BACKGROUND
Field of the Invention
[0001] This invention generally relates to a bicycle brake device. More specifically, the
present invention relates to a bicycle brake arm for a bicycle brake device.
Background Information
[0002] Bicycles are typically provided with at least one brake device for stopping. Currently,
a wide variety of bicycle brake devices are available. One of the most popular types
of bicycle brake devices is a rim brake. Rim brakes are configured to apply a braking
force to the wheel of a bicycle by pinching the rim of the wheel with a pair of brake
shoes attached to a pair of brake arms. One well-known example of a rim brake is a
caliper brake. Caliper brakes are also available in several configurations. For example,
caliper brakes include a side pull type, a center pull type and a dual-pivot, side
pull type. One example of a caliper brake is disclosed in
U.S. Patent No. 5,819,880.
[0003] Bicycles should be made as lightweight as possible, and all the parts of a bicycle
should therefore be made as light as possible. This is true of bicycle brake devices
as well. However, in designing a bicycle part, a balance is typically made between
strength and weight reduction. One example of a caliper brake that is provided with
a through hole for reduced weight is disclosed in
U.S. Patent Application Publication No. 2008/0202866.
SUMMARY
[0004] One aspect is to provide a bicycle brake arm that is relatively lightweight as compared
to a conventional bicycle brake arm.
[0005] In view of the state of the known technology, a bicycle brake arm is provided in
accordance with a first aspect that basically comprises a first branch and a second
branch. The first branch includes a cable attachment structure. The second branch
extends from the first branch. The second branch includes a brake shoe attachment
structure. At least one of the first and second branches includes an interior cavity.
The at least one of the first and second branches has a transverse cross-section in
which the interior cavity is completely and continuously surrounded by an exterior
surface of the bicycle brake arm.
[0006] In this brake arm of the first aspect, the interior cavity is completely and continuously
surrounded by an exterior surface of the bicycle brake arm. Therefore, the brake arm
is provided with sufficient strength in a "twist direction" of the brake arm to prevent
undesirable twisting of bicycle brake arm as compared to bicycle brake arms having
a through opening such as disclosed in
U.S. Patent Application Publication No. 2008/0202866.
[0007] Various objects, features, aspects and advantages of the bicycle brake arm will become
apparent to those skilled in the art from the following detailed description, which,
taken in conjunction with the annexed drawings, discloses two illustrative embodiments
of a bicycle brake arm.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] Referring now to the attached drawings which form a part of this original disclosure:
[0009] Figure 1 is a front elevational view of a portion of a bicycle that is equipped with
a bicycle brake device in accordance with the illustrated embodiments;
[0010] Figure 2 is an exploded view of the bicycle brake device that is illustrated in Figure
1;
[0011] Figure 3 is a front elevational view of one of the bicycle brake arms of the bicycle
brake device that is illustrated in Figures 1 and 2;
[0012] Figure 4 is a top plan view of the bicycle brake arm that is illustrated in Figure
3;
[0013] Figure 5 is a cross-sectional view of the bicycle brake arm that is illustrated in
Figures 3 and 4 as seen along the line 5-5, but with the cap or plug (e.g., a solid
block) exploded outwardly from the interior cavity of the bicycle brake arm;
[0014] Figure 6 is a cross-sectional view, similar to Figure 5, of the bicycle brake arm
that is illustrated in Figures 3 to 5, but with the cap or plug (e.g., a solid block)
installed in the interior cavity of the bicycle brake arm; and
[0015] Figure 7 is an enlarged partial cross-sectional view of a modified bicycle brake
arm having the cap or plug (e.g., a solid block) bond to the bicycle brake arm by
a bonding material (e.g., a metal weld);
[0016] Figure 8 is an enlarged partial cross-sectional view, similar to Figure 5, of the
modified bicycle brake arm but after surface treating the bonding material to form
a seamless connection between the exterior surfaces of the cap and the bicycle brake
arm; and
[0017] Figure 9 is a cross-sectional view, similar to Figure 5, of a bicycle brake arm that
is illustrated in Figures 3 and 4, but which is provided with a cap or plug that is
formed of a harden putty filler accordance with another illustrated embodiment.
DETAILED DESCRIPTION OF EMBODIMENTS
[0018] Selected embodiments will now be explained with reference to the drawings. It will
be apparent to those skilled in the art from this disclosure that the following descriptions
of the embodiments are provided for illustration only and not for the purpose of limiting
the invention as defined by the appended claims and their equivalents.
