Technical Field
[0001] The present invention relates to a solid catalyst component comprising diol diester
compound with a special structure and the preparation thereof. The present invention
also relates to a catalyst comprising said solid catalyst component and its use in
olefin polymerization, especially in propylene polymerization.
Technical Background
[0002] It is well known that, the solid Ti catalyst component comprising magnesium, titanium,
halogen and electron donor as basic ingredients can be used in the polymerization
of olefins, and especially used in the polymerization of alpha olefins having three
or more carbon atoms for obtaining polymers with a higher stereoregularity in a higher
yield. Electron donor compound is one of the essential ingredients of the catalyst
component. With the development of the internal electron donor compound, new catalysts
for polyolefin are developed constantly. At present, a large amount of electron donor
compounds have been disclosed, for instance, polycarboxylic acid, monocarboxylic ester
or polycarboxylic ester, anhydride, ketone, monoether or polyether, alcohol, amine
and derivatives thereof.
[0003] A kind of 1,3-diol diester compound is disclosed in
CN1453298A and
CN1580034A. A catalyst with excellent comprehensive properties can be obtained by using said
1,3-diol diester compound as electron donor in the catalyst for olefin polymerization.
When the catalyst is used for propylene polymerization, higher polymerization activity
and higher stereospecificity can be obtained, and the molecular weight distribution
of the obtained polymer is wide as well. However, the acitivity and stereospecificity
of the catalyst are not satisfactory. And especially in the production of polymers
with high melt index, the isotactic index of the obtained polymers is not high enough,
and thus an further improvement is needed.
[0004] As to the 1,3-diol diester compound disclosed, when the four groups connected to
one carbon atom are different from each other, there are two spatial connection modes
for the four groups connected to the carbon atom. The two connection modes are mirror
images of each other, as left hand and right hand, and can not be completely superimposed
onto each other. This kind of compound is known as "chiral compound". The inventor
surprisingly finds that, if the diol diester compounds as shown in Formula (I) with
several conformational isomers are used as internal electron donor to prepare the
catalyst, the activity and stereospecificity of the catalyst would be satisfactory
only when the catalyst contains a certain amount of isomer with Fischer projection
formula as shown in Formula (II). And especially in the production of polymers with
high melt index, the isotactic index of the obtained polymers is increased substantially.
Summary of the Invention
[0005] An object of the invention is to provide a catalyst component for olefin polymerization,
comprising magnesium, titanium, halogen and electron donor, wherein the electron donor
is selected from at least one of the diol diester compounds as shown in Formula (I),
and in said diol diester compounds as shown in Formula (I), the content of the diol
diester compound with Fischer projection formula as shown in Formula (II) is greater
than or equal to 35wt%:

in both of Formula (I) and Formula (II):
R1 and R2, which may be identical to or different from each other, can be (C3~C20) cycloalkyl, (C6~C20) aryl or (C7~C20) alkaryl or aralkyl group, and the hydrogen atom bound to the carbon atom in said
cycloalkyl, aryl, alkaryl or aralkyl group can be optionally substituted by halogen
atom, but R1 and R2 can not be (C3~C20) cycloalkyl simultaneously;
R3 and R4, which may be identical to or different from each other, can be hydrogen atom, halogen
atom, (C1~C10) straight chain alkyl, (C3~C10) branched chain alkyl, (C3~C10) cycloalkyl, (C6~C10) aryl or (C7~C10) alkaryl or aralkyl group, and R3 and R4 can be optionally bonded together to form ring; and
R5 and R6, which may be identical to or different from each other, can be halogen atom, (C1~C10) straight chain alkyl, (C3~C10) branched chain alkyl, (C3~C10) cycloalkyl, (C6~C10) aryl or (C7~C10) alkaryl or aralkyl, and the hydrogen atom bound to the carbon atom in said alkyl,
aryl, alkaryl or aralkyl can be optionally substituted by halogen atom.
[0006] As to synthesis of the compounds having chiral carbon atom, especially more than
two chiral carbon atoms, unless a special method is used, the synthesized compounds
are generally a mixture of several conformational isomers, comprising levo isomer,
dextro isomer, symmetric compound and mesomer, wherein the mixture of levo isomer
and dextro isomer with the same amount is racemate. Due to different synthesis processes
or conditions, the contents of the conformational isomers obtained are different.
The reaction binding ability between different conformational isomers and magnesium
compound and/or titanium compound is different. Thus in the preparation of catalyst,
even in the case of one single kind of diol diester compound is used and the amount
thereof is the same, the properties of the final catalyst will be very different from
each other due to different contents of each conformational isomer.
[0007] In the present invention, the Fischer projection formula and its naming are determined
according to the rules set forth in
Pages 40-44 of "System Organic Chemistry" authored by YANG Fengke, LI Ming and LI
Fengqi. The principles are as follows: a cross represents the three-dimension skeletal structure
of molecule, in which the center of the cross is the chiral carbon atom, the vertical
bond extends toward the back of the sheet plane, and the transverse bond extends toward
the front of the sheet plane; the Fischer projection formula cannot rotate freely,
and the configuration will be changed if the Fischer projection formula rotates 90°,
but unchanged if it rotates 180°; and any two groups of the chiral carbon cannot exchange
with each other freely, and the configuration will be changed if they exchange once,
but unchanged if exchange twice.
[0008] The binding ability between different conformational isomers of one single compound
and magnesium compound or titanium compound is different, and the distance between
the atoms of different conformational isomers to be bound with magnesium or titanium
is different. It is surprisingly found that when the diol diester compound as shown
in Formula (I) is used as electron donor to prepare a catalyst component for olefin
polymerization, the binding ability between the diol diester with Fischer projection
formula as shown in Formula (II) and magnesium compound and/or titanium compound and
the distance between the atoms of said diol diester to be bound with magnesium or
titanium are the most suitable, and the comprehensive properties of the obtained catalyst
are also the best. Therefore, the higher the content of the diol diester compound
with Fischer projection formula as shown in Formula (II) is, the better the comprehensive
properties of the catalyst are, and the higher activity and stereospecificity of the
catalyst are. Meanwhile, the isotactic index of the obtained polymers is higher especially
in the production of polymers with high melt index, so that the mechanical property,
especially strength etc., of the obtained polymer will be further increased. The catalyst
is suitable to produce the polymers that are required to have an even higher strength.
In the present invention, different synthetic methods are used to synthesize the levo
isomer, dextro isomer and mesomer (in the following, meso refers to mesomer, i.e.
R
1=R
2 and R
5=R
6 in the Fisher projection formula (II)), and said compound is added according to different
proportions in the preparation of the catalyst, so that the content of the compound
with Fisher projection formula (II) can meet the experimental requirements. If the
diol diester as shown in formula (I) is used as electron donor to prepare said catalyst
component for olefin polymerization, only when the content of the diol diester compound
with Fischer projection formula as shown in Formula (II) is greater than or equal
to 35wt%, the activity and stereotactic ability of the catalyst could be higher, and
especially in the production of polymers with high melt index, the isotactic index
indicated by boiling n-heptane extracted insolubles could be enhanced significantly,
and thus the catalyst can be used to produce polymers with high melt index, high isotactic
index and high strengh. In order to further improve the activity and stereotactic
ability of the catalyst, in the present invention the content of the diol diester
compound with Fischer projection formula as shown in Formula (II) is preferably greater
than or equal to 51wt%, further preferably greater than or equal to 60wt%, and even
further preferably greater than or equal to 80wt%.
[0009] In Formulas (I) and (II): R
1 and R
2 groups are preferably selected from phenyl, halogenated phenyl, alkyl phenyl, halogenated
alkyl phenyl, indenyl, benzyl and phenethyl group; R
3 and R
4 groups are preferably selected from hydrogen, chloro, bromo, methyl, ethyl, propyl,
isopropyl, butyl and isobutyl group; R
5 and R
6 groups are preferably selected from methyl, ethyl, propyl, isopropyl, butyl and isobutyl
group.
[0010] Further preferably, at least one of R
1 and R
2 groups is selected from phenyl, halogenated phenyl, (C
1-C
5) alkyl phenyl, and (C
1-C
5) halogenated alkyl phenyl group.
[0011] Even further preferably, R
1 group is the same as R
2 group.
[0012] For said diol diester according to the present invention, some specific examples
of the diol diester compounds with Fisher projection formula as shown in Formula (II)
can be selected from, but not limited to, the followings:
meso-2,4-pentanediol dibenzoate,
meso-3-methyl-2,4-pentanediol dibenzoate,
meso-3-ethyl-2,4-pentanediol dibenzoate,
meso-3-propyl-2,4-pentanediol dibenzoate,
meso-3-butyl-2,4-pentanediol dibenzoate,
meso-3,3-dimethyl-2,4-pentanediol dibenzoate,
meso-2,4-pentanediol di(p-methylbenzoate),
meso-3-chloro-2,4-pentanediol dibenzoate,
meso-3-bromo-2,4-pentanediol dibenzoate,
meso-2,4-pentanediol di(m-methylbenzoate),
meso-2,4-pentanediol di(o-methylbenzoate),
meso-2,4-pentanediol di(p-ethylbenzoate),
meso-2,4-pentanediol di(p-butylbenzoate),
meso-2,4-pentanediol di(p-chlorobenzoate),
meso-3,5-heptanediol dibenzoate,
meso-4-methyl-3,5-heptanediol dibenzoate,
meso-4-dimethyl-3,5-heptanediol dibenzoate,
meso-4-ethyl-3,5-heptanediol dibenzoate,
meso-4-propyl-3,5-heptanediol dibenzoate,
meso-4-butyl-3,5-heptanediol dibenzoate,
meso-4-chloro-3,5-heptanediol dibenzoate,
meso-4-bromo-3,5-heptanediol dibenzoate,
meso-3,5-heptanediol di(p-methylbenzoate),
meso-3,5-heptanediol di(o-methylbenzoate),
meso-3,5-heptanediol di(m-methylbenzoate),
meso-3,5-heptanediol di(p-ethylbenzoate),
meso-3,5-heptanediol di(p-butylbenzoate),
meso-3,5-heptanediol di(p-chlorobenzoate),
(2S,4R)-2,4-pentanediol benzoxy cinnamate,
(2S,4R)-3-methyl-2,4-pentanediol benzoxy cinnamate,
(2S,4R)-3-ethyl-2,4-pentanediol benzoxy cinnamate,
(2S,4R)-3-propyl-2,4-pentanediol benzoxy cinnamate,
(2S,4R)-3-butyl-2,4-pentanediol benzoxy cinnamate,
(2S,4R)-3,3-dimethyl-2,4-pentanediol benzoxy cinnamate,
(2S,4R)-3-chloro-2,4-pentanediol dibenzoate,
(3S,5R)-3,5-heptanediol benzoxy cinnamate,
(3S,5R)-4-methyl-3,5- heptanediol benzoxy cinnamate,
(3S,5R)-4,4-dimethyl-3,5-heptanediol benzoxy cinnamate,
(3S,5R)-4-ethyl-3,5-heptanediol benzoxy cinnamate,
(3S,5R)-4-propyl-3,5-heptanediol benzoxy cinnamate,
(3S,5R)-4-butyl-3,5-heptanediol benzoxy cinnamate,
(3S,5R)-4-chloro-3,5-heptanediol benzoxy cinnamate,
(2S,4R)-6-methyl- 2,4-heptanediol dibenzoate,
(2S,4R)-6-methyl-2,4-heptanediol di(p-butyl benzoate),
(2R,4S)-2,4-pentanediol benzoxy cinnamate,
(2R,4S)-3-methyl-2,4-pentanediol benzoxy cinnamate,
(2R,4S)-3-ethyl-2,4-pentanediol benzoxy cinnamate,
(2R,4S)-3-propyl-2,4-pentanediol benzoxy cinnamate,
(2R,4S)-3-butyl-2,4-pentanediol benzoxy cinnamate,
(2R,4S)-3,3-dimethyl-2,4-pentanediol benzoxy cinnamate,
(2R,4S)-3-chloro-2,4-pentanediol dibenzoate,
(3R,5S)-3,5-heptanediol benzoxy cinnamate,
(3R,5S)-4-methyl-3,5-heptanediol benzoxy cinnamate,
(3R,5S)-4,4-dimethyl-3,5-heptanediol benzoxy cinnamate,
(3R,5S)-4-ethyl-3,5-heptanediol benzoxy cinnamate,
(3R,5S)-4-propyl-3,5-heptanediol benzoxy cinnamate,
(3R,5S)-4-butyl-3,5-heptanediol benzoxy cinnamate,
(3R,5S)-4-chloro-3,5-heptanediol benzoxy cinnamate,
(2R,4S)-6-methyl-2,4-heptanediol dibenzoate,
(2R,4S)-6-methyl-2,4-heptanediol di(p-butyl benzoate), and so on.
