Technical Field
[0001] The invention relates to an antenna device, in particular a small microwave low-band
multi-frequency high-gain dual-polarized microstrip antenna. Embodiments disclose
a microwave antenna with a multi-excitation and multi-layer tuning mechanism, belonging
to the technical field of antennas for signal transmission and mobile communication
as well as the wireless Internet.
Prior art
[0002] With the rapid development of mobile communication and Internet technologies, a good
number of new hot technologies have emerged in recent years, such as mobile Internet,
WLAN, MAN and Internet of Things, indicating an urgent need to adopt the multi-antenna
technology (e.g. MIMO technology) to enhance the quality and speed of data transmission
of wireless communication channels. The present microwave antenna, with the defects
of low work efficiency, clumsiness and difficulty in installation and maintenance,
is far from meeting the requirements of the development of mobile communication technology
for antenna technology.
[0003] First, products publicly advertised, presented, sold and applied at domestic and
abroad cannot meet the technical requirements in operators' new-generation communication
standards. In addition, present products have the defects of large size, heavy weight,
low vertical HPBW, low gain, etc. As shown in Table 1, among present products, the
8-channel TD-SCDMA dual-polarized smart antenna adopted by CMCC (China Mobile Communications
Corporation), the world's largest mobile communication operator serving 520 million
mobile phone users, has the defects of large size, heavy weight, low radiation efficiency,
etc., and therefore can meet neither customer market's new demands in terms of appearance
and psychological acceptance nor communication operators' technical requirements.
Table 1 Specifications of Present Product
Name |
8-channel dual-polarized smart antenna adopted by China Mobile (HT355000) |
8-channel dual-polarized smart antenna according to the embodiment of the invention
MM-TD2814-1 |
Frequency range |
1,880-2,025MHz |
1,880-2,025MHz |
Dimensions (mm) |
1,480*300*150 |
400*420*35 |
Weight (kg) |
18-20 |
<5 |
[0004] Second, similar microwave antennas mentioned in literature published at domestic
and abroad also have the technical defects of large size, heavy weight, low vertical
HPBW, low gain, etc.
[0005] For example,
CN200710145376.1 relates to a multi-antenna mode selection method during relay network cell switch.
CN200910085526.3 relates to a relay transmission method based on antenna beam overlapping.
CN201010222613.1 relates to a base station antenna and a base station antenna unit.
KR27919/08 relates to a device for processing signals in a distributed antenna system and a
method.
JP144655/06 relates to an antenna device.
PCT/JP2007/000969 relates to a self-adaptive multi-antenna mobile communication system.
JP144655/06 relates to an antenna device.
US60/545896 relates to an antenna module.
PCT/US2002/028275 relates to a base station antenna array.
PCT/JP01/02001 relates to an array antenna base station device.
PCT/US99/19117 relates to a technology combining channel coding with space-time coding principle
to enhance antenna performance.
US20110001682,
US7508346 and
US7327317 relate to dual-polarized microstrip antennas. These antenna-related technologies
can meet neither the design requirements for antennas to attain small size, small
weight, high gain and adjustable VSWR, nor the performance requirements and technical
standards for new-generation TDSCDMA and LTE antennas set by CMCC.
Summary of the Invention
[0006] This invention aims to overcome the defects of the traditional microwave low-band
(300MHz-6GHz) microstrip antenna, and to provide a small microwave low-band multi-frequency
high-gain dual-polarized microstrip antenna featuring wide working band, high gain,
excellent cross polarization isolation, small size and light weight.
[0007] This invention adopts the following technical scheme:
A dual-polarized microstrip antenna includes:
at least one metal radiating patch, i.e. a first metal radiating patch;
at least one ground metal layer whereon at least one set of bipolar excitation micro-slots
are etched;
at least one dielectric layer, i.e. the first dielectric layer; it is preferred that
the dielectric layer is a resonant dielectric layer, particularly a resonant dielectric
layer of air or a layer of other optimization resonant materials; the dielectric layer
is positioned between the first metal radiating patch and the ground metal layer;
and
at least one set of bipolar excitation microstrip lines.
[0008] A VSWR independent adjustment unit connected with the first metal radiating patch
is arranged, and it is preferred that the metal radiating patch is circular, so that
when the metal radiating patch is adjusted, only the height parameter of the structural
relationship between the metal radiating patch and other radiation tuning mechanisms
is changed, rather than other parameters that are likely to affect the radiation effects
of the antenna. As a result, the VSWR adjustment is simplified and facilitated during
manufacture.
[0009] The excitation micro-slots are two discretely vertical H-shaped excitation micro-slots
with the same dimensions, that is, the two H-shaped excitation micro-slots are not
in contact. In addition, it is preferred that the H-shaped excitation micro-slots
are identical in dimensions which are related to the central frequency band wavelength
λ of the resonance radiation required by the antenna and used to ensure that the dual-polarized
antenna has consistent radiation performance optimization in two polarization directions.
Meanwhile, it is preferred that the cross arms "-" of the two H-shaped excitation
micro-slots are mutually vertical for the purpose of guaranteeing excellent polarization
isolation of the dual-polarized antenna. Experiment proves that the preferred design
can ensure the planned isolation exceeds 25-30dBi.
[0010] In practical sense, the dual-polarized microstrip antenna according to the invention
is a microwave antenna with a multi-excitation and multi-layer tuning mechanism.
[0011] The thickness of the first dielectric layer ranges from 1 to 20mm,and experiment
proves that the source input end of the antenna achieves the optimal VSWR of less
than 1.2 when the thickness ranges from 4 to 10mm at the frequency band of 2GHz-3GHz;
a dielectric substrate 6 is arranged between the bipolar excitation microstrip lines
and the ground metal layer. According to the basic theory of microstrip lines, and
taking into account the impact of dielectric constant and thickness of the dielectric
layer on the width and length of the excitation microstrip lines and the excitation
micro-slots, the thickness of the dielectric substrate ranges from 0.2 to 5mm and
is preferred to range from 0.5 to 2mm.
[0012] Front ends of the two excitation microstrip lines are linear. It is preferred that
the front end of each excitation microstrip line is vertical to the cross arm "-"
of one H-shaped excitation micro-slot, and the front ends pass through the middle
points of the cross arms "-" of the respective H-shaped excitation micro-slots; the
front ends of the two excitation microstrip lines are discretely vertical for the
purposes of guaranteeing the polarization isolation of the dual-polarized antenna
and leading it to be used as two independent antennas; the distance between the two
discrete front ends which are not in contact ranges from 3 to 8mm; and the perpendicularity
between the two discrete front ends which are not in contact is 90°. Simulation and
experiment results prove that the above design and optimal design data can achieve
a better radiation efficiency (gain) of 8-8.5dBi and a polarization isolation of 25-30dBi
or above.
[0013] The two H-shaped excitation micro-slots are identical in size, width, slot depth,
slot width and shape; it is preferred that two ends of the single cross arm "-" of
each H-shaped excitation micro-slot intersect with the middle points of the two vertical
arms " | "; it is preferred that the single cross arm "-" and the two vertical arms
" | " of each H-shaped excitation micro-slot are linear; it is preferred that the
single cross arm "-" of each H-shaped excitation micro-slot is vertical to the two
vertical arms " | " thereof; it is preferred that the virtual extension line of the
cross arm "-" of at least one H-shaped excitation micro-slot squarely passes through
the middle point of the cross arm "-" of the other H-shaped excitation micro-slot;
it is preferred that at least one straight line passing through the central point
of the first metal radiating patch is positioned on the vertical surface of the cross
arm "-" of at least one H-shaped excitation micro-slot, the vertical surface squarely
passes through the middle point of the cross arm "-" of the other H-shaped excitation
micro-slot, and the vertical surface is vertical to the plane on which the slot bottom
of the former H-shaped excitation micro-slot is positioned; it is preferred that the
slot bottoms of the two H-shaped excitation micro-slots are on the same plane and
the slot surfaces of the two H-shaped excitation micro-slots are on the same plane;
in an area of the same shape and size on the ground metal layer vertically projected
by the first metal radiating patch, it is preferred that each H-shaped excitation
micro-slot independently occupies half the area of the same shape and size, each H-shaped
excitation micro-slot, the length of the cross arm "-" of each H-shaped excitation
micro-slot or the total length of the cross arm "-" and the two vertical arms " |
" of each H-shaped excitation micro-slot is maximized, and the total slot area of
the cross arm "-" and the two vertical arms " | " of each H-shaped excitation micro-slot
is maximized, so as to capitalize on effective area to ensure the antenna is of small
size. Simulation and experiment results prove that the above design and optimal design
data can achieve the optimal radiation efficiency (e.g. antenna gain), with the antenna
unit gain ranging from 8 to 8.5dBi.
[0014] A second dielectric layer is arranged. It is preferred that the second dielectric
layer is a resonant dielectric layer, particularly a resonant dielectric layer of
air or a layer of other optimization resonant materials.
[0015] According to frequency band, wavelength, the basic theory of microwave electromagnetic
field and the basic theory of microstrip micro-slots, the radiation-related parameters
of the radiating patch, the dielectric layers and the ground metal layer, such as
height, thickness and length, are selected through simulations and experiments.
[0016] A second metal radiating patch is arranged and used for enlarging the radiation frequency
bandwidth of the antenna or achieving the double-humped resonance between adjacent
frequency bands; it is preferred that the second metal radiating patch is identical
to the first metal radiating patch in material, thickness and shape; it is preferred
that the size of the second metal radiating patch is freely optimized according to
the requirements for widening the frequency band; it is preferred that the size relationship
between the second metal radiating patch and the first metal radiating patch is subject
to the relative relationship between the working frequency band and the widened frequency
band, that is, a higher frequency results in a smaller area, and the comprehensive
results of experiments and simulations show that the size ratio of the two patches
approximately equals the center frequency wavelength ratio of two adjacent frequency
bands to be widened; and it is preferred that the second metal radiating patch is
arranged above the second dielectric layer so as to separate the first dielectric
layer into two areas, where the lower part is preferred to be the slot cavity and
the upper part is preferred to be a first dielectric layer area between the first
and the second metal radiating patches. Experimental results prove that the addition
of the second metal radiating patch can effectively enlarge the frequency bandwidth
of the antenna by over 20%.
[0017] An air dielectric layer, namely air dielectric layer A, is arranged, which provides
an undisturbed work space height for the excitation microstrip lines interfaced with
a source. According to the basic theory of microwave electromagnetic field, the work
space height needs to be more than 3-10 times of the thickness of the first dielectric
substrate, and a smaller dielectric constant of the dielectric substrate leads to
a larger multiple; it is preferred that a metal reflection ground baseplate is arranged
and used for providing excellent backward radiation isolation for radiating units
and providing convenient system ground for source parts, feed source parts or radiating
units.
[0018] The dual-polarized microstrip antenna of the invention can act as an antenna unit
which is connected through a two-way power divider. The connected body includes two
dual-polarized antenna units. In each dual-polarized antenna unit, a first air dielectric
layer, a first metal radiating patch, a second air dielectric layer, a ground metal
layer with bipolar micro-slots, a first dielectric substrate, bipolar excitation microstrip
lines, a third air dielectric layer and a metal reflection baseplate are sequentially
arranged from top to bottom, that is, opposite to the direction of microwave radiation.
[0019] The first metal radiating patch is connected with an antenna cover through an insulation
screw, a ground metal patch covers the upper end surface of the first dielectric substrate
and is fixedly connected with a hollow metal support fixed on the metal reflection
baseplate, bipolar excitation microstrip lines, of which the front ends are orthogonal
but not in contact, are arranged on the lower end surface of the first dielectric
substrate, and two bipolar stimulated radiation micro-slots, orthogonal but not in
contact, are formed on the upper end surface of the ground metal patch and are corresponding
to the front ends of the bipolar excitation microstrip lines in an orthogonal way.
Experiment proves that the above orthogonal and vertical correspondence relationships
can achieve excellent dual polarization characteristics, that is, high polarization
isolation.
[0020] The dual-polarized microstrip antenna of the invention can act as an antenna unit
which is connected through a four-way power division network. The connected body includes
four dual-polarized antenna units connected together through the four-way power division
network in an antenna cover. The four dual-polarized antenna units are distributed
in a line in the antenna cover. In each dual-polarized antenna unit, a first air dielectric
layer, a first metal radiating patch, a second air dielectric layer, a ground metal
layer with bipolar micro-slots, a first dielectric substrate, bipolar excitation microstrip
lines, a third air dielectric layer and a metal reflection baseplate are sequentially
arranged from top to bottom.
[0021] The first metal radiating patch is connected with the antenna cover through an insulation
screw, a ground metal patch covers the upper end surface of the first dielectric substrate
and is fixedly connected with a hollow metal support fixed on the metal reflection
baseplate, bipolar excitation microstrip lines, of which the front ends are orthogonal
but not in contact, are arranged on the lower end surface of the first dielectric
substrate, and two bipolar stimulated radiation micro-slots, orthogonal but not in
contact, are formed on the upper end surface of the ground metal patch and are corresponding
to the front ends of the bipolar excitation microstrip lines in an orthogonal way.
[0022] The dual-polarized microstrip antenna of the invention can act as an antenna unit
which is connected through a four-way power division network. The connected body includes
four dual-polarized antenna units connected together through the four-way power division
network in an antenna cover. The four dual-polarized antenna units are distributed
in two lines and two rows in the antenna cover. In each dual-polarized antenna unit,
a first air dielectric layer, a first metal radiating patch, a second air dielectric
layer, a ground metal layer with bipolar micro-slots, a first dielectric substrate,
bipolar excitation microstrip lines, a third air dielectric layer and a metal reflection
baseplate are sequentially arranged from top to bottom.
[0023] The first metal radiating patch is connected with the antenna cover through an insulation
screw, the ground metal patch covers the upper end surface of the first dielectric
substrate and is fixedly connected with a hollow metal support fixed on the metal
reflection baseplate, bipolar excitation microstrip lines, of which the front ends
are orthogonal but not in contact, are arranged on the lower end surface of the first
dielectric substrate, and two bipolar stimulated radiation micro-slots, orthogonal
but not in contact, are formed on the upper end surface of the ground metal patch
and are corresponding to the front ends of the bipolar excitation microstrip lines
in an orthogonal way.