[0019] Referring initially to Figure 1, a portion of a bicycle 10 is illustrated that is
equipped with a bicycle brake device 12 in accordance with a first embodiment. The
bicycle brake device 12 in the illustrated embodiment is a side pull caliper rim brake,
and more particularly, a dual-pivot, side pull caliper rim brake. In particular, the
bicycle brake device 12 is attached to a front fork 14 of the bicycle 10 via a mounting
bolt 16 in a conventional manner. The bicycle brake device 12 is configured and arranged
relative to front fork 12 for selectively gripping a bicycle rim 18 of the front wheel
to applying a braking force using friction. Of course, it will be apparent from this
disclosure that the bicycle brake device 12 can be mounted a rearward portion of the
bicycle 10 for selectively gripping a bicycle rim of a rear wheel (not shown).
[0020] Basically, as seen in Figures 1 and 2, the bicycle brake device 12 includes a first
brake arm 20, a second brake arm 22 and a mounting arm 24. The first brake arm 20
is a generally L-shaped member, while the second brake arm 22 is a Y-shaped member.
The first brake arm 20, the second brake arm 22 and the mounting arm 24 are rigid
members formed of a suitable material such as a metallic material or a fiber reinforced
plastic material.
[0021] The first and second brake arms 20 and 22 are pivotally supported relative to each
other by the mounting arm 24. In particular, the second brake arm 20 is pivotally
attached to the mounting arm 24 by the mounting bolt 16 that is also used to mount
the entire bicycle brake device 12 to the bicycle 10. The center axis of the mounting
bolt 16 defines a first pivot axis A1 of the bicycle brake device 12. The first brake
arm 20 is pivotally attached to the mounting arm 24 by a support bolt 26 ( Figure
2). The center axis of the support bolt 26 defines a second pivot axis A2 of the bicycle
brake device 12. Thus, a dual-pivot arrangement is provided in the bicycle brake device
12 of the illustrated embodiment. As seen in Figure 2, a spring 28 is provided between
the first and second brake arms 20 and 22 in a conventional manner for biasing the
first and second brake arms 20 and 22 to their non-braking positions.
[0022] In the illustrated embodiment of Figures 1 and 2, except for the construction of
the first brake arm 20. Thus, for the sake of brevity, the details of the construction
of the bicycle brake device 12 will be omitted. In other words, other than the first
brake arm 20, the construction of the bicycle brake device 12 will only be discussed
briefly herein.
[0023] As seen in Figures 1 to 6, the first brake arm 20 includes a first branch 30 and
a second branch 32 extending from the first branch 30. As seen in Figures 4 to 6,
the first branch 30 also has an interior cavity 36 that extends along a longitudinal
direction L1 of the first branch 30. As seen in Figure 4, the first branch 30 has
a transverse cross-section in which the interior cavity 36 is completely and continuously
surrounded by an exterior surface 30a of the first branch 30. As seen in Figures 5
and 6, the first branch 30 further has an opening 38 formed in the exterior surface
30a of the first branch 30. The opening 38 communicates with the interior cavity 36.
In the illustrated embodiment, the interior cavity 36 and the opening 38 can be formed
in a single drilling operation, or can be formed in two separate drilling operations.
In the illustrated, the interior cavity 36 has a step configuration with a first cylindrical
section 36a and a second cylindrical section 36b. The first cylindrical section 36a
has a diameter that is larger than a diameter of the second cylindrical section 36b.
The first and second cylindrical sections 36a and 36b are concentrically arranged
with respect to the longitudinal direction L1 of the first branch 30. In the illustrated,
the interior cavity 36 also has a third cylindrical section 36c that is angled relative
to the first and second cylindrical sections 36a and 36b. The third cylindrical section
36c is formed in a drilling operation that occurs after the drilling operation(s)
to form the first and second cylindrical sections 36a and 36b. Of course, it will
be apparent to those skilled in the bicycle field from this disclosure that the third
cylindrical section 36c can be formed prior to the first and second cylindrical sections
36a and 36b, as needed and/or desired.
[0024] As seen in Figures 4 to 6, the first brake arm 20 is provided with a cap or plug
40 that closes the opening 38 in the exterior surface 30a of the first branch 30 that
communicates with the interior cavity 36. The cap 40 has an exterior surface 40a that
meets with the exterior surface 30a of the first brake arm 20 in a continuously manner.
