(19)
(11) EP 2 551 038 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
16.12.2020 Bulletin 2020/51

(21) Application number: 12178290.8

(22) Date of filing: 27.07.2012
(51) International Patent Classification (IPC): 
B22D 17/00(2006.01)
B22D 17/22(2006.01)
B22D 21/02(2006.01)
B22D 25/02(2006.01)
B22D 17/10(2006.01)
B22D 21/00(2006.01)
B22D 21/06(2006.01)
C22C 27/02(2006.01)

(54)

Die casting system and method

Druckgusssystem und Verfahren

Système de moulage sous pression et procédé


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 29.07.2011 US 201113193730

(43) Date of publication of application:
30.01.2013 Bulletin 2013/05

(73) Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72) Inventors:
  • Bochiechio, Mario P.
    Vernon, CT 06066 (US)
  • Marcin, John Joseph
    Marlborough, CT 06447 (US)
  • Shah, Dilip M.
    Glastonbury, CT 06033 (US)

(74) Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56) References cited: : 
EP-A1- 1 013 363
US-A1- 2006 147 335
US-A1- 2002 119 340
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] This disclosure relates generally to casting, and more particularly to a die casting method.

    [0002] Casting is a known technique used to yield near net-shaped components. For example, investment casting is often used in the gas turbine engine industry to manufacture blades, vanes and other components having relatively complex geometries. A component is investment cast by pouring molten metal into a ceramic shell having a cavity in the shape of the component to be cast. Generally, the shape of the component is derived from a wax or SLA pattern that defines the shape of the component. The investment casting process is capital intensive, requires a significant amount of manual labor, and can be time intensive.

    [0003] Die casting offers another casting technique. Die casting involves injecting molten metal directly into a reusable die to yield a near net-shaped component. The tooling of the die casting system, including the die, the shot tube and the shot tube plunger, are subjected to relatively high thermal loads and stresses during the die casting process.

    SUMMARY



    [0004] A method of die casting a component includes injecting a charge of material into a die having a plurality of die elements that define a die cavity configured to receive the charge of material. The charge of material comprises a refractory metal intermetallic composite based material system as described in claim 1.

    [0005] The various features and advantages of this disclosure will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0006] 

    Figure 1 illustrates a die casting system.

    Figure 2A illustrates the die casting system of Figure 1 during casting of the component.

    Figure 2B illustrates the die casting system of Figure 1 upon separation from the casting component.

    Figure 3 illustrates additional features that can be incorporated into a die casting system.

    Figure 4 illustrates a component cast in a die casting process.


    DETAILED DESCRIPTION



    [0007] Figure 1 illustrates an example die casting system 50 including a reusable die 52 having a plurality of die elements 54, 56 that function to cast a component 55 (See Figure 4). Although two die elements 54, 56 are depicted in Figure 1, it should be understood that the die 52 could include a greater or fewer number of die elements, as well as other parts and configurations.

    [0008] The die 52 is assembled by positioning the die elements 54, 56 together and holding the die elements 54, 56 at a desired positioning via a mechanism 58. The mechanism 58 could include a clamping mechanism of appropriate hydraulic, pneumatic, electromechanical and/or other configurations. The mechanism 58 also separates the die elements 54, 56 subsequent to casting.

    [0009] The die elements 54, 56 define internal surfaces 62 that cooperate to define a die cavity 60. A shot tube 64 is in fluid communication with the die cavity 60 via one or more ports 66 located in the die element 54, the die element 56 or both. A shot tube plunger 68 is received within the shot tube 64 and is moveable between a retracted and injected position (in the direction of arrow A) within the shot tube 64 by a mechanism 80. A shot rod 31 extends between the mechanism 80 and the shot tube plunger 68. The mechanism 80 could include a hydraulic assembly or other suitable system including, but not limited to, pneumatic, electromechanical, hydraulic or any combination of the systems.

    [0010] The shot tube 64 is positioned to receive a charge of material M from a melting unit 82, such as a crucible, for example. The melting unit 82 can utilize any known technique for melting an ingot of metallic material to prepare the charge of material M for delivery to the shot tube 64, including but not limited to, vacuum induction melting, electron beam melting, induction skull melting and resistance melting. The charge of material M is melted into molten metal in the melting unit 82 at a location that is separate from the shot tube 64 and the die cavity 60. In this example, the melting unit 82 is positioned in close proximity to the shot tube 64 to reduce the required transfer distance between the charge of material M and the shot tube 64.

