[0001] The invention relates to isolated polypeptide(s) interacting with glycosylated Muc2
proteins in mucus layers of various biological tissues, especially colonic tissue.
The invention also relates to a method for synthesizing such polypeptide(s) via chemical
synthesis (i.e. involving solid phase synthesis) or via biotechnological production.
[0002] Therefore, the invention also relates to nucleic acid molecule(s) encoding polypeptide(s)
of the invention, as well as nucleic acid delivery system such as vectors and cells
or populations of cells comprising nucleic acid molecule(s) or vector(s) in relation
with the invention.
[0003] The invention also relates to composition(s) comprising the same, in particular to
pharmaceutical composition(s) including if necessary carrier(s) or adjuvant(s).
[0004] The invention may be used for staining cell(s) in
in vivo, ex vivo, especially
in vitro, experiments, in particular in live microscopy experiments.
[0005] According to a particular embodiment, the molecule(s) comprising a polypeptide of
the invention are used as probe(s) for staining mucus potentially containing Muc2
protein(s), especially, but not exclusively, colonic mucus produced by eukaryotic
cell(s).
[0006] Mucus production or composition in animal or human body might be modified as a result
of physiological events as well as a result of several disease conditions such as
neoplasic disease(s), non-limitatively including mucinous carcinoma(s), gastric cancer(s)
or colorectal cancer(s), especially colon cancer(s), or diseases such as cystic fibrosis
or intestine inflammatory disease(s) such as inflammatory bowel disease (IBD) and
ulcerative colitis.
[0007] In addition to the possibility to use the claimed molecule(s) for immunostaining
fixed cells, and according to another particular embodiment, the molecule(s) of the
invention can also be used as a marker of degranulation event(s), especially in living
neutrophiles.
[0008] The human gastro-intestinal mucus layer establishes a physical barrier between the
luminal content and the epithelial surface. This layer provides efficient protection
against luminal aggressions [1] and is continuously removed (enzymatic destruction
and mechanical shearing, i.e. peristaltism) and renewed through the secretory activity
of epithelial goblet cells [2]. It was recently suggested that the mucus layer allows
constitution of an oxygen gradient diffusing from the intestinal epithelium into the
lumen [3] even though no quantification was yet achieved. This gradient plays a critical
role in Shigella virulence modulation in the vicinity of the intestinal epithelial
barrier, and possibly controls the virulence of other pathogens in addition to keeping
strictly anaerobic bacteria away from the vicinity of the epithelium [4].
In vivo observations are a prerequisite for oxygen detection in this environment. In order
to study this largely unexplored microenvironment at epithelial interface using emerging
live imaging techniques (two-photons microscopy, fluorescent life-time imaging (FLIM)
and high resolution microscopy (PALM and STORM)), it is required to develop specific,
non-toxic and nondestructive colonic mucus fluorescent marker(s).
[0009] The colonic mucus is composed of two distinct layers; a firmly adherent layer associated
to the epithelial surface and a loosely, more fluid, adherent one. The later is probably
the result of bacterial degradation and proteolysis [5]. It is composed of 95% water
and 5% mucin glycoprotein molecules, salt, immunoglobulins (IgA and IgG) and trefoil
peptides [6]. Among secreted mucins, the main gel forming molecules are Muc2, Muc5ac,
Muc5b and Muc6 (expressed from chromosome 11p15.5) [7], Muc2 is the predominant mucin
in the colonic mucus layer and is highly glycosylated, allowing its protection from
proteolysis in the lumen [8] [9] [10] [11]. Muc2 shows differential glycosylation
profiles in the small intestine (ileum) and in the large intestine (colon) respectively
enriched in sialylated and sulfated oligosaccharide species [9] [12]. Mucus production
and composition modulations are commonly observed in the major inflammatory bowel
diseases (IBD) like Crohn disease [13] [14] and ulcerative colitis [15]. Specifically,
Muc2 expression is upregulated in malignant tumors of a broad range of organs [16]
including lung [17], stomach [18] [19], breast [20], prostate [21], bile ducts [22]
and colon [23]. Detecting the nature and amount of mucus is important to envision
the diagnostic and prognosis of various pathological conditions.
[0010] Part of the process of identifying a molecule able to specifically bind human colonic
mucus, the mucus adhesion properties of commensal bacteria were observed. These microorganisms,
such as
Lactobacillus spp, express cell-surface proteins named Mucus binding proteins (MucBP, PFAM PF06458)
that are involved in intestinal mucus adhesion. As an example, in the human intestine,
Lactobacillus reuteri (
L. reuteri) has been identified as an inhabitant of the ileum and colon loosely adherent to
the mucus layer [24]. The MucBP protein family is characterized by the presence of
well-conserved mucin binding domains (MucBD) expressed as repeats in many cell-surface
MucBP of
L. reuteri [25] [26]. Considering that there is a need for tools suitable for mucus observation
in various pathological situations, in particular for mucus observation in specific
intestine compartments affected by such pathological situations, the inventors have
identified in several bacteria, regions whose amino-acid sequences may be used to
prepare polypeptides useful for mucus observation.