[0013] In the catalyst component used for olefin polymerization according to the present
invention, said electron donor diol diester compound is marked as "a", and the catalyst
component further includes electron donor "b", wherein "b" is phthalate diester compound
or diether compound as shown in Formula (III), and the molar ratio of "a" to "b" is
from 1:0.01 to 1:100, further preferably from 1:0.02 to 1:5,

in Formula (III), R
1 and R
2, which may be identical to or different from each other, can be selected from straight
chain or branched chain (C
1-C
20) alkyl and (C
3-C
20) cycloalkyl group; R
3-R
8, which may be identical to or different from each other, can be selected from hydrogen
atom, halogen atom, straight chain or branched chain (C
1-C
20) alkyl, (C
3-C
20) cycloalkyl, (C
6-C
20) aryl and (C
7-C
20) aralkyl group, and the R
3-R
8 groups can be optionally bonded together to form ring.
[0014] Because the catalyst component contains a certain amount of diol diester compound
with Fischer projection formula as shown in Formula (II), the activity of the catalyst
and the isotacticity of the polymer have been improved significantly.
[0015] According to the present invention, said catalyst component used for olefin polymerization
is preferably obtained by the reaction of magnesium compound and titanium compound
with said diol diester compound as defined above. The Formula of titanium compound
is TiX
n(OR)
4-n, wherein R is hydrocarbyl group having 1 to 20 carbon atoms, X is halogen, and n
is a value satisfying 0≤n≤4. For example, it can be titanium tetrachloride, titanium
tetrabromide, titanium tetraiodide, tetrabutoxy titanium, tetraethoxy titanium, triethoxy
titanium chloride, diethoxy titanium dichloride and ethoxy titanium trichloride.
[0016] Magnesium compounds can be selected from magnesium dihalide, alkoxy magnesium, alkyl
magnesium, hydrate or alcohol adduct of magnesium dihalide, and one of the derivatives
formed by replacing a halogen atom of the magnesium dihalide molecular formula with
alkoxyl or haloalkoxyl group, or their mixture. Preferred magnesium compounds are
magnesium dihalide, alcohol adduct of magnesium dihalide, and alkoxy magnesium.
[0017] It should be particularly noted that, the magnesium compound is preferably dissolved
in a solvent system containing organic epoxy compound and organic phosphorus compound,
wherein the organic epoxy compound comprises aliphatic olefins, dienes , halogenated
aliphatic olefins, oxides of dienes, glycidyl ethers and inner ethers, all of which
have 2 to 8 carbon atoms. Some specific compounds are as follows: ethylene oxide,
propylene oxide, epoxy butane, butadiene oxide, butadiene dioxide, epichlorohydrin,
methyl glycidyl ether, diglycidyl ether, tetrahydrofuran; wherein the organic phosphorus
compound comprises hydrocarbyl ester or halohydrocarbyl ester of orthophosphoric acid
or phosphorous acid, specifically, such as, trimethyl orthophosphate, triethyl orthophosphate,
tributyl orthophosphate, triphenyl orthophosphate, trimethyl phosphite, triethyl phosphite,
tributyl phosphite, triphenylmethyl phosphite.
[0018] Magnesium compounds can also be dissolved in a solvent system containing organic
alcohol compounds, which are monohydric alcohols with carbon atoms of 2 to 8.
[0019] Different methods can be choosed to prepare the catalyst component according to the
present invention. In the following several preparation methods are listed, but it
would not restrict the preparation method for the solid catalyst component according
to the invention in any way.
[0020] Method 1: preparing the catalyst component according to
CN1506384.
[0021] First, magnesium compound and organic alcohol compound with a molar ratio of 2 to
5 are mixed with inert solvent; the temperature is increased to 120 to 150°C, and
then phthalic anhydride and an organic silicon compound with a magnesium/ anhydride
molar ratio of 5 to 10 and a magnesium/silicon molar ratio of 20 to 50 are added;
after reacting for 1 to 5h, an alcohol adduct is obtained.
[0022] Next, the alcohol adduct which has been cooled to room temperature is added into
a solution of titanium compound which is pre-cooled to a temperature of -15 to -40°C,
with a titanium/magnesium molar ratio of 20 to 50. The temperature is increased to
90 to 110°C, and then a diol diester compound as shown in Formula (I) with a magnesium/ester
molar ratio of 2 to 10 is added. After reacting at a temperature of 100 to 130°C for
1 to 3h, solid particulates are filtered and separated.
[0023] Then, the solid particulates are added into a solution of titanium compound with
a titanium/magnesium molar ratio of 20 to 50. The mixture is reacted under stirring
at a temperature of 100 to 130°C for 1.5 to 3h, and the solid particulates are filtered
and separated.
[0024] Finally, an inert solvent at a temperature of 50 to 80°C is used to wash the solid
particulates, and then the catalyst component is obtained after drying.
[0025] Method 2: preparing the catalyst component according to
CN85100997.
[0026] First, magnesium compound is dissolved in a solvent system comprising organic epoxy
compound, organic phosphorus compound and inert solvent. After a uniform solution
is formed, the solution is mixed with titanium compound, and solids are precipitated
at the presence of coprecipitation agent. Such solids are treated with the diol diester
compound as shown in Formula (I) so that said diol diester compound is loaded on the
solids; if necessary, titanium tetrahalide and inert diluent are used to further treat
the solids. Coprecipitation agent can be one of organic acid anhydride, organic acid,
ether, ketone and ester, or their mixtures, and some specific coprecipitation agents
are as follows: acetic anhydride, phthalic anhydride, succinic anhydride, maleic anhydride,
pyromellitic dianhydride, acetic acid, propionic acid, butyric acid, acrylic acid,
methacrylic acid, acetone, methyl ethyl ketone, diphenyl ketone, methyl ether, ethyl
ether, propyl ether, butyl ether, amyl ether, succinate, malonate, glutarate, 2,4-pentanediol
diester, 3,5-heptanediol diester, and so on.
[0027] The amount of each said component is calculated by each molar of magnesium halide,
wherein organic epoxy compound is from 0.2 to 10 molar, organic phosphorus compound
is from 0.1 to 3 molar, coprecipitation agent is from 0 to 1.0 molar, titanium compound
is from 0.5 to 150 molar, and the dilo ester compound with Formula (I) is from 0.02
to 0.5 molar.
[0028] Method 3: preparing the catalyst component according to
CN1091748.
[0029] Spheres of magnesium chloride alcohol adduct are dispersed by high speed stirring
in a dispersant system of white oil and silicone oil, and an emulsion is formed. Then
the emulsion is unloaded into coolant so as to be cooled and setted rapidly, and microspheres
of magnesium chloride alcohol adduct are formed. The coolant is inert hydrocarbon
solvent with lower boiling point, such as petroleum ether, pentane, hexane, heptane,
and so on. The microspheres of magnesium chloride alcohol adduct obtained are spherical
carriers after being washed and dried. The molar ratio of alcohol to magnesium chloride
is from 2 to 3, preferably 2 to 2.5. The diameter of carriers is from 10 to 300 µm,
preferably 30 to 150 µm.
[0030] Excess amount of titanium tetrachloride is used to treat the above spherical carriers
at low temperature. Temperature is increased gradually, and electron donor is added
during the treatment. After treatment, spherical carriers are washed with inert solvent
for several times, and a solid powdered spherical catalyst is obtained after drying.
The molar ratio of titanium tetrachloride to magnesium chloride is from 20 to 200,
preferably 30 to 60. The onset treatment temperature is from -30 to 0°C, preferably
-25 to -20°C. The final treatment temperature is from 80 to 136°C, preferably 100
to 130°C.
[0031] The obtained spherical catalyst has the following characteristics: the content of
titanium is from 1.5 to 3.0wt%, the content of ester is from 6.0 to 20.0wt%, the content
of chloride is from 52 to 60wt%, the content of magnesium is from 10 to 20wt%, the
content of inert solvent is from 1 to 6wt%, and the specific surface area of catalyst
is greater than 250m
2/g.
[0032] Method 4: Titanium tetrechloride (TiCl
4) or a solution of titanium tetrechloride (TiCl
4) in arene is used to halogenate magnesium compound, such as dialkoxymagnesium and
diaryloxymagnesium. The treatment with titanium tetrechloride (TiCl
4) or the solution of titanium tetrechloride (TiCl
4) in arene can be repeated for one or more times, and said diol diester is added therein
during the one or more times of such treatment.
