TECHNICAL FIELD OF THE INVENTION
[0001] The present invention relates to a heating apparatus such as a stove or similar,
apt to be fed with pellets, wood, coal or any other solid inflammable material for
the combined production of hot air and hot water to introduce into the domestic heating
circuit.
[0002] In particular, the present invention relates to a solid-fuel heating apparatus in
which each time it is possible to select the amount of heat to transfer to the air
in order to heat one or more rooms and/or the amount of heat to transfer to the water
to introduce into the heating circuit, i.e. to send to the domestic radiators network.
[0003] The present invention is also related to the working method of said heating apparatus
and to the use of a particular type of heat exchanger particularly advantageous in
the invention embodiment.
BACKGROUND OF THE INVENTION
[0004] To date, solid-fuel heating apparatuses, such as stoves, are known basically comprising
a combustion chamber wherein it is provided a fire bed where the fuel is placed; the
combustion chamber is directly connected to a flue provided for conveying the combustion
fumes.
[0005] The first pellet stoves allowed only the heating of the room where they were installed
because of the radiative heat transfer through the refractory material forming the
body of the stove itself.
[0006] A first improvement made to this kind of stoves was the insertion of a fan below
a heat exchanger wherein occurs the heat exchange between the hot combustion fumes
going towards the flue and the air drawn off a room and subsequently reintroduced
at a greater temperature. In this way, besides making the utilization of the heat
supplied by the fuel more efficient, it is also possible to channel the hot air into
rooms different from the room where the stove is installed.
[0007] Recently there has been a great diffusion on the market of stoves also provided with
a system for heating water: in these apparatuses, thanks to a pump, the water circulating
in the heating circuit, that is the circuit feeding the radiators of a living space,
is caused to flow into a suitable duct placed in contact with the combustion chamber
where the heat exchange, which enables the water to be heated, occurs. The hot water
thus produced is then reintroduced into the heating circuit.
[0008] Initially, the heat exchange between the heat produced by the combustion and the
water had a rather low efficiency and hence it did not relevantly affect the heat
exchange between the combustion fumes and the air taking place belower thanks to a
fan.
[0009] Anyway, thanks to a more careful planning, over the years the heat exchange with
water has been made more and more efficient so as to reach an efficiency even more
than 90%: this virtually means that in the more recent apparatuses, most of the heat
produced by the combustion is absorbed by the water directed to the heating circuit
and only a small remaining portion is available for heating the air where the apparatus
is placed.
[0010] Therefore, the air going out of the delivery vents is felt cold by the users because,
as a matter of fact, it does not have a temperature much greater than the ingoing
one; this makes the user unsatisfied as he desires to enjoy the typical and pleasant
warmth usually given by a stove at least in the room where it is installed, yet without
renouncing the obvious economical advantage of having at your disposal also the hot
water necessary to heat your residence.
[0011] Gaseous fuel boilers adapted to produce hot water and hot air are known, for example
in
US5046478 and
WO96/06309.
SUMMARY OF THE INVENTION
[0012] The main object of the present invention is that of providing a heating apparatus
overcoming the drawbacks of the prior art by devising a heating apparatus provided
with a system of choking the amount of heat to be transferred to the air and to the
water.
[0013] In the scope of this object, a purpose of the present invention is that of providing
a heating apparatus which enables to obtain the expected object without compromising
the heat exchange efficiency between the combustion fumes and the water.
[0014] A further purpose of the present invention consists in supplying a heating apparatus
in which the choking will provide a precise but easy to execute adjustment by the
user.
[0015] Still a further purpose is that of providing a heating apparatus which can be made
by means of the usual and known plants, machinery and equipment.
[0016] The foregoing objective and purposes, and others which will be more apparent later,
are achieved by means of a combined heating apparatus of air and water as defined
in claim 1, by means of a method for the combined production of hot water and hot
air having the characteristics listed in the appended claim 8 and by means of a heat
exchanger as defined in claim 7.
BRIEF DESCRIPTION OF DRAWINGS
[0017] Advantages and characteristics of the invention will be more apparent from the following
description, for exemplification only but not limited to, with reference to the appended
figures, wherein:
- Fig. 1 is a sectional schematic view of a heating apparatus according to the present
invention showing the working scheme in order to obtain only hot water to send to
a domestic radiators network;
- Fig. 2 is a sectional schematic view of a heating apparatus according to the present
invention showing the working scheme in order to obtain hot water only;
- Fig. 3 shows a water/air heat exchanger particularly advantageous in a heating apparatus
according to the present invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS OF THE INVENTION
[0018] With reference to figures 1 and 2, a heating apparatus 100 for the combined production
of hot air and hot water according to the invention, such as a stove preferably fed
with solid fuel, comprises a housing 1, formed with a box-like element defining a
compartment 2.