[0011] Through this study, novel binding properties of
L. reuteri Mucus Binding Proteins to human colonic mucus were characterized. It was demonstrated
that the considered domain of interest binds to mucus proteins independently of the
previous characterized MUB domain. This domain is a novel MucBD of 70 amino acids
length, hereafter named MUB
70, which can be individualized as a polypeptide able to oligomerize and to specifically
bind the glycosylated moiety of Muc2.
[0012] Therefore, the invention relates to a a polypeptide having a length from 10 to 80
amino-acid residues and whose polypeptidic sequence comprises or consists of the consensus
sequence P1(X
a)P3(X
b)P5(X
c)P6(X
d)P7 (SEQ ID N° 1) disclosing, from N-terminal to C-terminal ends, patterns P1, P3,
P5, P6 and P7, which are defined as follows:
P1 represents the amino-acid sequence VXYXD/N, where X represents any amino-acid,
P3 represents the amino-acid sequence GY,
P5 represents the amino-acid sequence F/YD,
P6 represents amino-acid residue D, and
P7 represents amino-acid residue Q;
and wherein said patterns are further characterized by spacer amino-acid segments
(X
a), (X
b), (X
c) and (X
d) containing respectively a, b, c and d numbers of any amino-acid residue(s) which
are defined as follows:
a ranges from 2 to 33,
b ranges from 2 to 11,
c ranges from 1 to 2,
d ranges from 1 to 3;
and wherein said polypeptide interacts with glycosylated Muc2 protein(s), in particular
interacts with sulfated moieties of glycosylated Muc2 protein, of human colonic mucus
or human intestinal mucus.
[0013] According to a particular preferred embodiment, the polypeptidic sequence of a polypeptide
of the invention comprises or consists of the consensus sequence P1(X
m)P2(X
n)P3XP4(X
p)P5(X
q)P6(X
r)P7X
3P8 (SEQ ID N°2), X being any amino-acid residue, said consensus sequence disclosing,
from N-terminal to C-terminal ends, patterns P1, P2, P3, P4, P5, P6, P7 and P8, which
are defined as follows:
P1 represents the amino-acid sequence VXYXD/N, where X represents any amino-acid,
P2 represents the amino-acid sequence YS/TT,
P3 represents the amino-acid sequence GY,
P4 represents amino-acid residue L,
P5 represents the amino-acid sequence F/YD,
P6 represents amino-acid residue D,
P7 represents amino-acid residue Q, and
P8 represents amino-acid residue V,
and wherein said patterns are further characterized by spacer amino-acid segments
(X
m), (X
n), (X
p), (X
q) and (X
r) containing respectively m, n, p, q and r numbers of any amino-acid residue(s) which
are defined as follows:
m ranges from 1 to 23,
n and p range from 1 to 10,
q is 1 or 2,
r ranges from 1 to 3.
[0014] Consequently, the consensus sequence identified under consensus sequence (SEQ ID
N°2) can also be written VXYXD/N(X
m)YS/TT(X
n)PGYXL(X
p)F/YD(X
q)D(X
r)QX
3V, wherein X is a symbol representing any amino-acid, including modified or non-conventional
amino-acids, said symbol X being, when necessary, followed by a subscript number indicating
the number of amino-acid residues incorporated into the consensus sequence. The absence
of subscript number indicates that only one amino-acid residue is incorporated. The
same abbreviations are generally used for the purpose of the present disclosure, unless
differently specified.
[0015] In the consensus sequences disclosed above and more generally in the amino-acid sequences
disclosed herein, the symbol "/" inserted between two amino-acid residues means that
any of these two amino-acid residues is to be found in a polypeptide of the invention
encompassed by consensus sequences disclosed herein, as an alternative. As a consequence,
a symbol such as "X/X" represents the presence of only one amino-acid residue having
one or the other proposed nature. A symbol such as "D/N" represents only one amino-acid
residue chosen among amino-acid D and amino-acid N. Conventional abbreviations are
used herein, with respect to the single letter amino-acids alphabet.