[0033] Method 5: preparing the catalyst component according to
US4540697.
[0034] Transition metal compound (preferably tetravalent titanium compound), alkoxymagnesium
compound and electron donor react with each other in a certain proportion in inert
solvent, wherein the molar ratio of transition metal element to magnesium element
is at least 0.5:1, and the amount of electron donor is at most 1.0 mol for each gram
of titanium atom. The inert solvent should be removed conveniently, and dehydrated
and deoxidated, and be removed from the gas that would enable catalyst being poisoned.
The reaction is carried out at a temperature of -10 to 170°C, and the reaction time
is from several minutes to several hours.
[0035] The methods for preparing catalyst component further include that, for example, adding
magnesium compound and electron donor, etc. in the diluent to form emulsion, adding
titanium compound for fixation to obtain spherical solids, and then obtaining a solid
catalyst component after treatment.
[0036] Another object of the invention is to provide a catalyst for olefin polymerization,
comprising a reaction product of the following components:
- (1) the above solid catalyst component,
- (2) alkyl aluminium compound, and
- (3) optionally, external electron donor component;
wherein alkyl aluminium compound is the compound with a Formula of AlR
nX
3-n, in which R is hydrogen or hydrocarbyl group having 1 to 20 carbon atoms, X is halogen,
and n is a value satisfying 1≤n≤3. Specifically, the compound can be selected from
triethyl aluminium, tripropyl aluminium, tri(n-butyl) aluminum, tri(isobutyl) aluminium,
tri(n-octyl) aluminium, tri(isooctyl) aluminium, diethyl aluminium hydride, di(isobutyl)
aluminium hydride, diethyl aluminium chloride, di(isobutyl) aluminium chloride, ethyl
aluminum sesquichloride and ethyl aluminium dichloride, and preferably triethyl aluminium
and tri(isobutyl) aluminium.
[0037] As to olefin polymer requiring a very high stereoregularity, it needs to add the
external electron donor compound as mentioned in component (3), such as an organosilicon
compound with a Formula of R
nSi(OR')
4-n, in which 0≤n≤3, and R and R', which may be identical to or different from each other,
can be selected from alkyl, cycloalkyl, aryl, halogenated alkyl and amine group, and
R can be also halogen or hydrogen atom. For example, they can be selected from trimethyl
methoxy silane, trimethyl ethoxy silane, dimethyl dimethoxy silane, dimethyl diethoxy
silane, diphenyl dimethoxy silane, diphenyl diethoxy silane, phenyl triethoxy silane,
phenyl trimethoxy silane, vinyl trimethoxy silane, cyclohexyl methyl dimethoxy silane
and methyl t-butyl dimethoxy silane, preferably cyclohexyl methyl dimethoxy silane
and diphenyl dimethoxy silane. As the external electron donor compound, it also can
be the ether compound having electron donor group, such as ether compound like 1,3-diether,
and /or amino silane compound.
[0038] The ratio of component (1) to component (2) to component (3), caculated as the molar
ratio of titanium: aluminium: silicon, is in the range of 1:5-1000:0-500.
[0039] The catalyst of the present invention can be added directly into the reactor for
polymerization process. Alternatively, prepolymerization can be conducted with catalyst
before the catalyst is added into the first reactor. In the present invention, the
term "prepolymerization" refers to polymerized with a low conversion degree. According
to the present invention, said prepolymerization catalyst comprises the above solid
catalyst and the prepolymer obtained by the prepolymerization of catalyst and olefin,
and the prepolymerization multiples is in the range of 0.1 to 1000g olefin polymer
per 1g solid catalyst component.
[0040] The α-olefin which is the same as the foregoing olefin can be used for prepolymerization,
wherein the olefin for prepolymerization is preferably ethylene or propylene. Specifically,
the mixture of ethylene or propylene and one or more α-olefins with a maximum amount
of 20mol% is particularly advantageous for prepolymerization. Preferably, the conversion
degree of prepolymerized catalyst component is in a range of about 0.2 to about 800g
polymer per 1g catalyst component.
[0041] The prepolymerization process can be carried out at a temperature of -40 to 80°C,
preferably -20 to 50°C, in liquid or gas phase. The prepolymerization step can be
carried out on-line as a part of continuous polymerization process, or independently
in intermittent operations. In order to prepare the polymer with an amount of 0.5
to 20g per 1g catalyst component, intermittent prepolymerization of the catalyst according
to the present invention and propylene is particularly preferred. The polymerization
pressure is from 0.01 to 10MPa.
[0042] The catalyst according to the present invention can be also used to produce polyethylene,
and copolymer of ethylene with α-olifin, such as propylene, butylene, pentene, hexene,
octene, and 4-methyl-1-pentene.
[0043] It should be noted that in the present invention, by using the catalyst component
containing a certain amount of diol diester compound with Fischer projection formula
as Formula (II), the activity and stereotactic ability of the catalyst, especially
the isotactic index indicated by boiling n-heptane extracted insolubles in the production
of polymers with high melt index, are enhanced significantly. At the same time, the
hydrogen response of the catalyst is also good, and the molecular weight distribution
of the polymer obtained is also wider, all of which is favour for the development
of polymers with different MK.
Embodiments
[0044] The present invention will be explained in detail by the following examples. Obviously,
these examples do not restrict the scope of the present invention in any manner.
Test methods:
[0045]
- 1. Measurement of nuclear magnetic resonance: using Bruke dmx300 nuclear magnetic
resonance spectrometer for 1H-NMR (300MHz, solvent is CDCl3, TMS as internal standard, and measuring temperature is 300K);
- 2. Isotactic index of polymer is measured by heptane extraction method (heptane boiling
extraction for 6h): 2g dried polymer sample is extracted with boiling heptane in an
extractor for 6 hours, then the residul substance is dried to constant weight, and
the ratio of the weight (g) of residual polymer to 2 is namely the Isotactic Index;
- 3. Liquid chromatography is a Waters-600E high performance liquid chromatography with
C-18 column, and the column temperature is 30°C. The mobile phase is methol-water
with a flow rate of 1.0 ml/min. UV detector, observed at 229 nm.
a) Synthesis of diol diester compound
[0046] The diol with polarimetry activity can be synthesized as disclosed in "
Chemistry Letters, 1979, 1049-1050", and then is reacted with corresponding acid or acyl chloride, so that a corresponding
diol diester with polarimetry activity can be obtained. It can also be obtained by
crystallizing while lowering temperature of the diol mixture in organic solvent such
as ether, then reacting with corresponding acid or acyl chloride, see "
Bull. Chem. Soc. Jpn., 1980, (53), 3367-3368". Additionally, the diol diester with different conformation isomers can be dissolved
in organic solvent like toluene, and then a very pure mixture of the mesomer, levo
isomer and dextro isomer can be obtained after several times of recrystallizations
by lowering temperature and crystallizing slowly. It should be stated that, as the
operation conditions, such as the solvent, reaction temperature, reductant or alkali
used in synthesis are different, the proportions of different conformation isomers
in the primary diol diester are very different from each other.
1. Preparation of product, which is mainly (2R,4R)-pentanediol dibenzoate (other compounds
with R configuration can also be similarly synthesized)
[0047] 20 g (R,R)-Ta (tartaric acid) and 200g NaBr are dissloved in 2000ml deionized water,
then NaOH solution is used to adjust the pH of the solution to 3.2 (solution A). It
should be rioted that for the product mainly being (2S,4S)-pentanediol dibenzoate,
(R, R)-Ta should be replaced with (S,S)-Ta; and other compounds with S configuration
can also be similarly synthesized. Into the solution 16g Raney Ni is added under stirring,
and the solution is heated for 1h at the temperature of 100°C. After cooling, the
solution is thrown away, and then the residue is washed with 200ml deionized water
to obatain a product. The product obtained is treated repeatedly in solution A twice,
and washed with methol and dried, then the catalyst (R,R)-Ta-NaBr-Raney Ni is obtained.
[0048] Into a 100ml stainless steel autoclave, 10g (0.1mol) 2,4-pentane dione, 0.2ml acetic
acid, 22ml THF being removed from water, and 0.065mol catalyst (R,R)-Ta-NaBr-Raney
Ni are added, and hydrogen is fed in until the pressure is 9.3Mpa, then the mixture
is heated to 100°C. The temperature is maintained until the hydrogen pressure in the
autoclave is no longer decreased. Then the reaction is over. After the pressure releases,
the mixture is filtered. After removal of solvent in filtration, crude product is
obtained. With reduced pressure distillation, the product is collected at the temperature
between 130 and 132°C and under the pressure of 3KPa. The yield is 91 %.
[0049] 0.05mol (5.1g) of the above-mentioned product is added into 200ml THF, with 0.1mol
pyridine being added under stirring and 0.1 mol benzoyl chloride being added dropwise,
then a heat-reflux is carried out for 4 h. After cooling, the mixture is dissolved
by adding saturated aqueous solution of sodium chloride, then extracted with ethyl
acetate. After removal of solvent in the organic layer, column chromatography is carried
out with petroleum ether as eluent, then 13.5g white solid is obtained. The yield
is 87%.
[0050] The white solid is analysized by liquid chromatogram. Result shows that there are
mainly two peaks. The retention time of one peak is 10.122, and the peak area thereof
is 90%; the corresponding product is (2R,4R)-pentanediol dibenzoate. The retention
time of the other peak is 12.118, and the peak area thereof is 10%; the corresponding
product is meso-2,4-pentanediol dibenzoate.
2. preparation of meso-2,4-pentanediol dibenzoate
(1) synthesis of 2,4-pentanediol dibenzoate mixture (see CN1580034A)
[0051] A mixture of 10g 2,4-pentanedione and 30 ml methol is added into a mixed solution
of 2.5g sodium borohydride, 0.1g sodium hydroxide and 25ml water at a temperature
of 0 to 10°C. After that, the solvent is removed under reduced pressure, and then
a continuous extraction is carried out for 15h with 40ml ethyl acetate. The solvent
is removed, and after column chromatography, a colourless liquid of 9.4g 2,4-pentanediol
is obtained. The yield is 90%. In the IR spectrogram, a strong absorption peak is
observed at 3400cm
-1, and no absorption peak is observed at 1700cm
-1, which means that the reduction reaction is carried out completely.
