Umfangskontur aus dem Bandmaterial. Diese ausgeschnittenen Elemente mit individueller Umfangskontur können auch als Formschnitte oder Konturschnitte bezeichnet werden.

[0009] Der Vorteil der Verwendung von Platinen für die bereichsweise Temperaturveränderung liegt darin, dass sich auch Temperaturgradienten quer zur Fertigungsbeziehungsweise zur späteren Walzrichtung erzeugen lassen. Diese führen beim Walzen zu einer in Bezug auf die Walzrichtung unsymmetrischen Verformung der Platine, was bei Bandmaterial nicht möglich wäre. Hiermit ist in vorteilhafter Weise eine höchste Flexibilität hinsichtlich der geometrischen Gestaltung der herzustellenden Platine beziehungsweise des aus der Platine herzustellenden Endprodukts gegeben.

[0010] Das nach dem Vereinzeln der Platinen stattfindende Walzen wird bei konstantem Walzspalt durchgeführt. Das heißt, dass die Walzspaltanstellung beim Durchlaufen der Platine durch das Walzwerkzeug zumindest weitestgehend konstant bleibt, vorzugsweise in einem ungeregelten Prozess. In diesem Zusammenhang

ist Walzspalt die Bezeichnung für die Walzenöffnung einschließlich des Walzensprungs an den Berührungsflächen des Walzguts mit den Walzen über die Walzballenlänge. Walzensprung ist die Bezeichnung für eine Vergrößerung der Walzenöffnung beim Anstich des Walzguts durch eine Dehnung der Teile des Walzgerüsts. Die Walzkraft kann sich, im Gegesatz zum Walzspalt, beim Durchlaufen der Platine ändern. Die Übergänge zwischen zwei Platinenabschnitten mit unterschiedlicher Banddicke ergeben sich durch die Temperaturverteilung in der Platine und können bei entsprechender partieller Temperaturänderung vor dem Walzen, im Gegensatz zu geregelten Walzgerüsten, sehr kurz gehalten werden. Der Kraft-Arbeitsbedarf ist durch den temperaturabhängigen Fließwiderstand stark reduziert, so dass Platinen mit unterschiedlichen Blechdicken in großer Breite wirtschaftlich hergestellt werden können.

3

[0011] Nach einer bevorzugten Ausgestaltung werden die unterschiedlichen Temperaturbereiche entsprechend dem später gewünschten Dickenverlauf der Platine erzeugt. Dabei kann die Form und die Erstreckung der Temperaturbereiche in Längs- und in Querrichtung der Platine grundsätzlich so gewählt werden, dass die Platine nach dem Walzen das gewünschte Dickenprofil aufweist.

[0012] Insbesondere kann nach einer einfachen ersten Ausgestaltung vorgesehen sein, dass von den Bereichen mit unterschiedlichen Temperaturen zumindest ein Bereich, vorzugsweise mehrere Bereiche, auf eine konstante Temperatur quer zur Walzrichtung erwärmt oder abgekühlt wird. Die so in Längsrichtung der Platine nebeneinanderliegenden Bereiche der Platine mit jeweils zum benachbarten Bereich unterschiedlicher Temperatur führen beim Walzen zu einer Dickenänderung der Platine in Längsrichtung beziehungsweise in Walzrichtung der Platine. Die Anzahl und Verteilung der Bereiche mit unterschiedlicher Temperatur ist in Abhängigkeit vom gewünschten Dickenprofil der Platine grundsätzlich frei wählbar, wobei die Anzahl insbesondere zwischen zwei und sechs liegt.

[0013] Nach einer zweiten Möglichkeit kann vorgesehen sein, dass zumindest ein Bereich, gegebenenfalls auch mehrere Bereiche, mit einer variablen Temperatur quer zur Walzrichtung versehen werden. Hiermit wird ermöglicht, dass die Platine beim nachfolgenden Walzprozess eine entsprechende Dickenänderung quer zur Walzrichtung erfährt. Auch hier gilt, dass die Anzahl und die Verteilung der Bereiche mit unterschiedlicher Temperatur in Abhängigkeit vom gewünschten Dickenprofil der herzustellenden Platine eingestellt wird.

[0014] Nach einer dritten Möglichkeit, die eine Kombination der ersten und der zweiten Möglichkeit darstellt, können sowohl Temperaturbereiche erzeugt werden, die sich mit einheitlicher Temperatur quer zur Walzrichtung erstrecken, als auch Temperaturbereiche, die quer zur Walzrichtung einen zusätzlichen Temperaturgradienten aufweisen. Mit der letztgenannten dritten Möglichkeit wird ein höchstes Maß an Flexibilität in Hinblick auf den

späteren Dickenverlauf der Platine nach dem Walzen in Längs-und in Querrichtung erreicht. Insbesondere lässt sich hiermit eine dreidimensionale Dickenstruktur der Platine erzeugen.

[0015] Nach einer ersten Ausführungsform erfolgt das bereichsweise Verändern der Temperatur ausgehend von einer homogenen ersten Temperatur der Platine durch Erwärmen zumindest eines Bereichs der Platine auf eine höhere zweite Temperatur. Mit homogener erster Temperatur ist dabei gemeint, dass die Platine vor der bereichsweisen Temperaturänderung einheitlich dieselbe Temperatur aufweist. Mit zumindest einem Bereich ist gemeint, dass ein oder mehrere Bereiche auf eine individuelle Temperatur erwärmt werden. Wenn genau ein Bereich erwärmt wird, entstehen zwei Bereiche mit voneinander unterschiedlicher Temperatur. Die Höhe der Temperatur, auf welche die Platine erwärmt wird, hängt im Wesentlichen vom Werkstoff beziehungsweise von der Festigkeit des Werkstoffs ab. Bei Verwendung eines Stahlwerkstoffs wird der zumindest eine Bereich der Platine vorzugsweise auf eine zweite Temperatur von 400 °C bis 1250 °C, insbesondere von 600 °C bis 800 °C erwärmt. Bei Verwendung eines Aluminium-Werkstoffs wird die Platine vorzugsweise auf eine zweite Temperatur von 150°C bis 500°C erwärmt.