[0024] The invention further discloses a dual-polarized microstrip antenna, which is characterized
by including two independent dual-polarized antennas in an antenna cover, said dual-polarized
antenna includes two dual-polarized antenna units connected together through a two-way
power divider, in each dual-polarized antenna unit, a first air dielectric layer,
a first metal radiating patch, a second air dielectric layer, a ground metal layer
with bipolar micro-slots, a first dielectric substrate, bipolar excitation microstrip
lines, a third air dielectric layer and a metal reflection baseplate are sequentially
arranged from top to bottom.
[0025] The first metal radiating patch is connected with the antenna cover through an insulation
screw, the ground metal patch covers the upper end surface of the first dielectric
substrate and is fixedly connected with a hollow metal support fixed on the metal
reflection baseplate, bipolar excitation microstrip lines, of which the front ends
are orthogonal but not in contact, are arranged on the lower end surface of the first
dielectric substrate, and two bipolar stimulated radiation micro-slots, orthogonal
but not in contact, are formed on the upper end surface of the ground metal patch
and are corresponding to the front ends of the bipolar excitation microstrip lines
in an orthogonal way.
[0026] The invention further discloses a dual-polarized microstrip antenna, which is characterized
by including eight dual-polarized antenna units connected together through an eight-way
power division network in an antenna cover. In each dual-polarized antenna unit, a
first air dielectric layer, a first metal radiating patch, a second air dielectric
layer, a ground metal layer with bipolar micro-slots, a first dielectric substrate,
bipolar excitation microstrip lines, a third air dielectric layer and a metal reflection
baseplate are sequentially arranged from top to bottom.
[0027] The first metal radiating patch is connected with the antenna cover through an insulation
screw, the ground metal patch covers the upper end surface of the first dielectric
substrate and is fixedly connected with a hollow metal support fixed on the metal
reflection baseplate, bipolar excitation microstrip lines, of which the front ends
are orthogonal but not in contact, are arranged on the lower end surface of the first
dielectric substrate, and two bipolar stimulated radiation micro-slots, orthogonal
but not in contact, are formed on the upper end surface of the ground metal patch
and are corresponding to the front ends of the bipolar excitation microstrip lines
in an orthogonal way.
[0028] The invention further discloses a dual-polarized microstrip antenna, which is characterized
by including four independent dual-polarized antennas in an antenna cover. The dual-polarized
microstrip antenna is characterized in that each row of dual-polarized antennas includes
two dual-polarized antenna units connected together through a two-way power divider.
In each dual-polarized antenna unit, a first air dielectric layer, a first metal radiating
patch, a second air dielectric layer, a ground metal layer with bipolar micro-slots,
a first dielectric substrate, bipolar excitation microstrip lines, a third air dielectric
layer and a metal reflection baseplate are sequentially arranged from top to bottom.
[0029] The first metal radiating patch is connected with the antenna cover through an insulation
screw, the ground metal patch covers the upper end surface of the first dielectric
substrate and is fixedly connected with a hollow metal support fixed on the metal
reflection baseplate, bipolar excitation microstrip lines, of which the front ends
are orthogonal but not in contact, are arranged on the lower end surface of the first
dielectric substrate, and two bipolar stimulated radiation micro-slots, orthogonal
but not in contact, are formed on the upper end surface of the ground metal patch
and are corresponding to the front ends of the bipolar excitation microstrip lines
in an orthogonal way.
[0030] The invention further discloses a dual-polarized microstrip antenna, which is characterized
by including four independent dual-polarized antennas in an antenna cover. The dual-polarized
microstrip antenna is characterized in that each row of dual-polarized antennas includes
four dual-polarized antenna units connected together through a four-way power divider.
In each dual-polarized antenna unit, a first air dielectric layer, a first metal radiating
patch, a second air dielectric layer, a ground metal layer with bipolar micro-slots,
a first dielectric substrate, bipolar excitation microstrip lines, a third air dielectric
layer and a metal reflection baseplate are sequentially arranged from top to bottom.
[0031] The first metal radiating patch is connected with the antenna cover through an insulation
screw, the ground metal patch covers the upper end surface of the first dielectric
substrate and is fixedly connected with a hollow metal support fixed on the metal
reflection baseplate, bipolar excitation microstrip lines, of which the front ends
are orthogonal but not in contact, are arranged on the lower end surface of the first
dielectric substrate, and two bipolar stimulated radiation micro-slots, orthogonal
but not in contact, are formed on the upper end surface of the ground metal patch
and are corresponding to the front ends of the bipolar excitation microstrip lines
in an orthogonal way.
[0032] The invention further discloses a dual-polarized microstrip antenna, which is characterized
by including a first air dielectric layer, a first metal radiating patch, a second
air dielectric layer, a ground metal patch, a first dielectric substrate, bipolar
excitation microstrip lines, a third air dielectric layer and a metal reflection baseplate
sequentially arranged from top to bottom in an antenna cover.
[0033] The ground metal patch covers the upper end surface of the first dielectric substrate
and is fixedly connected with a hollow metal support fixed on the metal reflection
baseplate. Stimulated radiation micro-slots are formed on the upper end surface of
the ground metal patch. The first metal radiating patch is circular, where an adjusting
screw is fixed in the center, and the first metal radiating patch is fixed through
the threaded connection between the adjusting screw and the internal threads in the
center of the antenna cover.
[0034] A wireless communication relay station employing the dual-polarized microstrip antenna
of the invention is characterized by including at least one dual-polarized microstrip
antenna, and it is preferred that the input port of the dual-polarized microstrip
antenna is connected with the retransmission end of the relay station.
[0035] A wireless communication base station employing the dual-polarized microstrip antenna
of the invention is characterized by including at least one dual-polarized microstrip
antenna.
[0036] A communication system and terminal employing the dual-polarized microstrip antenna
of the invention is characterized by including at least one piece of equipment equipped
with the dual-polarized microstrip antenna. In practical sense, the dual-polarized
microstrip antenna of the invention is a microwave antenna with a multi-excitation
and multi-layer tuning mechanism.
[0037] Specifically, the invention discloses a dual-polarized microstrip antenna, including
at least one metal radiating patch, i.e. a first metal radiating patch;
at least one ground metal layer whereon bipolar excitation micro-slots are etched;
at least one dielectric layer, i.e. a first dielectric layer; it is preferred that
the dielectric layer is a resonant dielectric layer, particularly a resonant dielectric
layer of air or a layer of other optimization resonant materials; the dielectric layer
is positioned between the first metal radiating patch and the ground metal layer;
and
at least one set of bipolar excitation microstrip lines.
[0038] A unit connected with the first metal radiating patch for facilitating independent
VSWR adjustment is arranged, and it is preferred that the metal radiating patch is
circular.
[0039] The excitation micro-slots are two discretely vertical H-shaped excitation micro-slots
with the same dimensions, that is, the two H-shaped excitation micro-slots are not
in contact. In addition, it is preferred that the H-shaped excitation micro-slots
are identical in dimensions to ensure that the dual-polarized antenna has consistent
radiation performance optimization in the two polarization directions. Meanwhile,
it is preferred that the cross arms "-" of the two H-shaped excitation micro-slots
are mutually vertical for the purpose of guaranteeing excellent polarization isolation.
[0040] The thickness of the dielectric layer ranges from 1 to 20mm and is preferred to range
from 4 to 10mm; a dielectric substrate 6 is arranged between the bipolar excitation
microstrip lines and the ground metal layer. The thickness of the dielectric substrate
ranges from 0.2 to 5mm and is preferred to range from 0.5 to 2mm.
[0041] Front ends of the two excitation microstrip lines are linear. It is preferred that
the front end of each excitation microstrip line is vertical to the cross arm "-"
of one H-shaped excitation micro-slot, and the front ends pass through the middle
points of the cross arms "-" of the respective H-shaped excitation micro-slots; the
front ends of the two excitation microstrip lines are discretely vertical for the
purposes of guaranteeing the polarization isolation of the dual-polarized antenna
and leading it to be used as two independent antennas; the distance between the two
discrete front ends which are not in contact ranges from 3 to 8mm; and the perpendicularity
between the two discrete front ends which are not in contact is 90°.
[0042] The two H-shaped excitation micro-slots are identical in size, width, slot depth,
slot width and shape; it is preferred that two ends of the single cross arm "-" of
each H-shaped excitation micro-slot intersect with the middle points of the two vertical
arms " | "; it is preferred that the single cross arm "-" and the two vertical arms
" | " of each H-shaped excitation micro-slot are linear; it is preferred that the
single cross arm "-" of each H-shaped excitation micro-slot is vertical to the two
vertical arms " | " thereof; it is preferred that the virtual extension line of the
cross arm "-" of at least one H-shaped excitation micro-slot squarely passes through
the middle point of the cross arm "-" of the other H-shaped excitation micro-slot;
it is preferred that at least one straight line passing through the central point
of the first metal radiating patch is positioned on the vertical surface of the cross
arm "-" of at least one H-shaped excitation micro-slot, the vertical surface squarely
passes through the middle point of the cross arm "-" of the other H-shaped excitation
micro-slot, and the vertical surface is vertical to the plane on which the slot bottom
of the former H-shaped excitation micro-slot is positioned; it is preferred that the
slot bottoms of the two H-shaped excitation micro-slots are on the same plane and
the slot surfaces of the two H-shaped excitation micro-slots are on the same plane;
in an area of the same shape and size on the ground metal layer vertically projected
by the first metal radiating patch, it is preferred that each H-shaped excitation
micro-slot independently occupies half the area of the same shape and size, each H-shaped
excitation micro-slot, the length of the cross arm "-" of each H-shaped excitation
micro-slot or the total length of the cross arm "-" and the two vertical arms " |
" of each H-shaped excitation micro-slot is maximized, and the total slot area of
the cross arm "-" and the two vertical arms " | " of each H-shaped excitation micro-slot
is maximized.
[0043] A second dielectric layer is arranged. It is preferred that the second dielectric
layer is a resonant dielectric layer, particularly a resonant dielectric layer of
air or a layer of other optimization resonant materials.
[0044] The second dielectric layer is a slot cavity used to prevent the impact among arrays
during the arrayed use of the antenna; and the height of the slot cavity depends on
the relevance/isolation parameters determined in the ultimate antenna applications.
[0045] The slot cavity is preferred to be a cavity formed above the ground metal layer by
the metal support for system ground, with the depth ranging from 0.5 to 20mm; if the
first and the second dielectric layers are air layers and no other radiating patches
or components are arranged above the second dielectric layer, the first and the second
dielectric layers are connected into a whole and the second dielectric layer serves
as one part of the first dielectric layer.
[0046] Heights and lengths of the radiating patch, the dielectric layers and the ground
metal layer are determined based on frequency band and wavelength.
[0047] A second metal radiating patch is arranged; it is preferred that the second metal
radiating patch is identical to the first metal radiating patch in material, thickness
and shape; it is preferred that the size of the second metal radiating patch is freely
optimized according to the requirements for widening the frequency band; it is preferred
that the size ratio of the two patches approximately equals the corresponding frequency
wavelength ratio of frequency bands to be tuned or widened; and it is preferred that
the second metal radiating patch is arranged above the second dielectric layer so
as to separate the first dielectric layer into two areas, where the lower part is
preferred to be the slot cavity and the upper part is preferred to be a first dielectric
layer area between the first and the second metal radiating patches.
[0048] An air dielectric layer, namely air dielectric layer A, is arranged, which provides
an undisturbed work space height for the excitation microstrip lines interfaced with
a source. The work space height needs to be more than 3-10 times of the thickness
of the first dielectric substrate, and a lower dielectric constant of the dielectric
substrate leads to a larger multiple; it is preferred that a metal reflection ground
baseplate is arranged and used for providing excellent backward radiation isolation
for radiating units and providing convenient system ground for source parts, feed
source parts or radiating units.
[0049] Specifically, the invention adopts the following technical scheme:
at least one metal radiating patch, i.e. a first metal radiating patch is included;
it is preferred that a unit connected with the first metal radiating patch for facilitating
independent VSWR adjustment is arranged; it is preferred that the metal radiating
patch is circular (the shape of the metal radiating patch is optional: a rectangular
or square metal radiating patch is relatively excellent in performance, a circular
metal radiating patch is more suitable for production commissioning compensation so
as to achieve better comprehensive results, and antenna performance varies with shapes
under the same conditions); and the independent VSWR adjustment unit can independently
control the metal radiating patch;
at least one ground metal layer whereon bipolar excitation micro-slots are etched
is arranged, and the excitation micro-slots are preferred to be two discretely vertical
H-shaped excitation micro-slots with the same dimensions, that is, the two H-shaped
excitation micro-slots are not in contact. In addition, it is preferred that the H-shaped
excitation micro-slots are identical in dimensions so as to ensure that the dual-polarized
antenna has consistent radiation performance optimization in the two polarization
directions. Meanwhile, it is preferred that the cross arms "-" of the two H-shaped
excitation micro-slots are mutually vertical for the purpose of guaranteeing excellent
polarization isolation of the dual-polarized antenna; it is preferred that the two
H-shaped excitation micro-slots are identical in size, width, slot depth, slot width
and shape; it is preferred that two ends of the single cross arm "-" of each H-shaped
excitation micro-slot intersect with the middle points of the two vertical arms "
| "; it is preferred that the single cross arm "-" and the two vertical arms " | "
of each H-shaped excitation micro-slot are linear; it is preferred that the single
cross arm "-" of each H-shaped excitation micro-slot is vertical to the two vertical
arms " | " thereof; it is preferred that the virtual extension line of the cross arm
"-" of at least one H-shaped excitation micro-slot squarely passes through the middle
point of the cross arm "-" of the other H-shaped excitation micro-slot; it is preferred
that at least one straight line passing through the central point of the first metal
radiating patch is positioned on the vertical surface of the cross arm "-" of at least
one H-shaped excitation micro-slot, the vertical surface squarely passes through the
middle point of the cross arm "-" of the other H-shaped excitation micro-slot, and
the vertical surface is vertical to the plane on which the slot bottom of the former
H-shaped excitation micro-slot is positioned; it is preferred that the slot bottoms
of the two H-shaped excitation micro-slots are on the same plane and the slot surfaces
of the two H-shaped excitation micro-slots are on the same plane; in an area of the
same shape and size on the ground metal layer vertically projected by the first metal
radiating patch, it is preferred that each H-shaped excitation micro-slot independently
occupies half the area of the same shape and size, each H-shaped excitation micro-slot,
the length of the cross arm "-" of each H-shaped excitation micro-slot or the total
length of the cross arm "-" and the two vertical arms " | " of each H-shaped excitation
micro-slot is maximized on the terms that all necessary and preferred limited conditions
in this section are met, and the total slot area of the cross arm "-" and the two
vertical arms " | " of each H-shaped excitation micro-slot is maximized; experiments
find that the above preferred double-H structure can significantly improve the effectiveness
of the invention; experiments also find that the above preferred technical scheme
of maximizing the total slot area of the cross arm "-" and the two vertical arms "
| " of each H-shaped excitation micro-slot aims to capitalize on effective area to
ensure the antenna is of small size. Simulation and experiment results prove that
the above design and optimal design data can achieve the optimal radiation efficiency
(i.e. antenna gain), with the antenna unit gain ranging from 8 to 8.5dBi.