[0052] Into 3.1g (0.03mol) 2,4-pentanediol, 30ml THF and 7.1g (0.09mol) pyridine are added,
and 10.5g (0.075mol) benzoyl chloride is added under stirring, then a heat-reflux
is carried out for 4 h. After cooling, 20 ml saturated salt solution is added, then
extraction is carried out with ethyl acetate, and after drying with anhydrous NaSO
4, the solvent is removed. A colourless liquid of 8.9g 2,4-pentanediol dibenzoate is
obtained by column chromatography. The yield is 95%.
(2) separation of meso-2,4-pentanediol dibenzoate from the mixture
[0053] 20g mixture of 2,4-pentanediol dibenzoate isomers prepared as above is dissolved
in 20ml toluene. With the temperature being lowered slowly, white crystals are precipitated
slowly in the solution. The crystals are separated, and recrystallized in toluene
for several times. The liquid chromatogram of the obtained crystals reveals that,
the retention time is 12.108, and the peak area is 99.0%.
[0054] Meso-2,4-pentanediol dibenzoate,
1H-NMR (TMS, CDCl
3, ppm): δ 1.40-1.42 (6H, d, CH
3), δ 1.87-1.95 (1H, m, CH
2), δ 2.29-2.39 (1H, m, CH
2), δ 5.28-5.39 (2H, m, CH of ester), δ 7.38-8.04 (10H, m, C
6H
6).
[0055] (2R,4R)-pentanediol dibenzoate and (2S,4S)-pentanediol dibenzoate,
1H-NMR (TMS, CDCl
3, ppm): δ 1.40-1.42 (6H, d, CH
3), δ 2.08-2.12 (2H, t, CH
2), δ 5.26-5.37 (2H, m, CH of ester), δ 7.35-7.99 (10H, m, C
6H
6).
[0056] The diol diester added in the preparation of catalyst meets the requirements in the
following examples by adjustment of the amount of each purer isomer obtained by the
above processes. The adding method of the diol diester is conventional in chemistry:
weighing out each isomer (such as levo-, dextro- and meso-2,4-pentanediol dibenzoate)
according to a certain proportion, and after mixing, adding the mixture to prepare
catalyst; analysising the content of each isomer in the prepared catalyst; if the
content of each isomer in the catalyst does not meet the requirement, changing the
adding proportion of isomers as appropriate, but keeping the total amount unchanged.
The analysis for the electron donor content in the catalyst comprises the following
steps: carrier destruction by dilute hydrochloric acid, extraction of electron donor
by ethyl acetate, and analysis by liquid chromatogram.
b) Preparation of solid catalyst component
Preparation method A of solid catalyst component
[0057] Preparation method A corresponds to Method 1 of said solid catalyst component as
mentioned above. Under nitrogen atmosphere, 4.8g anhydrous magnesium chloride, 19.5g
isooctyl alcohol, and 19.5g decane as solvent are added into a 500ml reactor which
is provided with stirrers. Being heated to 130°C, the reaction is carried out for
1.5h until magnesium chloride is dissolved completely. Then 1.1g phthalic anhydride
is added, and the reaction is continued for 1h with the temperature kept at 130°C.
Alcohol adduct is obtained and then it is cooled to room temperature.
[0058] Under nitrogen atmosphere, the above alcohol adduct is added dropwise into 120ml
solution of titanium tetrachloride which is pre-cooled to -22°C. Being heated to 100°C
slowly, 10mmol diol diester compound is added. Then, being heated to 110°C which is
kept for 2h, the mixture is filtered while hot. Another 120ml solution of titanium
tetrachloride is added, and then the reaction is carried out for 1h after being heated
to 110°C. After filtration, the solid particulates are washed with anhydrous hexane
for 4 times and then dried. Then a solid catalyst component is obtained.
Preparation method B of solid catalyst component
[0059] Preparation method B corresponds to Method 2 of said solid catalyst component as
mentioned above. Into the reactor, in which air is fully replaced by high purity nitrogen,
6.0g magnesium chloride, 119ml toluene, 5ml epichlorohydrin and 15.6ml tributyl phosphate
(TBP) are added in sequence. Being heated to 50°C under stirring and the temperature
being kept for 2.5h, the solid is dissolved completely. Then 1.7g phthalic anhydride
is added, and the temperature is further kept for 1h. After cooling the solution to
below -25°C, 70ml TiCl
4 is added dropwise within 1h. The temperature is slowly increased to 80°C, during
which the solid is precipitated slowly. 6mmol diol diester compound is added, and
the temperature is kept for 1h. After filtration, 80ml toluene is added, then solid
precipitate is obtained after being washed twice.
[0060] Then 60ml toluene and 40ml TiCl
4 are added. Being heated to 100°C, the treatment is carried out for 2h and the filtrate
is exhausted. After repeating the above operation for one time, another 60ml toluene
is added, and the filter residual is washed for 3 times in boiling state. Then 60ml
hexane is added, and the filter residual is washed for 2 times in boiling state. Then
another 60ml hexane is added, and the filter residual is washed for 2 times at room
temperature. The catalyst component is obtained.
Preparation method C of solid catalyst component
[0061] Preparation method C corresponds to Method 3 of said solid catalyst component as
mentioned above. In a 250ml reactor, which is provided with a reflux condenser, a
mechanical stirrer and a thermometer, and in which air is fully replaced by nitrogen,
36.5ml anhydrous ethanol and 21.3g anhydrous magnesium chloride are added. Under heating
and stirring, after magnesium chloride dissolved completely, 75ml white oil and 75ml
silicone oil are added, and the temperature is kept at 120°C for a certain time. In
another 500ml reactor equipped with high speed stirrers, 112.5ml white oil and 112.5ml
silicone oil are added in advance, and it is preheated to 120°C. The above mixture
is fed rapidly into the second reactor, and a stirring is carried out at a speed of
3500 rmp for 3min with the temperature kept at 120°C. Under stirring, the materials
are transferred into a third reactor which is cooled to -25°C and filled with 1600ml
hexane in advance. Until the transfer of materials is completed, the final temperature
is no more than 0°C. After vacuum filtration, the filter residual is washed with hexane
and dried under vacuum, obtaining 41g spherical particulates magnesium chloride alcohol
adduct. The carrier with 100 to 400 mesh is selected after sieving, and the ingredient
of the carrier is MgCl
2·2.38C
2H
5OH by analysis and test.
[0062] 7g above spherical carrier of MgCl
2·2.38C
2H
5OH is added slowly into a reactor which contains 150ml TiCl
4 and is pre-cooled to -20°C. After being slowly heated to 40°C, 5mmol diol diester
compound is added. After continuously being heated until 130°C and the temperature
being kept for 2h, vacuum filtration is carried out. Another 120ml TiCl
4 is added. After being slowly heated to 130°C and the temperature being kept for 2h,
washing is carried out with 60ml hexane for several times, until no chloridion is
observed in the filtration. The filter cake is dried under vacuum, obtaining the solid
catalyst component.
c) Test of polymerization of propylene
[0063] The catalyst components of the above examples are used to polymerize propylene respectively.
The propylene polymerization process is as follows. Into a 5L stainless steel reactor
in which air is replaced fully with gas propylene, 2.5mmol AlEt
3 and 0.1mmol cyclohexyl methyl dimethoxy silane (CHMMS) are added, then 8 to 10 mg
catalyst component of as above and 1.2L hydrogen are added, after feeding 2.3L liquid
propylene, the temperature is increased to 70°C and kept for 1h. After cooling and
pressure release, PP powders of Examples 1 to 10 and Comparative Examples 1 to 5 are
obtained.
Table 1 Results of propylene polymerization
| Num. |
Electron donor |
Preparation process for catalyst |
Fischer projection formula(II) content wt% |
Polymerization activity kgPP/gcat |
Isotactic index % |
| Example 1 |
2,4-pentanediol dibenzoate |
A |
35.0 |
35.1 |
98.1 |
| Example 2 |
2,4-pentanediol dibenzoate |
A |
51.0 |
39.5 |
98.8 |
| Example 3 |
2,4-pentanediol dibenzoate |
A |
95.1 |
42.3 |
98.9 |
| Comparative Example 1* |
2,4-pentanediol dibenzoate |
A |
0 |
17.6 |
92.1 |
| Comparative Example 2* |
2,4-pentanediol dibenzoate |
A |
0 |
17.0 |
91.9 |
| Comparative Example 3 |
2,4-pentanediol dibenzoate |
A |
20.5 |
26.3 |
97.0 |
| Example 4 |
3,5-heptanediol dibenzoate |
B |
98.9 |
59.6 |
98.6 |
| Comparative Example 4* |
3,5-heptanediol dibenzoate |
B |
0 |
17.9 |
89.3 |
| Example 5 |
3,5-heptanediol di(p-methylbenzoate) |
B |
96.9 |
60.5 |
98.8 |
| Example 6 |
4-ethyl-3,5-heptanediol dibenzoate |
B |
96.5 |
61.8 |
97.9 |
| Example 7 |
2,4-pentanediol di(p-chlorobenzoate) |
B |
60.0 |
51.2 |
98.5 |
| Example 8 |
2,4-pentanediol dibenzoate |
C |
81.0 |
67.6 |
99.1 |
| Example 9 |
3,5-heptanediol di(p-butylbenzoate) |
A |
82.4 |
45.2 |
98.6 |
| Example 10 |
6-methyl-2,4- heptanediol di(p-butyl benzoate) |
A |
78.6 |
42.9 |
97.8 |
| Comparative example 5 |
6-methyl-2,4- heptanediol di(p-butyl benzoate) |
A |
25.0 |
22.8 |
95.3 |
| Note: In the catalyst preparation of comparative examples 1*, 2* and 4*, levo isomer,
racemate and dextro isomer are added respectively. In other comparative examples and
examples, besides diol diester with Fischer projection formula (II), other diol diester
compounds can be levo isomer, dextro isomer or mixture thereof. |
[0064] It can be seen from Table 1 that, when the content of diol diester with Fischer projection
formula (II) is from 35 to 96.9wt%, the catalyst activity is from 35.1 to 67.6 kgPP/gcat,
and the isotactic index is from 97.8 to 99.1%; when the content of diol diester with
Fischer projection formula (II) is from 0 to 25.0wt%, the catalyst activity is from
17.0 to 26.3 kgPP/gcat, and the isotactic index is from 89.3 to 97.0%. Therefore,
only when the content of diol diester with Fischer projection formula (II) is greater
than 35wt%, the catalyst has good performances, and when the content is greater than
51 %, the catalyst has excellent comprehensive properties.
[0065] The catalysts used in the above Examples and Comparative Examples are used to polymerize
propylene. The conditions are the same as the foregoing polymerization reactions,
except the amount of hydrogen added is changed from 1.2 L to 8.0L. The results are
shown in Table 2.