[0016] Das bereichsweise Erwärmen der Platine kann beispielsweise mittels eines Stempels erfolgen, der mit der Platine derart in Kontakt gebracht wird, dass die Platine zumindest etwa die Temperatur des Stempels annimmt. In diesem Fall wäre der Stempel als Heizstempel ausgebildet, der vorzugsweise unterschiedlich gesteuerte Temperaturzonen aufweist. Alternativ kann das bereichsweise Erwärmen auch induktiv mittels einer oder mehrerer Stromwalzen erfolgen, durch welche die Platinen geführt werden, wobei insbesondere vorgesehen ist, dass die unterschiedlichen Temperaturzonen der Platinen durch Variieren der Leistung der Stromwalzen beim Hindurchführen der Platinen erzeugt werden.

[0017] Nach einer zweiten Ausführungsform wird das bereichsweise Verändern der Temperatur ausgehend von einer homogenen ersten Temperatur der Platine durch Abkühlen bewerkstelligt. Hierfür wird die Platinen vor dem bereichsweisen Verändern der Temperatur zunächst homogen auf eine höhere erste Temperatur erwärmt. Anschließend erfolgt das bereichsweise Verändern der Temperatur durch Abkühlen zumindest eines Bereichs der Platine auf eine niedrigere zweite Temperatur. Dadurch, dass zumindest ein Bereich abgekühlt wird, entstehen zumindest zwei Bereiche mit voneinander unterschiedlicher Temperatur. Selbstverständlich können auch beliebig viele weitere Bereiche jeweils auf eine individuelle Temperatur abgekühlt werden. Bei Verwendung eines Stahlwerkstoffs liegt die homogene erste Temperatur, auf welche die Platine erwärmt wird, zwischen 950°C und 1250°C. Das anschließende bereichsweise Abkühlen der Bereiche erfolgt auf niedrigere zweite Temperaturen, die insbesondere zwischen 400°C und 950 °C, vorzugsweise zwischen 600°C und 800°C, lie-

40

45

30

40

gen.

[0018] Das bereichsweise Abkühlen der Platine wird vorzugsweise mittels eines Stempels durchgeführt, der mit der Platine derart in Kontakt gebracht wird, dass die Platine zumindest etwa die Temperatur des Stempels annimmt. In diesem Fall wäre der Stempel als Kühlstempel ausgebildet. Der Stempel kann vorzugsweise individuell steuerbare Kühlzonen aufweisen, so dass die Temperaturzonen der Platine individuell an das später zu fertigende Dickenprofil angepasst werden kann.

[0019] Nach einer bevorzugten Ausgestaltung, die für beide Ausführungsformen gilt, das heißt sowohl für das partielle Wärmen als auch das partielle Kühlen, werden die Platinen nach dem Walzen einer Wärmebehandlung unterzogen, vorzugsweise einem Normalisierungsglühen. Hierfür werden die Platinen bei Verwendung von Stahlwerkstoff vorzugsweise auf eine Temperatur von 950°C bis 1250°C und bei Verwendung von Aluminium-Werkstoff auf eine Temperatur von 150°C bis 550°C erwärmt. Das Erwärmen findet vorzugsweise in einem Heizofen statt. Durch diese Wärmebehandlung wird eine einheitliche Gefügestruktur in der Platine über alle Abschnitte unterschiedlicher Dicke hergestellt.

[0020] Nach der Wärmebehandlung wird die Platine zum Endprodukt weiterverarbeitet. Der nachfolgende Verfahrensschritt umfasst vorzugsweise einen Umformprozess, wie Tiefziehen. Anschließend kann das Bauteil gehärtet werden, beziehungsweise vergütet, das heißt Härten mit anschließendem Anlassen. Besonders vorteilhaft ist die Verwendung eines Warmformprozesses. Dabei wird die Platine in einem Warmformwerkzeug zur vorgesehen Form umgeformt und gehärtet. Im Rahmen des Warmformens ist es auch denkbar, dass nur Teilbereiche des Warmformwerkzeuges gekühlt werden, so dass auch nur die Teilabschnitte des Werkstücks gehärtet werden, welche mit den gekühlten Teilbereichen des Warmformwerkzeuges in Kontakt kommen. Die übrigen Teilabschnitte des Werkstücks behalten eine geringere Härte. Zum Warmumformen mit gleichzeitigem Härten ist ein gekühltes Formwerkzeug erforderlich, das in den zu härtenden Abschnitten der Platine beziehungsweie des daraus herzustellenden Endprodukts gekühlte Bereiche aufweist, oder gegebenenfalls vollständig gekühlt

[0021] Die Lösung der obengenannten Aufgabe besteht ferner in einer Vorrichtung zum Herstellen von Platinen mit unterschiedlichen Dicken aus einem metallischen Werkstoff nach dem erfindungsgemäßen Verfahren, mit einem oder mehreren der obengenannten Verfahrensschritte, wobei die Vorrichtung in der angebenen Reihenfolge folgendes umfasst: ein Werkzeug zum Vereinzeln von Platinen aus einem Bandmaterial; ein temperaturveränderndes Werkzeug, mit dem in den Platinen Bereiche mit unterschiedlichen Temperaturen erzeugbar sind; und ein Walzwerkzeug mit konstanter Walzspaltanstellung, mit dem die temperaturveränderten Platinen walzbar sind, so dass in den Platinen aufgrund der unterschiedlichen Temperaturbereiche Abschnitte mit un-

terschiedlicher Dicke erzeugbar sind, aufweist.

[0022] Die erfindungsgemäße Vorrichtung hat dieselben Vorteile wie das Verfahren, so dass diesbezüglich auf die obige Beschreibung verwiesen wird. Insbesondere ist die konstante Walzspalteinstellung des Walzwerkzeugs, bevorzugt in einem ungeregelten Prozess, günstig im Hinblick auf eine einfache und effiziente Fertigung. Die Änderung der Materialdicke erfolgt allein aufgrund unterschiedlicher Walzensprünge des Walzwerkzeugs beim Durchlaufen der Platinen, was wiederum auf die unterschiedlichen Fließwiderstände im Platinenmaterial beziehungsweise die bereichsweise unterschiedlichen Temperaturen des Materials zurückzuführen ist. Dadurch, dass dem temperaturverändernden Werkzeug ein Werkzeug zum Vereinzeln von Bandmaterial zu Platinen vorgeschaltet ist, wird für die geometrische Gestaltung der herzustellenden Platine beziehungsweise des hieraus zu fertigenden Endproduktes eine höchste Flexibilität gegeben. So können beispielsweise auch Platinen beziehungsweise Erzeugnisse mit variablem Dikkenprofile quer zur Walzrichtung erzeugt werden.