[0019] Inside the compartment 2 is housed a combustion chamber made accessible from the
outside through a door and directly connected to a flue provided for conveying the
combustion fumes into the atmosphere.
[0020] Moreover, the compartment 2 contains a first circuit 10 for the production of hot
water to be introduced into a heating circuit, and a second circuit 20 for the air
heating.
[0021] In particular, the first circuit and the domestic heating circuit, that is the duct
network feeding the radiators of a living space, basically form a sole hermetic circuit
which is filled with water from the water supply only at the beginning and filled
up only occasionally, if necessary.
[0022] Said first circuit 10 comprises an inlet duct 5 apt to introduce a water flow to
be heated Q5F into the heating apparatus 100.
[0023] Said water flow to be heated Q5F enters the heating inner chamber 11, preferably
formed by a cavity provided between the outer surface of the walls of the combustion
chamber 3 and the inner surface of housing 1 so as to form a sort of "jacket" around
the combustion chamber 3.
[0024] A first pumping means P, such as a pump, gives the water flow to be heated Q5F the
driving power needed in order to flow through said first circuit 10.
[0025] Preferably, the water flow to be heated Q5F is introduced into the apparatus in correspondence
with the lower portion of said inner chamber 11; at full capacity, i.e. when the inner
chamber is filled up to the maximum of its capacity, in its upper portion it is possible,
through an extraction duct 6, to draw off a heated water flow Q6C having a temperature
higher than that of the water flow to be heated Q5F, since, while being inside the
inner chamber 11, it has absorbed part of the heat produced by the combustion inside
the contiguous combustion chamber 3.
[0026] The extraction duct 6 then branches off into a connection duct 7 with the domestic
heating circuit, exiting the apparatus 100 and into an inner duct 8 leading to the
inlet of a heat exchanger 12.
[0027] Therefore, as it will be later explained, a first portion Q8C of the heated water
flow Q6C can be sent to the heat exchanger 12 through the inner duct 8, while the
remaining portion Q7C of the heated water flow Q6C can be extracted from the apparatus
100 and sent, through the connection duct 7, to the domestic heating circuit, i.e.
to the network feeding the domestic radiators. In general, it has always to be: Q6C
= Q7C + Q8C.
[0028] At the outlet of said heat exchanger 12, a recirculation duct 9 which carries a chilled
water flow Q9F back to the inlet duct 5 which again recycles it in the inner chamber
11.
[0029] Adjusting means V, such as a three-way valve, controls the water flow to the inlet
duct 5: in fact, said valve V comprises a first and a second inlet V1, V2 respectively
associated with a return duct 4 coming from the heating circuit and with said recirculation
duct 9, and only one outlet associated with said inlet duct 5. Therefore, acting on
said valve V it is possible to adjust the amount of water flow flowing from the heating
circuit and now chilled Q4F, with respect to the amount of the chilled water flow
Q9F flowing out of the heat exchanger 12.
[0030] Instead, the second circuit 20 comprises a second pumping means F, such as a fan,
which draws off an air flow M from a living space at a first temperature t1, makes
it go beyond said heat exchanger 12 and then introduces it again outside.
[0031] Following the flowing through said heat exchanger 12, the entering air flow M is
heated drawing off the heat of the water flow Q8C circulating inside the same; therefore,
when air flow M is reintroduced outside flowing from one or more outlets, it has a
temperature t2 greater than said first temperature t1.
[0032] With reference to figure 3, a heat exchanger 12 is described thereof. Said heat exchanger
12 is preferably of the finned type, formed by a serpentine-shaped tube 13, advantageously
made of a conductor material, such as copper, whose surface is provided with a plurality
of fins 14 capable of maximizing the heat exchange between the fluid circulating inside
the tube and the fluid flowing outside.
[0033] According to a characteristic of the invention, said heat exchanger 12 basically
works similarly to a radiator: in fact, advantageously, the heated water flow Q8C
is caused to circulate inside the tube while the cold water flow M, thanks to the
fan F, is caused to flow through the cavities present between the fins 14 of the heat
exchanger.