at least one dielectric layer, i.e. a first dielectric layer, is arranged, and it
is preferred that the dielectric layer is a resonant dielectric layer of air or a
layer of other optimization resonant materials; the dielectric layer is positioned
between the first metal radiating patch and the ground metal layer; it is preferred
that the thickness of the dielectric layer ranges from 1 to 20mm, particularly from
4 to 10mm; and the first dielectric layer is an important component for tuning the
VSWR of an antenna source port;
at least one set of bipolar excitation microstrip lines is arranged, it is preferred
that the front ends of the two excitation microstrip lines are linear, and it is preferred
that the front end of each excitation microstrip line is vertical to the cross arm
"-" of one H-shaped excitation micro-slot, and the front ends pass through the middle
points of the cross arms "-" of the respective H-shaped excitation micro-slots; the
front ends of the two excitation microstrip lines are discretely vertical for the
purpose of guaranteeing the polarization isolation of the dual-polarized antenna,
and excellent polarization isolation can lead one dual-polarized antenna to be used
as two independent antennas; the distance and perpendicularity between the two discrete
front ends which are not in contact are among the key parameters affecting the polarization
isolation of the dual-polarized antenna, and are preferred to range from 3 to 8mm
and to be 90° respectively;
it is preferred that a second dielectric layer is arranged; it is preferred that the
second dielectric layer is a resonant dielectric layer, particularly a resonant dielectric
layer of air or a layer of other optimization resonant materials; it is preferred
that the second dielectric layer is a slot cavity, which is preferred to be a cavity
formed above the ground metal layer by the metal support for system ground; it is
preferred that the depth of the slot cavity ranges from 1 to 10mm; the second dielectric
layer is a tuning component participating in frequency band matching and widening,
and if the first and the second dielectric layers are air layers and no other radiating
patches or components are arranged above the second dielectric layer, the first and
the second dielectric layers are connected into a whole and the second dielectric
layer serves as one part of the first dielectric layer;
it is preferred that a second metal radiating patch is arranged and used for widening
the radiation frequency bandwidth of the antenna or achieving the double-humped resonance
between adjacent frequency bands; it is preferred that the second metal radiating
patch is provided with a second independent VSWR adjustment unit connected therewith;
it is preferred that the size, material, thickness and shape-size relationship of
the second metal radiating patch is subject to the relative relationship between the
working frequency band and the widened frequency band, that is, a higher frequency
results in a smaller area, and the comprehensive results of experiments and simulations
show that the size ratio of the two patches approximately equals the center frequency
wavelength ratio of two adjacent frequency bands to be widened; it is preferred that
the second independent VSWR adjustment unit can independently control the second metal
radiating patch; it is preferred that the second metal radiating patch is arranged
above the second dielectric layer so as to separate the first dielectric layer into
two areas, where the lower part is preferred to be the slot cavity and the upper part
is preferred to be a first dielectric layer area between the first and the second
metal radiating patches; and experimental results prove that the addition of the second
metal radiating patch can effectively expand the frequency bandwidth of the antenna
by over 20%;
an air dielectric layer, namely air dielectric layer A, is preferred, which provides
an undisturbed work space height for the excitation microstrip lines interfaced with
a source. According to the basic theory of microwave electromagnetic field, the work
space height needs to be more than 3-10 times of the thickness of the first dielectric
substrate, and a lower dielectric constant of the dielectric substrate leads to a
larger multiple;
it is preferred that a metal reflection ground baseplate is arranged and used for
providing excellent backward radiation isolation for radiating units and providing
convenient system ground for source parts, feed source parts or radiating units;
an antenna cover is preferred to be arranged to cover the above components and dielectric
layers, and it is preferred that the first metal radiating patch is connected with
the antenna cover through a screw; the first metal radiating patch can be connected
with the antenna cover or be connected or fixed with the second air slot cavity layer,
it is preferred that the first metal radiating patch is connected with the antenna
cover through the screw, and it is preferred that the screw is fixedly connected with
the center of the first metal radiating patch and is in threaded connection with the
antenna cover through an internal threaded hole at the center of the antenna cover;
and the screw is used for fixing the height of the ultimately optimized height between
the metal radiating patch and the ground metal layer and can fine-tune the height
during scale manufacture, so as to compensate various processing and assembly errors
to ensure that the antenna achieves the optimized comprehensive design performance;
the antenna cover is a non-metal antenna cover or an antenna cover having no shielding
effect or the minimum shielding effect to be ignored from the engineering perspective;
the function of the antenna cover is to improve appearance and provide protection,
especially against the impact of external environments (such as hot summer, cold winter,
cloud, rain, wind, sand, exposure to sunshine and ice, manual touch, collision by
birds and animals, etc.) on the internal structure of antenna; and the antenna cover
is preferred to be a PVC hood;
it is preferred that the included angle between the middle cross arms "-" of the double
H-shaped stimulated radiation micro-slots and the X/Y axis of the ground metal patch
is ±45 ° , so that the source requirements for ±45 ° dual-polarized antennas can be
met; however, ±45 ° is not the only option; 0/90 ° is another common option for dual
polarization;
the first and the second metal radiating patches are preferred to be rectangular,
square, circular or oval sheet metal with stable electrical performance, light weight
and low cost, and circular sheet metal is preferred;
the first and the second dielectric layers are preferred to be identical to the ground
metal layer in width and to be made of air dielectric, and other dielectric plates
with low dielectric loss are also allowable;
the ground metal layer is preferred to form excitation microstrip lines/excitation
micro-slot layout with excellent performance at the operating frequency band of the
antenna and any PCB layout that has no impact on the performance of the antenna; and
it is preferred that the ground metal layer is made of metal materials with excellent
electrical conductivity, and copper or aluminum is preferred; and
it is preferred that in the forward direction of microwave radiation, an air dielectric
layer, namely air dielectric layer B, is arranged on the outer side of the first metal
radiating patch, and it is preferred that the air dielectric layer B is positioned
between the cover and the first metal radiating patch.
[0050] The technical scheme of the invention and the first specific design scheme and the
second specific design scheme employing the technical scheme have the following effects:
the effective area of the ground metal patch is fully utilized to enable a set of
bipolar micro-slots to share one metal radiating patch;
the dielectric substrate is used to reduce the area of the antenna radiating unit;
the dual-polarized microstrip antenna with a multi-layer radiation structure has the
advantages of small volume, ingenious layout and compact structure. Practice proves
that the antenna of the invention achieves an operating frequency relative bandwidth
of over 20%, with a high gain of above 8.5dBi and the cross dual polarization isolation
ranging from 25 to 30dB;
a pair of dual-polarized antenna radiating units of the invention can support a 2
x 2 MIMO system, is easy to form an antenna array, and has the advantages of small
size and light weight. Therefore, lower requirements are imposed on the antenna in
terms of installation space and load bearing, processing, manufacture, installation
and maintenance are relatively convenient, and the cost for installation and maintenance
of the antenna is effectively reduced, so that the dual-polarized antenna radiating
units can be widely applied in the field of mobile communication and Internet;
compared with the phase I single-polarized smart antenna used in the current 3G network
of CMCC, the product of the invention is much shorter by over 75% and lighter by over
70% respectively; and compared with the phase II improved TD-SCDMA dual-polarized
smart antenna, the product of the invention is smaller by over 60% and lighter by
over 50% respectively;
the product of the invention is thinner, and the thickness of the main body of the
antenna is less than 40mm;
the key approach to the miniaturization of the antenna of the invention is that the
gain of a unit element is significantly increased to the point about 2.5dB higher
than that of a folded dipole antenna and other feed sources; especially, after independent
tuning, an array antenna achieves a VSWR at or below 1.2, the size accounts for 25%-50%
of that of an element antenna and an antenna array with similar performance, and the
weight accounts for 30%-50%; it is preferred that the product of the invention comprises
5 to 10 layers, such as an excitation layer, a feed source layer, a resonant tank
conversion layer, 1 to 3 tuning radiating layers and a radiation compensation layer.
With the structure, a structure of multiple microwave excitation and multi-layer tuning
components is realized, and the mechanism of the element antenna is shifted from the
conventional line radiation to the surface radiation, so that the radiation efficiency
of a unit antenna element is improved and the unit element achieves high gain. The
results of simulation computation and experiment prove that the unit antenna element
can achieve a gain of up to 8.5dBi; and
the intensive arrangement of the air/dielectric/metal radiating patches of the invention
in an extremely small space is designed to expand frequency band and optimize match:
through this structural design, the antenna of the invention can be used at double-peak
or multi-peak frequency bands (antenna resonance characteristic in the shape of a
hump). For operators in which a certain frequency interval exists and multi-frequency
use cannot be realized by widening the bandwidth of one conventional antenna, this
characteristic ensures that multi-frequency use can be realized in a miniaturized
antenna structure, and has excellent economic values.
First specific design scheme of the invention:
[0051] When only one metal radiating patch is arranged, the technical scheme of the invention
can be optimized into the following preferred first specific design scheme:
a small microwave low-band multi-frequency high-gain dual-polarized microstrip antenna
is characterized in that in an antenna cover, a first air dielectric layer, a first
metal radiating patch, a second air dielectric layer, a ground metal layer with bipolar
micro-slots, a first dielectric substrate, bipolar excitation microstrip lines, a
third air dielectric layer and a metal reflection baseplate are sequentially arranged
from top to bottom, that is, opposite to the direction of microwave radiation; in
the first specific design scheme, the first air dielectric layer is the air dielectric
layer B in the above-mentioned technical scheme of the invention; in the first specific
design scheme, the second air dielectric layer is the first dielectric layer in the
above-mentioned technical scheme of the invention; and in the first specific design
scheme, the third air dielectric layer is the air dielectric layer A in the above-mentioned
technical scheme of the invention; and
in the first specific design scheme, the first metal radiating patch is connected
with the antenna cover through a screw, the lower end surface of the ground metal
patch and the upper end surface of the first dielectric substrate are jointed together,
the ground metal patch is fixedly connected with a hollow metal support fixed on the
metal reflection baseplate, bipolar excitation microstrip lines, of which the front
ends are orthogonal but not in contact, are arranged on the lower end surface of the
first dielectric substrate, and a set of bipolar simulated radiation micro-slots,
orthogonal but not in contact, are formed on the upper end surface of the ground metal
patch and are corresponding to the front ends of the bipolar excitation microstrip
lines in an orthogonal way.
Second specific design scheme of the invention:
[0052] When at least two metal radiating patches are arranged, the technical scheme of the
invention can be optimized into the following preferred second specific design scheme
on the basis of the first specific design scheme:
- 1) A second metal radiating patch and a second dielectric substrate in the second
air dielectric layer are provided, the lower end surface of the second metal radiating
patch and the upper end surface of the second dielectric substrate are jointed together,
the second metal radiating patch is fixedly connected with a hollow metal support
fixed on the metal reflection baseplate, and a fourth air dielectric layer, namely
the second dielectric layer described in the above technical scheme of the invention,
is formed below the second dielectric substrate. This technical design helps further
enlarge the working frequency bandwidth of the antenna.
- 2) A second metal radiating patch and a dielectric substrate holder in the second
air dielectric layer are provided, the second metal radiating patch is fixed on the
dielectric substrate holder, the dielectric substrate holder is fixed on the hollow
metal support, and a fourth air dielectric layer is formed below the second metal
radiating patch. This technical scheme also helps further enlarge the working frequency
bandwidth of the antenna.
- 3) The screw is fixedly connected with the center of the first metal radiating patch
and is in threaded connection with the antenna cover through the internal threaded
hole at the center of the antenna cover. This technical scheme has the benefit that
the screw can be rotated outside the antenna cover for fine adjustment of the height
between the first metal radiating patch and the stimulated radiation micro-slots,
so that the VSWR at the I/O port of the antenna can be easily adjusted to match the
impedance of the excitation microstrip lines for a higher antenna gain.
- 4) A third metal radiating patch parallel to the first metal radiating patch is further
arranged between the second metal radiating patch and the first metal radiating patch,
the third metal radiating patch is insulated from the second metal radiating patch
and the hollow metal support, and a fifth air dielectric layer is formed between the
third metal radiating patch and the second metal radiating patch.
- 5) The dual-polarized antenna unit is provided with a third dielectric substrate jointed
with the lower end surface of the third metal radiating patch, and the third dielectric
substrate is fixed above the second dielectric substrate through an insulation support.
- 6) The first metal radiating patch is circular, so that the VSWR at the I/O port of
the antenna can be easily adjusted to match the impedance of the excitation microstrip
lines for a higher antenna gain.
- 7) The second metal radiating patch is circular or square, so that the VSWR at the
I/O port of the antenna can be easily adjusted to match the impedance of the excitation
microstrip lines for a higher antenna gain.
- 8) The two simulated radiation micro-slots on the ground metal patch are identical
in dimensions and are both H-shaped, of which the middle cross arms are mutually orthogonal.
This technical scheme helps enhance the gain (namely, efficiency of conversion from
electromagnetic field to electromagnetic wave or radiation efficiency) of the dual-polarized
radiating unit, for the purpose of enabling the antenna unit to achieve high gain
in a relatively small size/radiating area.
- 9) The included angle between the middle cross arms of the two H-shaped stimulated
radiation micro-slots and the X/Y axis of the ground metal patch is ±45 ° or 0/90
° , so as to achieve ±45 ° or 0/90 ° dual-polarized antenna radiation.