[0023] Nach einer bevorzugten Ausgestaltung weist das temperaturverändernde Werkzeug zumindest einen Stempel auf, der erwärmbar oder abkühlbar ist. Mit dem Stempel lässt sich die Temperatur der Platine in einem oder mehreren Teilbereichen gegenüber anderen Bereichen partiell erhöhen beziehungsweise absenken. Die Größe und Form des Stempels orientiert sich vorzugsweise an der Form und Größe der zu erzeugenden Temperaturzonen beziehungsweise dem im Rahmen des Walzprozesses zu erzeugenden Dickenprofil der Platine. Vorzugsweise weist der Stempel mehrere Bereiche aufweist, in denen die Temperatur individuell einstellbar ist. So lassen sich mit einem Stempel auf der Platine unterschiedliche Temperaturzonen erzeugen.

[0024] Bei der ersten Möglichkeit, gemäß welcher der Stempel als Heizstempel ausgebildet ist, sind vorzugsweise Heizdrähte in dem Stempel vorgesehen, welche den Stempel zumindest in Teilbereichen erwärmen können.

[0025] Bei der zweiten Möglichkeit, bei welcher der Stempel als Kühlstempel zum partiellen Abkühlen der Platine ausgebildet ist, weist dieser vorzugsweise Kanäle auf, durch die ein Kühlmedium hindurchfließen kann, um den Stempel abzukühlen. Zur variablen Einstellung der unterschiedlichen Temperaturzonen in der Platine ist es besonders günstig, wenn die Durchflussgeschwindigkeit des Kühlmediums durch die Kanäle steuerbar ist. Vorzugsweise sind mehrere Kühlkreisläufe durch den Stempel vorgesehen, die von Kühlmedium durchströmt werden. Durch individuelle Einstellung der Durchflussgeschwindigkeit des Kühlmediums durch jeden einzelnen Kanal lassen sich mit einem Kühlstempel unterschiedliche Temperaturzonen erzeugen. So ist es beispielsweise möglich, dass mit einem Kühlstempel ein erster Bereich mit 600°C, ein zweiter Bereich mit 750°C und ein dritter Bereich mit 900°C in der Platine erzeugt werden kann. Dasselbe gilt sinngemäß natürlich auch

35

40

50

b)

für einen Heizstempel gemäß der ersten Möglichkeit, welcher entsprechend unterschiedliche Heizzonen aufweisen kann.

[0026] Nach einer bevorzugten Ausgestaltung, die für beide Möglichkeiten gilt, ist der zumindest eine Stempel aus einem metallischen Werkstoff mit guter Wärmeleitfähigkeit hergestellt, insbesondere aus Kupfer oder aus einem Kupfer enthaltenden Werkstoff.

[0027] Das Walzwerkzeug ist vorzugsweise so gestaltet sein, dass die Spaltbreite während des Walzens konstant ist. Hierdurch kann der Kraft-Arbeits-Bedarf sehr gering gehalten werden, was sich günstig auf die Herstellungskosten und -zeit auswirkt. Es versteht sich jedoch, dass auch ein Werkzeug zum flexiblen Walzen zum Einsatz kommen kann, womit eine besonders hohe Flexibilität im Hinblick auf das Dickenprofil der herzustellenden Platinen erreicht wird.

[0028] Nach einer bevorzugten Ausgestaltung umfasst die Vorrichtung ferner eine Wärmebehandlungseinrichtung, die dem Walzwerkzeug nachgeschaltet ist. In der Wärmebehandlungseinrichtung, welche insbesondere als Heizofen gestaltet ist, können die Platinen wärmebehandelt werden, vorzugsweise normalgeglüht.

[0029] Der Wärmebehandlungseinrichtung ist nach einer günstigen Weiterbildung ein Umformwerkzeug nachgeschaltet. Das Umformwerkzeug ist vorzugsweise in Form eines Warmformwerkzeugs gestaltet, in dem die Platinen umgeformt und zumindest partiell gehärtet werden können. Die Kombination der bereichsweisen Temperaturveränderung der Platinen, anschließenden Walzen, Erwärmen und Warmumformen ist besonders günstig, da hiermit ein sehr effiziente Herstellung von Blechplatinen mit variabler Dicke über der Länge beziehungsweise der Breite ermöglicht wird. Der Wärmeeintrag in die Platine während der Fertigung, das heißt während des Durchlaufens der einzelnen Vorrichtungsstationen kann gering gehalten werden, was sich wiederum günstig auf die Herstellungsgeschwindigkeit und -kosten auswirkt. Besonders günstig ist, wenn die Platinen mit den Bereichen, welche nach der bereichsweisen Temperaturveränderung die höchsten Temperaturen haben, während der nachfolgenden Verfahrensschritte des Walzens und der Wärmebehandlung bis zum Einlegen in das Umformwerkzeug stets eine Temperatur von über 500°C, insbesondere von über 600°C, für Stahlwerkstoffe aufweisen.

[0030] Bevorzugte Ausführungsbeispiele werden nachstehend anhand der Zeichnungsfiguren erläutert. Hierin zeigt:

- Figur 1 ein erfindungsgemäßes Verfahren zur Herstellung einer Platine mit unterschiedlichen Dicken in einer ersten Ausführungsform
- a) mit den einzelnen Verfahrensschritten;
- b) der Temperaturverlauf für zwei Bereiche über der Zeit;
- Figur 2 ein erfindungsgemäßes Verfahren zur Herstellung einer Platine mit unterschiedlichen

- Dicken einer zweiten Ausführungsform
- a) mit den einzelnen Verfahrensschritten;
 - der Temperaturverlauf für zwei Bereiche über der Zeit:
- Figur 3 beispielhaft eine Platine hergestellt nach einem Verfahren bzw. mit einer Vorrichtung gemäß Figur 1 oder Figur 2 in einer weiteren Ausführungsform
 - in Draufsicht nach der partiellen Temperaturbehandlung und vor dem Walzprozess,
 - schematisch in Seitenansicht vor dem Walzprozess,
 - schematisch in Seitenansicht nach dem Walzprozess;
 - Figur 4 beispielhaft eine Platine hergestellt nach einem Verfahren bzw. einer Vorrichtung gemäß Figur 1 oder Figur 2 in einer weiteren Ausführungsform
 - in Draufsicht nach der partiellen Temperaturbehandlung und vor dem Walzprozess;
 - b) in Draufsicht nach dem Walzprozess;
 - schematisch in Seitenansicht nach dem Walzprozess;
- d) im Querschnitt nach dem Walzprozess durch 25 einen Abschnitt gemäß Schnittlinie D-D aus Figur 4b).