In the illustrated embodiment, the cap 40 is a solid block, which is fitted into the
opening 38. The cap 40 is a rigid member that is formed of a suitable material such
as a metallic material or a fiber reinforced plastic material. The cap 40 is bond
to the first brake arm 20. For example, if the first brake arm 20 and the cap 40 are
both metallic members, then the cap 40 can be bonded to the first brake arm 20 by
welding or brazing. Alternatively, the cap 40 can be adhesively bonded to the first
brake arm 20 with a suitable adhesive. With the cap 40 fitted into the opening 38,
the interior cavity 38 is completely and continuously surrounded by the exterior surfaces
30a and 40a. In other words, the interior cavity 38 does not communicate with an area
outside of the first brake arm 20 once the cap 40 is fitted into the opening 38.
[0025] Referring back to Figure 1 and 2, the first branch 30 of the first brake arm 20 includes
a first cable attachment structure 42 that is located at the free end of the first
branch 30. The first cable attachment structure 42 has a quick release cable clamp
44 movably mounted in an opening 42a formed in the first branch 30 of the first brake
arm 20 in a conventional manner. The quick release cable clamp 48 fixes an inner wire
cable 46 of a brake cable to the free end of the first branch 30 of the first brake
arm 20 for pulling and releasing the inner wire cable 46 of the brake cable relative
to an outer casing 48 of the brake cable.
[0026] The second branch 32 of the first brake arm 20 includes a first brake shoe attachment
structure 50 that is located at the free end of the second branch 32. The second branch
32 of the first brake arm 20 also includes a mounting arm attachment hole 52 for pivotally
attaching the mounting arm 24 by the support bolt 26 in a conventional manner. The
first brake shoe attachment structure 50 has a brake shoe mounting slot 50a that supports
a brake shoe assembly 54. The brake shoe assembly 54 is a conventional structure that
basically includes a shoe holder 56, a brake shoe 58 and a holder mounting bolt 60.
The brake shoe 58 is detachably mounted to the shoe holder 56. The holder mounting
bolt 60 is passed through the brake shoe mounting slot 50a, and is threaded into a
flat stop nut that is positioned inside the shoe holder 56. The shoe holder 56 is
a member made from an aluminum alloy. The brake shoe 58 is a member made of rubber
that extends in the peripheral direction of the rim 18.
[0027] Now the second brake arm 22 will be briefly discussed with reference to Figures 1
and 2. The second brake arm 22 includes a first branch 61, a second branch 62 and
a third branch 634. The first branch 60 of the second brake arm 22 is pivotally supported
on the mounting bolt 16. In particular, the first branch 61 includes a mounting hole
66 for pivotally attaching the second brake arm 22 to the bicycle fork 14 by the mounting
bolt 16 in a conventional manner. The second branch 62 of the second brake arm 22
includes a second cable attachment structure 68 that is located at the free end of
the second branch 62. The second cable attachment structure 68 includes a support
opening 68a that supports a cable adjusting bolt unit 70. The cable adjusting bolt
unit 70 is a conventional structure that contacts the outer casing 48 of the brake
cable. The third branch 63 of the second brake arm 22 includes a second brake shoe
attachment structure 72 that is located at the free end of the third branch 64. The
second brake shoe attachment structure 72 has a brake shoe mounting slot 72a that
supports a brake shoe assembly 74. The brake shoe assembly 74 is a conventional structure
that basically includes a shoe holder 76, a brake shoe 78 and a holder mounting bolt
80. The brake shoe 78 is detachably mounted to the shoe holder 76. The holder mounting
bolt 80 is passed through the brake shoe mounting slot 72a that is formed in the third
branch 64 of the second brake arm 22 includes, and is threaded into a flat stop nut
that is positioned inside the shoe holder 76. The shoe holder 66 is a member made
from an aluminum alloy. The brake shoe 68 is a member made of rubber that extends
in the peripheral direction of the rim 18.
[0028] Now the mounting arm 24 will be briefly discussed with reference to Figures 1 and
2. The mounting arm 24 includes a first mounting hole 82 at one end and a second mounting
hole 84 at the other end. The mounting bolt 16 extends through the first mounting
hole 82 such that the mounting arm 24 is pivotally supported on the mounting bolt
16. The support bolt 26 extends through the second mounting hole 84 such that the
mounting arm 24 is pivotally supported on the support bolt 26, which threads into
the mounting arm attachment hole 52 of the first brake arm 20. The first and second
brake arms 20 and 22 are energized toward the brake release side (the direction in
which the first and second brake arms 20 and 22 are opened) by the spring 28, which
has one end of the spring 28 contacting the second brake arm 22 and the other end
of the spring 28 contacting the mounting arm 24.
[0029] As shown in Figure 2, the bicycle brake device 12 is installed on the bicycle frame
14 such that the bicycle brake device 12 straddles the rim 18 of the front wheel.