[0053] The results of the test of the small dual-polarized (±45 ° polarized) antenna unit
of the invention, namely the test of Embodiment 17, show that the gain is about 8.5dBi,
basically the same as the simulation result; the test chart shows that the horizontal
and vertical beam widths range from 70 to 75° , and the front-to-rear ratio is above
25dB. Unlike the conventional half-wave element type antenna, the invention adopts
the surface radiation mechanism involving multiple microwave excitation and multi-layer
tuning components to achieve a high element gain. A conventional element antenna often
achieves an element gain of 5.5dBi, while the invention achieves 8.5dBi;
during practical applications, gain enhancement is normally achieved through an array
with multiple antenna units; for example, the invention achieves a gain of 14.5dBi
employing an array with 4 dual-polarized units; the antenna of the invention is characterized
by superior miniaturization; the size of the antenna of the invention is less than
1/3-1/5 of that of a conventional antenna with the same antenna gain characteristics;
the antenna units of the invention can be flexibly combined to form different array
antennas that meet various gain and beam width requirements; the horizontal angle
and vertical angle of a unit beam are both 75° , and when antenna units are increased
by multiples in different directions, gain is increased by multiples, while beam width
is reduced by multiples;
the antenna unit of the invention is characterized by high isolation, and same polarization
isolation and different polarization isolation are both larger than 25dB. When a multi-antenna
array is used, the radiation pattern of the array has excellent consistency. The application
of the invention in a MiMo antenna produces better results; and
due to the adoption of the microstrip excitation model with a plane structure, the
port VSWR of the antenna radiating unit feed source of the invention is convenient
to commission, so as to facilitate integration with a source circuit.
[0054] The above effects are validated by the internal confidential test of actual products.
For example, as to the MM-TD2814-AF8 channel dual-polarized smart antenna employed
by a TD-SCDMA base station that meets the purpose and technical effects of the invention,
the gain of each channel ranges from 14 to 14.5dBi, the typical dimensions are 405*420*35
m
3, the weight is less than 5kg, and the frontal area is only 0.17m
2. These indexes are far less than those of the commonly-used antenna; the product
is easy to conceal and beautify, thereby diminishing the sensitiveness of users; a
derrick can be shared for shared station construction so as to reduce investment in
network construction; the product is characterized by good repeatability and strong
consistency, and is convenient to operate and maintain.
[0055] Technical parameters of the MM-TD2814-AF antenna are shown in Table 2 below:
Table 2 Key Technical Indexes of TD2814-AF Antenna
Name |
LK-TD-2814-AF |
Frequency range |
1,880-2,025MHz |
Gain (dBi) |
14.5±0.2 |
Electrical downtilt |
0 ° |
HPBW |
Vertical plane>18 |
Horizontal plane>75 |
Polarization mode |
± 45 ° polarization |
Front-to-rear ratio |
>25 |
Co-polarization isolation (dB) |
>30 |
Cross-polarization isolation (dB) |
>30 |
Input impedance |
50Ω |
VSWR |
≤1.4 |
Port |
(4+1+4)-N |
Dimensions (mm) |
405*419*34 |
Weight (kg) |
4.8 |
Lightning protection |
DC ground |
Maximum anti-wind speed |
200km/h |
Working temperature □ |
-40 to +60 |
Waterproof class |
5A |
Antenna cover material |
ABS |
[0056] The antenna of the invention can be applied to any fixed or mobile equipment using
microwave antennas, including but not limited to various mobile terminals, such as
mobile phones, handheld TV, notebooks, GPS, devices monitoring transport vehicles
or road, communication relay station, repeater station and launch pad, and is particularly
suitable for application in antenna systems for base stations/distributed base stations/network
optimization equipment and others in complex intensive urban areas or groups of high-rise
buildings.
Brief description of the drawings:
[0057]
Below is the detailed description of the invention with reference to the attached
drawings.
Fig.1 is the sectional view of Embodiment 1 of the invention.
Fig.2 is the top view of Embodiment 1 of the invention after the antenna cover is
removed.
Fig.3 is the sectional view of Embodiment 2.
Fig.4 shows reflection coefficient and isolation test curves of Embodiment 1.
Fig.5 shows reflection coefficient and isolation test curves of Embodiment 2.
Fig.6 is the sectional view of Embodiment 3 of the invention.
Fig.7 is the explanatory drawing of Embodiment 7.
Fig.8 is the explanatory drawing of Embodiment 8.
Fig.9 is the explanatory drawing of Embodiment 9.
Fig. 10 is the explanatory drawing of Embodiment 10.
Fig.11 is the explanatory drawing of Embodiment 11.
Fig.12 is the explanatory drawing of Embodiment 12.
Fig.13 is the explanatory drawing of Embodiment 13.
Fig.14 is the explanatory drawing of Embodiment 14.
Fig.15 is the explanatory drawing of Embodiment 15.
Fig.16 is the standing wave pattern of a set of dual-polarized channels.
Fig.17 is the amplitude phase diagram of a calibration channel.
Fig.18 is the measured drawing of a single port in the horizontal direction.
Fig.19 is the measured drawing of a single port in the vertical direction.
Fig.20 is the measured drawing of ports 1, 3, 5, 7 in the horizontal direction.
Fig.21 is the measured drawing of ports 2, 4, 6, 8 in the horizontal direction.
Description of Embodiments
Embodiment 1: TD-SCDMA dual-polarized antenna
[0058] Fig.1 and Fig.2 show a small microwave low-band multi-frequency high-gain dual-polarized
microstrip antenna according to this embodiment (a TD-SCDMA dual-polarized antenna;
TD-SCDMA frequencies of CMCC under a 3G license: 1,880-1,920 MHz and 2,010-2,025MHz),
wherein a first air dielectric layer 2, a first metal radiating patch 3, a second
air dielectric layer 4, a ground metal patch 5, a first dielectric substrate 6, bipolar
excitation microstrip lines 7, 7', a third air dielectric layer 8 and a metal reflection
baseplate 9 are sequentially arranged in an antenna cover 1 from top to bottom. The
first metal radiating patch 3 is connected with the antenna cover 1 through a screw
10. The ground metal patch 5 covers the upper end surface of the first dielectric
substrate 6, and is fixedly connected with a hollow metal support 11 which is fixed
on the metal reflection baseplate 9. The bipolar excitation microstrip lines 7, of
which the front ends are orthogonal yet not in contact, are laid on the lower end
surface of the first dielectric substrate 6. Two stimulated radiation micro-slots
12, 12', orthogonal but not in contact, are formed on the upper end surface of the
ground metal patch 5, and are corresponding to the front ends of the bipolar excitation
microstrip lines 7, 7' in an orthogonal way. In this embodiment, the first metal radiating
patch 3 is circular, and the screw 10, which is fixedly connected with the center
of the first metal radiating patch 3, is also in threaded connection with the antenna
cover 1 through an internal threaded hole in the center of the antenna cover. With
such configuration, the screw can be rotated outside the antenna cover for fine adjustment
of the height between the first metal radiating patch and the stimulated radiation
micro-slots, so that the VSWR at the I/O port of the antenna can be easily adjusted
to match the impedance of the microstrip lines for a higher antenna gain. The circular
metal radiating patch only has height variation during adjustment, so the adjustment
is more convenient.
[0059] As shown in Fig.2, the two stimulated radiation micro-slots 12, 12' on the ground
metal patch 5 are equal in size and both H-shaped, of which the middle cross arms
are orthogonal. Such configuration helps form the bipolar stimulated radiation micro-slots
on the ground metal patch with a smaller area, so as to miniaturize the antenna. The
included angles between the middle cross arms of the two H-shaped stimulated radiation
micro-slots 12, 12' and the X/Y axis of the ground metal patch are ±45°. Such a technical
scheme also helps form the bipolar stimulated radiation micro-slots on the ground
metal patch with a smaller area, so as to miniaturize the antenna.
[0060] Fig.4 shows the measured reflection coefficient curves of the antenna, in which S11
is the reflection coefficient of Port 1, and S22 is that of Port 2. We can see that
the reflection coefficients of the two dual polarization ports within the TD-SCDMA
frequencies are both below -17dB, with the bandwidth indexes all qualified (relative
bandwidth > 8%). The figure also shows the measured curve of isolation between the
two ports of the dual-polarized antenna, in which the isolation between Port 1 and
Port 2 (S21(S12)) is below -32dB within the bandwidth range. According to test results,
the two ports of the dual-polarized antenna are satisfactorily isolated from each
other and thus can work independently.
[0061] According to actual measurements, the antenna gain is 8.9dBi at a test frequency
of 1,900MHz, and the theta-plane HPBW is 83°.
Embodiment 2: TD-SCDMA and TD-LTE Antenna
[0062] Fig.3 shows a small microwave low-band multi-frequency high-gain dual-polarized microstrip
antenna according to this embodiment (coverage: TD-SCDMA and TD-LITE frequencies;
WCDMA frequencies: 1,920-1,980 MHz and 2,110-2,170 MHz; TD-SCDMA frequencies: 1,880-1,920
MHz and 2,010-2,025 MHz), which is based on Embodiment 1 and further includes a second
metal radiating patch 13 and a second dielectric substrate 14 in the second air dielectric
layer 4. The lower end surface of the second metal radiating patch 13 is jointed with
the upper end surface of the second dielectric substrate 14 to form as a whole, which
is then fixedly connected with the hollow metal support 11 fixed on the metal reflection
baseplate 9 to form a fourth air dielectric layer 15 below the second dielectric substrate
14. This configuration helps further enlarge the working frequency bandwidth of the
antenna. The second metal radiating patch 13 is circular, so that the VSWR at the
I/O port of the antenna can be easily adjusted to match the impedance of the microstrip
lines for a higher antenna gain.
[0063] Fig.5 shows the measured reflection coefficient curves of the antenna, in which the
reflection coefficients of the two dual polarization ports within the TD-SCDMA and
WCDMA frequencies are both below -17dB, with the bandwidth indexes all qualified.
Due to the additional second radiating patch, the working frequency bandwidth of the
antenna is effectively enlarged without changing the bandwidth effect and performance
indexes of the original structure with only one radiating patch (relative bandwidth:
22.5%). The figure also shows the measured curve of isolation between the two ports
of the dual-polarized antenna, in which the isolation is below -32dB within the bandwidth
range. According to test results, the two ports of the dual-polarized antenna are
satisfactorily isolated from each other and thus can work independently.
[0064] In a similar technical scheme, the second metal radiating patch and a dielectric
substrate holder are arranged in the second air dielectric layer. The second metal
radiating patch is fixed on the dielectric substrate holder, which is fixed on the
hollow metal support to form the fourth air dielectric layer below the second metal
radiating patch. The technical scheme also helps further enlarge the working frequency
bandwidth of the antenna.
Embodiment 3: Small dual-polarized microstrip antenna with three metal radiating patches
[0065] Fig.6 shows a small dual-polarized microstrip antenna with three metal radiating
patches based on Embodiment 2, in which a third metal radiating patch 18 and a third
dielectric substrate 17 are further arranged between the second metal radiating patch
13 and the first metal radiating patch 3. The third metal radiating patch 18 is parallel
to the first metal radiating patch 3 and insulated from the second metal radiating
patch 13 and the hollow metal support 11. The lower end surface of the third metal
radiating patch 18 is jointed with the upper end surface of the third dielectric substrate
17 to form as a whole, which is then fixedly connected with an insulation support
19 fixed on the second dielectric substrate 14 to form a fifth air dielectric layer
16 below the third dielectric substrate 17.
[0066] Test results prove that the working bandwidth of the antenna according to Embodiment
3 is further enlarged without changes of the original electric performance indexes
of the antenna according to Embodiment 2 (relative bandwidth: about 40%).
[0067] In a similar technical scheme, the third metal radiating patch, which is parallel
to the first metal radiating patch, is arranged between the second metal radiating
patch and the first metal radiating patch and insulated from the second metal radiating
patch and the hollow metal support, and the fifth air dielectric layer is formed between
the third metal radiating patch and the second metal radiating patch. Such a technical
scheme also helps further enlarge the working frequency bandwidth of the antenna.
Embodiment 4: Small multi-layer microstrip antenna with convenient VSWR adjustment
[0068] This embodiment discloses a small multi-layer microstrip antenna with convenient
VSWR adjustment, which is characterized in that a first air dielectric layers, a first
metal radiating patch, a second air dielectric layer, a ground metal patch, a first
dielectric substrate, excitation microstrip lines, a third air dielectric layer and
a metal reflection baseplate are sequentially arranged in an antenna cover from top
to bottom, the ground metal patch covers the upper end surface of the first dielectric
substrate and is fixedly connected with a hollow metal support fixed on the metal
reflection baseplate, stimulated radiation micro-slots are formed on the upper end
surface of the ground metal patch, and the first metal radiating patch is circular
and fixed by the threaded connection between an adjusting screw fixed in its center
and the internal threads in the center of the antenna cover.
[0069] In this technical scheme, the screw can be rotated outside the antenna cover for
fine adjustment of the height between the first metal radiating patch and the stimulated
radiation micro-slots, so that the VSWR at the I/O port of the antenna can be easily
adjusted to match the impedance of the excitation microstrip lines for a higher antenna
gain. The circular first metal radiating patch only has one variable in the adjustment,
which makes the adjustment very convenient and fast and therefore greatly improves
the productivity.
[0070] The technical scheme of this embodiment is described as follows:
- 1. Bipolar excitation microstrip lines, of which the front ends are orthogonal but
not in contact, are arranged on the lower end surface of a first dielectric substrate.
Stimulated radiation micro-slots, orthogonal but not in contact, are formed on the
upper end surface of a ground metal patch, and are corresponding to the front ends
of the bipolar excitation microstrip lines in an orthogonal way.
- 2. A second metal radiating patch and a second electric substrate are arranged in
a second air dielectric layer. The lower end surface of the second metal radiating
patch is jointed with the upper end surface of the second dielectric substrate to
form as a whole, which is then fixedly connected with a hollow metal support fixed
on a metal reflection baseplate to form a fourth air dielectric layer below the second
dielectric substrate. The technical scheme helps further enlarge the working frequency
bandwidth of the antenna. 3. The second metal radiating patch and a dielectric substrate
holder are arranged in the second air dielectric layer. The second metal radiating
patch is fixed on the dielectric substrate holder which is fixed on the hollow metal
support, so as to form a fourth air dielectric layer below the second metal radiating
patch. The technical scheme also helps further enlarge the working frequency bandwidth
of the antenna. 4. The second metal radiating patch is circular, so that the VSWR
at the I/O port of the antenna can be easily adjusted to match the impedance of the
microstrip lines for a higher antenna gain. 5. The two stimulated radiation micro-slots
on the ground metal patch are equal in size and both H-shaped, of which the middle
cross arms are orthogonal. Such a technical scheme helps form the bipolar stimulated
radiation micro-slots on the ground metal patch with a smaller area, so as to miniaturize
the antenna. 6. The included angles between the middle cross arms of the two H-shaped
stimulated radiation micro-slots and the X/Y axis of the ground metal patch are ±45°.