[0031] Figur 1 zeigt ein erfindungsgemäßes Verfahren zur Herstellung einer Platine 10. Die Blechplatine 10 wird vorzugsweise aus einem metallischen Werkstoff hergestellt, beispielsweise aus einem Stahlwerkstoff oder Aluminium, und kann insofern auch als Blechplatine bezeichnet werden. Es ist eine Verfahrensführung A gezeigt.

[0032] Unter Platine 10 wird in diesem Zusammenhang ein Blechelement verstanden, das insbesondere von einem Bandmaterial beziehungsweise von einem Coil hergestellt werden kann. Dabei kann die Platine durch einfaches Ablängen des Bandmaterials in einzelne Elemente oder durch Ausschneiden bzw. Stanzen von einzelnen Elementen aus dem Bandmaterial hergestellt werden.

[0033] Im Verfahrensschritt A1 wird die Platine 10 mittels eines temperaturverändernden Werkzeugs 30 behandelt. Dabei erhält die Platine 10 verschiedene Bereiche 11, 12, 21, welche unterschiedliche Temperaturen aufweisen. Im vorliegenden Beispiel hat der Bereich 11 eine Temperatur von 800°C, der zweite Bereich 12 eine Temperatur von 600°C. Der zwischen dem ersten Bereich 11 und dem zweiten Bereich 12 liegende Übergangsbereich 21 hat eine variable Temperatur, die vom ersten Bereich 11 zum zweiten Bereich 12 sinkt.

[0034] Die in Figur 1 b) gezeigte Temperaturkurve mit durchgezogener Linie zeigt den Temperaturverlauf für den ersten Bereich 11 über der Zeit. Hier ist erkennbar, wie die Temperatur ausgehend von der Ausgangstemperatur von 0°C sich zunächst stark erhöht, bis die Zieltemperatur $T_{A1,11}$ von 800° C erreicht ist. Entsprechend

zeigt die gestrichelte Linie den Temperaturverlauf für den zweiten Bereich 12. Hier ist ebenfalls erkennbar, wie sich die Temperatur mit der Zeit erhöht, bis der Zielwert von $T_{A1.12} = 600$ °C erreicht ist.

[0035] Nach der bereichsweisen Temperaturbehandlung der Platine 10 wird diese im darauffolgenden Verfahrensschritt A2 einem Walzprozess unterzogen. Dies geschieht mittels eines Walzwerkzeuges 40, das mehrere Walzen 41, 42 umfasst. Durch die im Verfahrensschritt A1 erzeugten unterschiedlichen Temperaturbereiche 11, 12, 21 weist die Platine 10 hier entsprechend unterschiedliche Fließwiderstände auf. Dabei hat der heißere erste Bereich 11 einen geringeren Fließwiderstand, weswegen dieser stärker abgewalzt wird. Demgegenüber hat der kühlere zweite Bereich 12 der Platine einen höheren Fließwiderstand, so dass er weniger stark abgewalzt wird. Aufgrund dieser unterschiedlichen Fließwiderstände werden an der Platine 10 durch den Walzprozess A2 Abschnitte 112, 122, 212 mit unterschiedlicher Dicke erzeugt. Die Platine ist nach dem Walzprozess mit um die Ziffer zwei tiefergestellten Indizes versehen. Es ist erkennbar, dass die Platine 102 nach dem Durchlaufen des Walzwerkzeuges 40 einen ersten Abschnitt 112 mit geringerer Blechdicke und einen zweiten Abschnitt 122 mit einer größeren Blechdicke sowie einen dazwischen liegenden Übergangsabschnitt 212 aufweist.

[0036] Beim Durchlaufen der Platine 10 durch das Walzwerkzeug 40 bleibt die Walzspaltanstellung konstant, d. h. der Abstand zwischen den Walzen wird beim Durchlaufen der Blechplatine 10 nicht verändert. Das Dickenprofil ergibt sich allein aufgrund der unterschiedlichen Temperaturbereiche 11, 12, 21 der Platine 10. Insgesamt ergibt sich damit ein geringer Kraft-Arbeits-Bedarf. Es versteht sich jedoch, dass auch ein flexibles Walzen, bei welchem die Walzspaltanstellung während des Prozesses variiert wird, verwendet werden kann. Hiermit ergibt sich eine nochmals erhöhte Flexibilität und weitere Möglichkeiten der individuellen Gestaltung unterschiedlicher Dickenprofile an den Platinen 10.

[0037] In Figur 1 b) ist der Temperaturverlauf T_{A2} vor, nach und während des Walzens gezeigt. Hier zeigt die durchgezogene Linie wieder den Temperaturverlauf für den Bereich 11 bzw. den nach dem Walzprozess vorliegenden Abschnitt 112. Vor dem Walzen nimmt die Temperatur leicht und während des Walzens dann stärker ab, bis auf eine Temperatur von ca. 700°C. Nach dem Walzprozess kühlt die gewalzte Platine 10_2 weiter ab, so dass die Temperatur entsprechend abnimmt. Der Temperaturverlauf $T_{A2,12}$ für den zweiten Bereich 12 verläuft weitestgehend parallel zum Temperaturbereich $T_{A2,11}$ für den ersten Bereich 11 mit einer um etwa 200°C reduzierten Temperatur.