[0016] By a "pattern", it is meant an amino-acid residue or a series of amino-acid residues
that are to be found substantially unchanged, in their nature and/or sequence(s) and/or
position(s), within all polypeptides encompassed by the consensus sequences disclosed
above. The described patterns are thus further characterized, as a whole, by the spacer
segments "Xi" providing a determined distance (expressed as a number of amino-acids)
between especially two of them.
[0017] The consensus sequences disclosed herein were identified starting from sequence alignments
performed by the inventors, as exemplified within the present disclosure, through
conventional alignment methods or algorithms.
[0018] According to another particular preferred embodiment, the polypeptidic sequence of
a polypeptide of the invention comprises or consists in a sequence having at least
30% identity with SEQ ID N°3, or comprises or consists in SEQ ID N° 3, or comprises
or consists of a fragment, especially a fragment of contiguous amino-acid residues
of at least 10 amino-acid residues, of any one of the sequences or fragment thereof
encompassed by the consensus sequences SEQ ID N°1 or SEQ ID N°2 or fragments thereof,
or of any one of the sequences or fragment thereof encompassed by the sequences having
at least 30% identity with SEQ ID N°3 or fragment thereof.
[0019] According to a particular embodiment, a polypeptide of the invention comprises or
consists in a sequence having at least 23%, 25%, 29%, 40% or 50% identity with SEQ
ID N°3, or a fragment thereof. Identity percentages can reach 60%, 70% or more.
[0020] With respect to the interaction with glycosylated Muc2 protein(s) of human colonic
or intestinal mucus, the expression "interacts" used herein means that a polypeptide
of the invention binds said components of the mucus, or enters into close vicinity
with such components when present in colonic mucus layers, i.e. loose mucus layer
or firm mucus layer, or in intestine mucus.
[0021] According to a particular embodiment, a polypeptide of the invention interacts with
glycosylated Muc2 protein(s) through sulfated moieties of glycosylated Muc2 protein(s).
[0022] According to a specific embodiment, a polypeptide of the invention interacts with
glycosylated human, rabbit and guinea pig Muc2 protein(s) but not with murine glycosylated
Muc2 protein(s).
[0023] According to a particular embodiment, a polypeptide of the invention specifically
interacts with mammalian glycosylated Muc2 protein(s), and in particular with glycosylated
Muc2 protein(s), from colonic mucus or intestine mucus.
[0024] The expression "specifically interacts with Muc2 protein(s)" relates to the fact
that the molecule(s) of the invention do(es) not interact or not significantly interact
with other secreted gel-forming mucins, taken alone or according to any combination
between them, said other secreted gel-forming mucins including for example Muc5ac,
Muc5b or Muc6.
[0025] According to a particular embodiment, polypeptide(s) of the invention can have a
dimeric or a trimeric quaternary structure.
[0026] According to a particular preferred embodiment, polypeptide(s) of the invention are
able to dimerize.
[0027] According to a particular embodiment, a polypeptide of the invention has a length
from 10 to 100 amino-acid residues, especially from 10 to 80 or 90 amino-acid residues,
in particular up to 68, 69, 70, 71 or 72 amino-acid residues. In a particular embodiment
a polypeptide of the invention has a length of 15, 20, 30, 40, 50, 60, 65, 68, 69,
70, 71 or 72 amino-acid residues.
[0028] The length of the polypeptide may vary depending on the species, from which it was
identified, especially when identified from
Lactobacillus protein(s).
[0029] According to a particular embodiment, the polypeptidic sequence of a polypeptide
of the invention is part of the N-terminal sequence of a mucus-binding (MUB) domain,
especially a mucus-binding (MUB) domain of a species selected amongst the
Lactobacillus, Streptococcus, Cryptobacterium, Weissella, Granulicatella or
Leuconostoc species, and in particular is part of any one of the repeats of a
L. reuteri mucus-binding (MUB) domain (For example it is part of a polypeptide having a sequence
disclosed in Table 2).
[0030] By "part of", it is meant that the information relative to the contents in amino-acid
residues of the polypeptide(s) of the invention (i.e. the "nature" of said amino-acid
residues and their sequence arrangement) can be derived or identified or deduced from
the contents of polypeptidic domain(s) or protein(s) or fragment(s) thereof identified
as relevant within the present disclosure.
[0031] Polypeptides of short length may be preferred and may be obtained by shortening the
amino-acid sequence of the identified polypeptides, to the extent that the shorter
polypeptides keep the capacity of the original polypeptides to bind human colonic
mucus through glycosylated Muc2 protein. Advantageously, a short polypeptide of the
invention might be 10, or 17, or 25 to 40 amino-acid long, or 10, or 17, or 25 to
60 amino-acid long.