With the technical scheme, the effective area of the ground metal patch can be more
fully used for miniaturization of the antenna.
[0071] In the utility model, the dual-polarized microstrip antenna and the multi-layer radiation
structure are designed in a relatively small space, of which the layout is smart and
the structure is compact. It has been proved in practice that the relative working
frequency bandwidth of the antenna provided by the utility model can exceed 20%, with
a gain increase of 9dBi and a dual polarization cross-isolation as high as 30dB; a
pair of dual-polarized antenna units are sufficient for a 2x2 MIMO system; and with
a small volume and a light weight, the antenna is less demanding in installation space
and load bearing and more convenient to manufacture, install and maintain, and can
be easily arrayed and effectively save the installation and maintenance costs. Therefore,
the antenna can be widely applied in mobile communication and Internet technologies.
[0072] Fig.1 and Fig.2 show the specific design of the small multi-layer microstrip antenna
with convenient VSWR adjustment according to this embodiment. A first air dielectric
layer 2, a first metal radiating patch 3, a second air dielectric layer 4, a ground
metal patch 5, a first dielectric substrate 6, excitation microstrip lines 7, 7' (bipolar
excitation microstrip lines according to this embodiment), a third air dielectric
layer 8 and a metal reflection baseplate 9 are sequentially arranged in an antenna
cover 1 from top to bottom. The first metal radiating patch 3 is connected with the
antenna cover 1 through a screw 10. The ground metal patch 5 covers the upper end
surface of the first dielectric substrate 6, and is fixedly connected with a hollow
metal support 11 which is fixed on the metal reflection baseplate 9. Two stimulated
radiation micro-slots 12, 12' (bipolar stimulated radiation micro-slots according
to this embodiment) are formed on the upper end surface of the ground metal patch
5. The first metal radiating patch 3 is circular and fixed by the threaded connection
between an adjusting screw 10 fixed in its center and the internal threads in the
center of the antenna cover 1. The bipolar excitation microstrip lines 7, of which
the front ends are orthogonal yet not in contact, are laid on the lower end surface
of the first dielectric substrate 6. The two stimulated radiation micro-slots 12,
12', orthogonal but not in contact, are formed on the upper end surface of the ground
metal patch 5, and are corresponding to the front ends of the bipolar excitation microstrip
lines 7, 7' in an orthogonal way.
[0073] As shown in Fig.2, the two stimulated radiation micro-slots 12, 12' on the ground
metal patch 5 are equal in size and both H-shaped, of which the middle cross arms
are orthogonal. Such configuration helps form the bipolar stimulated radiation micro-slots
on the ground metal patch with a smaller area, so as to miniaturize the antenna. The
included angles between the middle cross arms of the two H-shaped stimulated radiation
micro-slots 12, 12' and the X/Y axis of the ground metal patch are ±45°. With this
technical scheme, the effective area of the ground metal patch can be more fully used
for miniaturization of the antenna.
Embodiment 5: Small multi-layer microstrip antenna with convenient VSWR adjustment
[0074] Fig.3 shows a small multi-layer microstrip antenna with convenient VSWR adjustment
according to this embodiment, which is based on Embodiment 4 and further includes
a second metal radiating patch 13 and a second dielectric substrate 14 in the second
air dielectric layer 4. The lower end surface of the second metal radiating patch
13 is jointed with the upper end surface of the second dielectric substrate14 to form
as a whole, which is then fixedly connected with the hollow metal support 11 fixed
on the metal reflection baseplate 9 so as to form a fourth air dielectric layer 15
below the second dielectric substrate14. The technical scheme helps further enlarge
the working frequency bandwidth of the antenna. The second metal radiating patch 13
is circular, so that the VSWR at the I/O port of the antenna can be easily adjusted
to match the impedance of the excitation microstrip lines for a higher antenna gain.
[0075] In a similar technical scheme, the second metal radiating patch and a dielectric
substrate holder are arranged in the second air dielectric layer, the second metal
radiating patch is fixed on the dielectric substrate holder, and the dielectric substrate
holder is fixed on the hollow metal support to form the fourth air dielectric layer
below the second metal radiating patch. The technical scheme also helps further enlarge
the working frequency bandwidth of the antenna.
Embodiment 6: Wireless communication relay station with built-in antenna
[0076] This embodiment adopts the following technical scheme: a wireless communication relay
station with a built-in antenna includes a relay station main case and the antenna
matched therewith, and is characterized by further including an arc-shaped upper cover
of the relay station, in which the antenna is arranged in the arc-shaped upper cover
of the relay station and fixedly connected therewith through screws, the input port
of the antenna is directly connected with the retransmission end of the relay station,
and the arc-shaped upper cover of the relay station is fixedly connected with the
relay station main case through screws.
[0077] The wireless communication relay station with the built-in antenna according to this
embodiment includes the relay station main case and the antenna matched therewith,
and is characterized by further including the arc-shaped upper cover of the relay
station, in which the antenna is arranged in the arc-shaped upper cover of the relay
station and fixedly connected therewith through screws, the input port of the antenna
is directly connected with the retransmission end of the relay station, and the arc-shaped
upper cover of the relay station is fixedly connected with the relay station main
case through screws. The antenna in this embodiment is a multi-layer microstrip antenna,
particularly, a small multi-layer dual-polarized microstrip antenna.
[0078] The antenna in this embodiment is a ceiling-mounted antenna. This embodiment has
the following benefits: the antenna is placed in the main case of the wireless communication
relay station to achieve compact structure, fewer connecting cables, low cost and
convenient installation; the wireless communication relay station with the built-in
antenna is suitable for wireless communication indoor distribution systems, featuring
an attractive appearance as well as good transmission performance and high reliability
of the antenna.
Embodiment 7: Miniature dual-polarized microstrip antenna
[0079] This embodiment adopts the following technical scheme: a miniature dual-polarized
microstrip antenna is characterized by including two dual-polarized antenna units
which are connected in an antenna cover through a two-way power divider. A first air
dielectric layer, a first metal radiating patch, a second air dielectric layer, a
ground metal patch, a first dielectric substrate, bipolar excitation microstrip lines,
a third air dielectric layer and a metal reflection baseplate are sequentially arranged
from top to bottom in each dual-polarized antenna unit. The first metal radiating
patch is connected with the antenna cover through an insulation screw. The ground
metal patch covers the upper end surface of the first dielectric substrate, and is
fixedly connected with a hollow metal support which is fixed on the metal reflection
baseplate. The bipolar excitation microstrip lines, of which the front ends are orthogonal
yet not in contact, are arranged on the lower end surface of the first dielectric
substrate. Two stimulated radiation micro-slots, orthogonal but not in contact, are
formed on the upper end surface of the ground metal patch, and are corresponding to
the front ends of the bipolar excitation microstrip lines in an orthogonal way.
[0080] This embodiment has the following benefits: it achieves the advantages of small volume,
compact structure and light weight by integrating microstrip, micro-slot and the multi-layer
theory; the antenna has good energy radiation performance and high reliability; with
the linear arrangement and a planar emission source, microwave harnesses have better
direction selectivity; with the two antenna units, the dual-polarized antenna attains
a qualified gain of 11dBi; microstrip routing inside the antenna helps reduce the
consumption of connecting cables and the cost; and the antenna is more convenient
to install due to its small volume and light weight. According to tests, the miniature
dual-polarized microstrip antenna is totally qualified for operators' relevant requirements
on electrical and mechanical performance indexes.
[0081] A miniature dual-polarized microstrip antenna according to this embodiment, as shown
in Fig.7 and Fig.8, includes two dual-polarized antenna units (B1, B2) which are connected
in an antenna cover 1 through a two-way power divider (Wilkinson equal power divider).
As shown in Fig.2, a first air dielectric layer 2, a first metal radiating patch 3,
a second air dielectric layer 4, a ground metal patch 5, a first dielectric substrate
6, bipolar excitation microstrip lines 7, 7' , a third air dielectric layer 8 and
a metal reflection baseplate 9 are sequentially arranged from top to bottom in each
dual-polarized antenna unit (B1, for example). The first metal radiating patch 3 is
connected with the antenna cover 1 through an insulation screw 10. The ground metal
patch 5 covers the upper end surface of the first dielectric substrate 6, and is fixedly
connected with a hollow metal support 11 which is fixed on the metal reflection baseplate
9. The bipolar excitation microstrip lines 7, 7' , of which the front ends are orthogonal
yet not in contact, are arranged on the lower end surface of the first dielectric
substrate 6. Two stimulated radiation micro-slots 12, 12' , orthogonal but not in
contact, are formed on the upper end surface of the ground metal patch, and are corresponding
to the front ends of the bipolar excitation microstrip lines 7, 7' in an orthogonal
way. In this embodiment, the first metal radiating patch 3 is circular, and the insulation
screw 10, which is fixedly connected with the center of the first metal radiating
patch 3, is also in threaded connection with the antenna cover 1 through an internal
threaded hole in the center of the antenna cover 1. With such a technical scheme,
the screw can be rotated outside the antenna cover for fine adjustment of the height
between the first metal radiating patch and the stimulated radiation micro-slots,
so that the VSWR at the I/O port of the antenna can be easily adjusted to match the
impedance of the microstrip lines for a higher antenna gain. The circular metal radiating
patch only has height variations during adjustment, so the adjustment is more convenient.
[0082] As shown in Fig.7, the two stimulated radiation micro-slots 12, 12' on the ground
metal patch 5 are equal in size and both H-shaped, of which the middle cross arms
are orthogonal. Such a technical scheme helps form the bipolar stimulated radiation
micro-slots on the ground metal patch with a smaller area, so as to miniaturize the
antenna. The included angles between the middle cross arms of the two H-shaped stimulated
radiation micro-slots 12, 12' and the X/Y axis of the ground metal patch are ±45°.
Such a technical scheme also helps form the bipolar stimulated radiation micro-slots
on the ground metal patch with a smaller area, so as to miniaturize the antenna.
[0083] According to test results, the gain of the dual-polarized antenna is 11dBi at a test
frequency of 1,900MHz; the horizontal HPBW is 72°, the vertical HPBW is 36°, and the
front-to-rear ratio is below -25dB; the VSWR at the I/O port is below 1.3, and the
relative working frequency bandwidth is around 10%.
Embodiment 8: Miniature dual-polarized microstrip antenna
[0084] Fig.9 shows a miniature dual-polarized microstrip antenna which is based on Embodiment
7 and further includes a second metal radiating patch 13 and a second dielectric substrate
14 in the second air dielectric layer 4. The second metal radiating patch 13 is parallel
to the first metal radiating patch 3. The lower end surface of the second metal radiating
patch 13 is jointed with the upper end surface of the second dielectric substrate
14 to form as a whole, which is then fixedly connected with the hollow metal support
11 fixed on the metal reflection baseplate 9 to form a fourth air dielectric layer
15 below the second dielectric substrate 14. This technical scheme helps further enlarge
the working frequency bandwidth of the antenna. The second metal radiating patch 13
is circular, so that the VSWR at the I/O port of the antenna can be easily adjusted
to match the impedance of the microstrip lines for a higher antenna gain.
[0085] Test results show that Embodiment 8 can enlarge the working bandwidth without changing
the original electric performance indexes of the antenna according to Embodiment 7
(relative bandwidth: about 25%).
[0086] In a similar technical scheme, each dual-polarized antenna unit further includes
a second metal radiating patch in the second air dielectric layer and parallel to
the first metal radiating patch. The second metal radiating patch is fixed with the
hollow metal support in an insulated manner, so that a fourth air dielectric layer
is formed between the second metal radiating patch and the ground metal patch. The
technical scheme also helps further enlarge the working frequency bandwidth of the
antenna, though less remarkably without the second dielectric substrate.
Embodiment 9: Miniature dual-polarized microstrip antenna
[0087] Fig.10 shows a miniature dual-polarized microstrip antenna based on Embodiment 8,
in which a third metal radiating patch 18 and a third dielectric substrate 17 are
further arranged between the second metal radiating patch 13 and the first metal radiating
patch 3. The third metal radiating patch 18 is parallel to the first metal radiating
patch 3 and insulated from the second metal radiating patch 13 and the hollow metal
support 11. The lower end surface of the third metal radiating patch 18 is jointed
with the upper end surface of the third dielectric substrate 17 to form as a whole,
which is then fixedly connected with an insulation support 19 fixed on the second
dielectric substrate 14 to form a fifth air dielectric layer 16 below the third dielectric
substrate 17.
[0088] Test results show that Embodiment 9 can further enlarge the working bandwidth without
changing the original electric performance indexes of the antenna according to Embodiment
8 (relative bandwidth: about 40%).
[0089] In a similar technical scheme, the third metal radiating patch is located between
the second radiating patch and the first radiating patch and parallel to the first
radiating patch, and is insulated from the second metal radiating patch and the hollow
metal support. A fifth air dielectric layer is formed between the third metal radiating
patch and the second metal radiating patch. The technical scheme also helps further
enlarge the working frequency bandwidth of the antenna, though less remarkably without
the third dielectric substrate.
Embodiment 10: Small dual-polarized microstrip antenna
[0090] This embodiment adopts the following technical scheme: a small dual-polarized microstrip
antenna is characterized by including four dual-polarized antenna units which are
connected through a four-way power divider and linearly distributed in an antenna
cover. A first air dielectric layer, a first metal radiating patch, a second air dielectric
layer, a ground metal patch, a first dielectric substrate, bipolar excitation microstrip
lines, a third air dielectric layer and a metal reflection baseplate are sequentially
arranged from top to bottom in each dual-polarized antenna unit. The first metal radiating
patch is connected with the antenna cover through an insulation screw. The ground
metal patch covers the upper end surface of the first dielectric substrate, and is
fixedly connected with a hollow metal support which is fixed on the metal reflection
baseplate. The bipolar excitation microstrip lines, of which the front ends are orthogonal
yet not in contact, are arranged on the lower end surface of the first dielectric
substrate. Two stimulated radiation micro-slots, orthogonal but not in contact, are
formed on the upper end surface of the ground metal patch, and are corresponding to
the front ends of the bipolar excitation microstrip lines in an orthogonal way.
[0091] This embodiment has the following benefits: it achieves the advantages of small volume,
compact structure and light weight by integrating microstrip, micro-slot and the multi-layer
theory; the antenna has good energy radiation performance and high reliability; with
the linear arrangement and a planar emission source, microwave harnesses have better
direction selectivity; with the four antenna units, the dual-polarized antenna attains
a qualified gain of 14dBi; microstrip routing inside the antenna helps reduce the
consumption of connecting cables and the cost; and the antenna is more convenient
to install due to its small volume and light weight. According to tests, the small
dual-polarized microstrip antenna is totally qualified for operators' relevant requirements
on electrical and mechanical performance indexes.