[0034] In figures 1 and 2 there are shown the working schemes of an apparatus 100 according
to the present invention working in two extreme situations, that is when it is desired
to obtain only a heated water flow Q7C to be introduced in the domestic heating circuit,
and when it is desired to obtain only a heated air flow M.
[0035] In order to use said apparatus 100 so as to obtain only hot air (figure 1) it is
necessary to suitably act on the adjusting valve V and completely close said second
inlet V2, that is the one controlling the flow of the recirculated water Q9F, so that
only the water flow coming from the domestic heating circuit Q4F can flow in the inlet
duct 5 and hence enter the inner chamber 11. Therefore it results that: Q5F=Q4F and
Q9F=0.
[0036] At the outlet of said inner chamber 11, the heated water flow Q6C can only flow through
the connection duct 7 in the heating circuit directed to the radiators because the
inlet to the inner duct 8 connecting the inner chamber 11 and the heat exchanger 12
is blocked by the closing made by means of valve V, as previously described. Therefore
the complete flow Q6C flowing out the inner chamber can be introduced into the domestic
heating circuit, resulting in Q7C=Q6C and Q8C=0.
[0037] Consequently, it will not be possible to perform any heat exchange between the heated
water and the air drawn off from the surrounding living space through the heat exchanger
12 being the latter bypassed by the heated water flow.
[0038] In figure 2 it is shown the operating scheme of a heating apparatus 100 according
to the present invention when it is desired to obtain only heated air. In this case
it is necessary to suitably operate on said valve V to completely close said first
inlet V1 that is the one which controls the water flow coming from the domestic heating
circuit Q4F, so that only the chilled water flow Q9C can flow in the inlet duct 5,
hence entering the inner chamber 11. Therefore it results that Q5F=Q9F and Q4F=0.
[0039] At the outlet of said inner chamber 11, the heated water flow Q6C is completely deviated,
thanks to the return by pump P to the heat exchanger 12, through the inner duct 8.
Therefore the flow Q7C available to be introduced in the domestic heating circuit
is null, resulting in Q8C=Q6C and Q7C =0.
[0040] Consequently, basically all the heat produced by the combustion inside the apparatus
100 and absorbed by the water while inside the inner chamber 11 (obviously taking
into consideration the yield of such passage) is made available in the heat exchanger
12 in order to heat the air flow M drawn off by the fan F at a temperature t1 which
then is reintroduced outside at a temperature tmax>t1.
[0041] Obviously the two situations described above are referred to extreme operating modalities;
acting on the adjusting valve V it is possible to suitably adjust the amount of water
flow re-circulated Q9F and the amount of water flow flowing from the heating circuit
Q4F consequently obtaining a choking of the heat developed by the combustion which
is distributed between the water and the air according to the requirements.
[0042] In fact, for example, acting on valve V so that said first and second inlets V1,
V2 are only partially open, the water flow to be heated Q5C will have a composition
resulting from the sum of a determined re-circulated water flow Q9F and a determined
water flow by then cold flowing from the domestic radiators network Q4F, always resulting
in Q5C=Q9F+Q4F.
[0043] Consequently in correspondence with the branching off of the extraction duct 6, a
first portion Q8C of the heated water flow Q6C, in particular a portion basically
proportional to the opening degree of said second inlet V2, will deviate inside the
inner duct 8 towards the heat exchanger 12, while the remaining portion Q7C will be
available to be reintroduced into the domestic heating circuit through the connection
duct 7, being Q6C = Q8C+Q7C.
[0044] Therefore, only the first portion Q8C sent to the heat exchanger 12 will be available
in order to perform the heat exchange with the air flow M to be heated and hence,
on equal exchange surface and fan F power, the air flow M exiting the apparatus 100
will have a temperature t2 greater than temperature t1 of the incoming air flow, but
lower than temperature tmax which would have acquired if all the heated water flow
Q6C had flowed through the heat exchanger 12.
[0045] Alternatively, the power of fan F can be modulated based on the water flow circulating
into the heat exchanger 12 so that the outgoing air will always have the highest temperature
tmax. In particular, the air flow M rate to be returned, and therefore the fan F speed,
can be automatically determined based on the opening degree of valve V, or thanks
to a sensor detecting the surface temperature of the heat exchanger 12.
