Field of the Invention
[0001] The application relates to a method utilized in a wireless communication system,
and more particularly, to a method of handling random access procedure associated
to cell deactivation in a wireless communication system.
Background of the Invention
[0002] Toward advanced high-speed wireless communication system, such as transmitting data
in a higher peak data rate, LTE-Advanced system is standardized by the 3rd Generation
Partnership Project (3GPP) as an enhancement of Long-Term Evolution (LTE) system.
LTE-Advanced system targets faster switching between power states, improves performance
at the cell edge, and includes subjects, such as bandwidth extension, coordinated
multipoint transmission/reception (COMP), uplink multiple input multiple output (MIMO),
etc.
[0003] For bandwidth extension, carrier aggregation is introduced to the LTE-Advanced system
for extension to wider bandwidth, where two or more component carriers are aggregated,
for supporting wider transmission bandwidths (for example up to 100MHz) and for spectrum
aggregation. According to carrier aggregation capability, multiple component carriers
are aggregated into overall wider bandwidth, where a user equipment (UE) can establish
multiple links corresponding to the multiple component carriers for simultaneously
receiving and transmitting. In carrier aggregation, the UE only has one radio resource
control (RRC) connection with the network. At RRC connection establishment/re-establishment/handover,
one serving cell provides the Non-Access Stratum (NAS) mobility information, and at
RRC connection re-establishment/handover, one serving cell provides the security input.
This cell is referred to as a primary cell (PCell). In the downlink, the component
carrier corresponding to the PCell is the Downlink Primary Component Carrier (DL PCC)
while in the uplink it is the Uplink Primary Component Carrier (UL PCC). In addition,
cells other than the PCell are named secondary cell (SCell).
[0004] Note that, the PCell (i.e. the UL and DL PCC) is always activated, whereas the SCell
may be activated or deactivated according to specific conditions (e.g. an amount of
data for transmission). When a SCell is deactivated, the UE shall not monitor the
physical downlink control channel (PDCCH) of the SCell and shall not receive any downlink
assignments or uplink grants associated to the SCell. Further, the UE shall not transmit
on uplink shared channel (UL-SCH) on the SCell and not transmit sounding reference
signal (SRS) on the SCell. In addition, the network activates and deactivates the
SCell by sending the Activation/Deactivation command. The UE starts a deactivation
timer for the SCell when the SCell is activated, wherein the SCell is deactivated
when the deactivation timer expires.
[0005] According to the prior art, it is possible to configure a UE of a PCell and one SCell
or more SCells. Therefore, multiple timing alignments, each for synchronization with
a serving base station on uplink timing for preventing signals transmitted from the
UE from colliding with those sent from other UEs under the coverage of the base station,
are needed for PCell and SCell or more SCells. Note that, serving cells having uplink
to which the same timing alignment applies are grouped in a timing alignment group
(TAG). Each timing alignment group contains at least one serving cell with configured
UL, and the mapping of each serving cell to a timing alignment group is configured
by the serving evolved base station (eNB). To obtain initial UL time alignment for
a SCell not group together with the PCell, a random access (RA) procedure is used.
When the RA procedure on the SCell is performed, the UE needs to monitor PDCCH to
receive message 2 of the RA procedure (i.e. random access response) and/or message
4 (i.e. contention resolution).
[0006] However, there is no guideline of how to handle the RA procedure if the SCell is
deactivated during the RA procedure. For example, if a SCell is deactivated, the UE
may not monitor the PDCCH on the SCell or for the SCell. According to the current
3GPP specification, the UE may perform power ramping, and retransmits message 1 (i.e.
random access preamble) again and again.
[0007] Note that, document 3GPP R2-120482 discloses "Allow the random access procedure to
complete even though the SCell is deactivated (for instance due to the expiration
of the sCellDeactivation Timer timer)", and "Stop the currently ongoing random access
procedure on the SCell". However, this document does not disclose how to complete
the random access procedure when the SCell is deactivated. In addition, with this
document's teaching, the UE may always stop the ongoing random access procedure on
the SCell.
[0008] WO 2011/063244 discloses stopping an ongoing RACH procedure with a SCell when it is deactivated.