[0092] A small dual-polarized microstrip antenna according to this embodiment, as shown
in Fig.11 and Fig.12, includes four dual-polarized antenna units (B1, B2, B3, B4)
which are connected through a four-way power divider (series connection of three Wilkinson
equal power divider) and linearly distributed in an antenna cover 1. As shown in Fig.2,
a first air dielectric layer 2, a first metal radiating patch 3, a second air dielectric
layer 4, a ground metal patch 5, a first dielectric substrate 6, bipolar excitation
microstrip lines 7, 7' , a third air dielectric layer 8 and a metal reflection baseplate
9 are sequentially arranged from top to bottom in each dual-polarized antenna unit
(B1, for example). The first metal radiating patch 3 is connected with the antenna
cover 1 through an insulation screw 10. The ground metal patch 5 covers the upper
end surface of the first dielectric substrate 6, and is fixedly connected with a hollow
metal support 11 which is fixed on the metal reflection baseplate 9. The bipolar excitation
microstrip lines 7, 7' , of which the front ends are orthogonal yet not in contact,
are arranged on the lower end surface of the first dielectric substrate 6. Two stimulated
radiation micro-slots 12, 12' , orthogonal but not in contact, are formed on the upper
end surface of the ground metal patch, and are corresponding to the front ends of
the bipolar excitation microstrip lines 7, 7' in an orthogonal way. In this embodiment,
the first metal radiating patch 3 is circular, and the insulation screw 10, which
is fixedly connected with the center of the first metal radiating patch 3, is also
in threaded connection with the antenna cover 1 through an internal threaded hole
in the center of the antenna cover 1. With such a technical scheme, the screw can
be rotated outside the antenna cover for fine adjustment of the height between the
first metal radiating patch and the stimulated radiation micro-slots, so that the
VSWR at the I/O port of the antenna can be easily adjusted to match the impedance
of the microstrip lines for a higher antenna gain. The circular metal radiating patch
only has height variations during adjustment, so the adjustment is more convenient.
[0093] As shown in Fig.11, the two stimulated radiation micro-slots 12, 12' on the ground
metal patch 5 are equal in size and both H-shaped, of which the middle cross arms
are orthogonal. Such a technical scheme helps form the bipolar stimulated radiation
micro-slots on the ground metal patch with a smaller area, so as to miniaturize the
antenna. The included angles between the middle cross arms of the two H-shaped stimulated
radiation micro-slots 12, 12' and the X/Y axis of the ground metal patch are ±45°.
Such a technical scheme also helps form the bipolar stimulated radiation micro-slots
on the ground metal patch with a smaller area, so as to miniaturize the antenna.
[0094] According to test results, the gain of the dual-polarized antenna is 14dBi at a test
frequency of 1,900MHz; the horizontal HPBW is 70°, the vertical HPBW is 18°, and the
front-to-rear ratio is below -25dB; the VSWR at the I/O port is below 1.3, and the
relative working frequency bandwidth is around 10%.
Embodiment 11: Small dual-polarized microstrip antenna
[0095] Fig.13 shows a small dual-polarized microstrip antenna which is based on Embodiment
10 and further includes a second metal radiating patch 13 and a second dielectric
substrate 14 in the second air dielectric layer 4. The second metal radiating patch
13 is parallel to the first metal radiating patch 3. The lower end surface of the
second metal radiating patch 13 is jointed with the upper end surface of the second
dielectric substrate 14 to form as a whole, which is then fixedly connected with the
hollow metal support 11 fixed on the metal reflection baseplate 9 to form a fourth
air dielectric layer 15 below the second dielectric substrate 14. This technical scheme
helps further enlarge the working frequency bandwidth of the antenna. The second metal
radiating patch 13 is circular, so that the VSWR at the I/O port of the antenna can
be easily adjusted to match the impedance of the microstrip lines for a higher antenna
gain.
[0096] Test results show that Embodiment 11 can enlarge the working bandwidth without changing
the original electric performance indexes of the antenna according to Embodiment 10
(relative bandwidth: about 25%).
[0097] In a similar technical scheme, each dual-polarized antenna unit further includes
a second metal radiating patch in the second air dielectric layer and parallel to
the first metal radiating patch. The second metal radiating patch is fixed with the
hollow metal support in an insulated manner, so that a fourth air dielectric layer
is formed between the second metal radiating patch and the ground metal patch. The
technical scheme also helps further enlarge the working frequency bandwidth of the
antenna, though less remarkably without the second dielectric substrate.
Embodiment 12: Small dual-polarized microstrip antenna
[0098] Fig.14 shows a small dual-polarized microstrip antenna based on Embodiment 11, in
which a third metal radiating patch 18 and a third dielectric substrate 17 are further
arranged between the second metal radiating patch 13 and the first metal radiating
patch 3. The third metal radiating patch 18 is parallel to the first metal radiating
patch 3 and insulated from the second metal radiating patch 13 and the hollow metal
support 11. The lower end surface of the third metal radiating patch 18 is jointed
with the upper end surface of the third dielectric substrate 17 to form as a whole,
which is then fixedly connected with an insulation support 19 fixed on the second
dielectric substrate 14 to form a fifth air dielectric layer 16 below the third dielectric
substrate 17.
[0099] Test results show that Embodiment 12 can further enlarge the working bandwidth without
changing the original electric performance indexes of the antenna according to Embodiment
11 (relative bandwidth: about 40%).
[0100] In a similar technical scheme, the third metal radiating patch is located between
the second radiating patch and the first radiating patch and parallel to the first
radiating patch, and is insulated from the second metal radiating patch and the hollow
metal support. A fifth air dielectric layer is formed between the third metal radiating
patch and the second metal radiating patch. The technical scheme also helps further
enlarge the working frequency bandwidth of the antenna, though less remarkably without
the third dielectric substrate.
Embodiment 13: Small high-gain dual-polarized microstrip antenna
[0101] This embodiment adopts the following technical scheme: a small high-gain dual-polarized
microstrip antenna is characterized by including four dual-polarized antenna units
which are connected through a four-way signal power divider and distributed in an
antenna cover in two lines and two rows. A first air dielectric layer, a first metal
radiating patch, a second air dielectric layer, a ground metal patch, a first dielectric
substrate, bipolar excitation microstrip lines, a third air dielectric layer and a
metal reflection baseplate are sequentially arranged from top to bottom in each dual-polarized
antenna unit. The first metal radiating patch is connected with the antenna cover
through an insulation screw. The ground metal patch covers the upper end surface of
the first dielectric substrate, and is fixedly connected with a hollow metal support
which is fixed on the metal reflection baseplate. The bipolar excitation microstrip
lines, of which the front ends are orthogonal yet not in contact, are arranged on
the lower end surface of the first dielectric substrate. Two stimulated radiation
micro-slots, orthogonal but not in contact, are formed on the upper end surface of
the ground metal patch, and are corresponding to the front ends of the bipolar excitation
microstrip lines in an orthogonal way.
[0102] This embodiment has the following benefits: it achieves the advantages of small volume,
compact structure and light weight by integrating microstrip, micro-slot and the multi-layer
theory; the antenna has good energy radiation performance and high gain and reliability;
with the linear arrangement and a planar emission source, microwave harnesses have
better direction selectivity; with the four antenna units, the dual-polarized antenna
attains a qualified gain of 14dBi; microstrip routing inside the antenna helps reduce
the consumption of connecting cables and the cost; and the antenna is more convenient
to install due to its small volume and light weight. According to tests, the small
high-gain dual-polarized microstrip antenna is totally qualified for operators' relevant
requirements on electrical and mechanical performance indexes.
[0103] A small high-gain dual-polarized microstrip antenna according to this embodiment,
as shown in Fig.12 and Fig.13, includes four dual-polarized antenna units (B1, B2,
B3, B4) which are connected in an antenna cover 1 through a four-way power divider
(dendriform series connection of three Wilkinson equal power divider, namely, one
to two, and two to four). As shown in Fig.2, a first air dielectric layer 2, a first
metal radiating patch 3, a second air dielectric layer 4, a ground metal patch 5,
a first dielectric substrate 6, bipolar excitation microstrip lines 7, 7' , a third
air dielectric layer 8 and a metal reflection baseplate 9 are sequentially arranged
from top to bottom in each dual-polarized antenna unit (B1, for example). The first
metal radiating patch 3 is connected with the antenna cover 1 through an insulation
screw 10. The ground metal patch 5 covers the upper end surface of the first dielectric
substrate 6, and is fixedly connected with a hollow metal support 11 which is fixed
on the metal reflection baseplate 9. The bipolar excitation microstrip lines 7, 7'
, of which the front ends are orthogonal yet not in contact, are arranged on the lower
end surface of the first dielectric substrate 6. Two stimulated radiation micro-slots
12, 12' , orthogonal but not in contact, are formed on the upper end surface of the
ground metal patch, and are corresponding to the front ends of the bipolar excitation
microstrip lines 7, 7' in an orthogonal way. In this embodiment, the first metal radiating
patch 3 is circular, and the insulation screw 10, which is fixedly connected with
the center of the first metal radiating patch 3, is also in threaded connection with
the antenna cover 1 through an internal threaded hole in the center of the antenna
cover 1. With such a technical scheme, the screw can be rotated outside the antenna
cover for fine adjustment of the height between the first metal radiating patch and
the stimulated radiation micro-slots, so that the VSWR at the I/O port of the antenna
can be easily adjusted to match the impedance of the microstrip lines for a higher
antenna gain. The circular metal radiating patch only has height variations during
adjustment, so the adjustment is more convenient.
[0104] As shown in Fig.12, the two stimulated radiation micro-slots 12, 12' on the ground
metal patch 5 are equal in size and both H-shaped, of which the middle cross arms
are orthogonal. Such a technical scheme helps form the bipolar stimulated radiation
micro-slots on the ground metal patch with a smaller area, so as to miniaturize the
antenna. The included angles between the middle cross arms of the two H-shaped stimulated
radiation micro-slots 12, 12' and the X/Y axis of the ground metal patch are ±45°.
Such a technical scheme also helps form the bipolar stimulated radiation micro-slots
on the ground metal patch with a smaller area, so as to miniaturize the antenna.
[0105] According to test results, the gain of the dual-polarized antenna is 14dBi at a test
frequency of 1,900MHz; the horizontal HPBW is 70°, the vertical HPBW is 18°, and the
front-to-rear ratio is below -25dB; the VSWR at the I/O port is below 1.3, and the
relative working frequency bandwidth is around 10%.
Embodiment 14: Small high-gain dual-polarized microstrip antenna
[0106] This embodiment adopts the following technical scheme: a small high-gain dual-polarized
microstrip antenna is characterized by including eight dual-polarized antenna units
which are connected in an antenna cover through an eight-way signal power divider.
A first air dielectric layer, a first metal radiating patch, a second air dielectric
layer, a ground metal patch, a first dielectric substrate, bipolar excitation microstrip
lines, a third air dielectric layer and a metal reflection baseplate are sequentially
arranged from top to bottom in each dual-polarized antenna unit. The first metal radiating
patch is connected with the antenna cover through an insulation screw. The ground
metal patch covers the upper end surface of the first dielectric substrate, and is
fixedly connected with a hollow metal support which is fixed on the metal reflection
baseplate. The bipolar excitation microstrip lines, of which the front ends are orthogonal
yet not in contact, are arranged on the lower end surface of the first dielectric
substrate. Two stimulated radiation micro-slots, orthogonal but not in contact, are
formed on the upper end surface of the ground metal patch, and are corresponding to
the front ends of the bipolar excitation microstrip lines in an orthogonal way.
[0107] This embodiment has the following benefits: it achieves the advantages of small volume,
compact structure and light weight by integrating microstrip, micro-slot and the multi-layer
theory; the antenna has good energy radiation performance and high gain and reliability;
with the linear arrangement and a planar emission source, microwave harnesses have
better direction selectivity; with the eight antenna units, the dual-polarized antenna
attains a qualified gain of 17dBi; microstrip routing inside the antenna helps reduce
the consumption of connecting cables and the cost; and the antenna is more convenient
to install due to its small volume and light weight. According to tests, the small
high-gain dual-polarized microstrip antenna is totally qualified for operators' relevant
requirements on electrical and mechanical performance indexes.
[0108] A small high-gain dual-polarized microstrip antenna according to this embodiment,
as shown in Fig.13 and Fig.14, includes eight dual-polarized antenna units (B1, B2,
B3, B4, B5, B6, B7, B8) which are connected in an antenna cover 1 through an eight-way
power divider (dendriform series connection of seven Wilkinson equal power divider,
namely, one to two, two to four, and four to eight). As shown in Fig.2, a first air
dielectric layer 2, a first metal radiating patch 3, a second air dielectric layer
4, a ground metal patch 5, a first dielectric substrate 6, bipolar excitation microstrip
lines 7, 7' , a third air dielectric layer 8 and a metal reflection baseplate 9 are
sequentially arranged from top to bottom in each dual-polarized antenna unit (B1,
for example). The first metal radiating patch 3 is connected with the antenna cover
1 through an insulation screw 10. The ground metal patch 5 covers the upper end surface
of the first dielectric substrate 6, and is fixedly connected with a hollow metal
support 11 which is fixed on the metal reflection baseplate 9. The bipolar excitation
microstrip lines 7, 7' , of which the front ends are orthogonal yet not in contact,
are arranged on the lower end surface of the first dielectric substrate 6. Two stimulated
radiation micro-slots 12, 12' , orthogonal but not in contact, are formed on the upper
end surface of the ground metal patch, and are corresponding to the front ends of
the bipolar excitation microstrip lines 7, 7' in an orthogonal way. In this embodiment,
the first metal radiating patch 3 is circular, and the insulation screw 10, which
is fixedly connected with the center of the first metal radiating patch 3, is also
in threaded connection with the antenna cover 1 through an internal threaded hole
in the center of the antenna cover 1. With such a technical scheme, the screw can
be rotated outside the antenna cover for fine adjustment of the height between the
first metal radiating patch and the stimulated radiation micro-slots, so that the
VSWR at the I/O port of the antenna can be easily adjusted to match the impedance
of the microstrip lines for a higher antenna gain. The circular metal radiating patch
only has height variations during adjustment, so the adjustment is more convenient.