[0046] Clearly the adjustment on the valve V can be performed manually by the user or, in
more technological models, by a servomotor actuated by suitable command and control
means which, advantageously, acquire the temperature t1 of a living space air, compares
it to the value set by the user, for example through a suitable interface, and then
commands the actuation of said valve V.
[0047] In conclusion, from the foregoing it is apparent that an apparatus 100 for the production
of hot air and hot water according to the present invention achieves the expected
objects and advantages.
[0048] In fact, it has been obtained a heating apparatus 100 provided with a system of choking
the amount of heat to be transferred to the air and the water which can be operated
based on the user's requirements.
[0049] Moreover, said apparatus 100 makes it possible to obtain said choking in a precise
way but of simple execution by the user.
[0050] Of course the present invention can have a lot of different applications, modifications
or variations without exiting the protection area, as defined by the appended claims.
[0051] Moreover, the materials and equipment used for the embodiment of the present invention,
as well as the forms and dimensions of each component can be the most suitable according
to the specific requirements.
1. Solid fuel stove (100) for a combined production of hot air and hot water comprising:
- a housing (1) defining a compartment (2) in which are housed a combustion chamber
(3) and an inner chamber (11) for heating water, said inner chamber (11) being formed
in a cavity provided between the outer surface of the walls of said combustion chamber
(3) and the inner surface of said housing (1),
- a first circuit (10) for heating a water flow (Q5F) comprising an inlet duct (5) to introduce said water flow to be heated (Q5F) in said inner chamber (11) through first pumping means (P), and an extraction duct
(6) to draw a flow of heated water (Q6C) off from said inner chamber (11), and
- a second circuit (20) for heating an air flow (M) from a first temperature (t1)
to a second temperature (t2) greater than said first temperature (t1), said air flow
(M) being drawn off by second pumping means (F),
characterized in that it comprises a heat exchanger (12) for exchanging heat between at least a first portion
(Q
8C) of said heated water flow (Q
6C) drawn off from said inner chamber (11) and said air flow (M), a remaining portion
(Q
7C) of said heated water flow (Q
6C) being suitable to be circulated into a domestic heating circuit, and a chilled water
flow (Q
9F) from said heat exchanger (12) being capable to be recirculated within said inner
chamber (11), adjusting means (V) comprising a three-way valve being provided to adjust
the amount of water flow flowing from the domestic heating circuit (Q
4F) with respect to the amount of said chilled water flow (Q
9F), said amount of water flow flowing from the domestic heating circuit (Q
4F) and said amount of chilled water flow (Q
9F) forming the water flow to be heated (Q
5F).
2. Solid fuel stove (100) for a combined production of hot air and hot water according
to claim 1, wherein said heat exchanger (12) includes a serpentine-shaped tube (13)
provided with a plurality of surface fins (14), said first portion (Q8C) of said heated water flow (Q6C) circulating inside said tube (13) and said air flow (M) flowing outside said tube
(13).
3. Solid fuel stove (100) for a combined production of hot air and hot water according
to claim 1 or 2, wherein said three-way valve (V) comprises a first inlet (V1) associated
with a return duct (4) which allows a controlled water flow flowing from the domestic
heating circuit (Q4F), and a second inlet (V2) associated with a recirculation duct (9) which allows a
controlled flow of said chilled water flow (Q9F).
4. Solid fuel stove (100) for a combined production of hot air and hot water according
to any of the preceding claims, wherein the power of said second pumping means (F)
is determined according to the temperature detected by a sensor placed on the surface
of said heat exchanger (12).
5. Use of a heat exchanger (12) in a solid fuel stove for a combined production of hot
air and hot water according to any of claims 1 to 4, wherein said heat exchanger (12)
performs a heat exchange between a heated water flow and an air flow to be heated,
said heat exchanger (12) comprising at least a tube within which said heated water
flow flows while said air flow flows onto the outer surface of said at least a tube.