[0032] According to a specific embodiment, the polypeptidic sequence of a polypeptide of
the invention can be found within the N-terminal sequence of the repeats of a
L. reuteri mucus-binding (MUB) domain, i.e, its sequence can be identified or deduced from the
N-terminal sequence(s) of the repeats of a
L. reuteri mucus-binding (MUB) domain, after aligning said N-terminal sequence(s) with the consensus
sequences described herein (see Table 1).
Table 1. MUB70 repeat sequences comparison in L. reuteri mucus binding precursor AF120104. Data were obtained using BlastP software, comparing 13 MucBDs (SEQ ID N° 5 to SEQ
ID N° 16), identified by their amino acids numbers boundaries, within AF120104 protein.
MUB domain repeat |
aa numbers |
E value |
% identity |
% positive |
1 |
548-727 |
2e-13 |
35 |
50 |
2 |
742-924 |
1e-13 |
35 |
50 |
3 |
939-1112 |
1e-13 |
32 |
51 |
4 |
1127-1297 |
1e-13 |
35 |
50 |
5 |
1317-1500 |
2e-86 |
85 |
91 |
6 |
1501-1684 |
3e-101 |
98 |
99 |
7 |
1685-1868 |
4e-104 |
100 |
100 |
8 |
1869-2052 |
3e-101 |
98 |
99 |
9 |
2053-2236 |
4e-104 |
100 |
100 |
10 |
2237-2420 |
3e-101 |
98 |
99 |
11 |
2421-2604 |
2e-100 |
98 |
98 |
12 |
2605-2788 |
3e-93 |
92 |
95 |
13 |
2974-3165 |
1e-08 |
29 |
47 |
[0033] The "repeats" of
L.
reuteri mucus-binding (MUB) domain are illustrated in Table 1 and the figures and the examples,
as a domain encompassing around 200 amino-acid residues. Although different for each
repeat, the amino-acid sequences of these repeats show common functional features
related to mucus binding. The consensus sequences described herein share patterns
that are considered important for said common binding functional features.
[0034] The annotated GenBank entry of the mub gene from
L. reuteri, encoding the Mub protein from
L. reuteri containing such a mucus-binding (MUB) domain can be found under accession number
AF120104.1 (SEQ ID N°17 and 18).
[0035] By comparison of the Mucus Binding proteins of other organisms, especially
Lactobacillus, it has been possible to determine similarly functional domains with respect to Muc2
protein binding in colonic mucus, thereby providing the definition of further polypeptides.
Accordingly, the invention relates to a polypeptide having a length from 10 to 80
amino acid residues and whose sequence can be identified in the N-terminal sequence
of the repeats of a Mucus Binding Domain (MUcBD) present in mucus binding protein
(MucBP) of
L. gasseri, L. johnsonii, L fermentum or
L. Acidophilus (see FIG 1C and Table 2), or of
Streptococcus, Weissella, or
Leuconostoc species (see Table 2).
[0036] According to a specific embodiment, a polypeptide of the invention comprises or consists
of a fragment of the polypeptide having the sequence of any one of SEQ ID N°5 to SEQ
ID N°16, or any one of SEQ ID N°19 to SEQ ID N°22, especially a fragment within the
N-terminal extremity of said polypeptide, or this polypeptide has an amino-acid sequence
comprising or consisting of any one of SEQ ID N°23 to 57 or a fragment thereof.
[0037] In a particular embodiment, a polypeptide of the invention has the sequence SEQ ID
N°3 or SEQ ID N°4 or has an amino-acid sequence comprising or consisting of any one
of SEQ ID N°23 to 57 or a fragment thereof.
[0038] In a specific embodiment, a polypeptide of the invention is a fragment of contiguous
amino-acid residues of at least 10 amino-acid residues of SEQ ID N°3 or SEQ ID N°4
or of any one of SEQ ID N°5 to 16 or SEQ ID N°19 to 57.
[0039] The polypeptide of the invention advantageously lacks or is devoid of hydrophobic
domain(s). According to a preferred embodiment, it does not penetrate into living
cells, especially eukaryotic cells and in particular it does not penetrate into such
cells of human colon, e.g. goblet cells.
[0040] However in a particular embodiment, polypeptide(s) of the invention penetrate into
fixed cell(s).
[0041] According to a particular embodiment, polypeptide(s) of the invention is/are not
toxic to cells. Non-limitative examples of cells that might be impervious to the polypeptides
of the invention are epithelial cells, especially human epithelial cells, myeloid
cells, especially human myeloid cells, Embryonic Stem (ES) cells, especially human
Embryonic Stem (ES) cells, dendritic cells, especially mouse dendritic cells.