Summary of the Invention
[0009] This in mind, the application aims at providing a method of handling random access
procedure associated to cell deactivation in a wireless communication system in order
to solve the abovementioned problems.
[0010] This is achieved by a method of handling random access procedure associated to cell
deactivation according to the independent claims. The dependent claims pertain to
corresponding further developments and improvements.
Brief Description of the Drawings
[0011]
Fig. 1 illustrates a schematic diagram of an exemplary wireless communication system.
Fig. 2 is a schematic diagram of a user equipment and multiple cells in a wireless
communication system in Fig. 1.
Fig. 3 illustrates a schematic diagram of an exemplary communication device.
Fig. 4 is a flowchart of an exemplary process.
Fig. 5 is a flowchart according to a first embodiment of the present invention not
being object of the claims.
Fig. 6 is a flowchart of an exemplary process.
Fig. 7 is a flowchart according to a second embodiment of the present invention not
being object of the claims.
Fig. 8 is a flowchart of an exemplary process.
Fig. 9 is a flowchart according to third embodiment of the present invention.
Detailed Description
[0012] Please refer to Fig. 1, which is a schematic diagram of a wireless communication
system 10. The wireless communication system 10 is a Long-Term Evolution advanced
(LTE-Advanced) system or other mobile communication systems, and is briefly composed
of a network and a plurality of user equipments (UEs). In Fig. 1, the network and
the UEs are simply utilized for illustrating the structure of the wireless communication
system 10. Practically, the network may be an evolved universal terrestrial radio
access network (E-UTRAN) comprising a plurality of evolved base stations (eNBs). The
UEs can be devices such as mobile phones, computer systems, a camera, a television,
a hand-held video game device, a musical device, a wireless sensor, etc. In some applications,
a UE may be a fixed computing device operating in a mobile environment, such as a
bus, a train, an airplane, a boat, a car, etc. Further, the network and the UE can
be seen as a transmitter or receiver according to transmission direction, e.g., for
uplink (UL), the UE is the transmitter and the network is the receiver, and for downlink
(DL), the network is the transmitter and the UE is the receiver.
[0013] Please refer to Fig. 2, which is a schematic diagram of a UE and multiple cells in
the wireless communication system 10. The UE communicates with one primary cell (PCell)
and several secondary cells (SCells), as SCell 1-SCell N shown in Fig. 2. In the downlink,
the component carrier corresponding to the PCell is the downlink primary component
carrier (DL PCC) while in the uplink it is the uplink primary component carrier (UL
PCC). Depending on UE capabilities, SCells can be configured to form together with
the PCell a set of serving cells. In the downlink, the component carrier corresponding
to a SCell is a downlink secondary component carrier (DL SCC) while in the uplink
it is an uplink secondary component carrier (UL SCC).
[0014] Fig. 3 illustrates a schematic diagram of an exemplary communication device 30. The
communication device 30 can be the UE shown in Fig. 1, but is not limited herein.
The communication device 30 may include a processing means 300 such as a microprocessor
or Application Specific Integrated Circuit (ASIC), a storage unit 310 and a communication
interfacing unit 320. The storage unit 310 may be any data storage device that can
store program code 314, for access by the processing means 300. Examples of the storage
unit 310 include but are not limited to a subscriber identity module (SIM), read-only
memory (ROM), flash memory, random-access memory (RAM), CD-ROMs, magnetic tape, hard
disk, and optical data storage device. The communication interfacing unit 320 is preferably
a radio transceiver and can exchange wireless signals with the network (i.e. PCell
or SCell 1-SCell N) according to processing results of the processing means 300.
[0015] Please refer to Fig. 4, which illustrates a flowchart of an exemplary process 40.
The process 40 is utilized in a UE for handling random access procedure upon SCell
deactivation. The process 40 can be compiled into the program code 314 and includes
the following steps:
Step 400: Start.
Step 410: Activate a SCell configured by a network of the wireless communication system.
Step 420: Perform a random access procedure for the activated SCell.
Step 430: When the SCell is deactivated during the random access procedure, continuously
perform the random access procedure.
Step 440: End.
[0016] According to the process 40, when the UE performs the random access procedure for
the SCell but the SCell is deactivated during the random access procedure, the UE
continuously performs the random access procedure. In this situation, the UE may consider
that the random access procedure is prioritized over SCell deactivation.