[0038] Im nachfolgenden Verfahrensschritt A3 wird die gewalzte Platine 10₂ einer Wärmebehandlung unterzogen. Die Platine beziehungsweise deren Abschnitte sind nach der Wärmebehandlung mit um die Ziffer drei tiefergestellten Indizes versehen. Die Wärmebehandlung er-

folgt vorzugsweise in einem Ofen 50. Durch die Wärmebehandlung werden beim Walzen entstandene Verfestigungen des Materials vermindert bzw. aufgelöst und die gewalzte Platine 10₃ erhält wieder eine höhere Duktilität und Dehnbarkeit. Auf diese Weise lässt sich die Platine 10₃ in den folgenden Verfahrensschritten leichter weiterverarbeiten, wobei außerdem die Materialeigenschaften des herzustellenden Endproduktes positiv beeinflusst werden. Es versteht sich, dass die Wärmebehandlung im Verfahrensschritt A3 nur optional ist, das heißt, dass die Platine 10₂ auch prinzipiell ohne nachfolgende Wärmebehandlung weiterverarbeitet werden kann.

[0039] Wie aus Figur 1b) hervorgeht, wird die Platine 10₃ auf etwa 950°C erwärmt. Dabei erwärmt sich der dünnere erste Platinenabschnitt 11₃ schneller als der dikkere Platinenabschnitt 123.

[0040] Nach der Wärmebehandlung gemäß Verfahrensschritt A3 kann die Platine 103 weiterverarbeitet werden. Beispielhaft ist hier eine formgebende Bearbeitung in einem Warmformwerkzeug 60 gezeigt. Die Platine beziehungsweise deren Abschnitte sind im Zusammenhang mit dem Warmformprozess mit um die Ziffer vier tiefergestellten Indizes versehen. Beim Warmformen gemäß Verfahrensschritt A4 wird die Platine 10₁ einer formgebenden Bearbeitung unterzogen und gleichzeitig stark abgekühlt bzw. gehärtet. Dies ist auch am Temperaturverlauf erkennbar, der nämlich für den dünneren ersten Abschnitt 11₄ (Temperatur T_{A4,11}) einen starken Temperaturabfall von 950°C auf unter 200°C zeigt. Der dickere zweite Platinenabschnitt 124 kühlt etwas langsamer ab, wie der gestrichelten Linie (Temperatur T_{A4.12}) zu entnehmen ist. Es versteht sich, dass als formgebende Bearbeitung auch andere Verfahren als Warmumformung verwendet werden können. Beispielhaft sei hier eine Weiterverarbeitung mittels Pressen oder Tiefziehen ge-

[0041] Die Figuren 2a) und 2b) zeigen ein erfindungsgemäßes Verfahren zur Herstellung einer Blechplatine mit unterschiedlichen Dicken nach einer zweiten Verfahrensführung B. Diese entspricht in weiteren Teilen dem Verfahren gemäß den Figuren 1a) bzw. 1b), so dass hinsichtlich der Gemeinsamkeiten auf obige Beschreibung Bezug genommen werden kann. Dabei sind gleiche bzw. abgewandelte Bauteile mit gleichen Bezugszeichen versehen, wie in Figur 1. Im folgenden wird im wesentlichen auf die Unterschiede des vorliegenden Verfahrens eingegangen.

[0042] Die Besonderheit der Verfahrensführung B gemäß Figur 2 besteht darin, dass die Blechplatine in einem Verfahrensschritt B0 zunächst erwärmt wird. Die Temperatur, auf welche die Blechplatine 10 erwärmt wird, hängt vom Material bzw. der Festigkeit des Materials ab; diese beträgt für einen Stahlwerkstoff vorzugsweise zwischen 900°C und 950°C. Nach dem Erwärmen im Verfahrensschritt B0 wird im anschließenden Verfahrensschritt B1 eine partielle Temperaturveränderung der Blechplatine 10 vorgenommen. Dies erfolgt bei der vorliegenden Ausführungsform durch bereichsweises Ab-

kühlen der Blechplatine 10. Dabei hat die Platine 10₁ im vorliegenden Beispiel einen ersten Bereich 11₁, welcher auf 800°C abgekühlt wird, und einen zweiten Bereich 12₁, welcher auf 600°C abgekühlt wird. Zwischen den beiden Bereichen 11₁, 12₁ liegt ein Übergangsbereich 21₁ mit variablem Temperaturverlauf über der Länge beziehungsweise der späteren Walzrichtung.

[0043] Es ist in Figur 2b) der Temperaturverlauf T_B der Blechplatine 10 bzw. des ersten Bereichs 11 und des zweiten Bereichs 12 über der Zeit, beziehungsweise entlang der verschiedenen Verfahrensschritte B0 bis B4, dargestellt. Dabei zeigt die durchgezogene Linie den Temperaturverlauf T_{B11} für den ersten Bereich 11, während die gestrichelte Linie den Temperaturverlauf T_{B12} über der Zeit für den zweiten Bereich 12 zeigt. Es ist im Rahmen des zweiten Verfahrensschritts B1 erkennbar, dass der erste Bereich 11₁ der Platine 10₁ von 950°C auf etwa 800°C abgekühlt wird (Temperaturkurve $T_{B1,11}$). Der zweite Bereich 12₁ erfährt eine größere Abkühlung, und zwar auf etwa 600°C (Temperaturkurve $T_{B1,12}$).

[0044] Das zu diesem Zeitpunkt vorliegende Erzeugnis entspricht der Platine 10₁ aus der ersten Verfahrensführung A gemäß Figur 1a), b), wie sie nach dem ersten Verfahrensschritt A1 vorliegt. Die gemäß der zweiten Verfahrensführung B nachfolgenden Verfahrensschritte B2, B3 und B4 entsprechen den Verfahrensschritten A2, A3 und A4 gemäß Figur 1, so dass diesbezüglich auf die obige Beschreibung verwiesen wird.