[0042] However, it was found that, according to a particular embodiment, the polypeptides
of the invention target components found at the level of neutrophile granules, especially
fixed neutrophile granules, which are not yet characterized. In
vitro incubation of the polypeptide with living neutrophiles, or analysis of fixed neutrophiles,
therefore allows the detection of degranulation events.
[0043] In a particular embodiment, a polypeptide of the invention has an additional Cysteine
residue at its N-terminal extremity. The presence of a free Cysteine residue may be
of interest to enable attachment of additional moieties, especially markers or labels
or other active groups.
[0044] However, according to another particular embodiment, no specific amino-acid residue
is required at the N-terminal extremity of a polypeptide of the invention to achieve
attachment of additional moieties, since any amino-acid carboxy group or another chemical
group of a polypeptide of the invention can bo used to this end.
[0045] In a particular embodiment of the invention, the polypeptide comprises or is constituted
by L amino acid residues.
[0046] In a particular embodiment, the polypeptides comprise or are fully constituted by
D-amino acids (excluding the chiral form of amino acids naturally synthesized by living
organisms, which is the L-form), or comprise or are fully constituted by modified
aminoacids. Such modifications might help preventing proteolytic cleavage by active
enzymes, especially when the polypeptide is administered
in vivo.
[0047] According to a particular embodiment, polypeptide(s) of the invention is/are labelled,
especially by coupling with a fluorophore such as Cy5, Cys5.5, or a biotin.
[0048] According to a particular embodiment, the invention enables the detection or the
monitoring of mucus production and/or mucus composition in human or animal body(ies),
especially the detection or the monitoring of human colonic or intestinal mucus. According
to a particular embodiment, the invention makes use of labeled polypeptide(s) as probe(s),
especially as physiological labeled probe(s) for staining Muc2 protein(s) contained
in mucus layer(s) of cell or tissue sample(s).
[0049] According to a particular embodiment, the invention makes use of labeled polypeptide(s)
as probe(s), especially labeled probe(s) for staining fixed or living neutrophile(s).
Staining living neutrophile(s) is preferably achieved
in vitro.
[0050] It has further been observed by the inventors that Muc2 proteins are also expressed
in other tissues of the human body, either when said tissues are in a healthy state
or to the contrary when they reflect a pathological state.
[0051] Hence, the polypeptides of the invention may be used for detection or monitoring
of mucus production and/or composition, in other tissues such as lung tissue or epithelial
tissue.
[0052] In a particular embodiment, polypeptide(s) of the invention is/are associated in
a molecule with a reporter or a carrier molecule or with an active molecule such as
drug(s) (i.e. anti-inflammatory molecule(s)) or enzyme(s) such as DNase or chitinase
(e.g. cystic fibrosis context), or fragments thereof.
[0053] The polypeptides and molecules of the invention can be prepared by conventional routes,
in particular chemically synthesized or engineered through biotechnological methods.
[0054] In a particular embodiment wherein the polypeptide of the invention has the sequence
SEQ ID N°3 or SEQ ID N°4 or a continuous fragment thereof, chemical synthesis is achieved
through Solid-Phase synthesis, especially trough Fmoc-SPPS, including steps of coupling
with Fmoc-Asp(OtBu)-(Dmb)Gly-OH dipeptides when the synthesis reaches the positions
29 and/or 50 and/or 63 in reference to the C-terminus of SEQ ID N°3.
[0055] Additionally, said solid-phase synthesis can include steps of incorporation of pseudoproline
dipeptides when the synthesis reaches positions 10 and/or 40 in reference to the C-terminus
of SEQ ID N°3.
[0056] This synthesis is illustrated in the examples and can be similarly used for other
polypeptides having analogous amino-acid composition.
[0057] When polypeptide(s) of the invention are prepared in recombinant cells, these cells
are recombined with a polynucleotide expressing the polypeptide, using nucleic acid
expression systems such as plasmid vectors.
[0058] Therefore, the invention also encompasses nucleic acid molecule(s) encoding polypeptidic
sequence(s) of isolated polypeptide(s) as described herein and nucleic acid expression
system(s), especially vector(s) comprising such nucleic acid molecule(s) under expression
control sequences.
[0059] According to a particular embodiment, production of isolated polypeptide(s) of the
invention is achieved through the transfection of such vector(s) in cell(s) such as
E.coli cell(s) or eukaryotic cells, including yeast cells, insect cells or mammalian
cells, the culture of said cell(s) and the recovery of the protein result of the culture,
especially the recovery of the polypeptide(s) of the invention.
[0060] The invention also encompasses cell(s) or population of cells comprising a nucleic
acid molecule or a vector as described herein, especially for use in a method of production
of isolated or purified polypeptide(s) of the invention.