Table 2 Effect of the content of Fischer projection formula (II) on the isotactic
index of PP under high hydrogen concentration
| catalyst |
Fischer projection formula(II) content wt% |
Polymerization activity (kgPP/gcat) |
Melt index (g/10min) |
Isotactic index (%) |
| 1.2L hydrogen |
8L hydrogen |
1.2L hydrogen |
8L hydrogen |
1.2L hydrogen |
8L hydrogen |
| Example 1 |
35.0 |
35.1 |
43.5 |
0.8 |
21.3 |
98.1 |
96.0 |
| Example 2 |
51.0 |
39.5 |
46.8 |
0.6 |
20.9 |
98.8 |
97.6 |
| Comparative example 3 |
20.5 |
26.3 |
28.9 |
1.0 |
25.5 |
97.0 |
91.9 |
[0066] It can be seen from Table 2 that, the content of diol diester with Fischer projection
formula (II) has a great influence on the isotactic index of the obtained polymer
under high hydrogen concentration; only when the content of diol diester with Fischer
projection formula (II) is greater than or equal to 35wt%, it is ensured that the
polymer can still have a high isotactic index under a high melt index (greater than
95%).
[0067] During the preparation of catalyst component, other electron donors can be introduced.
Through complex formulation of such electron donor and the diol diester with the content
of diol diester with Fischer projection formula (II) greater than or equal to 35wt%,
catalyst with high activity can be prepared. The particular can be found in the following
Examples.
Example 11
[0068] Example 11 is similar to Example 4. However, in Example 4 "60ml toluene and 40ml
TiCl
4 are added, being heated to 100°C, the treatment is carried out for 2h and the filtrate
is exhausted, then repeating the above operation for one time"; but in Example 11
"0.2mmol di(n-butyl) phthalate, 60ml toluene and 40ml TiCl
4 are added, being heated to 110°C, the treatment is carried out for 2h and the filtrate
is exhausted". Then the treatment with 60ml toluene and 40ml TiCl
4 for 0.5h under 110°C is repeated for three times. The obtained catalyst contains
7.9% 3,5-heptanediol dibenzoate, in which the mesomer content is 97.9%, and 0.9% di(n-butyl)
phthalate. The catalyst activity is 68.6 kgPP/g cat., and the isotactic index of polymer
is 98.8%.
[0069] With 9.6L hydrogen added, the melt index of the obtained polymer is 59.6g/10min,
and the isotactic index thereof is 95.8%.
Example 12
[0070] Example 12 is similar to Example 6. However, in Example 12 0.4mmol 2-isopropyl-2-isopentyl-1,3-dimethoxyl
propane is also added at the first adding of 60ml toluene and 40 ml TiCl
4. The obtained catalyst contains 12.1% 4-ethyl-3,5-heptanediol dibenzoate, in which
the mesomer content is 96.9%, and 2.8% 2-isopropyl-2-isopentyl-1,3-dimethoxyl propane.
The catalyst activity is 69.1 kgPP/gcat, and the isotactic index of polymer is 98.9%.
[0071] With hydrogen 9.6L added, the melt index of the obtained polymer is 71.5g/10min,
and the isotactic index of the obtained polymer is 95.5%.
Example 13
[0072] Example 13 is similar to Example 4. However, 6mmol diol diester is added in Example
4, while 3mmol diol diester and 3mmol 9,9-di(methoxymethyl) fluorene are added in
Example 13. The obtained catalyst contains 5.2% 3,5-heptanediol dibenzoate, in which
the mesomer content is 98.9%, and 5.3% 9,9-di(methoxymethyl) fluorene. The catalyst
activity is 75.9 kgPP/gcat, and the isotactic index of polymer is 98.8%.
[0073] It can be seen from the above examples that, by the complex formulation of the diol
diester compound with Fischer projection formula (II) structure and other inner electron
donors, not only the catalyst activity is enhanced significantly, but also the isotactic
index of the obtained polymer is further increased.
[0074] The foregoing examples are merely the preferred embodiments of the present invention.
However, the protection scope of the present invention is not limited to the disclosure.
One skilled in the art can easily make any changes or variation based on the disclosure
of the present invention, and the changes or variations are within the protection
scope of the present invention. Therefore, the protection scope of the present invention
should be determined by the appended claims.
1. A catalyst component for olefin polymerization, comprising magnesium, titanium, halogen
and electron donor, wherein the electron donor is selected from at least one of the
diol diester compounds as shown in Formula (I), and in said diol diester compounds
as shown in Formula (I), the content of the diol diester compound with Fischer projection
formula as shown in Formula (II) is greater than or equal to 35wt%:

in both Formula (I) and Formula (II):
R1 and R2, which may be identical to or different from each other, can be (C3-C20) cycloalkyl, (C6-C20) aryl or (C7-C20) alkaryl or aralkyl group, and the hydrogen atom bound to the carbon atom in said
cycloalky, aryl, alkaryl or aralkyl group can be optionally substituted by halogen
atom, but R1 and R2 cannot be (C3-C20) cycloalkyl simultaneously;
R3 and R4, which may be identical to or different from each other, can be hydrogen atom, halogen
atom, (C1-C10) straight chain alkyl, (C3-C10) branched chain alkyl, (C3-C10) cycloalkyl, (C6-C10) aryl or (C7-C10) alkaryl or aralkyl, and R3 and R4 can be optionally bonded together to form ring; and
R5 and R6, which may be identical to or different from each other, can be halogen atom, (C1-C10) straight chain alkyl, (C3-C10) branched chain alkyl, (C3-C10) cycloalkyl, (C6-C10) aryl or (C7-C10) alkaryl or aralkyl, and the hydrogen atom bound to the carbon atom in said cycloalky,
aryl, alkaryl or aralkyl can be optionally substituted by halogen atom.
2. A catalyst component for olefin polymerization according to claim 1, wherein in said
diol diester compound as shown in Formula (I), the content of the diol diester compound
with Fischer projection formula as shown in Formula (II) is greater than or equal
to 51wt%, preferably greater than or equal to 60wt%, further preferably greater than
or equal to 80wt%.
3. A catalyst component for olefin polymerization according to claim 1, wherein R1 and R2 groups are individually selected from (C6-C20) aryl, (C7-C20) alkaryl, and (C7-C20) aralkyl group, and the hydrogen atom in said groups can be optionally substituted
by halogen atom, preferably R1 and R2 groups are individually selected from phenyl, (C1-C5) alkyl phenyl, halogenated phenyl, halogenated (C1-C5) alkyl phenyl, indenyl, benzyl and phenethyl group, further preferably R1 group is the same as R2 group.
4. A catalyst component for olefin polymerization according to claim 1, wherein R3 and R4 groups are selected from hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl,
chloro and bromo group.
5. A catalyst component for olefin polymerization according to claim 1, wherein R5 and R6 groups are selected from methyl, ethyl, n-propyl, isopropyl, n-butyl and isobutyl
group, or the hydrogen atom in said alkyl group can be substituted by halogen atom.
6. A catalyst component for olefin polymerization according to claim 1, wherein the compounds
with Fisher projection formula as Formula (II) are selected from the followings:
meso-2,4-pentanediol dibenzoate,
meso-3-methyl-2,4-pentanediol dibenzoate,
meso-3-ethyl-2,4-pentanediol dibenzoate,
meso-3-propyl-2,4-pentanediol dibenzoate,
meso-3-butyl-2,4-pentanediol dibenzoate,
meso-3,3-dimethyl-2,4-pentanediol dibenzoate,
meso-2,4-pentanediol di(p-methylbenzoate),
meso-3-chloro-2,4-pentanediol dibenzoate,
meso-3-bromo-2,4-pentanediol dibenzoate,
meso-2,4-pentanediol di(m-methylbenzoate),
meso-2,4-pentanediol di(o-methylbenzoate),
meso-2,4-pentanediol di(p-ethylbenzoate),
meso-2,4-pentanediol di(p-butylbenzoate),
meso-2,4-pentanediol di(p-chlorobenzoate),
meso-3,5-heptanediol dibenzoate,
meso-4-methyl-3,5-heptanediol dibenzoate,
meso-4-dimethyl-3,5-heptanediol dibenzoate,
meso-4-ethyl-3,5-heptanediol dibenzoate,
meso-4-propyl-3,5-heptanediol dibenzoate,
meso-4-butyl-3,5-heptanediol dibenzoate,
meso-4-chloro-3,5-heptanediol dibenzoate,
meso-4-bromo-3,5-heptanediol dibenzoate,
meso-3,5-heptanediol di(p-methylbenzoate),
meso-3,5-heptanediol di(o-methylbenzoate),
meso-3,5-heptanediol di(m-methylbenzoate),
meso-3,5-heptanediol di(p-ethylbenzoate),
meso-3,5-heptanediol di(p-butylbenzoate),
meso-3,5-heptanediol di(p-chlorobenzoate),
(2S,4R)-2,4-pentanediol benzoxy cinnamate,
(2S,4R)-3-methyl-2,4-pentanediol benzoxy cinnamate,
(2S,4R)-3-ethyl- 2,4-pentanediol benzoxy cinnamate,
(2S,4R)-3-propyl-2,4-pentanediol benzoxy cinnamate,
(2S,4R)-3-butyl-2,4-pentanediol benzoxy cinnamate,
(2S,4R)-3,3-dimethyl-2,4-pentanediol benzoxy cinnamate,
(2S,4R)-3-chloro-2,4-pentanediol dibenzoate,
(3S,5R)-3,5-heptanediol benzoxy cinnamate,
(3S,5R)-4-methyl-3,5- heptanediol benzoxy cinnamate,
(3S,5R)-4,4-dimethyl-3,5-heptanediol benzoxy cinnamate,
(3S,5R)-4-ethyl-3,5-heptanediol benzoxy cinnamate,
(3S,5R)-4-propyl- 3,5-heptanediol benzoxy cinnamate,
(3S,5R)-4-butyl-3,5-heptanediol benzoxy cinnamate,
(3S,5R)-4-chloro-3,5-heptanediol benzoxy cinnamate,
(2S,4R)-6-methyl- 2,4-heptanediol dibenzoate,
(2S,4R)-6-methyl-2,4-heptanediol di(p-butyl benzoate),
(2R,4S)-2,4-pentanediol benzoxy cinnamate,
(2R,4S)-3-methyl-2,4-pentanediol benzoxy cinnamate,
(2R,4S)-3-ethyl-2,4-pentanediol benzoxy cinnamate,
(2R,4S)-3-propyl-2,4-pentanediol benzoxy cinnamate,
(2R,4S)-3-butyl-2,4-pentanediol benzoxy cinnamate,
(2R,4S)-3,3-dimethyl-2,4-pentanediol benzoxy cinnamate,
(2R,4S)-3-chloro-2,4-pentanediol dibenzoate,
(3R,5S)-3,5-heptanediol benzoxy cinnamate,
(3R,5S)-4-methyl-3,5-heptanediol benzoxy cinnamate,
(3R,5S)-4,4-dimethyl-3,5-heptanediol benzoxy cinnamate,
(3R,5S)-4-ethyl-3,5-heptanediol benzoxy cinnamate,
(3R,5S)-4-propyl-3,5-heptanediol benzoxy cinnamate,
(3R,5S)-4-butyl- 3,5-heptanediol benzoxy cinnamate,
(3R,5S)-4-chloro-3,5-heptanediol benzoxy cinnamate,
(2R,4S)-6-methyl-2,4-heptanediol dibenzoate,
(2R,4S)-6-methyl-2,4-heptanediol di(p-butyl benzoate).