    [0011] The charge of material M is transferred from the melting unit 82 to the shot tube 64 in a known manner, such as pouring the charge of material M into a pour hole 63 in the shot tube 64, for example. A sufficient amount of molten metal is poured into shot tube 64 to fill the die cavity 60. The shot tube plunger 68 is actuated to inject the charge of material M under pressure from the shot tube 64 into the die cavity 60 to cast a component 55. Although a single component 55 is depicted, the die casting system 50 could be configured to cast multiple components in a single shot.

    [0012] Although not necessary, at least a portion of the die casting system 50 can be positioned within a vacuum chamber 90 that includes a vacuum source 92. A vacuum is applied in the vacuum chamber 90 via the vacuum source 92 to render a vacuum die casting process. The vacuum chamber 90 provides a non-reactive environment for the die casting system 50 and reduces reaction, contamination or other conditions that could detrimentally affect the quality of the die cast component, such as excess porosity in the cast component resulting from exposure to air.

    [0013] In one example, the vacuum chamber 90 is maintained at a pressure 5x10-3 Torr (0.66 Pascal) and 1x10-6 Torr (0.000133 Pascal), although other pressures are contemplated. The actual pressure of the vacuum chamber 90 will vary based on the type of component 55 cast, among other conditions and factors. In the illustrated example, each of the melting unit 82, the shot tube 64 and the die 52 are positioned within the vacuum chamber 90 during the die casting process such that the melting, injecting and solidifying of the charge of material M are each performed under vacuum. In another example, the vacuum chamber 90 is vacuum filled with an inert gas, such as argon, for example.

    [0014] The example die casting system 50 depicted by Figure 1 is illustrative only and could include a greater or fewer number of sections, parts and/or components. This disclosure extends to all forms of die casting, including but not limited to, horizontal, vertical, inclined or other die casting configurations.

    [0015] Figures 2A and 2B illustrate portions of the die casting system 50 during casting (Figure 3A) and after the die elements 54, 56 separate (Figure 3B). After the charge of material M solidifies within the die cavity 60, the die elements 54, 56 are disassembled relative to the component 55 by opening the die 52 via the mechanism 58. In one example, ejector pins 84 are used to remove the components 55 from the die cavity 60.

    [0016] A die release agent may be applied to the die elements 54, 56 of the die 52 prior to injection to achieve a simpler release of the component 55 from the die 52 post-solidification. The cast component 55 may include an equiaxed structure upon solidification, or could include other structures. An equiaxed structure includes a randomly oriented grain structure having multiple grains.

    [0017] A composite material is used to die cast the component 55. In this disclosure, "composite" is defined as a refractory metal intermetallic composite (or, RMIC). RMIC's contain a member or members of the family of refractory elements. These elements include tungsten, rhenium, tantalum, molybdenum, and niobium. These elements are combined with an intermetallic element such as silicon.

    [0018] Intermetallic compounds include, Nickel Aluminides of general composition NiAl and Ni3Al (but can contain alloying elements such as: Co, Cr, Pt, Si, Re, Rh, Ta, Y, Er, Gd, Zr and/or Hf); Titanium Aluminide of the general compositions TiAl, TiA12, TiA13 (but can contain alloying elements such as Mn, V, Nb, Ta, Fe, Co, Cr, Ni, B, W, Mo, Cu, Zr, and/ or Si); and Platinum Aluminide of general composition PtAl (but can contain alloying elements such as, but not limited to, Ni, Co, Cr, Pt, Si, Rh, Ta, Y, Er, Gd, and/or Hf).

    [0019] Die casting components using a charge of material such as the RMIC's noted above provides an improved casting process without the need to develop or reengineer the ceramic systems that are used in a traditional investment casting process.

    [0020] Figure 3 illustrates additional features that can be incorporated into the die casting system 50. The die elements 54, 56 can be selectively heated with a heating system 100, such as a die heater, if necessary. In addition, die inserts of the die elements 54, 56 can include layers of a highly conductive material to aid in the temperature control of the die inserts. Example highly conductive materials could include a thermal conductivity of at least 310 W/m*K and a melting temperature of at least 960°C (1760°F). Materials such as copper, gold and silver are examples of such highly conductive materials that can be used in the construct of portions of the die elements 54, 56. The highly conductive material rapidly conducts heat away from the die elements 54, 56 during the casting process to extend tooling life.