[0045] Die Besonderheit der vorliegenden Ausführungsform gemäß Figur 2 liegt darin, dass das bereichsweise Verändern der Temperatur TB₁ ausgehend von der homogenen ersten Temperatur, welche nach dem Erwärmen im Verfahrensschritt B0 stattfindet, durch Abkühlen bewerkstelligt wird. Diese Verfahrensführung hat den Vorteil, dass die Wärme aus dem vorhergehenden Erwärmungsvorgang gemäß Verfahrensschritt B0 verwendet werden kann, so dass der vorliegende Prozess sehr effektiv ist. Das bereichsweise Abkühlen der Platine 10 wird vorzugsweise mittels eines Stempels 30 durchgeführt, der mit der Platine 10 derart in Kontakt gebracht wird, dass die Platine 10 die Temperatur des Stempels 30 annimmt. Der Stempel 30 hat insbesondere mehrere Kühlzonen, die individuell einstellbar sind. Beispielsweise kann der Stempel 30 eine Mehrzahl von Kanälen aufweisen, durch die ein Kühlmedium hindurchfließen kann, um diese abzukühlen. Zum variablen Einstellen unterschiedlicher Temperaturzonen in der Platine 10 ist vorgesehen, dass die Durchflussgeschwindigkeit des Kühlmediums durch die Kanäle steuerbar ist. Zur Erzeugung verschiedener Temperaturbereiche 11, 12, 21 in der Platine 10 hat der Stempel 30 mehrere Kühlkreisläufe, die von Kühlmedium durchströmt werden. Dabei kann durch individuelle Einstellung der Durchflussgeschwindigkeit des Kühlmediums durch jeden einzelnen Kanal unterschiedliche Temperaturzonen erzeugt werden.

[0046] Der Stempel ist vorzugsweise aus einem metallischen Werkstoff mit guter Wärmeleitfähigkeit herge-

stellt, beispielsweise aus Kupfer oder aus einem Kupfer enthaltendem Werkstoff.

[0047] Es versteht sich, dass die beiden Ausführungsformen für die unterschiedlichen Bereiche der Platine 10, welche in den Figuren 1 und 2 gezeigt sind, nur beispielhaft sind. Die Anzahl und Verteilung der Bereiche 11, 12, 21 mit unterschiedlichen Temperaturen T₁₁, T₁₂, T₂₁ ist grundsätzlich frei wählbar und kann an die im Hinblick auf das Dickenprofil des zu fertigenden Werkstücks angepasst werden. Die Anzahl der Bereiche 11, 12, 21 mit unterschiedlichen Temperaturen T₁₁, T₁₂, T₂₁ liegt vorzugsweise zwischen zwei und sechs, wobei auch mehr Bereiche denkbar sind.

[0048] Figur 3 zeigt ein weiteres Beispiel für eine Platine nach dem partiellen Verändern der Temperatur gemäß dem Verfahrensschritt A1 beziehungsweise B1. Es ist erkennbar, dass die Platine 10 vorliegend sechs Bereiche 11-16 mit jeweils individueller Temperatur T_{11} - T_{16} aufweist. Diese sind jeweils als weiße Bereiche dargestellt. Zwischen den sechs Bereichen 11-16 mit jeweils einheitlicher Temperatur T_{11} - T_{16} liegen jeweils Übergangsbereiche 21-25, in denen die Temperaturen T_{2} - T_{25} variabel sind. Diese Übergangsbereiche 21-25 sind schraffiert dargestellt. Hier geht die Temperatur vom einen Temperaturbereich zum nächsten kontinuierlich über. Die Fertigungs- beziehungsweise spätere Walzrichtung ist mit einem Pfeil R eingezeichnet.

[0049] Figur 3b) zeigt die Blechplatine 10 vor dem Walzen in Seitenansicht, d. h. im Profil, in stark übertriebener Darstellung. Hier ist erkennbar, dass die Platine 10 vor dem Walzprozess eine einheitliche Dicke über der Länge aufweist.

[0050] Figur 3c) zeigt die Platine 10₂ nach dem Walzprozess gemäß dem Verfahrensschritt A2 nach Figur 1 beziehungsweise B2 nach Figur 2. In Figur 3c) ist erkennbar, dass die Platine 10₂ durch das Walzen ein variables Dickenprofil über der Länge erhalten hat. Durch die vor dem Walzen erzeugten unterschiedlichen Temperaturzonen 11-16 wurden die stärker erwärmten Bereiche 13, 16 aufgrund der geringeren Fließwiderstände stärker ausgewalzt, als die kälteren Bereiche 12, 15. Es ergibt sich das in Figur 3c) schematisch gezeigte Dikkenprofil der Platine 10 über der Länge.

[0051] Die Figuren 4a) und b), welche nachfolgend gemeinsam beschrieben werden, zeigen eine Blechplatine 10 in einer weiteren möglichen Ausführungsform nach dem partiellen Verändern der Temperatur und vor dem Walzprozess gemäß Figur 4a) bzw. nach dem Walzen gemäß Figur 4b). Die Verteilung der unterschiedlichen Temperaturbereiche entspricht weitestgehend derjenigen gemäß Figur 3, so dass hinsichtlich der Gemeinsamkeiten auf die obige Beschreibung Bezug genommen wird. Eine Besonderheit der vorliegenden Ausführungsform besteht darin, dass der Bereich 15 einen Temperaturgradienten quer zur Walzrichtung R der Platine 10 aufweist. Das heißt, die Temperatur T₁₅' beträgt an der einen Seite 18 etwa 600°C und an der gegenüberliegenden anderen Seite 19 etwa 800°C. Die übrigen Bereiche 11,

15

20

25

30

35

40

45

50

55

12, 13, 14 und 16 haben jeweils quer zur Walzrichtung R weitestgehend einheitliche Temperaturen.

[0052] Dadurch, dass die Temperatur in dem Bereich 15 quer zur Walzrichtung variabel ist, wird die Platine uneinheitlich abgewalzt. Es ist in Figur 4b) erkennbar, dass die Platine 102 nach dem Walzen eine Formänderung in Längsrichtung erfahren hat. Dabei ist die Platine 10₂ an der Seite 18 des Bereichs 15, welcher auf 600°C stärker abgekühlt war, weniger stark abgewalzt, als an der entgegengesetzten Seite 19, welche nur auf 800°C abgekühlt worden ist. Somit ergibt sich insgesamt, in Draufsicht auf die Platine 10, ein Knick in diesem Abschnitt 15₁. Das Dickenprofil über der Länge an der Seite 18, dessen Bereich 15 stärker abgekühlt worden ist, ist in Figur 4c) dargestellt. Dieses entspricht im Wesentlichen dem Profil gemäß Figur 3c), wobei vorliegend insbesondere die Übergangsbereiche 22 dünner gestaltet sind.