[0017] Take an example based on the process 40. Please refer to Fig. 2 and Fig. 5, which
is a flowchart according to an embodiment. A UE is configured with the PCell, and
SCell 1-N. When the UE activates the SCell 1, the UE starts a deactivation timer for
the SCell 1. In addition, the UE performs a random access procedure for the SCell
1 (or for a timing alignment group (TAG)) for acquiring uplink timing alignment. For
example, the UE receives a PDCCH order from the network, which triggers the UE to
perform a random access procedure for the SCell 1 (or for a timing alignment group
(TAG)), or UE triggers a contention-based random access procedure for the SCell 1
(or for a timing alignment group (TAG)). The UE continuously monitors the physical
downlink control channel (PDCCH) in associated subframes for the random access procedure
if the SCell 1 is deactivated (e.g., the deactivation timer for the SCell 1 expires
during the random access procedure or the UE receives a signaling (e.g., Activation/Deactivation
command) for deactivating the SCell 1 from the network during the random access procedure).
Note that, the associated subframes may be the subframes the network may send RA message
2 (i.e. random access response) and/or RA message 4 (contention resolution). In addition,
the associated subframes may not be on the SCell. For example, the network may send
the RA message 2 and/or RA message 4 on the PCell or on the other SCell. Besides,
if the random access procedure is successfully completed, the network and/or UE may
reactivate the SCell(s) which was deactivated, and restart the associated deactivation
timer(s).
[0018] In some embodiments, if the SCell 1 on which the random access procedure is performed
is deactivated (e.g., the deactivation timer for the SCell 1 expires during the random
access procedure or the UE receives a signaling (e.g., MAC Activation/Deactivation
command) for deactivating the SCell 1 from the network during the random access procedure),
the network and/or UE may continue the random access procedure on the SCell 1. In
other embodiments, if the SCell1 on which the random access procedure is performed
is deactivated (e.g., the deactivation timer for the SCell 1 expires during the random
access procedure or the UE receives a signaling (e.g., MAC Activation/Deactivation
command) for deactivating the SCell 1 from the network during the random access procedure),
the network and/or UE may continue the on-going random access procedure or start a
new random access procedure on another SCell. For example, the network and/or UE may
choose another activated SCell 2 from the same TAG, and perform a random access procedure
on the activated SCell 2 for uplink timing adjustment.
[0019] Please refer to Fig. 6, which illustrates a flowchart of an exemplary process 60.
The process 60 is utilized in a UE for handling random access procedure upon SCell
deactivation. The process 60 can be compiled into the program code 314 and includes
the following steps:
Step 600: Start.
Step 610: Activate a secondary cell configured by a network of the wireless communication
system.
Step 620: Perform a random access procedure for the activated secondary cell.
Step 630: When the secondary cell is deactivated during the random access procedure,
abort the random access procedure.
Step 640: End.
[0020] According to the process 60, when the UE performs the random access procedure for
the SCell but the SCell is deactivated during the random access procedure, the UE
stops or aborts the ongoing random access procedure. In this situation, the UE may
consider that the SCell deactivation is prioritized over the random access procedure.
[0021] Take an example based on the process 60. Please refer to Fig. 2 and Fig. 7, which
is a flowchart according to an embodiment. A UE is configured with the PCell, and
SCell 1-N. When the UE activates the SCell 1, the UE starts a deactivation timer for
the SCell 1. In addition, the UE performs a random access procedure for the SCell
1 (or for a timing alignment group (TAG)) for acquiring uplink timing alignment. For
example, the UE receives a PDCCH order from the network, which triggers the UE to
perform a random access procedure for the SCell 1 (or for a timing alignment group
(TAG)), or UE triggers a contention-based random access procedure for the SCell 1
(or for a timing alignment group (TAG)). The UE stops or aborts the random access
procedure if the SCell 1 is deactivated (e.g. the deactivation timer for the SCell
1 expires during the random access procedure or the UE receives a signaling (e.g.