    [0021] The die elements 54, 56 can also be selectively cooled with a cooling system 104 as necessary due to the extreme heat experienced during the casting process. For example, a die casting hot oil technology can be used, or other radiative or conductive cooling techniques such as liquid metal cooling, in order to cool the die elements 54, 56 and a die base 102 during the casting process.

    [0022] Figure 4 illustrates an example component 55 that can be cast in a die casting process. In this example, the component 55 is an airfoil for a gas turbine engine. However, this disclosure is not limited to the casting of airfoils. For example, the example die casting system 50 of this disclosure may be utilized to cast aeronautical components including blades, vanes, combustor panels, blade outer air seals (boas), or any other components that could be subjected to extreme environments, including non-aeronautical components.

    [0023] The die cast component 55 can include an internal geometry 38 defined within the component 55 (i.e., the component 55 is at least partially hollow). In this example, the internal geometry 38 defines a microcircuit cooling scheme for a turbine vane. However, the internal geometry 38 could also define other advanced cooling schemes to facilitate additional heat transfer. Additionally, weight reduction tongues (i.e., voids) can be included to reduce the rotational inertia and/or weight of the final component.

    [0024] The component 55, including its internal geometry 38, can be cast using the example die casting system 50 described above. Die casting of the component 55 with the materials noted above allows for the production of a fine, uniform grain size that will improve the properties and materials. Furthermore, solidification rates will be increased significantly by transitioning refractory metal alloys and/or composite to die casting. Additionally, the rapid melting of the charge of material from ingot stock reduces the potential for reactivity with the die casting system 50 tooling due to the ability of the die casting tooling to disperse heat away from the final casting geometry. In other words, the bulk of the die tooling is able to absorb the heat and effectively move it to other areas of the die.


    Claims

    1. A method of die casting a component (55), comprising the steps of:

    transferring a charge of material (M) from a melting unit (82) into a shot tube (64) of a die casting system (50);

    injecting the charge of material (M) into a die cavity (60) of a die (52) having one or a plurality of die elements (54, 56) that define the die cavity (60) configured to receive the charge of material (M), by actuating a shot plunger (68) of the shot tube (64); and

    solidifying the charge of material within the die cavity;

    characterized in that:
    the charge of material (M) is a refractory metal intermetallic composite material, said refractory metal intermetallic composite material comprising an intermetallic compound selected from a nickel aluminide consisting essentially of NiAl or Ni3Al, a titanium aluminide consisting essentially of TiAl, TiAl2, or TiAl3, and/or a platinum aluminide consisting essentially of PtAl.


     
    2. The method as recited in claim 1, comprising heating the die elements (54, 56).
     
    3. The method as recited in claim 1 or claim 2, wherein the component is an aeronautical component.
     
    4. The method as recited in any preceding claim, wherein the die cast component (55) includes an internal geometry (38) defined within the component (55).
     
    5. The method as recited in claim 4, wherein the internal geometry defines a microcircuit cooling scheme for a turbine vane.
     
    6. The method as recited in any preceding claim, wherein the material comprises silicon.
     
    7. The method as recited in any preceding claim, wherein the die elements (54, 56) include layers of a material having a thermal conductivity of at least 310 W/m*K and a melting temperature of at least 960°C (1760°F).
     
    8. The method as recited in any preceding claim, comprising positioning the die casting system within a vacuum chamber.
     
    9. The method as recited in any preceding claim, comprising applying a die release agent to the die elements (54, 56) of the die (52) prior to injection.
     


    Ansprüche

    1. Verfahren zum Druckgießen eines Bauteils (55), das folgenden Schritte umfassend:

    Übertragen einer Werkstoffladung (M) von einer Schmelzeinheit (82) in ein Schießrohr (64) eines Druckgusssystems (50);

    Einspritzen der Werkstoffladung (M) in einen Druckgussformhohlraum (60) einer Druckgussform (52), die eine oder eine Vielzahl von Druckgussformelementen (54, 56) aufweist, welche den Druckgussformhohlraum (60) definieren, der dazu konfiguriert ist, die Werkstoffladung (M) aufzunehmen, durch Betätigen eines Schießkolbens (68) des Schießrohrs(64); und

    Aushärten der Werkstoffladung in dem Druckgussformhohlraum;

    dadurch gekennzeichnet, dass:
    die Werkstoffladung (M) ein intermetallischer Verbundwerkstoff aus feuerfestem Metall ist, wobei der intermetallische Verbundwerkstoff aus feuerfestem Metall eine intermetallische Verbindung umfasst, die ausgewählt ist aus einem Nickelaluminid im Wesentlichen bestehend aus NiAl oder Ni3Al, einem Titanaluminid im Wesentlichen bestehend aus TiAl, TiAl2 oder TiAl3 und/oder einem Platinaluminid im Wesentlichen bestehend aus PtAl.