[0109] As shown in Fig.13, the two stimulated radiation micro-slots 12, 12' on the ground
metal patch 5 are equal in size and both H-shaped, of which the middle cross arms
are orthogonal. Such a technical scheme helps form the bipolar stimulated radiation
micro-slots on the ground metal patch with a smaller area, so as to miniaturize the
antenna. The included angles between the middle cross arms of the two H-shaped stimulated
radiation micro-slots 12, 12' and the X/Y axis of the ground metal patch are ±45°.
Such a technical scheme also helps form the bipolar stimulated radiation micro-slots
on the ground metal patch with a smaller area, so as to miniaturize the antenna.
[0110] According to test results, the gain of the dual-polarized antenna is 17dBi at a test
frequency of 1,900MHz; the horizontal HPBW is 70°, the vertical HPBW is 18°, and the
front-to-rear ratio is below -25dB; the VSWR at the I/O port is below 1.3, and the
relative working frequency bandwidth is around 10%.
Embodiment 15: Eight-channel high-isolation dual-polarized smart array antenna
[0111] This embodiment adopts the following technical scheme: an eight-channel high-isolation
dual-polarized smart array antenna includes four independent dual-polarized antenna
in an antenna cover, and is characterized in that: each dual-polarized antenna includes
two dual-polarized antenna units connected through a two-way power divider; a first
air dielectric layer, a first metal radiating patch, a second air dielectric layer,
a ground metal patch, a first dielectric substrate, bipolar excitation microstrip
lines, a third air dielectric layer and a metal reflection baseplate are sequentially
arranged from top to bottom in each dual-polarized antenna unit; the first metal radiating
patch is connected with the antenna cover through an insulation screw; the ground
metal patch covers the upper end surface of the first dielectric substrate, and is
fixedly connected with a hollow metal support which is fixed on the metal reflection
baseplate; the bipolar excitation microstrip lines, of which the front ends are orthogonal
yet not in contact, are arranged on the lower end surface of the first dielectric
substrate; and two stimulated radiation micro-slots, orthogonal but not in contact,
are formed on the upper end surface of the ground metal patch, and are corresponding
to the front ends of the bipolar excitation microstrip lines in an orthogonal way.
[0112] This embodiment has the following benefits: it achieves the advantages of small volume,
compact structure and light weight by integrating microstrip, micro-slot and the multi-layer
theory; the antenna has good energy radiation performance and high reliability; with
the linear arrangement and a planar emission source, microwave harnesses have better
direction selectivity; with the two antenna units in each dual-polarized antenna,
the gain can reach 11dBi, which is qualified for small areas with a high user density,
such as urban residential communities, commercial buildings, etc; microstrip routing
inside the antenna helps reduce the consumption of connecting cables and the cost;
and the antenna is more convenient to install due to its small volume and light weight
- it can be directly installed on the conventional 3G smart antenna installation support
without a holder, thus greatly reducing the installation input and the expense for
future maintenance. The eight-channel high-isolation dual-polarized smart array antenna
is suitable for small areas with a high user density, such as urban residential communities,
commercial buildings, etc., and is tested as totally qualified for operators' relevant
requirements on electrical and mechanical performance indexes. Instead of the conventional
idea and model of the present half-wave element smart antennas, the antenna units
with a high unit gain form an antenna array, which makes the antenna much smaller
and lighter without changing the original performance indexes, that is, the antenna
is miniaturized. It can replace 3G antennas in the market and will strongly challenge
4G antennas. The miniaturized antenna according to the utility model may be applied
in residential communities, so as to eliminate and mitigate the concerns of nearby
residents that large antennas are harmful because of radiation.
[0113] An eight-channel high-isolation dual-polarized smart array antenna according to this
embodiment, as shown in Fig.14 and Fig.15, includes four independent dual-polarized
antenna (A1, A2, A3, A4) in an antenna cover 1. Each dual-polarized antenna (A2, for
example) includes two dual-polarized antenna units (B1, B2) which are connected through
a two-way power divider (Wilkinson equal power divider). As shown in Fig.2, a first
air dielectric layer 2, a first metal radiating patch 3, a second air dielectric layer
4, a ground metal patch 5, a first dielectric substrate 6, bipolar excitation microstrip
lines 7, 7' , a third air dielectric layer 8 and a metal reflection baseplate 9 are
sequentially arranged from top to bottom in each dual-polarized antenna unit (B1,
for example). The first metal radiating patch 3 is connected with the antenna cover
1 through an insulation screw 10. The ground metal patch 5 covers the upper end surface
of the first dielectric substrate 6, and is fixedly connected with a hollow metal
support 11 which is fixed on the metal reflection baseplate 9. The bipolar excitation
microstrip lines 7, 7' , of which the front ends are orthogonal yet not in contact,
are arranged on the lower end surface of the first dielectric substrate 6. Two stimulated
radiation micro-slots 12, 12' , orthogonal but not in contact, are formed on the upper
end surface of the ground metal patch, and are corresponding to the front ends of
the bipolar excitation microstrip lines 7, 7' in an orthogonal way. In this embodiment,
the first metal radiating patch 3 is circular, and the insulation screw 10, which
is fixedly connected with the center of the first metal radiating patch 3, is also
in threaded connection with the antenna cover 1 through an internal threaded hole
in the center of the antenna cover 1. With such a technical scheme, the screw can
be rotated outside the antenna cover for fine adjustment of the height between the
first metal radiating patch and the stimulated radiation micro-slots, so that the
VSWR at the I/O port of the antenna can be easily adjusted to match the impedance
of the microstrip lines for a higher antenna gain. The circular metal radiating patch
only has height variations during adjustment, so the adjustment is more convenient.
[0114] As shown in Fig.14, the two stimulated radiation micro-slots 12, 12' on the ground
metal patch 5 are equal in size and both H-shaped, of which the middle cross arms
are orthogonal. Such a technical scheme helps form the bipolar stimulated radiation
micro-slots on the ground metal patch with a smaller area, so as to miniaturize the
antenna. The included angles between the middle cross arms of the two H-shaped stimulated
radiation micro-slots 12, 12' and the X/Y axis of the ground metal patch are ±45°.
Such a technical scheme also helps form the bipolar stimulated radiation micro-slots
on the ground metal patch with a smaller area, so as to miniaturize the antenna.
[0115] According to test results, the two ports of the dual-polarized antenna are satisfactorily
isolated from each other (isolation > 30dB) and thus can work independently; the antenna
gain is 11dBi at a test frequency of 1,900MHz; the horizontal HPBW is 72°, the vertical
HPBW is 36°, and the front-to-rear ratio is below -25dB; the VSWR at the I/O port
is below 1.3, and the relative working frequency bandwidth is around 10%.
Embodiment 16: Eight-channel high-gain high-isolation dual-polarized smart array antenna
[0116] This embodiment adopts the following technical scheme: an eight-channel high-gain
high-isolation dual-polarized smart array antenna includes four independent dual-polarized
antenna in an antenna cover, and is characterized in that: each dual-polarized antenna
includes four dual-polarized antenna units connected through a four-way power divider;
a first air dielectric layer, a first metal radiating patch, a second air dielectric
layer, a ground metal patch, a first dielectric substrate, bipolar excitation microstrip
lines, a third air dielectric layer and a metal reflection baseplate are sequentially
arranged from top to bottom in each dual-polarized antenna unit; the first metal radiating
patch is connected with the antenna cover through an insulation screw; the ground
metal patch covers the upper end surface of the first dielectric substrate, and is
fixedly connected with a hollow metal support which is fixed on the metal reflection
baseplate; the bipolar excitation microstrip lines, of which the front ends are orthogonal
yet not in contact, are arranged on the lower end surface of the first dielectric
substrate; and two stimulated radiation micro-slots, orthogonal but not in contact,
are formed on the upper end surface of the ground metal patch, and are corresponding
to the front ends of the bipolar excitation microstrip lines in an orthogonal way.
[0117] This embodiment has the following benefits: it achieves the advantages of small volume,
compact structure and light weight by integrating microstrip, micro-slot and the multi-layer
theory; the antenna has good energy radiation performance and high reliability; with
the linear arrangement and a planar emission source, microwave harnesses have better
direction selectivity; with the four antenna units in each dual-polarized antenna,
the gain can reach 14dBi, which meets the coverage requirement of mobile communication
base stations and solves the signal coverage in urban, suburban and rural areas with
different landscapes, numbers of users, occasions and ranges; microstrip routing inside
the antenna helps reduce the consumption of connecting cables and the cost; and the
antenna is more convenient to install due to its small volume and light weight - it
can be directly installed on the conventional 3G smart antenna installation support
without a holder, thus greatly reducing the installation input and the expense for
future maintenance. The eight-channel high-isolation dual-polarized smart array antenna
is suitable for the establishment of mobile communication base stations, and is tested
as totally qualified for operators' relevant requirements on electrical and mechanical
performance indexes. Instead of the conventional idea and model of the present half-wave
element smart antennas, the antenna units with a high unit gain form an antenna array,
which makes the antenna much smaller and lighter without changing the original performance
indexes, that is, the antenna is miniaturized. It can replace 3G antennas in the market
and will strongly challenge 4G antennas.
[0118] An eight-channel high-gain high-isolation dual-polarized smart array antenna according
to this embodiment, as shown in Fig.15 and Fig.16, includes four independent dual-polarized
antenna (A1, A2, A3, A4) in an antenna cover 1. Each dual-polarized antenna (A2, for
example) includes four dual-polarized antenna units (B1, B2, B3, B4) which are connected
through a four-way power divider (series connection of three Wilkinson equal power
divider). As shown in Fig.2, a first air dielectric layer 2, a first metal radiating
patch 3, a second air dielectric layer 4, a ground metal patch 5, a first dielectric
substrate 6, bipolar excitation microstrip lines 7, 7' , a third air dielectric layer
8 and a metal reflection baseplate 9 are sequentially arranged from top to bottom
in each dual-polarized antenna unit (B1, for example). The first metal radiating patch
3 is connected with the antenna cover 1 through an insulation screw 10. The ground
metal patch 5 covers the upper end surface of the first dielectric substrate 6, and
is fixedly connected with a hollow metal support 11 which is fixed on the metal reflection
baseplate 9. The bipolar excitation microstrip lines 7, 7' , of which the front ends
are orthogonal yet not in contact, are arranged on the lower end surface of the first
dielectric substrate 6. Two stimulated radiation micro-slots 12, 12' , orthogonal
but not in contact, are formed on the upper end surface of the ground metal patch,
and are corresponding to the front ends of the bipolar excitation microstrip lines
7, 7' in an orthogonal way. In this embodiment, the first metal radiating patch 3
is circular, and the insulation screw 10, which is fixedly connected with the center
of the first metal radiating patch 3, is also in threaded connection with the antenna
cover 1 through an internal threaded hole in the center of the antenna cover 1. With
such a technical scheme, the screw can be rotated outside the antenna cover for fine
adjustment of the height between the first metal radiating patch and the stimulated
radiation micro-slots, so that the VSWR at the I/O port of the antenna can be easily
adjusted to match the impedance of the microstrip lines for a higher antenna gain.
The circular metal radiating patch only has height variations during adjustment, so
the adjustment is more convenient.
[0119] As shown in Fig.15, the two stimulated radiation micro-slots 12, 12' on the ground
metal patch 5 are equal in size and both H-shaped, of which the middle cross arms
are orthogonal. Such a technical scheme helps form the bipolar stimulated radiation
micro-slots on the ground metal patch with a smaller area, so as to miniaturize the
antenna. The included angles between the middle cross arms of the two H-shaped stimulated
radiation micro-slots 12, 12' and the X/Y axis of the ground metal patch are ±45°.
Such a technical scheme also helps form the bipolar stimulated radiation micro-slots
on the ground metal patch with a smaller area, so as to miniaturize the antenna.
[0120] According to test results, the two ports of the dual-polarized antenna are satisfactorily
isolated from each other (isolation > 30dB) and thus can work independently; the antenna
gain is 14dBi at a test frequency of 1,900MHz; the horizontal HPBW is 70°, the vertical
HPBW is 18°, and the front-to-rear ratio is below -25dB; the VSWR at the I/O port
is below 1.3, and the relative working frequency bandwidth is around 10%.
Embodiment 17: TD-LTE network antenna
[0121] In view of the problems in communication network construction that arise from the
large size of smart antennas, and on the basis of the research findings of this invention
on miniaturization, higher radiation efficiency and dual polarization of single antenna
elements, the product according to this embodiment aims to improve a number of problems
caused by the present large antennas, such as difficulty in engineering construction,
etc., and relates to a miniaturized TD-LTE eight-channel dual-polarized smart antenna
subjected to internal confidential tests.
[0122] According to the fact that electromagnetic wave has different transmission characteristics
in different mediums, the antenna is filled with a low-loss high-frequency medium,
and adopts the structure of two or more layers of radiating patches and the shape
of components, dielectric constant and feeding method in Embodiment 17, so as to greatly
reduce the physical dimensions and further achieve the multi-frequency, multi-model
and miniaturized effects.
[0123] Unlike the conventional half-wave element type antennas, this embodiment adopts the
microwave aperture-coupled multi-cavity laminated plane microstrip radiation mechanism
for a high unit element gain (the unit gain of the MM antenna is 8.5dBi, in contrast
to an ordinary unit element gain of 5.5dBi). The horizontal and vertical beam widths
both range from 75 to 80°, and the front-to-rear ratio is above 25dB.
[0124] This invention may be implemented in other ways except the above embodiments. Technical
schemes from identical replacement or equivalent transformation should by no means
fall in the protection scope as claimed by this invention.
1. A dual-polarized microstrip antenna includes:
at least one metal radiating patch, i.e. a first metal radiating patch;
at least one ground metal layer whereon excitation micro-slots are etched;
at least one dielectric layer, i.e. a first dielectric layer; it is preferred that
the dielectric layer is a resonant dielectric layer, particularly a resonant dielectric
layer of air or a layer of other optimization resonant materials; the dielectric layer
is positioned between the first metal radiating patch and the ground metal layer;
and
at least one set of bipolar excitation microstrip lines.
2. A dual-polarized microstrip antenna unit according to Claim 1 is characterized in that an independent VSWR adjustment unit connected with the first metal radiating patch
is arranged, and the metal radiating patch is circular.