7. A catalyst component for olefin polymerization according to claim 1, in which said
electron donor diol diester compound is marked as "a", and the catalyst component
further contains an electron donor "b", wherein "b" is phthalate diester compound
or diether compound as shown in Formula (III), and the molar ratio of "a" to "b" is
from 1:0.01 to 1:100:

in Formula (III), R
1 and R
2, which may be identical to or different from each other, can be selected from straight
chain or branched chain (C
1-C
20) alkyl and (C
3-C
20) cycloalkyl group; R
3-R
8, which may be identical to or different from each other, can be selected from hydrogen
atom, halogen atom, straight chain or branched chain (C
1-C
20) alkyl, (C
3-C
20) cycloalkyl, (C
6-C
20) aryl and (C
7-C
20) aralkyl, and the R
3-R
8 groups can be optionally bonded together to form ring.
8. A catalyst component for olefin polymerization according to claim 7, wherein the molar
ratio of "a" to "b" is from 1:0.02 to 1:5.
9. A catalyst component for olefin polymerization according to claim 1, obtained by reaction
of magnesium compound, titanium compound and said diol diester compound,
wherein titanium compound is as shown in Formula of TiXn(OR)4-n, in which R is hydrocarbyl group having 1 to 20 carbon atoms, X is halogen, and n=0-4;
and wherein magnesium compound is selected from magnesium dihalide, alkoxymagnesium,
alkyl magnesium, hydrate or alcohol adduct of magnesium dihalide, and the derivatives
formed by replacing a halogen atom of the magnesium dihalide with alkoxyl or haloalkoxyl
group.
10. A catalyst component for olefin polymerization according to claim 9, wherein the magnesium
compound used is dissolved in a solvent system containing organic alcohol compound.
11. A catalyst component for olefin polymerization according to claim 10, wherein the
organic alcohol compound comprises monohydric alcohol with the carbon atoms of 2 to
8.
12. A catalyst component for olefin polymerization according to claim 9, wherein the magnesium
compound used is alcohol adduct of magnesium dihalide.
13. A catalyst component for olefin polymerization according to claim 9, wherein the magnesium
compound is dissolved in a solvent system containing organic epoxy compound and organic
phosphorus compound, in which the organic epoxy compound comprises aliphatic olefins,
dienes, halogenated aliphatic olefins, oxides of dienes, glycidyl ethers and inner
ethers, all of which have 2 to 8 carbon atoms, and the organic phosphorus compound
is hydrocarbyl ester or halogenated hydrocarbyl ester of orthophosphoric acid or phosphorous
acid.
14. A catalyst for olefin polymerization, comprising the following components:
1) said catalyst component according to claim 1,
2) alkyl aluminium compound,
3) optionally, external electron donor component.
15. A catalyst according to claim 14, wherein the external electron donor compound is
as shown in Formula of RnSi(OR')4-n, wherein 0≤n≤3, R and R', which may be identical to or different from each other,
can be selected from alkyl, cycloalkyl, aryl, halogenated alkyl and amine group, and
R can be also halogen or hydrogen atom.
16. A prepolymerized catalyst for olefin polymerization, comprising a solid catalyst according
to claim 14 and the prepolymer obtained by the prepolymerization of the solid catalyst
according to claim 14 and the olefin, the prepolymerization multiples being in the
range of 0.1 to 1000g olefin polymer per g solid catalyst component.
17. A prepolymerized catalyst according to claim 16, wherein the olefin to be prepolymerized
is ethylene or propylene.
18. A process for olefin polymerization carried out at the presence of said catalyst component
according to claim 1, said catalyst according to claim 14, or the prepolymerized catalyst
according to claim 16.
1. Katalysatorkomponente für die Olefinpolymerisation, umfassend Magnesium, Titan, Halogen
und Elektronendonor, worin der Elektronendonor ausgewählt ist aus zumindest einer
der Dioldiesterverbindungen, gezeigt in Formel (I), und worin in den Dioldiesterverbindungen,
dargestellt in der Formel (I), der Gehalt der Dioldiesterverbindung mit einer Fischer-Projektionsformel
gemäß Formel (II) größer als oder gleich 35 Gew.-% ist:

worin in den Formeln (I) und (II):
R1 und R2, die identisch oder verschieden voneinander sein können, (C3-C20)-Cycloalkyl, (C6-C20)-Aryl oder (C7-C20)-Alkaryl oder -Aralkylgruppe sein können und das Wasserstoffatom, das an das Kohlenstoffatom
in der Cycloalkyl-, Aryl-, Alkaryl- oder Aralkylgruppe gebunden ist, wahlweise durch
Halogenatom substituiert sein kann, aber R1 und R2 nicht gleichzeitig (C3-C20)-Cycloalkyl sein können;
R3 und R4, die identisch oder verschieden voneinander sein können, Wasserstoff, Halogenatom,
geradkettiges (C1-C10)-Alkyl, verzweigtes (C3-C10)-Alkyl, (C3-C10)-Cycloalkyl, (C6-C10)-Aryl oder (C7-C10)-Alkaryl oder -Aralkyl sein können und R3 und R4 wahlweise zusammen zur Bildung eines Rings gebunden sein können, und
R5 und R6, die identisch oder verschieden voneinander sein können, Wasserstoffatom, geradkettiges
(C1-C10)-Alkyl, verzweigtes (C3-C10)-Alkyl, (C3-C10)-Cycloalkyl, (C6-C10)-Aryl oder (C7-C10)-Alkaryl oder -Aralkyl sein können und das Wasserstoffatom, das an das Kohlenstoffatom
im Cycloalkyl, Aryl, Alkaryl oder Aralkyl gebunden ist, wahlweise durch Halogenatom
substituiert sein kann.
2. Katalysatorkomponente für die Olefinpolymerisation nach Anspruch 1, worin in der Dioldiesterverbindung
gemäß Formel (I) der Gehalt der Dioldiesterverbindung mit einer Fischer-Projektionsformel
gemäß Formel (II) größer als oder gleich 51 Gew.-%, bevorzugt größer als oder gleich
60 Gew.-%, weiter bevorzugt größer als oder gleich 80 Gew.-% ist.
3. Katalysatorkomponente für die Olefinpolymerisation nach Anspruch 1, worin die R1- und R2-Gruppen individuell ausgewählt sind aus (C6-C20)-Aryl-, (C7-C20)-Alkaryl-und (C7-C20)-Aralkylgruppen und das Wasserstoffatom in den Gruppen wahlweise durch Halogenatom
substituiert sein kann, bevorzugt die R1- und R2-Gruppen individuell ausgewählt sind aus Phenyl-, (C1-C5)-Alkylphenyl-, halogenierter Phenyl-, halogenierter (C1-C5)-Alkylphenyl-, Indenyl-, Benzyl- und Phenethylgruppe, weiterhin bevorzugt die R1-Gruppe gleich ist wie die R2-Gruppe.
4. Katalysatorkomponente für die Olefinpolymerisation nach Anspruch 1, worin die Gruppen
R3 und R4 ausgewählt sind aus Wasserstoff, Methyl-, Ethyl-, n-Propyl-, Isopropyl-, n-Butyl-,
Isobutyl-, Chlor- und Bromgruppen.
5. Katalysatorkomponente für die Olefinpolymerisation nach Anspruch 1, worin die Gruppen
R5 und R6 ausgewählt sind aus Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl und Isobutyl oder
das Wasserstoffatom in der Alkylgruppe durch Halogenatom substituiert sein kann.