MAC Activation/Deactivation command) for deactivating the SCell 1 from the network
during the random access procedure). As to the stop of the random access procedure,
the UE may discard explicitly signalled
ra-PreambleIndex which indicates the index of a PRACH within a system frame, and/or
ra-PRACH-MaskIndex for indicating subframes which can be transmitted a random access preamble of the
random access procedure. In addition, the UE may flush the HARQ buffer used for transmission
of the MAC PDU in the message 3 buffer.
[0022] Please refer to Fig. 8, which illustrates a flowchart of an exemplary process 80.
The process 80 is utilized in a network for handling random access procedure on SCell.
The process 80 can be compiled into the program code 314 and includes the following
steps:
Step 800: Start.
Step 810: Configure a secondary cell for a UE of the wireless communication system.
Step 820: Provide a signaling for indicating the priority between a random access
procedure and a deactivation of the secondary cell, to the UE.
Step 830: End.
[0023] According to the process 80, the prioritization between the random access procedure
and SCell deactivation is determined by the network. In addition, the network transmits
a signalling (e.g. by RRC signalling or by PDCCH order) for indicating the prioritization
to the UE, so that the UE can determine whether to continuously performs the random
access procedure (namely the process 40) or stop/aborts the random access procedure
(namely the process 60) according to the prioritization.
[0024] Take an example based on the process 80. Please refer to Fig. 2 and Fig. 9, which
is a flowchart according to an embodiment. A UE is configured with the PCell, and
SCell 1-N. When the UE activates the SCell 1, the UE starts a deactivation timer for
the SCell 1. In addition, the UE performs a random access procedure for the SCell
1 (or for a timing alignment group (TAG)) for acquiring uplink timing alignment. For
example, the UE receives a PDCCH order from the network, which triggers the UE to
perform a random access procedure for the SCell 1 (or for a timing alignment group
(TAG)), or UE triggers a contention-based random access procedure for the SCell 1
(or for a timing alignment group (TAG)). The prioritization between the random access
procedure and SCell deactivation may be provided by the network. In some embodiments,
the prioritization may be provided by RRC Connection Reconfiguration message or PDCCH
order which initiates the random access procedure. If the random access procedure
has higher priority than the SCell deactivation, the UE continuously monitors PDCCH
in associated subframes (TTIs) for the random access procedure when the SCell 1 is
deactivated (e.g. the deactivation timer for the SCell 1 expires during the random
access procedure or the UE receives a signaling (e.g. MAC Activation/Deactivation
command) for deactivating the SCell from the network during the random access procedure).
Moreover, if the random access procedure is successfully completed, the network and/or
UE may reactivate the SCell which was deactivated, and/or restart the associated deactivation
timer.
[0025] On the other hand, if the SCell deactivation has higher priority than the random
access procedure, the UE stops or aborts the random access procedure when the SCell
1 is deactivated (e.g. the deactivation timer for the SCell 1 expires during the random
access procedure or the UE receives a signaling (e.g. MAC Activation/Deactivation
command) for deactivating the SCell 1 from the network during the random access procedure).
[0026] In other embodiments, the prioritization between the random access procedure and
SCell deactivation may have a default value, and the network may provide a signalling
to modify the prioritization. For example, the default prioritization may be that
the random access procedure has higher priority than the SCell deactivation. In other
words, when the deactivation timer for the SCell 1 expires during the random access
procedure, the UE may continuously perform the random access procedure. In some cases,
the network may send a signalling to modify the prioritization. For example, if the
network sends a signaling (e.g., MAC Activation/Deactivation command) for deactivating
the SCell, the signalling may implicitly indicate that the SCell deactivation has
a higher priority than the random access procedure. In other words, if the UE receives
a signaling (e.g., MAC Activation/Deactivation command) for deactivating the SCell
from the network during the random access procedure, the UE deactivates the SCell,
and stops or aborts the random access procedure.
[0027] Please note that, the abovementioned steps of the processes including suggested steps
can be realized by means that could be hardware, firmware known as a combination of
a hardware device and computer instructions and data that reside as read-only software
on the hardware device, or an electronic system. Examples of hardware can include
analog, digital and mixed circuits known as microcircuit, microchip, or silicon chip.
Examples of the electronic system can include system on chip (SOC), system in package
(Sip), computer on module (COM), and the communication device 20.