6. Method for a combined production of hot air and hot water by means of a solid fuel
stove (100) according to any of claims 1 to 4, comprising the following steps:
a) introducing a flow of water to be heated (Q5F) into said inner chamber (11) through first pumping means (P);
b) extracting a heated water flow (Q6C) from said inner chamber (11);
c) drawing off an air flow (M) at a first temperature (t1) through second pumping
means (F);
characterized in that it further comprises the following steps:
d) operating a heat exchange between at least a first portion (Q8C) of said heated water flow (Q6C) extracted from said inner chamber (11) and said air flow (M) to obtain said air
flow (M) at a second temperature (t2) greater than said first temperature (t1) and
a flow of chilled water (Q9F) to be recirculated into said inner chamber (11);
e) circulating the remaining portion (Q7C) of said heated water flow (Q6C) into said domestic heating circuit,
wherein said step a) is performed by selecting the amount of water flow flowing from said
domestic heating circuit (Q
4F) and the amount of said chilled water flow (Q
9F) through said adjusting means (V) to set the amount of said first portion (Q
8C) of heated water flow (Q
6C) to operate said heat exchange and the amount of said remaining portion (Q
7C) of said heated water flow (Q
6C) to be circulated into said domestic heating circuit.
1. Festbrennstoffofen (100) für eine kombinierte Erzeugung von Heißluft und heißem Wasser,
mit:
- einem Gehäuse (1), das einen Raum (2) abgrenzt, in welchem eine Verbrennungskammer
(3) und eine innere Kammer (11) zum Erwärmen von Wasser angeordnet sind, wobei die
innere Kammer (11) in einem Hohlraum gebildet ist, der zwischen der Außenfläche der
Wände der Verbrennungskammer (3) und der Innenfläche des Gehäuses (1) vorgesehen ist,
- einem ersten Kreis (10) zur Erwärmung eines Wasserstroms (Q5F) mit einer Einlassleitung (5) zum Einführen des zu erwärmenden Wasserstroms (Q5F) in die innere Kammer (11) mittels einer ersten Pumpeinrichtung (P) und mit einer
Auslassleitung (6) zum Abführen eines Stroms aus erwärmten Wasser (Q6C) aus der inneren Kammer (11), und
- einem zweiten Kreis (20) zur Erwärmung eines Luftstroms (M) von einer ersten Temperatur
(t1) auf eine zweite Temperatur (t2), die höher als die erste Temperatur (t1) ist,
wobei der Luftstrom (M) mittels einer zweiten Pumpeinrichtung (F) abgeführt wird,
dadurch gekennzeichnet, dass der Festbrennstoffofen aufweist: einen Wärmetauscher (12) zum Austausch von Wärme
zwischen zumindest einem ersten Teil (Q
8C) des erwärmten Wasserstroms (Q
6C), der aus der inneren Kammer (11) abgeführt wird, und dem Luftstrom (M), wobei ein
verbleibender Teil (Q
7C) des erwärmten Wasserstroms (Q
6C) geeignet ist, in einen Hausheizkreis eingespeist zu werden, und wobei ein abgekühlter
Wasserstrom (Q
9F) aus dem Wärmetauscher (12) in der Lage ist, in der inneren Kammer (11) rezirkuliert
zu werden; eine Einstelleinrichtung (V) mit einem 3-Wege-Ventil, das zur Einstellung
der Menge des Wasserstroms, die von dem Hausheizkreis (Q
4F) abfließt, in Bezug auf die Menge des gekühlten Wasserstroms (Q
9F) vorgesehen ist, wobei die Menge des Wasserstroms, die von dem Hausheizkreis (Q
4F) abfließt, und die Menge des gekühlten Wasserstroms (Q
9F) den Wasserstrom bilden, der zu erwärmen ist (Q
5F).
2. Festbrennstoffofen (100) für eine kombinierte Erzeugung von Heißluft und heißem Wasser
nach Anspruch 1, wobei der Wärmetauscher (12) ein serpentinenförmiges Rohr (13) aufweist,
das mit mehreren Oberflächenrippen (14) versehen ist, wobei der erste Teil (Q8C) des erwärmten Wasserstroms (Q6C) in dem Rohr (13) zirkuliert und der Luftstrom (M) außerhalb des Rohrs (13) strömt.
3. Festbrennstoffofen (100) für eine kombinierte Erzeugung von Heißluft und heißem Wasser
nach Anspruch 1 oder 2, wobei das 3-Wege-Ventil (V) einen ersten Einlass (V1), der
mit einer Rückleitung (4) verbunden ist, die das Strömen eines gesteuerten Wasserstroms
aus dem Hausheizkreis (Q4F) ermöglicht, und einen zweiten Einlass (V2) aufweist, der mit einer Rezirkulationsleitung
(9) verbunden ist, die ein gesteuertes Strömen des gekühlten Wasserstroms (Q9F) ermöglicht.