[0053] Durch die Erzeugung unterschiedlicher Temperaturbereiche T₁₅ auch quer zur Walzrichtung R wird hinsichtlich des Dickenprofils ein höchstes Maß an Flexibilität erreicht. In vorteilhafter Weise können die zu erzeugenden Blechplatinen 10 individuell an das für das spätere Endprodukt gewünschte Dickenprofil angepasst werden. Der Vorteil der im Zusammenhang mit den Figuren 1 und 2 beschriebenen erfindungsgemäßen Verfahren sowie den zugehörigen Vorrichtungen besteht darin, dass fertige Formschnitte im Rahmen einer kurzen Prozesskette mit hoher Effizienz hergestellt werden können. Dabei ist insbesondere die Kombination der Verfahrensführung mit partieller Temperaturveränderung gemäß Verfahrensschritt A1 oder B1 der Blechplatine 10 vor dem Walzen, anschließendem Normalisieren und abschließendem Warmumformen besonders günstig, da hier das Temperaturniveau in der Blechplatine insgesamt über die komplette Prozesskette relativ hoch bleibt, insbesondere über 400°C bis 500°C, und damit der Energieeintrag für die Fertigung gering ist. Auf diese Weise lassen sich die Formschnittplatinen mit einer kurzen Prozesskette und damit verbundener hohen Effizienz herstellen.

Bezugszeichenliste

[0054]

11-16 Bereich / Abschnitt

21-25 Übergangsbereich / Übergangsabschnitt

30 temperaturänderndes Werkzeug

40 Walzwerkzeug

41 Walzen

42 Walzen

50 Heizofen

60 Umformwerkzeug

A Verfahrensfolge

B Verfahrensfolge

D Dicke

R Walzrichtung

T Temperatur

Patentansprüche

 Verfahren zum Herstellen von Platinen mit unterschiedlichen Dicken aus einem metallischen Werkstoff mit den Verfahrensschritten:

Fertigen von Platinen (10) aus einem Bandmaterial:

Bereichsweises Verändern der Temperatur (T) der Platinen (10), wobei in den Platinen (10) mehrere Bereiche (11-16) mit unterschiedlichen Temperaturen (T_{11} - T_{16}) erzeugt werden;

Walzen der bereichsweise temperaturveränderten Platinen (10) in einem Walzwerkzeug (40) mit einer Walzspaltanstellung,

wobei die Walzspaltanstellung beim Walzen der Platinen (10) konstant gehalten wird, wobei in den Platinen (10) aufgrund der unterschiedlichen Temperaturbereiche Abschnitte (11-16) mit unterschiedlicher Dicke (D₁₁-D₁₆) erzeugt werden.

2. Verfahren nach Anspruch 1,

dadurch gekennzeichnet,

dass von den Bereichen (11-16) mit unterschiedlichen Temperaturen (T_{11} - T_{16}) zumindest ein Bereich (11-16) mit einer konstanten Temperatur (T_{11} - T_{16}) und/oder ein Bereich (15') mit einer variablen Temperatur (T_{15} ') quer zur Walzrichtung (R) erzeugt wird.

3. Verfahren nach Anspruch 1 oder 2,

dadurch gekennzeichnet,

dass das bereichsweise Verändern der Temperatur durch Erwärmen oder Abkühlen zumindest eines Bereichs (11-16) der Platine (10) erfolgt, insbesondere mittels zumindest einem Stempels (30), der mit der Platine (10) in Kontakt gebracht wird, so dass die Platine (10) zumindest etwa die Temperatur des Stempels (30) annimmt.

4. Verfahren nach Anspruch 1 oder 2,

dadurch gekennzeichnet,

dass das bereichsweise Verändern der Temperatur durch Erwärmen zumindest eines Bereichs (11-16) der Platine (10) induktiv erfolgt, wobei die Platinen durch Stromwalzen geführt werden, wobei die Bereiche (11-16) mit unterschiedlichen Temperaturen durch Variation der Leistung der Stromwalzen beim Hindurchführen der Platinen (10) erzeugt werden.

5. Verfahren nach Anspruch 1 bis 3,

dadurch gekennzeichnet,

dass das bereichsweise Verändern der Temperatur

10

20

25

40

45

50

durch Abkühlen zumindest eines Bereichs (11-16) der Platine (10) erfolgt, wobei die Platinen (10) vor dem bereichsweisen Abkühlen homogen auf eine erste Temperatur erwärmt werden

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet,

dass die Platinen (10) nach dem Walzen erwärmt werden, insbesondere normalgeglüht.

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet,

dass die Platinen (10) nach dem Erwärmen warmgeformt werden.

8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet,

dass die Platinen (10) mit den Bereichen (11, 16), welche nach der bereichsweisen Temperaturveränderung die höchsten Temperaturen (T₁₁; T₁₆) haben, während der nachfolgenden Verfahrensschritte des Walzens und der Wärmebehandlung bis zum Einlegen in das Umformwerkzeug stets eine Temperatur von über 500°C, insbesondere von über 600°C, für Stahlwerkstoffe aufweisen.

9. Vorrichtung zum Herstellen von Platinen mit unterschiedlichen Dicken aus einem metallischen Werkstoff zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8, die Vorrichtung umfassend:

ein Werkzeug zum Fertigen von Platinen (10) aus einem Bandmaterial;

ein temperaturveränderndes Werkzeug (30), mit dem in den Platinen (10) Bereiche (11-16) mit unterschiedlichen Temperaturen $(T_{11}-T_{16})$ erzeugbar sind;

ein Walzwerkzeug (40) mit konstanter Walspaltanstellung, mit dem die temperaturveränderten Platinen (10) walzbar sind, so dass in den Platinen (10) aufgrund der unterschiedlichen Temperaturbereiche Abschnitte (11-16) mit unterschiedlicher Dicke (D₁₁-D₁₆) erzeugbar sind.

10. Vorrichtung nach Anspruch 9,

dadurch gekennzeichnet,

dass das temperaturverändernde Werkzeug (30) zumindest einen Stempel aufweist, der erwärmbar oder abkühlbar ist.