[0028] In conclusion, the present invention provides methods for handling random access
procedure upon SCell deactivation. The UE keeps the random access procedure running
if the SCell deactivation occurs during the random access procedure. Or, the UE stops/aborts
the random access procedure if the SCell deactivation occurs during the random access
procedure.
1. A method of handling random access procedure associated to cell deactivation, said
method being performed by a mobile device in a wireless communication system, the
method comprising:
activating a secondary cell configured by a network of the wireless communication
system;
performing a random access procedure for the activated secondary cell; said method
being characterized by :
receiving a signaling for indicating that a deactivation of the secondary cell has
higher priority than the random access procedure, from the network; and
when the secondary cell is deactivated during the random access procedure, aborting
the random access procedure in accordance with said signaling.
2. The method of claim 1,
characterized in that when the secondary cell is deactivated during the random access procedure, aborting
the random access procedure comprises:
discarding explicitly signaled random access preamble index and/or random access physical
random access channel mask index for indicating subframes which can be transmitted
a random access preamble of the random access procedure.
3. The method of claim 1,
characterized in that when the secondary cell is deactivated during the random access procedure, aborting
the random access procedure comprises:
flushing a Hybrid Automatic Repeat Request (HARQ) buffer used for transmission of
the MAC PDU in the message 3 buffer.
4. The method of claim 1, characterized in that the secondary cell is deactivated during the random access procedure due to a deactivation
timer for the secondary cell expiry during the random access procedure, or a signaling
for deactivating the secondary cell is received from the network during the random
access procedure.
5. A method of handling random access procedure associated to cell deactivation said
method being performed by a network apparatus in a wireless communication system,
the method comprising:
configuring a secondary cell for a mobile device of the wireless communication system;
and said method being characterized by :
providing a signaling for indicating the priority between a random access procedure
and a deactivation of the secondary cell, to the mobile device.
6. The method of claim 5, characterized in that the signaling is a RRC signaling.
7. The method of claim 5, characterized in that the signaling is a physical downlink control channel (PDCCH) order which initiates
the random access procedure.
8. The method of claim 5, characterized in that the signaling is an Activation/Deactivation command.
1. Verfahren zur Handhabung eines mit einer Zellen-Deaktivierung assoziierten Verfahrens
mit wahlfreiem Zugriff, welches von einem Mobilgerät in einem Drahtlos-Kommunikationssystem
durchgeführt wird, wobei das Verfahren umfasst:
Aktivieren einer sekundären Zelle, die durch ein Netzwerk des Drahtlos-Kommunikationssystems
konfiguriert ist;
wobei das Verfahren
gekennzeichnet ist durch:
Durchführen eines Verfahrens mit wahlfreiem Zugriff für die aktivierte sekundären
Zelle;
Empfangen eines Signals von dem Netzwerk, um anzuzeigen, dass eine Deaktivierung der
sekundären Zelle eine höhere Priorität aufweist als das Verfahren mit wahlfreiem Zugriff;
und
wenn die sekundäre Zelle während des Verfahrens mit wahlfreiem Zugriff deaktiviert
wird, Abbrechen des Verfahren mit wahlfreiem Zugriff gemäß dem Signal.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass wenn die sekundäre Zelle während des Verfahren mit wahlfreiem Zugriff deaktiviert
wird, ein Abbrechen des Verfahrens mit wahlfreiem Zugriff umfasst:
Verwerfen des explizit signalisierten wahlfreien Zugriffs-Preamble-Index und/oder
der technischen wahlfreien Zugriffs-Kanalmaske, um Subrahmen anzuzeigen, die eine
wahlfreie Zugriffs-Preamble des Verfahrens mit wahlfreiem Zugriff übertragen können.
3. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass wenn die sekundäre Zelle während des Verfahren mit wahlfreiem Zugriff deaktiviert
wird, ein Abbrechen des Verfahrens mit wahlfreiem Zugriff umfasst:
Spülen eines Hybrid Automatic Repeat Anfrage (HARQ)-Puffers, der zur Übertragung der
MAC PDU in der Nachricht 3 Puffer verwendet wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die sekundäre Zelle während des Verfahrens mit wahlfreiem Zugriff deaktiviert wird,
da ein Deaktivierungs-Timer für die sekundäre Zelle während des Verfahrens mit wahlfreiem
Zugriff abläuft, oder da ein Signal zur Deaktivierung der sekundäre Zelle von dem
Netzwerk während des Verfahren mit wahlfreiem Zugriff empfangen wird.