4. Festbrennstoffofen (100) für eine kombinierte Erzeugung von Heißluft und heißem Wasser
nach einem der vorhergehenden Ansprüche, wobei die Leistung der zweiten Pumpeinrichtung
(F) durch die Temperatur bestimmt ist, die von einem Sensor erfasst wird, der auf
der Oberfläche des Wärmetauschers (12) angeordnet ist.
5. Verwendung eines Wärmetauschers (12) in einem Festbrennstoffofen für eine kombinierte
Erzeugung von Heißluft und heißem Wasser nach einem der Ansprüche 1 bis 4, wobei der
Wärmetauscher (12) einen Wärmeaustausch zwischen einem erwärmten Wasserstrom und einem
zu erwärmenden Luftstrom vornimmt, wobei der Wärmetauscher (12) mindestens ein Rohr
aufweist, in welchem der erwärmte Wasserstrom strömt, während der Luftstrom an der
Außenfläche des mindestens einen Rohrs strömt.
6. Verfahren für eine kombinierte Erzeugung von Heißluft und heißem Wasser mittels eines
Festbrennstoffofens (100) nach einem der Ansprüche 1 bis 4, mit den folgenden Schritten:
a) Einführen eines Stroms aus zu erwärmendem Wasser (Q5F) in die innere Kammer (11) mittels einer ersten Pumpeinrichtung (P);
b) Herausführen eines erwärmten Wasserstroms (Q6C) aus der inneren Kammer (11);
c) Abführen eines Luftstroms (M) mit einer ersten Temperatur (t1) mittels einer zweiten
Pumpeinrichtung (F);
dadurch gekennzeichnet, dass das Verfahren ferner die folgenden Schritte umfasst:
d) Durchführen eines Wärmeaustausches zwischen zumindest einem ersten Teil (Q8C) des erwärmten Wasserstroms (Q6C), der aus der inneren Kammer (11) herausgeführt wird, und dem Luftstrom (M), um den
Luftstrom (M) mit einer zweiten Temperatur (t2), die höher ist als die erste Temperatur
(T1), und einen Strom aus abgekühltem Wasser (Q9F), der in die innere Kammer (11) zurückzuführen ist, zu erhalten;
e) Einspeisen des verbleibenden Teils (Q7C) des erwärmten Wasserstroms (Q6C) in den Hausheizkreis,
wobei der Schritt a) ausgeführt wird, indem die Menge des Wasserstroms, die aus dem Hausheizkreis
(Q
4F) abfließt, und die Menge des gekühlten Wasserstroms (Q
9F) durch die Einstelleinrichtung (V) so ausgewählt werden, dass die Menge des ersten
Teils (Q
8C) des erwärmten Wasserstroms (Q
6C) zum Durchführen des Wärmeaustausches und die Menge des verbleibenden Teils (Q
7C) des erwärmten Wasserstroms (Q
6C), die in den Hausheizkreis einzuspeisen ist, festgelegt werden.
1. Poêle à combustible solide (100) pour une production combinée d'air chaud et d'eau
chaude comprenant:
- un boîtier (1) définissant un compartiment (2) dans lequel sont logés une chambre
de combustion (3) et une chambre intérieure (11) pour l'eau de chauffage, ladite chambre
intérieure (11) étant formée dans une cavité ménagée entre la surface extérieure des
parois de ladite chambre de combustion (3) et la surface intérieure dudit boîtier
(1),
- un premier circuit (10) pour chauffer un flux d'eau (Q5F) comprenant un conduit d'entrée (5) pour introduire ledit écoulement d'eau à chauffer
(Q5F) dans ladite chambre intérieure (11) par l'intermédiaire de premiers moyens de pompage
(P), et un conduit d'extraction (6) pour tirer un courant d'eau chaude (Q6C) hors de ladite chambre intérieure (11), et
- un second circuit (20) pour chauffer un flux d'air (M) à partir d'une première température
(t1) à une seconde température (t2) supérieure à ladite première température (t1),
ledit flux d'air (M) étant tiré par des seconds moyens de pompage (F),
caractérisé en ce qu'il comprend un échangeur de chaleur (12) destiné à échanger de la chaleur entre au
moins une première partie (Q
8C) dudit courant d'eau chaude (Q
6C) tiré de ladite chambre intérieure (11) et ledit flux d'air (M), une partie restante
(Q
7C) dudit courant d'eau chaude (Q
6C) étant apte à être mise en circulation dans un circuit de chauffage domestique, et
un débit d'eau de refroidissement (Q
9F) dudit échangeur de chaleur (12) étant apte à être remis en circulation dans ladite
chambre intérieure (11), des moyens de réglage (V) comprenant une vanne à trois voies
prévue pour ajuster la quantité de débit d'eau circulant dans le circuit de chauffage
domestique (Q
4F) par rapport à la quantité dudit flux d'eau de refroidissement (Q
9F), ladite quantité de débit d'eau circulant dans le circuit de chauffage domestique
(Q
4F) et ladite quantité de débit d'eau de refroidissement (Q
9F) formant l'écoulement d'eau à chauffer (Q
5F).