More specifically, the bicycle brake device 12 is positioned such that brake shoes
58 and 78 are located proximate opposing sides of the rim 18 of the front wheel. With
the bicycle brake device 12 structured in this manner, when the inner wire cable 46
of the brake cable is pulled by a brake lever provided to a handlebar of the bicycle
10, the first and second brake arms 20 and 22 swing toward the rim 18, the brake shoes
58 and 78 are pressed against the rim 18, and a braking force is thereby applied.
When the brake lever is returned to its original position, the first and second brake
arms 20 and 22 are swung to the other side (the brake release side) by the springs
28, and the braking force is released from the rim 18. With this bicycle brake device
12, the first brake arm 20 pivots around different pivot axis A2 and the second brake
arm 22 pivots around pivot axis A1 such that a uniform and powerful braking force
is obtained at the left and right brake shoes 58 and 78.
[0030] Referring now to Figures 7 and 8, a modified first brake arm 120 is illustrated in
accordance with another illustrated embodiment. The first brake arm 120 replaces the
first brake arm 20 in the bicycle brake device 12 of Figures 1 and 2. Similar to the
first brake arm 20, the first brake arm 120 includes a first branch 130 and a second
branch 132 extending from the first branch 130. Also the first brake arm 120 includes
an interior cavity 136 with an opening 138 formed in an exterior surface 130a of the
first branch 130. The first brake arm 20 is provided with a cap or plug 140 that closes
the opening 138 in the exterior surface 130a of the first branch 130 that communicates
with the interior cavity 136.
[0031] Here, in this alternate embodiment, the first brake arm 120 is identical to the first
brake arm 20, except that the opening 138 is configured such that the exterior surface
130a of the first branch 130 meets with the cap 140 to define a groove 131 that surrounds
the cap 140 between the exterior surfaces 130a and 140a. The groove 131 is continuously
provided around the cap 140 for receiving a bonding material 135 (e.g., a metal weld).
As seen in Figure 8, a mechanical surface treatment (e.g., a milling process) is applied
to the bonding material 135 to form a seamless connection between the exterior surface
130a of the bicycle brake arm 120 and an exterior surface 140a of the cap 140. In
this way, the connection between the exterior surface 130a of the bicycle brake arm
120 and the exterior surface 140a of the cap 140 is invisible to a naked eye. Thus,
a smooth exterior surface is formed between the exterior surface 130a of the bicycle
brake arm 120 and the exterior surface 140a of the cap 140.
[0032] Referring now to Figure 9, the first brake arm 20 of the bicycle brake device 12
is provided with alternative cap 240. The cap 240 is a harden putty filler, which
is initial soft and pliable so that the filler material can be filled into the opening
38 and then subsequently harden. In other words, for example, an epoxy or other filler
material is filled into the interior cavity 36 at the opening 38. The epoxy or other
filler material will then subsequently harden in the interior cavity 36 to seal off
the opening 38. The cap 240 has an exterior surface 240a that meets with the exterior
surface 30a of the first branch 30 to form a seamless connection between the exterior
surface 30a of the bicycle brake arm 20 and the exterior surface 240a of the cap 240.
The filler material forming the cap 240 can be subjected to a mechanical surface treatment
(e.g., a milling process) before and/or after the filler material of the cap 240 hardens
such that the connection between the exterior surface 30a of the bicycle brake arm
20 and the exterior surface 240a of the cap 240 is invisible to a naked eye. Thus,
a smooth exterior surface is formed between the exterior surface 30a of the bicycle
brake arm 20 and the exterior surface 240a of the cap 240.
[0033] With the first brake arms 20 and 120, a weight reduction of approximately ten percent
or slightly more can be attained with the first brake arm 20 or 120 being provided
with the interior cavity 36 or 136 as compared to a solid brake arm having an identical
shape but without the interior cavity 36 or 136. For example, in a case where the
first brake arm 20 is a cold-forged aluminum arm with an aluminum cap, the first brake
arm 20 weights 29 grams as compared to 32 grams for a solid brake arm of the same
shape and material. By making the cap out of a lighter weight material further weight
reduction may be possible. Also if a cap is not used, then further weight reduction
may be possible.