3. A dual-polarized microstrip antenna according to Claim 1 is characterized in that the excitation micro-slots are two discretely vertical H-shaped excitation micro-slots
with the same dimensions, that is, the two H-shaped excitation micro-slots are not
in contact, it is preferred that the H-shaped excitation micro-slots are identical
in dimensions so as to ensure that the dual-polarized antenna has consistent radiation
performance optimization in the two polarization directions, it is preferred that
the cross arms "-" of the two H-shaped excitation micro-slots are mutually vertical
for the purpose of guaranteeing excellent polarization isolation of the dual-polarized
antenna.
4. A dual-polarized microstrip antenna according to Claim 1 is characterized in that the thickness of the dielectric layer ranges from 1 to 40mm and is preferred to range
from 2 to 10mm; and a dielectric substrate 6 is arranged between the bipolar excitation
microstrip lines and the ground metal layer, and the thickness of the dielectric substrate
ranges from 0.2 to 5mm and is preferred to range from 0.5 to 2mm.
5. A dual-polarized microstrip antenna according to Claim 3 is characterized in that front ends of the two excitation microstrip lines are linear, it is preferred that
the front end of each excitation microstrip line is vertical to the cross arm "-"
of one H-shaped excitation micro-slot, and the front ends pass through the middle
points of the cross arms "-" of the respective H-shaped excitation micro-slots; the
front ends of the two excitation microstrip lines are discretely vertical for the
purposes of guaranteeing the polarization isolation of the dual-polarized antenna
and leading it to be used as two independent antennas; the distance between the two
discrete front ends which are not in contact ranges from 1 to 8mm; and the perpendicularity
between the two discrete front ends which are not in contact ranges from 60 to 90°
and is preferred to be 90°.
6. A dual-polarized microstrip antenna according to Claim 3 is characterized in that the two H-shaped excitation micro-slots are identical in size, width, slot depth,
slot width and shape; it is preferred that two ends of the single cross arm "-" of
each H-shaped excitation micro-slot intersect with the middle points of the two vertical
arms " | "; it is preferred that the single cross arm "-" and the two vertical arms
" | " of each H-shaped excitation micro-slot are linear; it is preferred that the
single cross arm "-" of each H-shaped excitation micro-slot is vertical to the two
vertical arms " | " thereof; it is preferred that the virtual extension line of the
cross arm "-" of at least one H-shaped excitation micro-slot squarely passes through
the middle point of the cross arm "-" of the other H-shaped excitation micro-slot;
it is preferred that at least one straight line passing through the central point
of the first metal radiating patch is positioned on the vertical surface of the cross
arm "-" of at least one H-shaped excitation micro-slot, the vertical surface squarely
passes through the middle point of the cross arm "-" of the other H-shaped excitation
micro-slot, and the vertical surface is vertical to the plane on which the slot bottom
of the former H-shaped excitation micro-slot is positioned; it is preferred that the
slot bottoms of the two H-shaped excitation micro-slots are on the same plane and
the slot surfaces of the two H-shaped excitation micro-slots are on the same plane;
in an area of the same shape and size on the ground metal layer vertically projected
by the first metal radiating patch, it is preferred that each H-shaped excitation
micro-slot independently occupies half the area of the same shape and size, each H-shaped
excitation micro-slot or the length of the cross arm "-" of each H-shaped excitation
micro-slot or the total length of the cross arm "-" and the two vertical arms " |
" of each H-shaped excitation micro-slot is maximized, and the total slot area of
each cross arm "-" and the two vertical arms " | " of each H-shaped excitation micro-slot
is maximized.
7. A dual-polarized microstrip antenna according to Claim 6 is characterized in that a second dielectric layer is arranged, it is preferred that the second dielectric
layer is a resonant dielectric layer, particularly a resonant dielectric layer of
air or a layer of other optimization resonant materials.
8. A dual-polarized microstrip antenna according to Claim 7 is characterized in that the second dielectric layer is a slot cavity used to prevent the impact among arrays
during the arrayed use of the antenna; and the height of the slot cavity depends on
the relevance/isolation parameters determined in the ultimate antenna applications.
9. A dual-polarized microstrip antenna according to Claim 8 is characterized in that the slot cavity is preferred to be a cavity formed above the ground metal layer by
the metal support for system ground, of which the depth ranges from 0.5 to 20mm; if
the first and the second dielectric layers are air layers and no other radiating patches
or components are arranged above the second dielectric layer, the first and the second
dielectric layers are connected into a whole and the second dielectric layer serves
as one part of the first dielectric layer.
10. A dual-polarized microstrip antenna according to any one of Claims 1-9 is characterized in that the heights and lengths of the radiating patch, the dielectric layers and the ground
metal layer are determined based on frequency band and wavelength.
11. A dual-polarized microstrip antenna according to Claim 10 is characterized in that a second metal radiating patch is arranged; it is preferred that the second metal
radiating patch is identical to the first metal radiating patch in material, thickness
and shape; it is preferred that the size of the second metal radiating patch is freely
optimized according to the requirements for widening the frequency band; it is preferred
that the size of the second metal radiating patch is ±20% of that of the first metal
radiating patch; and it is preferred that the second metal radiating patch is arranged
above the second dielectric layer so as to separate the first dielectric layer into
two areas, where the lower part is preferred to be the slot cavity and the upper part
is preferred to be a first dielectric layer area between the first and the second
metal radiating patches.
12. A dual-polarized microstrip antenna according to Claim 11 is characterized in that an air dielectric layer, namely air dielectric layer A, is arranged, which provides
an undisturbed work space height for the excitation microstrip lines interfaced with
a source, the work space height needs to exceed λ/N (N is about 10-8); it is preferred
that a metal reflection ground baseplate is arranged and used for providing excellent
backward radiation isolation for radiating units and providing convenient system ground
for source parts, feed source parts or radiating units.
13. A dual-polarized microstrip antenna is characterized by including two dual-polarized antenna units connected together through a two-way power
divider, in each dual-polarized antenna unit, a first air dielectric layer, a first
metal radiating patch, a second air dielectric layer, a ground metal patch, a first
dielectric substrate, bipolar excitation microstrip lines, a third air dielectric
layer and a metal reflection baseplate are sequentially arranged from top to bottom,
that is, opposite to the direction of microwave radiation.
14. A dual-polarized microstrip antenna according to Claim 13 is characterized in that the first metal radiating patch is connected with an antenna cover through an insulation
screw, the ground metal patch covers the upper end surface of the first dielectric
substrate and is fixedly connected with a hollow metal support fixed on the metal
reflection baseplate, bipolar excitation microstrip lines, of which the front ends
are orthogonal but not in contact, are arranged on the lower end surface of the first
dielectric substrate, and two stimulated radiation micro-slots, orthogonal but not
in contact, are formed on the upper end surface of the ground metal patch and are
corresponding to the front ends of the bipolar excitation microstrip lines in an orthogonal
way.
15. A dual-polarized microstrip antenna is characterized by including four dual-polarized antenna units connected together through a four-way
power divider in an antenna cover, the four dual-polarized antenna units are distributed
in a line in the antenna cover, in each dual-polarized antenna unit, a first air dielectric
layer, a first metal radiating patch, a second air dielectric layer, a ground metal
patch, a first dielectric substrate, bipolar excitation microstrip lines, a third
air dielectric layer and a metal reflection baseplate are sequentially arranged from
top to bottom.
16. A dual-polarized microstrip antenna according to Claim 15 is characterized in that the first metal radiating patch is connected with the antenna cover through an insulation
screw, the ground metal patch covers the upper end surface of the first dielectric
substrate and is fixedly connected with a hollow metal support fixed on the metal
reflection baseplate, bipolar excitation microstrip lines, of which the front ends
are orthogonal but not in contact, are arranged on the lower end surface of the first
dielectric substrate, and two stimulated radiation micro-slots, orthogonal but not
in contact, are formed on the upper end surface of the ground metal patch and are
corresponding to the front ends of the bipolar excitation microstrip lines in an orthogonal
way.
17. A dual-polarized microstrip antenna is characterized by including four dual-polarized antenna units connected together through a four-way
power divider in an antenna cover, the four dual-polarized antenna units are distributed
in two lines and two rows in the antenna cover, in each dual-polarized antenna unit,
a first air dielectric layer, a first metal radiating patch, a second air dielectric
layer, a ground metal patch, a first dielectric substrate, bipolar excitation microstrip
lines, a third air dielectric layer and a metal reflection baseplate are sequentially
arranged from top to bottom.
18. A dual-polarized microstrip antenna according to Claim 17 is characterized in that the first metal radiating patch is connected with the antenna cover through an insulation
screw, the ground metal patch covers the upper end surface of the first dielectric
substrate and is fixedly connected with a hollow metal support fixed on the metal
reflection baseplate, bipolar excitation microstrip lines, of which the front ends
are orthogonal but not in contact, are arranged on the lower end surface of the first
dielectric substrate, and two stimulated radiation micro-slots, orthogonal but not
in contact, are formed on the upper end surface of the ground metal patch and are
corresponding to the front ends of the bipolar excitation microstrip lines in an orthogonal
way.
19. A dual-polarized microstrip antenna is characterized by including two independent dual-polarized antennas in an antenna cover and each dual-polarized
antenna includes two dual-polarized antenna units connected together through a two-way
power divider, in each dual-polarized antenna unit, a first air dielectric layer,
a first metal radiating patch, a second air dielectric layer, a ground metal patch,
a first dielectric substrate, bipolar excitation microstrip lines, a third air dielectric
layer and a metal reflection baseplate are sequentially arranged from top to bottom.
20. A dual-polarized microstrip antenna according to Claim 19 is characterized in that the first metal radiating patch is connected with the antenna cover through an insulation
screw, the ground metal patch covers the upper end surface of the first dielectric
substrate and is fixedly connected with a hollow metal support fixed on the metal
reflection baseplate, bipolar excitation microstrip lines, of which the front ends
are orthogonal but not in contact, are arranged on the lower end surface of the first
dielectric substrate, and two stimulated radiation micro-slots, orthogonal but not
in contact, are formed on the upper end surface of the ground metal patch and are
corresponding to the front ends of the bipolar excitation microstrip lines in an orthogonal
way.
21. A dual-polarized microstrip antenna is characterized by including eight dual-polarized antenna units connected in an antenna cover through
an eight-way power divider, in each dual-polarized antenna unit, a first air dielectric
layer, a first metal radiating patch, a second air dielectric layer, a ground metal
patch, a first dielectric substrate, bipolar excitation microstrip lines, a third
air dielectric layer and a metal reflection baseplate are sequentially arranged from
top to bottom.
22. A dual-polarized microstrip antenna according to Claim 21 is characterized in that the first metal radiating patch is connected with the antenna cover through an insulation
screw, the ground metal patch covers the upper end surface of the first dielectric
substrate and is fixedly connected with a hollow metal support fixed on the metal
reflection baseplate, bipolar excitation microstrip lines, of which the front ends
are orthogonal but not in contact, are arranged on the lower end surface of the first
dielectric substrate, and two stimulated radiation micro-slots, orthogonal but not
in contact, are formed on the upper end surface of the ground metal patch and are
corresponding to the front ends of the bipolar excitation microstrip lines in an orthogonal
way.
23. A dual-polarized microstrip antenna is characterized by including four independent dual-polarized antennas in an antenna cover and the dual-polarized
antenna is characterized by including two dual-polarized antenna units connected together through a two-way power
divider., in each dual-polarized antenna unit, a first air dielectric layer, a first
metal radiating patch, a second air dielectric layer, a ground metal patch, a first
dielectric substrate, bipolar excitation microstrip lines, a third air dielectric
layer and a metal reflection baseplate are sequentially arranged from top to bottom.
24. A dual-polarized microstrip antenna according to Claim 23 is characterized in that the first metal radiating patch is connected with the antenna cover through an insulation
screw, the ground metal patch covers the upper end surface of the first dielectric
substrate and is fixedly connected with a hollow metal support fixed on the metal
reflection baseplate, bipolar excitation microstrip lines, of which the front ends
are orthogonal but not in contact, are arranged on the lower end surface of the first
dielectric substrate, and two stimulated radiation micro-slots, orthogonal but not
in contact, are formed on the upper end surface of the ground metal patch and are
corresponding to the front ends of the bipolar excitation microstrip lines in an orthogonal
way.
25. A dual-polarized microstrip antenna is characterized by including four independent dual-polarized antennas in an antenna cover, the dual-polarized
antenna is characterized by including four dual-polarized antenna units connected together through a four-way
power divider, in each dual-polarized antenna unit, a first air dielectric layer,
a first metal radiating patch, a second air dielectric layer, a ground metal patch,
a first dielectric substrate, bipolar excitation microstrip lines, a third air dielectric
layer and a metal reflection baseplate are sequentially arranged from top to bottom.
26. A dual-polarized microstrip antenna according to Claim 25 is characterized in that the first metal radiating patch is connected with the antenna cover through an insulation
screw, the ground metal patch covers the upper end surface of the first dielectric
substrate and is fixedly connected with a hollow metal support fixed on the metal
reflection baseplate, bipolar excitation microstrip lines, of which the front ends
are orthogonal but not in contact, are arranged on the lower end surface of the first
dielectric substrate, and two stimulated radiation micro-slots, orthogonal but not
in contact, are formed on the upper end surface of the ground metal patch and are
corresponding to the front ends of the bipolar excitation microstrip lines in an orthogonal
way.
27. A dual-polarized microstrip antenna is characterized by including a first air dielectric layer, a first metal radiating patch, a second air
dielectric layer, a ground metal patch, a first dielectric substrate, excitation microstrip
lines, a third air dielectric layer and a metal reflection baseplate sequentially
arranged from top to bottom in an antenna cover.
28. A dual-polarized microstrip antenna according to Claim 27 is characterized in that the ground metal patch covers the upper end surface of the first dielectric substrate
and is fixedly connected with a hollow metal support fixed on the metal reflection
baseplate, stimulated radiation micro-slots are formed on the upper end surface of
the ground metal patch, the first metal radiating patch is circular, where an adjusting
screw is fixed in the center, and the first metal radiating patch is fixed through
the threaded connection between the adjusting screw and the internal threads in the
center of the antenna cover.
29. A wireless communication relay station employing the dual-polarized microstrip antenna
in any one of Claims 1-28 is characterized by including at least one dual-polarized microstrip antenna, and it is preferred that
the input port of the dual-polarized microstrip antenna is connected with the retransmission
end of the relay station.
30. A wireless communication base station employing the dual-polarized microstrip antenna
in any one of Claims 1-28 is characterized by including at least one dual-polarized microstrip antenna.
31. A communication system employing the dual-polarized microstrip antenna in any one
of Claims 1-28 is characterized by including at least one piece of equipment equipped with the dual-polarized microstrip
antenna.