2. Poêle à combustible solide (100) pour une production combinée d'air chaud et d'eau
chaude selon la revendication 1, dans lequel ledit échangeur de chaleur (12) comporte
un tube en forme de serpentin (13) muni d'une pluralité d'ailettes de surface (14),
ladite première partie (Q8C) dudit courant d'eau chaude (Q6C) circulant à l'intérieur dudit tube (13) et ledit écoulement d'air (M) circulant
à l'extérieur dudit tube (13).
3. Poêle à combustible solide (100) pour une production combinée d'air chaud et d'eau
chaude selon la revendication 1 ou 2, dans lequel ladite vanne à trois voies (V) comprend
une première entrée (V1) associée à un conduit de retour (4) qui permet un écoulement
d'eau contrôlé découlant du circuit de chauffage domestique (Q4F) et une seconde entrée (V2) associée à un conduit de recirculation (9), qui permet
un débit contrôlé dudit débit d'eau de refroidissement (Q9F).
4. Poêle à combustible solide (100) pour une production combinée d'air chaud et d'eau
chaude selon l'une quelconque des revendications précédentes, dans lequel la puissance
dudit second moyen de pompage (F) est déterminée en fonction de la température détectée
par un capteur placé sur la surface dudit échangeur de chaleur (12).
5. Utilisation d'un échangeur de chaleur (12) à l'intérieur d'un appareil de chauffage
pour une production combinée d'air chaud et d'eau chaude selon l'une des revendications
1 à 4, dans lequel ledit échangeur de chaleur (12) effectue un échange de chaleur
entre un flux d'eau chaude et un flux d'air à chauffer, ledit échangeur de chaleur
(12) comprenant au moins un tube à l'intérieur duquel ledit flux d'eau chaude s'écoule
lorsque ledit flux d'air circule sur la surface externe dudit au moins un tube.
6. Procédé pour la production d'une combinaison d'air chaud et d'eau chaude au moyen
d'un poêle à combustible solide (100) selon l'une quelconque des revendications 1
à 4, comprenant les étapes suivantes:
a) introduire un écoulement d'eau à chauffer (Q5F) dans ladite chambre intérieure (11) par l'intermédiaire des premiers moyens de pompage
(P);
b) extraire un flux d'eau chaude (Q6C) de ladite chambre intérieure (11),
c) tirer un flux d'air (M) à une première température (t1) par l'intermédiaire des
seconds moyens de pompage (F),
caractérisé en ce qu'il comprend en outre les étapes suivantes :
d) faire fonctionner un échange de chaleur entre au moins une première partie (Q8C) dudit courant d'eau chaude (Q6C) extraite de ladite chambre intérieure (11) et dudit flux d'air (M) afin d'obtenir
ledit flux d'air (M) à une seconde température (t2) supérieure à ladite première température
(t1) et un débit d'eau de refroidissement (Q9F) devant être remis en circulation dans ladite chambre intérieure (11),
e) faire circuler la partie restante (Q7C) dudit courant d'eau chaude (Q6C) dans ledit circuit de chauffage domestique,
dans lequel l'étape a) est réalisée en sélectionnant le débit d'écoulement d'eau provenant dudit
circuit de chauffage domestique (Q
4F) et la quantité dudit flux d'eau de refroidissement (Q
9F) par ledit moyen de réglage (V) pour régler la quantité de ladite première partie
(Q
8C) du flux d'eau chaude (Q
6C) pour faire fonctionner ledit échangeur de chaleur et la quantité de ladite portion
restante (Q
7C) dudit courant d'eau chaude (Q
6C) à circuler dans ledit circuit de chauffage domestique.