     
    2. Verfahren nach Anspruch 1, umfassend das Erhitzen der Druckgussformelemente (54, 56).
     
    3. Verfahren nach Anspruch 1 oder 2, wobei das Bauteil ein aeronautisches Bauteil ist.
     
    4. Verfahren nach einem der vorstehenden Ansprüche, wobei das druckgegossene Bauteil (55) eine Innengeometrie (38) beinhaltet, die in dem Bauteil (55) definiert ist.
     
    5. Verfahren nach Anspruch 4, wobei die Innengeometrie ein Mikroschaltkreiskühlschema für eine Turbinenleitschaufel definiert.
     
    6. Verfahren nach einem der vorstehenden Ansprüche, wobei der Werkstoff Silizium umfasst.
     
    7. Verfahren nach einem der vorstehenden Ansprüche, wobei die Druckgussformelemente (54, 56) Schichten eines Werkstoffs beinhalten, der eine Wärmeleitfähigkeit von mindestens 310 W/m*K und eine Schmelztemperatur von mindestens 960 °C (1.760 °F) aufweist.
     
    8. Verfahren nach einem der vorstehenden Ansprüche, umfassend ein Positionieren des Druckgusssystems in einer Vakuumkammer.
     
    9. Verfahren nach einem der vorstehenden Ansprüche, umfassend ein Auftragen eines Druckgussformtrennmittels auf die Druckgussformelemente (54, 56) der Druckgussform (52) vor dem Einspritzen.
     


    Revendications

    1. Procédé de moulage sous pression d'un composant (55), comprenant les étapes :

    de transfert d'une charge de matériau (M) depuis une unité de fusion (82) dans un tube d'injection (64) d'un système de moulage sous pression (50) ;

    d'injection de la charge de matériau (M) dans une cavité de matrice (60) d'une matrice (52) ayant un ou plusieurs éléments de matrice (54, 56) qui définissent la cavité de matrice (60) configurée pour recevoir la charge de matériau (M), par l'actionnement d'un piston injecteur (68) du tube d'injection (64) ; et

    de solidification de la charge de matériau à l'intérieur de la cavité de matrice ;

    caractérisé en ce que :
    la charge de matériau (M) est un matériau composite intermétallique à métal réfractaire, ledit matériau composite intermétallique à métal réfractaire comprenant un composé intermétallique choisi parmi un aluminure de nickel constitué essentiellement de NiAl ou Ni3Al, un aluminure de titane constitué essentiellement de TiAl, TiAl2 ou TiAl3, et/ou un aluminure de platine constitué essentiellement de PtAl.


     
    2. Procédé selon la revendication 1, comprenant le chauffage des éléments de matrice (54, 56).
     
    3. Procédé selon la revendication 1 ou la revendication 2, dans lequel le composant est un composant aéronautique.
     
    4. Procédé selon une quelconque revendication précédente, dans lequel le composant (55) moulé sous pression comporte une géométrie interne (38) définie à l'intérieur du composant (55).
     
    5. Procédé selon la revendication 4, dans lequel la géométrie interne définit un schéma de refroidissement à microcircuit pour une aube de turbine.
     
    6. Procédé selon une quelconque revendication précédente, dans lequel le matériau comprend du silicium.
     
    7. Procédé selon une quelconque revendication précédente, dans lequel les éléments de matrice (54, 56) comportent des couches d'un matériau ayant une conductivité thermique d'au moins 310 W/m*K et une température de fusion d'au moins 960 °C (1 760 °F).
     
    8. Procédé selon une quelconque revendication précédente, comprenant le positionnement du système de moulage sous pression à l'intérieur d'une chambre à vide.
     
    9. Procédé selon une quelconque revendication précédente, comprenant l'application d'un agent de libération de matrice aux éléments de matrice (54, 56) de la matrice (52) avant l'injection.
     




    Drawing