[0061] The invention also relates to composition(s) comprising polypeptide(s) of the invention,
in particular pharmaceutical composition(s) when the polypeptide is associated with
an active ingredient having a therapeutic effect, said composition comprising if necessary
pharmaceutically acceptable excipient(s), such as carrier(s) and/or adjuvant(s),
[0062] According to a particular embodiment, the molecule(s) derived from theses polypeptides
according to the invention might be used in a method for manufacturing a medicament,
when a step of association of a polypeptide of the invention with a biologically active
molecule is performed, and therefore used in a method of therapy practised on human
or animal body(ies), in particular for treating a disease selected form the following
group, or its symptom(s): neoplasic disease(s), including mucinous carcinoma(s), gastric
cancer(s) or colorectal cancer(s), especially colon cancer(s), cystic fibrosis disease,
intestine inflammatory disease(s) such as inflammatory bowel disease (IBD) and ulcerative
colitis.
[0063] The invention thus also relates to the use of a polypeptide of the invention, as
a probe or marker for staining living cell(s) or tissue(s) in
in vivo, ex vivo, specifically in
in vitro experiments, in particular in live microscopy experiments. Live microscopy encompasses
for example the use of widefield microscopy on living cells (for example HT29-MTX
cells stained with Cy5-MUB
70), 2-photons microscopy (for example on human colon
ex vivo sample stained with Cy5-MUB
70), or 3D animal analysis (Xenogen, Ivis, Cy5-MUB
70), (Fluoptics, Cy5.5-MUB
70), or spectral imaging (for example: coloscopy).
[0064] In a particular embodiment, the invention relates to the use of a labelled polypeptide
as a probe or marker for staining Muc2 protein(s) contained in mucus layer of a cell
or tissue sample, especially human colonic or intestine tissue sample.
[0065] In a particular embodiment, the invention relates to the use of a polypeptide as
a physiological labelled probe to detect
in vitro interaction with human colonic mucus in the adhesive mucus layer of colonic tissue
sample.
[0066] By "physiological labelled probe", it is meant a probe that is non-harmful, i.e.
non-toxic, and well-tolerated by cells or biological tissues.
[0067] In a particular embodiment, the invention relates to the use of a polypeptide to
detect
in vitro mucus production or mucus composition in human colon, said use comprising contacting
said polypeptide with a sample of colonic tissue comprising adhesive mucus layer and
goblet cells and detecting stained mucus.
[0068] In another particular embodiment, the invention relates to a polypeptide of the invention,
which is labelled, for use as a probe for
in vivo detection of mucus production or mucus composition in human intestine, especially
colon or other compartments such as lung tissue, nasal tissue or stomach tissue.
[0069] The invention therefore relates to the use of a polypeptide or of a composition comprising
the same, as a probe for staining mucus potentially containing Muc2 protein(s) or
exhibiting variations in Muc2 protein(s) expression that could provide information
on a change in mucus production or in mucus composition.
[0070] According to a particular embodiment, the observed mucus is colonic mucus, for example
in human, rabbit or guinea pig samples as well as human cell lines producing a mucus
layer samples.
[0071] According to a particular embodiment, stained mucus-producing cells are eukaryotic
cell(s), including intestine mucus cells, such as goblet cells.
[0072] The probes of the invention are preferably non-toxic to cells, which are preferably
impervious to said probes.
[0073] However, according to another specific embodiment, the invention is also directed
to the use of a polypeptide of the invention as marker of degranulation event(s) in
neutrophiles, especially an
in vitro marker of degranulation event(s) in neutrophiles
[0074] Detection
in vitro of mucus production or mucus composition in human colon might serve as a basis for
comparisons between samples, and therefore might serve to analyse or detect or monitor
variations or modulations of mucus production or mucus composition in an human or
animal body. With this respect, it has been observed that Muc2 protein is naturally
expressed and secreted in intestine mucus as a major component of said mucus in healthy
tissue, especially in healthy colonic tissue. It has also been observed that Muc2
protein is not expressed in healthy trachea or lung tissues, and in healthy stomach
tissues. A change in Muc2 expression in these tissues may thus provide information
on the tissue status.
[0075] Muc2 expression modulation is also observed in gastric cancer (increased), in ductal
adenocarcinoma, in cystic fibrosis (increased), in cystic fibrosis transmembrane conductance
regulator model, especially with respect to lung tissues, nasal tissue, goldbladder
tissue, pancreas tissue. Muc2 expression modulation is also observed in Inflammatory
Bowel Diseases (IBD) such as ulcerative colitis and Crohn disease.
[0076] Also, Muc2 glycosylation profile is modulated in colonic diseases such as ulcerative
colitis or colorectal carcinoma.