5. Verfahren zur Handhabung eines mit einer Zellen-Deaktivierung assoziierten Verfahrens
mit wahlfreiem Zugriff, welches von einer Netzwerk-Vorrichtung in einem Drahtlos-Kommunikationssystem
durchgeführt wird, wobei das Verfahren umfasst:
Konfigurieren einer sekundäre Zelle für ein Mobilgerät des Drahtlos-Kommunikationssystems;
und
wobei das Verfahren
gekennzeichnet ist durch:
Liefern eines Signals zur Anzeige der Priorität zwischen einem Verfahren mit wahlfreiem
Zugriff und einer Deaktivierung der sekundären Zelle, zu dem Mobilgerät.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Signal ein RRC-Signal ist.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Signal ein technischer Downlink Control-Kanal (PDCCH) Auftrag ist, der das Verfahren
mit wahlfreiem Zugriff initiiert.
8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Signal ein Aktivierungs-/Deaktivierungs-Befehl ist.
1. Procédé de gestion de procédure d'accès aléatoire associé à la désactivation de cellule,
ledit procédé étant exécuté par un dispositif mobile dans un système de communication
sans fil, le procédé comprenant :
l'activation d'une cellule secondaire configurée par un réseau du système de communication
sans fil;
la réalisation d'une procédure d'accès aléatoire pour la cellule secondaire activée
; ledit procédé étant caractérisé par : la réception d'une signalisation indiquant qu'une désactivation de la cellule secondaire
a une priorité supérieure à la procédure d'accès aléatoire, du réseau; et
lorsque la cellule secondaire est désactivée pendant la procédure d'accès aléatoire,
l'abandon de la procédure d'accès aléatoire en fonction de cette signalisation.
2. Procédé selon la revendication 1,
caractérisé en ce que, lorsque la cellule secondaire est désactivée pendant la procédure d'accès aléatoire,
l'abandon de la procédure d'accès aléatoire comprend :
le rejet de l'indice de préambule d'accès aléatoire explicitement signalé et/ou de
l'indice de masque de canal d'accès aléatoire physique à accès aléatoire indiquant
des sous-trames qui peuvent être transmises à un préambule d'accès aléatoire de la
procédure d'accès aléatoire.
3. Procédé selon la revendication 1,
caractérisé en ce que, lorsque la cellule secondaire est désactivée pendant la procédure d'accès aléatoire,
l'abandon de la procédure d'accès aléatoire comprend :
la purge d'un tampon de demande de répétition automatique hybride (HARQ) utilisé pour
la transmission du MAC MU dans le tampon message 3.
4. Procédé selon la revendication 1, caractérisé en ce que la cellule secondaire est désactivée pendant la procédure d'accès aléatoire en raison
d'un temporisateur de désactivation pour l'expiration de la cellule secondaire pendant
la procédure d'accès aléatoire, ou une signalisation pour désactiver la cellule secondaire
est reçue du réseau pendant la procédure d'accès aléatoire.
5. Procédé de gestion de procédure d'accès aléatoire associée à la désactivation de la
cellule, ledit procédé étant exécuté par un appareil de réseau dans un système de
communication sans fil, le procédé comprenant :
la configuration d'une cellule secondaire pour un dispositif mobile du système de
communication sans fil ; et ledit procédé étant caractérisé par : la fourniture d'une signalisation indiquant la priorité entre une procédure d'accès
aléatoire et une désactivation de la cellule secondaire, au dispositif mobile.
6. Procédé selon la revendication 5, caractérisé en ce que la signalisation est une signalisation RRC.
7. Procédé selon la revendication 5, caractérisé en ce que la signalisation est un ordre de canal de commande de liaison descendante physique
(PDCCH) qui déclenche la procédure d'accès aléatoire.
8. Procédé selon la revendication 5, caractérisé en ce que la signalisation est une instruction d'activation/désactivation.