[0034] In understanding the scope of the present invention, the term "comprising" and its
derivatives, as used herein, are intended to be open ended terms that specify the
presence of the stated features, elements, components, groups, integers, and/or steps,
but do not exclude the presence of other unstated features, elements, components,
groups, integers and/or steps. The foregoing also applies to words having similar
meanings such as the terms, "including", "having" and their derivatives. Also, the
terms "part," "section," "portion," "member" or "element" when used in the singular
can have the dual meaning of a single part or a plurality of parts unless otherwise
specified. As used herein to describe the above embodiment(s), the following directional
terms "forward", "rearward", "above", "downward", "vertical", "horizontal", "below"
and "transverse" as well as any other similar directional terms refer to those directions
of a bicycle equipped with the bicycle brake device on a horizontal surface in the
upright position unless otherwise specified. Accordingly, these terms, as utilized
to describe the bicycle brake device should be interpreted relative to a bicycle equipped
with the bicycle brake device as used in the normal riding position unless otherwise
specified. Finally, terms of degree such as "substantially", "about" and "approximately"
as used herein mean a reasonable amount of deviation of the modified term such that
the end result is not significantly changed.
[0035] While only selected embodiments have been chosen to illustrate the present invention,
it will be apparent to those skilled in the art from this disclosure that various
changes and modifications can be made herein without departing from the scope of the
invention as defined in the appended claims. For example, the bicycle brake arm can
also be applied to a brake arm in a cantilever brake or another type of rim brake
instead of a caliper brake. For example, the size, shape, location or orientation
of the various components can be changed as needed and/or desired. Components that
are shown directly connected or contacting each other can have intermediate structures
disposed between them unless otherwise specified. Thus, the foregoing descriptions
of the embodiments according to the present invention are provided for illustration
only, and not for the purpose of limiting the invention as defined by the appended
claims and their equivalents.
1. A bicycle brake arm having
a transverse cross-section in which an interior cavity is completely and continuously
surrounded by an exterior surface.
2. A bicycle brake arm comprising:
a first branch including a cable attachment structure; and
a second branch extending from the first branch, the second branch including a brake
shoe attachment structure,
at least one of the first and second branches including an interior cavity, the at
least one of the first and second branches having a transverse cross-section in which
the interior cavity is completely and continuously surrounded by an exterior surface
of the bicycle brake arm.
3. The bicycle brake arm according to claim 2, wherein
the interior cavity has an opening formed in the exterior surface of the bicycle brake
arm.
4. The bicycle brake arm according to claim 3, further comprising
a cap that closes the opening in the exterior surface that communicates with the interior
cavity.
5. The bicycle brake arm according to claim 4, wherein
the cap has an exterior surface that seamlessly meets with the exterior surface of
the bicycle brake arm in a continuously manner.
6. The bicycle brake arm according to claim 5, wherein
the cap is a block which is fitted into the opening.
7. The bicycle brake arm according to claim 5, wherein
the cap is a harden putty filler which is filled in the opening.
8. The bicycle brake arm according to claim 2, wherein
the interior cavity has a cylindrically shape which extends along a longitudinal direction
of the at least one of the first and second branches of the bicycle brake arm.
9. The bicycle brake arm according to claim 8, wherein
the interior cavity has an opening formed in the exterior surface of the bicycle brake
arm.
10. The bicycle brake arm according to claim 9, further comprising
a cap that closes the opening in the exterior surface that communicates with the interior
cavity.
11. The bicycle brake arm according to claim 10, wherein
the cap has an exterior surface that seamlessly meets with the exterior surface of
the bicycle brake arm in a continuously manner.
12. The bicycle brake arm according to claim 10, wherein
the cap is a block which is fitted into the opening.
13. The bicycle brake arm according to claim 10, wherein
the cap is a harden putty filler which is filled in the opening.
14. A bicycle brake device comprising:
a first brake arm including a first brake shoe attachment structure, and a first cable
attachment structure, the first brake arm including at least one interior cavity;
and
a second brake arm including a second brake shoe attachment structure, and a first
cable attachment structure, the first and second brake arm being pivotally supported
relative to each other;
the first brake arm having a transverse cross-section in which the interior cavity
is completely and continuously surrounded by an exterior surface.
15. The bicycle brake device according to claim 14, wherein
the first brake arm includes a first branch having a first cable attachment structure,
and a second branch having a first brake shoe attachment structure, at least one of
the first and second branches including the interior cavity.
16. The bicycle brake arm according to claim 14, wherein
the interior cavity has an opening formed in the exterior surface of the bicycle brake
arm.
17. The bicycle brake arm according to claim 16, further comprising
a cap that closes the opening in the exterior surface that communicates with the interior
cavity.
18. The bicycle brake arm according to claim 16, wherein
the cap is a block which is fitted into the opening.
19. The bicycle brake arm according to claim 16, wherein
the cap is a harden putty filler which is filled in the opening.
20. The bicycle brake arm according to claim 14, wherein
the interior cavity has a cylindrically shape which extends along a longitudinal direction
of the at least one of the first brake arm.