6. Katalysatorkomponente für die Olefinpolymerisation nach Anspruch 1, worin die Verbindungen
mit der Fischer-Projektionsformel gemäß Formel (II) ausgewählt sind aus den folgenden:
meso-2,4-Pentandioldibenzoat,
meso-3-Methyl-2,4-pentandioldibenzoat,
meso-3-Ethyl-2,4-pentandioldibenzoat,
meso-3-Propyl-2,4-pentandioldibenzoat,
meso-3-Butyl-2,4-pentandioldibenzoat,
meso-3,3-Dimethyl-2,4-pentandioldibenzoat,
meso-2,4-Pentandioldi(p-methylbenzoat),
meso-3-Chloro-2,4-pentandioldibenzoat,
meso-3-Bromo-2,4-pentandioldibenzoat,
meso-2,4-Pentandioldi(m-methylbenzoat),
meso-2,4-Pentandioldi(o-methylbenzoat),
meso-2,4-Pentandioldi(p-ethylbenzoat),
meso-2,4-Pentandioldi(p-butylbenzoat),
meso-2,4-Pentandioldi(p-chlorobenzoat),
meso-3,5-Heptandioldibenzoat,
meso-4-Methyl-3,5-heptandioldibenzoat,
meso-4-Dimethyl-3,5-heptandioldibenzoat,
meso-4-Ethyl-3,5-heptandioldibenzoat,
meso-4-Propyl-3,5-heptandioldibenzoat,
meso-4-Butyl-3,5-heptandioldibenzoat,
meso-4-Chloro-3,5-heptandioldibenzoat,
meso-4-Bromo-3,5-heptandioldibenzoat,
meso-3,5-Heptandioldi(p-methylbenzoat),
meso-3,5-Heptandioldi(o-methylbenzoat),
meso-3,5-Heptandioldi(m-methylbenzoat),
meso-3,5-Heptandioldi(p-ethylbenzoat),
meso-3,5-Heptandioldi(p-butylbenzoat),
meso-3,5-Heptandioldi(p-chlorobenzoat),
(2S,4R)-2,4-Pentandiolbenzoxycinnamat,
(2S,4R)-3-Methyl-2,4-pentandiolbenzoxycinnamat,
(2S,4R)-3-Ethyl- 2,4-pentandiolbenzoxycinnamat,
(2S,4R)-3-Propyl-2,4-pentandiolbenzoxycinnamat,
(2S,4R)-3-Butyl-2,4-pentandiolbenzoxycinnamat,
(2S,4R)-3,3-Dimethyl-2,4-pentandiolbenzoxycinnamat,
(2S,4R)-3-Chloro-2,4-pentandioldibenzoat,
(3S,5R)-3,5-Heptandiolbenzoxycinnamat,
(3S,5R)-4-Methyl-3,5-heptandiolbenzoxycinnamat,
(3S,5R)-4,4-Dimethyl-3,5-heptandiolbenzoxycinnamat,
(3S,5R)-4-Ethyl-3,5-heptandiolbenzoxycinnamat,
(3S,5R)-4-Propyl- 3,5-heptandiolbenzoxycinnamat,
(3S,5R)-4-Butyl-3,5-heptandiolbenzoxycinnamat,
(3S,5R)-4-Chloro-3,5-heptandiolbenzoxycinnamat,
(2S,4R)-6-Methyl- 2,4-heptandioldibenzoat,
(2S,4R)-6-Methyl-2,4-heptandioldi(p-butylbenzoat),
(2R,4S)-2,4-Pentandiolbenzoxycinnamat,
(2R,4S)-3-Methyl-2,4-pentandiolbenzoxycinnamat,
(2R,4S)-3-Ethyl-2,4-pentandiol benzoxycinnamat,
(2R,4S)-3-Propyl-2,4-pentandiolbenzoxycinnamat,
(2R,4S)-3-Butyl-2,4-pentandiolbenzoxycinnamat,
(2R,4S)-3,3-Dimethyl-2,4-pentandiolbenzoxycinnamat,
(2R,4S)-3-Chloro-2,4-pentandioldibenzoat,
(3R,5S)-3,5-Heptandiolbenzoxycinnamat,
(3R,5S)-4-Methyl-3,5-heptandiolbenzoxycinnamat,
(3R,5S)-4,4-Dimethyl-3,5-heptandiolbenzoxycinnamat,
(3R,5S)-4-Ethyl-3,5-heptandiolbenzoxycinnamat,
(3R,5S)-4-Propyl-3,5-heptandiolbenzoxycinnamat,
(3R,5S)-4-Butyl- 3,5-heptandiolbenzoxycinnamat,
(3R,5S)-4-Chloro-3,5-heptandiolbenzoxycinnamat,
(2R,4S)-6-Methyl-2,4-heptandioldibenzoat,
(2R,4S)-6-Methyl-2,4-heptandioldi(p-butylbenzoat).
7. Katalysatorkomponente für die Olefinpolymerisation nach Anspruch 1, worin die Elektronendonor-Dioldiesterverbindung
mit "a" markiert ist und die Katalysatorkomponente weiterhin einen Elektronendonor
"b" enthält, worin "b" eine Phthalatdiesterverbindung oder Dietherverbindung mit der
Formel (III) ist und das molare Verhältnis "a" zu "b" von 1 : 0,01 bis 1 : 100 ist:

worin in der Formel (III) R
1 und R
2, die identisch oder verschieden voneinander sein können, ausgewählt sein können aus
einer geradkettigen oder verzweigten (C
1-C
20)-Alkyl- und (C
3-C
20)-Cycloalkylgruppe, R
3 bis R
8, die identisch oder verschieden voneinander sein können, ausgewählt sein können aus
Wasserstoffatom, Halogenatom, geradkettigem oder verzweigtem (C
1-C
20)-Alkyl, (C
3-C
20)-Cycloalkyl, (C
6-C
20)-Aryl und (C
7-C
20)-Aralkyl und die Gruppen R
3 bis R
8 wahlweise aneinander zur Bildung eines Rings gebunden sein können.
8. Katalysatorkomponente für die Olefinpolymerisation nach Anspruch 7, worin das molare
Verhältnis "a" zu "b" von 1 : 0,02 bis 1 : 5 ist.
9. Katalysatorkomponente für die Olefinpolymerisation nach Anspruch 1, erhalten durch
Reaktion einer Magnesiumverbindung, Titanverbindung und der Dioldiesterverbindung,
worin die Titanverbindung durch die Formel TiXn(OR)4-n dargestellt ist, worin R eine Kohlenwasserstoffgruppe mit 1 bis 20 Kohlenstoffatomen,
X Halogen und n 0 bis 4 ist, und
worin die Magnesiumverbindung ausgewählt ist aus Magnesiumdihalogenid, Alkoxymagnesium,
Alkylmagnesium, Hydrat oder Alkoholaddukt von Magnesiumdihalogenid und den Derivation,
gebildet durch Ersetzen eines Halogenatoms des Magensiumdihalogenides mit Alkoxyl-
oder Haloalkoxylgruppe.
10. Katalysatorkomponente für die Olefinpolymerisation nach Anspruch 9, worin die verwendete
Magnesiumverbindung in einem Lösungsmittelsystem mit einer organischen Alkoholverbindung
aufgelöst ist.
11. Katalysatorkomponente für die Olefinpolymerisation nach Anspruch 10, worin die organische
Alkoholverbindung einen einwertigen Alkohol mit 2 bis 8 Kohlenstoffatomen enthält.
12. Katalysatorkomponente für die Olefinpolymerisation nach Anspruch 9, worin die verwendete
Magnesiumverbindung ein Alkoholaddukt von Magnesiumdihalogenid ist.
13. Katalysatorkomponente für die Olefinpolymerisation nach Anspruch 9, worin die Magnesiumverbindung
in einem Lösungsmittelsystem aufgelöst ist, umfassend eine organische Epoxyverbindung
und organische Phosphorverbindung, worin die organische Epoxyverbindung aliphatische
Olefine, Diene, halogenierte aliphatische Olefine, Oxide von Dienen, Glycidylether
und innere Ether enthält, die alle 2 bis 8 Kohlenstoffatome haben, und die organische
Phosphorverbindung ein Kohlenwasserstoffester oder halogenierter Kohlenwasserstoffester
von Orthophosphorsäure oder phosphoriger Säure ist.
14. Katalysatorkomponente für die Olefinpolymerisation, umfassend die folgenden Komponenten:
1) die Katalysatorkomponente gemäß Anspruch 1,
2) Alkylaluminiumverbindung,
3) wahlweise eine externe Elektronendonorkomponente.
15. Katalysator nach Anspruch 14, worin die externe Elektronendonorverbindung durch die
Formel RnSi(OR')4-n dargestellt ist, worin 0 ≤ n ≤ 3, R und R', die identisch oder verschieden voneinander
sein können, aus Alkyl-, Cycloalkyl-, Aryl-, halogenierter Alkyl- und Amingruppe ausgewählt
sein können und R ebenfalls Halogen oder Wasserstoffatom sein kann.
16. Präpolymerisierter Katalysator für die Olefinpolymerisation, umfassend eine festen
Katalysator nach Anspruch 14 und das Präpolymer, erhalten durch die Präpolymerisation
des festen Katalysators nach Anspruch 14 und des Olefins, wobei das Präpolymerisationsvielfache
im Bereich von 0,1 bis 1000 g Olefinpolymer pro g der festen Katalysatorkomponente
ist.
17. Präpolymerisierter Katalysator nach Anspruch 16, worin das Olefin, das präpolymerisiert
wird, Ethylen oder Propylen ist.
18. Verfahren zur Olefinpolymerisation, durchgeführt in der Gegenwart der Katalysatorkomponente
nach Anspruch 1, des Katalysators nach Anspruch 14 oder des präpolymerisierten Katalysators
nach Anspruch 16.
1. Composant de catalyseur pour polymérisation d'oléfine, comprenant du magnésium, du
titane, un halogène et un donneur d'électrons, dans lequel le donneur d'électrons
est choisi parmi au moins un parmi les composés diester de diol tels que montrés dans
la Formule (I), et dans lesdits composés diester de diol tels que montrés dans la
Formule (I), la teneur du composé diester de diol avec une formule en projection de
Ficher telle que montrée dans la Formule (II) est supérieure ou égale à 35% en poids
:

dans les deux de la Formule (I) et de la Formule (II) :
R1 et R2, qui peuvent être identiques ou différents l'un de l'autre, peuvent être un groupe
cycloalkyle en C3-C20, aryle en C6-C20 ou alkaryle ou aralkyle en C7-C20, et l'atome d'hydrogène lié à l'atome de carbone dans ledit groupe cycloalkyle, 1
aryle, 1 alkaryle ou aralkyle peut être facultativement substitué par un atome d'halogène,
mais R1 et R2 ne peuvent être un cycloalkyle en C3-C20 simultanément ;
R3 et R4, qui peuvent être identiques ou différents l'un de l'autre, peuvent être un atome
d'hydrogène, un atome d'halogène, un alkyle à chaîne droite en C1-C10, un alkyle à chaîne ramifiée en C3-C10, un cycloalkyle en C3-C10, un aryle en C6-C10 ou un alkaryle ou un aralkyle en C7-C10, et R3 et R4 peuvent être facultativement liés ensemble pour former un cycle ; et
R5 et R6, qui peuvent être identiques ou différents l'un de l'autre, peuvent être un atome
d'halogène, un alkyle à chaîne droite en C1-C10, un alkyle à chaîne ramifiée en C3-C10, un cycloalkyle en C3-C10, un aryle en C6-C10 ou un alkaryle ou un aralkyle en C7-C10, et l'atome d'hydrogène lié à l'atome de carbone dans ledit cycloalkyle, 1 aryle,
alkaryle ou aralkyle peut être facultativement substitué par un atome d'halogène.
2. Composant de catalyseur pour polymérisation d'oléfine selon la revendication 1, dans
lequel, dans ledit composé diester de diol tel que montré dans la Formule (I), la
teneur du composé diester de diol avec une formule en projection de Ficher telle que
montrée dans la Formule (II) est supérieure ou égale à 51% en poids, préférablement
supérieure ou égale à 60% en poids, encore plus préférablement supérieure ou égale
à 80% en poids.
3. Composant de catalyseur pour polymérisation d'oléfine selon la revendication 1, dans
lequel les groupes R1 et R2 sont individuellement choisis parmi un groupe aryle en C6-C20, alkaryle en C7-C20, et aralkyle en C7-C20, et l'atome d'hydrogène dans lesdits groupes peut être facultativement substitué
par un atome d'halogène, préférablement les groupes R1 et R2 sont individuellement choisis parmi un groupe phényle, alkylphényle en C1-C5, phényle halogéné, alkylphényle en C1-C5 halogéné, indényle, benzyle et phénétyle, encore plus préférablement le groupe R1 est le même que le groupe R2.