11. Vorrichtung nach Anspruch 10,

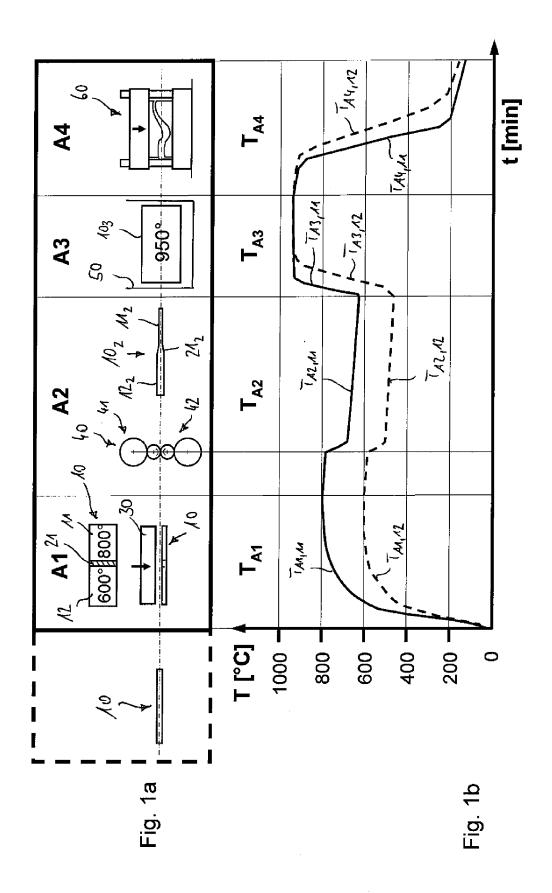
dadurch gekennzeichnet,

dass der Stempel (30) Temperatursteuermittel aufweist, wobei mittels der Temperatursteuermittel die Temperatur in zumindest einem Abschnitt des Stempels (30) individuell einstellbar ist.

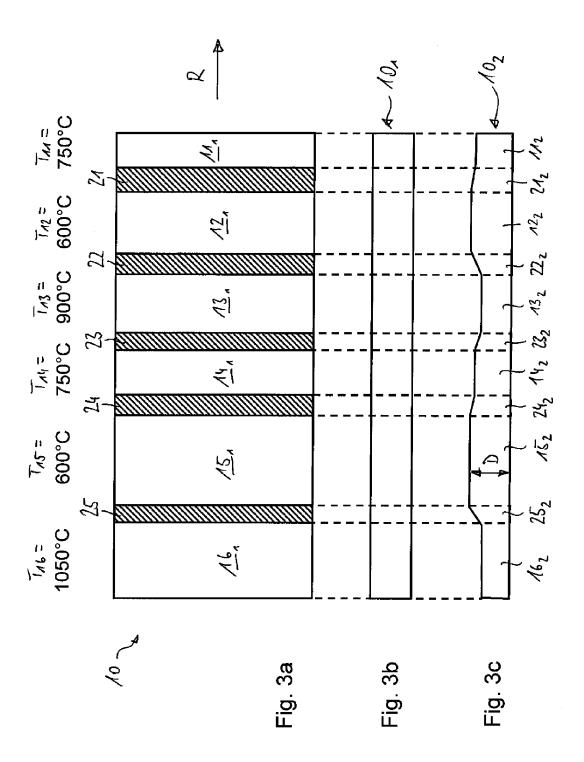
12. Vorrichtung nach Anspruch 11,

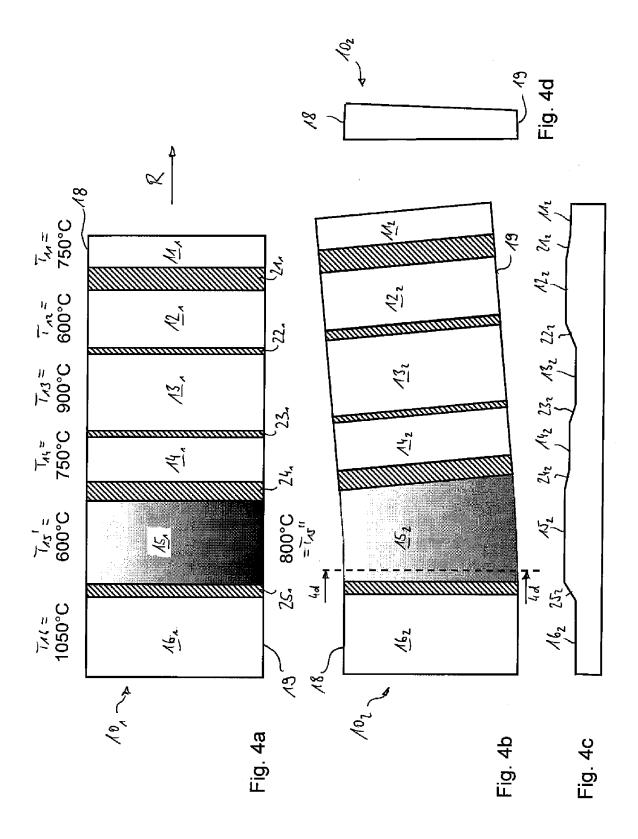
dadurch gekennzeichnet,

dass der Stempel (30) Kanäle aufweist, durch die ein Kühlmedium hindurchfließen kann, um den Stempel (30) abzukühlen, wobei die Durchflussgeschwindigkeit des Kühlmediums durch die Kanäle insbesondere steuerbar ist.


13. Vorrichtung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet,


dass diese ferner eine Wärmebehandlungseinrichtung aufweist, die dem Walzwerkzeug nachgeschaltet ist und in der die Platinen normalgeglüht werden können.


15 **14.** Vorrichtung nach Anspruch 13,


dadurch gekennzeichnet,

dass diese ferner ein Umformwerkzeug aufweist, das der Wärmebehandlungseinrichtung nachgeschaltet ist, insbesondere ein Warmformwerkzeug, in dem die Platinen umgeformt und zumindest partiell gehärtet werden können.

EP 2 540 405 A2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• DE 19704300 A1 **[0002]**

DE 19846900 A1 [0003]