[0077] Accordingly, another object of the invention is therefore the use of a polypeptide
or of a composition of the invention for
in vitro detecting or monitoring any one of the following disease conditions: neoplasic disease(s),
including mucinous carcinoma(s), gastric cancer(s) or colorectal cancer(s), especially
colon cancer(s), (but also lung, stomach, breast, prostate, or bile ducts cancers)
cystic fibrosis, intestine inflammatory disease(s) such as inflammatory bowel disease
(IBD) and ulcerative colitis.
[0078] The invention also relates to a method for manufacturing a medicament comprising
a step of association, especially, coupling, grafting or fusing a polypeptide of the
invention with a biologically active molecule such as a drug or an enzyme.
[0079] Polypeptide(s), composition(s) or medicament(s) resulting from a polypeptide associated
with a biologically active molecule can be used in a method of therapy practised on
a human or animal body.
[0080] The invention thus encompasses the use of polypeptide(s), composition(s) or medicament(s)
resulting from a polypeptide associated with a biologically active molecule for use
in treating a disease selected from the following group, or its symptom(s): neoplasic
disease(s), including mucinous carcinoma(s), gastric cancer(s) or colorectal cancer(s),
especially colon cancer(s) but also lung, stomach, breast, prostate, or bile ducts
cancers, cystic fibrosis, intestine inflammatory disease(s) such as inflammatory bowel
disease (IBD) and ulcerative colitis.
[0081] Other examples and features of the invention will be apparent when reading the examples
and the figures, which illustrate the experiments conducted by the inventors, in complement
to the features and definitions given in the present description.
LEGEND OF THE FIGURES
[0082]
Figure 1. MUB70 identification in L. reuteri. (A) MucBP diversity illustrated comparing L. reuteri (Genbank AF120104) and L. plantarum (Ip_1229). (B) Representation of MUB70/MucBD 13 repeats of L. reuteri AF120104 (SEQ ID N° 5 to SEQ ID N° 16). (C) Sequences comparison between L. reuteri AF120104 (SEQ ID N° 11) protein sequence and homologous proteins in L. gasseri (ZP_07711585) (SEQ ID N° 19), L. johnsonii (ZP_04008294.1) (SEQ ID N° 20), L. fermentum (YP_001843489.1) (SEQ ID N° 21) and L. delbrueckii (YP_004034456.1) (SEQ ID N° 22) are performed using ClustalW software. MUB70 sequence and conserved amino acid are highlighted in light gray. MucBD (pfam 06458)
sequence and conserved amino acids are highlighted in dark gray. Perfect match over
all compared sequences are identified with an asterisk. Good matches are identified
with a double dot or a dot.
Figure 2. MUB70 chemical synthesis and biochemical analysis of trimerization property. (A) RP-MPLC MUB70 final purification result. (B). SDS-PAGE visualization of the trimeric form of biot-MUB70 performed after incubation of the peptide in Tris 25 mM pH=4 and pH=8. (C) Characterization of biot-MUB70 by gel filtration chromatography on Superdex 200 5/150 GL column. The elution profile
of biot-MUB70 is shown at 280 nm.
Figure 3. Cy5-MUB70 colonic mucus binding property. (A) HT-29 MTX living cells were incubated for 2h with Cy5-MUB70 in a serum-free media. The resulting fluorescent signal (red) was visualized at the
surface of the cell layer using an epifluorescent microscope. Z-projection, performed
using ImageJ software, allowed 3D localization of Cy5-MUB70 fluorescence signal in the mucus layer. Bar is 10 µm (B) MPE and SHG imaging of the binding of Cy5-MUB70 to the human colonic mucus. 3D reconstruction (isosurface representation) shows the
colonic epithelium covered by the mucus layer (up to 1 000 µm) after 90 min of incubation
with Cy5-MUB70. Human tissue autofluorescence is detected in the same red channel as Cy5.
Figure 4. Cy5-MUB70 is specifically binding to the glycosylated moiety of Muc2 secreted in the colon
mucus layer. (A) Immunodetection of Muc2, Muc5ac, Muc5b and Muc6 (dotblot analysis) on human mucus
extracts eluted after a pulldown assay performed with biot-MUB70 on avidin conjugated beads (see Methods). Biotin is used as a negative control. Immunodetection
of Muc2 (dotblot analysis) on deglycosylated mucus extracts eluted after a pulldown
assay performed with biot-MUB70 on avidin conjugated beads. Non-deglycosylated mucus extract is used as a positive
control. (B) Co-localization of Muc2 (green) and Cy5-MUB (blue) observed on fixed (Carnoy) human
colon samples. Actin is stained in red (Phall.RRX). Observations are performed using
a confocal microscope. Bars is 20 µm.