4. Composant de catalyseur pour polymérisation d'oléfine selon la revendication 1, dans
lequel les groupes R3 et R4 sont choisis parmi un hydrogène, un groupe méthyle, éthyle, n-propyle, isopropyle,
n-butyle, isobutyle, chloro et bromo.
5. Composant de catalyseur pour polymérisation d'oléfine selon la revendication 1, dans
lequel les groupes R5 et R6 sont choisis parmi un groupe méthyle, éthyle, n-propyle, isopropyle, n-butyle et
isobutyle, ou bien l'atome d'hydrogène dans ledit groupe alkyle peut être substitué
par un atome d'halogène.
6. Composant de catalyseur pour polymérisation d'oléfine selon la revendication 1, dans
lequel les composés avec une formule en projection de Fischer comme la Formule (II)
sont choisis parmi les suivants :
un dibenzoate de méso-2,4-pentanediol,
un dibenzoate de méso-3-méthyl-2,4-pentanediol,
un dibenzoate de méso-3-éthyl-2,4-pentanediol,
un dibenzoate de méso-3-propyl-2,4-pentanediol,
un dibenzoate de méso-3-butyl-2,4-pentanediol,
un dibenzoate de méso-3,3-diméthyl-2,4-pentanediol,
un di(p-méthylbenzoate) de méso-2,4-pentanediol,
un dibenzoate de méso-3-chloro-2,4-pentanediol,
un dibenzoate de méso-3-bromo-2,4-pentanediol,
un di(m-méthylbenzoate) de méso-2,4-pentanediol,
un di(o-méthylbenzoate) de méso-2,4-pentanediol,
un di(p-éthylbenzoate) de méso-2,4-pentanediol,
un di(p-butylbenzoate) de méso-2,4-pentanediol,
un di(p-chlorobenzoate) de méso-2,4-pentanediol,
un dibenzoate de méso-3,5-heptanediol,
un dibenzoate de méso-4-méthyl-3,5-heptanediol,
un dibenzoate de méso-4-diméthyl-3,5-heptanediol,
un dibenzoate de méso-4-éthyl-3,5-heptanediol,
un dibenzoate de méso-4-propyl-3,5-heptanediol,
un dibenzoate de méso-4-butyl-3,5-heptanediol,
un dibenzoate de méso-4-chloro-3,5-heptanediol,
un dibenzoate de méso-4-bromo-3,5-heptanediol,
un di(p-méthylbenzoate) de méso-3,5-heptanediol,
un di(o-méthylbenzoate) de méso-3,5-heptanediol,
un di(m-méthylbenzoate) de méso-3,5-heptanediol,
un di(p-éthylbenzoate) de méso-3,5-heptanediol,
un di(p-butylbenzoate) de méso-3,5-heptanediol,
un di(p-chlorobenzoate) de méso-3,5-heptanediol,
un benzoxycinnamate de (2S,4R)-2,4-pentanediol,
un benzoxycinnamate de (2S,4R)-3-méthyl-2,4-pentanediol,
un benzoxycinnamate de (2S,4R)-3-éthyl-2,4-pentanediol,
un benzoxycinnamate de (2S,4R)-3-propyl-2,4-pentanediol,
un benzoxycinnamate de (2S,4R)-3-butyl-2,4-pentanediol,
un benzoxycinnamate de (2S,4R)-3,3-diméthyl-2,4-pentanediol,
un dibenzoate de (2S,4R)-3-chloro-2,4-pentanediol,
un benzoxycinnamate de (3S,5R)-3,5-heptanediol,
un benzoxycinnamate de (3S,5R)-4-méthyl-3,5-heptanediol,
un benzoxycinnamate de (3S,5R)-4,4-diméthyl-3,5-heptanediol,
un benzoxycinnamate de (3S,5R)-4-éthyl-3,5-heptanediol,
un benzoxycinnamate de (3S,5R)-4-propyl-3,5-heptanediol,
un benzoxycinnamate de (3S,5R)-4-butyl-3,5-heptanediol,
un benzoxycinnamate de (3S,5R)-4-chloro-3,5-heptanediol,
un dibenzoate de (2S,4R)-6-méthyl-2,4-heptanediol,
un di(p-butylbenzoate) de (2S,4R)-6-méthyl-2,4-heptanediol,
un benzoxycinnamate de (2R,4S)-2,4-pentanediol,
un benzoxycinnamate de (2R,4S)-3-méthyl-2,4-pentanediol,
un benzoxycinnamate de (2R,4S)-3-éthyl-2,4-pentanediol,
un benzoxycinnamate de (2R,4S)-3-propyl-2,4-pentanediol,
un benzoxycinnamate de (2R,4S)-3-butyl-2,4-pentanediol,
un benzoxycinnamate de (2R,4S)-3,3-diméthyl-2,4-pentanediol,
un dibenzoate de (2R,4S)-3-chloro-2,4-pentanediol,
un benzoxycinnamate de (3R,5S)-3,5-heptanediol,
un benzoxycinnamate de (3R,5S)-4-méthyl-3,5-heptanediol,
un benzoxycinnamate de (3R,5S)-4,4-diméthyl-3,5-heptanediol,
un benzoxycinnamate de (3R,5S)-4-éthyl-3,5-heptanediol,
un benzoxycinnamate de (3R,5S)-4-propyl-3,5-heptanediol,
un benzoxycinnamate de (3R,5S)-4-butyl-3,5-heptanediol,
un benzoxycinnamate de (3R,5S)-4-chloro-3,5-heptanediol,
un dibenzoate de (2R,4S)-6-méthyl-2,4-heptanediol,
un di(p-butylbenzoate) de (2R,4S)-6-méthyl-2,4-heptanediol.
7. Composant de catalyseur pour polymérisation d'oléfine selon la revendication 1, dans
lequel ledit composé diester de diol donneur d'électrons est marqué comme « a », et
le composant de catalyseur contient en outre un donneur d'électrons « b », dans lequel
« b » est un composé diester de phtalate ou un composé diéther comme montré dans la
Formule (III), et le rapport molaire de « a » sur « b » est de 1:0,01 à 1:100 :

dans la Formule (III), R
1 et R
2, qui peuvent être identiques ou différents l'un de l'autre, peuvent être choisis
parmi un groupe alkyle en C
1-C
20 et cycloalkyle en C
3-C
20 à chaîne droite ou à chaîne ramifiée ; R
3 à R
8, qui peuvent être identiques ou différents l'un de l'autre, peuvent être choisis
parmi un atome d'hydrogène, un atome d'halogène, un alkyle en C
1-C
20, un cycloalkyle en C
3-C
20, un aryle en C
6-C
20 et un aralkyle en C
7-C
20 à chaîne droite ou à chaîne ramifiée, et les groupes R
3 à R
8 peuvent être facultativement liés ensemble pour former un cycle.
8. Composant de catalyseur pour polymérisation d'oléfine selon la revendication 7, dans
lequel le rapport molaire de « a » sur « b » est de 1:0,02 à 1:5.
9. Composant de catalyseur pour polymérisation d'oléfine selon la revendication 1, obtenu
par réaction d'un composé de magnésium, d'un composé de titane et dudit composé diester
de diol,
dans lequel le composé de titane est comme montré dans la Formule de TiXn(OR)4-n, dans laquelle R est un groupe hydrocarbyle ayant 1 à 20 atomes de carbone, X est
un halogène, et n = 0 à 4 ;
et dans lequel le composé de magnésium est choisi parmi un dihalogénure de magnésium,
un alcoxymagnésium, un alkylmagnésium, un hydrate ou un adduit d'alcool de dihalogénure
de magnésium, et les dérivés formés en remplaçant un atome d'halogène du dihalogénure
de magnésium par un groupe alcoxyle ou halogénoalcoxyle.
10. Composant de catalyseur pour polymérisation d'oléfine selon la revendication 9, dans
lequel le composé de magnésium utilisé est dissous dans un système de solvant contenant
un composé alcoolique organique.
11. Composant de catalyseur pour polymérisation d'oléfine selon la revendication 10, dans
lequel le composé alcoolique organique comprend un alcool monohydrique avec les atomes
de carbone de 2 à 8.
12. Composant de catalyseur pour polymérisation d'oléfine selon la revendication 9, dans
lequel le composé de magnésium utilisé est un adduit d'alcool de dihalogénure de magnésium.
13. Composant de catalyseur pour polymérisation d'oléfine selon la revendication 9, dans
lequel le composé de magnésium est dissous dans un système de solvant contenant un
composé époxy organique et un composé de phosphore organique, dans lequel le composé
époxy organique comprend des oléfines aliphatiques, des diènes, des oléfines aliphatiques
halogénées, des oxydes de diènes, des éthers glycidyliques et des éthers internes,
dont tous ont 2 à 8 atomes de carbone, et le composé de phosphore organique est un
ester hydrocarbylique ou un ester hydrocarbylique halogéné de l'acide orthophosphorique
ou de l'acide phosphoreux.
14. Catalyseur pour polymérisation d'oléfine, comprenant les composants suivants :
1) ledit composant de catalyseur selon la revendication 1,
2) un composé alkylaluminium,
3) facultativement, un composant donneur d'électrons externe.
15. Catalyseur selon la revendication 14, dans lequel le composé donneur d'électrons externe
est comme montré dans la Formule de RnSi(OR')4-n, dans laquelle 0≤n≤3, R et R', qui peuvent être identiques ou différents l'un de
l'autre, peuvent être choisis parmi un groupe alkyle, cycloalkyle, aryle, alkyle halogéné
et amine, et R peut également être un atome d'halogène ou d'hydrogène.
16. Catalyseur prépolymérisé pour polymérisation d'oléfine, comprenant un catalyseur solide
selon la revendication 14 et le prépolymère obtenu par la prépolymérisation du catalyseur
solide selon la revendication 14 et de l'oléfine, les multiples de prépolymérisation
étant dans la plage de 0,1 à 1 000 g de polymère oléfinique par g de composant de
catalyseur solide.
17. Catalyseur prépolymérisé selon la revendication 16, dans lequel l'oléfine devant être
prépolymérisée est l'éthylène ou le propylène.
18. Procédé de polymérisation d'oléfine mis en oeuvre en présence dudit composant de catalyseur
selon la revendication 1, dudit catalyseur selon la revendication 14, ou du catalyseur
prépolymérisé selon la revendication 16.