Figure 5. MUB70 (SEQ ID N° 3 or 4) synthesis strategies description. Operating sequences for designed synthesis 1 and 2, where secondary amino acid surrogates
are underlined (pseudoproline dipeptides) or bold (Dmb dipeptides). Proline residues
are in italic.
Figure 6. MUB70 analytical HPLC profiles in TFA conditions. (A) Crude synthesis 1. MUB70 was detected as a major peak (around 8% by area integration) (B) Crude synthesis 2. Optimisation of the synthesis adding three Dmb dipeptides able
to reduce aspartimide side reaction and two pseudoproline dipeptides (see Methods).
MUB70 was detected as a major peak representing 25% of the area integration. (C) Monomeric MUB70 after a first step of purification (in acidic conditions, pH 6.5). (D) MUB70 after a second step of purification (neutral conditions) and (E) MUB70 after a third step of purification (neutral conditions) allowed to yield a purity
above 90% on MUB70 oligomers.
Figure 7. Biochemical properties of MUB70. (A) MUB70 total charge was calculated using Protein Calculator program (Scripps website). (B) Kytes and Doolittle hydropathy profile of MUB70 was generated using ExPASy bioinformatical tools. (C) Validation of biot-MUB70 purity by gel filtration chromatography on Superdex 200 5/150 GL column. (D) Partition coefficients (Kav) of the standard proteins (ferritin, 440 kDa; aldolase, 158 kDa; ovalbumin, 43 kDa;
ribonuclease A, 13.7 kDa; aprotinin, 6.5 kDa) were calculated according to Kav = (Ve - V0)/(Vt - V0) (Ve, elution volume; V0, void volume; Vt, total volume of the gel bed) and plotted against the corresponding molecular masses.
The molecular mass of biot-MUB70 calculated using the calibration curve equation: log(Mr) = 3.12 - 3.1Kav.
Figure 8. (A) Cell toxicity of Cy5-MUB70 tested on HT-29-MTX and Hela epithelial cells. Cell survival was assessed using Sytoxgreen
dye on cultures exposed to 1µg/mL Cy5-MUB70 from 0 to 10h, as indicated. NS indicates P>0.05 (Student's T-test). (B) Rabbit colonic and ileal mucus staining on fixed tissues (PFA 4%), using Cy5-MUB70 (1µg/mL) (blue). Actin is stained in red (Phall.-RRX). Bar is 50 µm. (C) Human ex vivo colon sample was incubated for 2h with 1µg/mL Cy5-MUB70 in a serum-free media. Resulting fluorescent staining was assessed using a two-photons
microscope (see Methods). Z-projection, performed using ImageJ software, allows 3D
localization of Cy5-MUB70 fluorescence signal. Bar is 100 µm. Colon scheme : firmly (f) and loosely (I) attached
colonic mucus layers are represented at the surface of the epithelium (e). (D) Kinetics
of colonic mucus with Cy5-MUB70. 3D reconstruction (isosurface representation) shows the colonic epithelium covered
by the mucus layer (up to 1 000 µm) after 60,90 and 120 min of incubation with Cy5-MUB70. Human tissue autofluorescence is detected in the same red channel as Cy5.
Figure 9. (A) Co-localization of Muc2 (green) and Cy5-MUB (blue) performed by immunofluorescent
detection on human mucus extract collected on ox vivo tissues using an epifluorescent
microscope. Bar is 50 µm. (B) Co-localization of Muc2 (green) and Cy5-MUB (blue) observed on fixed (PFA 4%) rabbit
colon samples. Actin is stained in red (Phall.RRX). Observations are performed using
a confocal microscope. Bars is 40 µm.
Figure 10. (A) Human mucus negative staining using Cy5 (blue). Muc2 (green) is used as a positive
control. Observations were performed by immunofluorescent detection on human mucus
extract collected on ex vivo tissues using an epifluorescent microscope. Bar is 50 µm. (B) Immunodetection of FCGBP (dotblot analysis) on human mucus extracts eluted after
a pulldown assay performed with biot-MUB70 on avidin conjugated beads (see Methods). Biotin is used as a negative control. (C) Immunodetection of FCGBP (dotblot analysis) on deglycosylated mucus extracts and
eluted after a pulldown assay performed with biot-MUB70 on avidin conjugated beads. Non-deglycosylated mucus extract is used as a positive
control.
Figure 11. Mucus staining using Cy5-MUB70 on fixed tissues. (A) Guinea pig colon, (B) rabbit ileum and (C) mouse colon were fixed in PFA 4%. Immunofluorescent staining was performed using
Cy5-MUB70 (1 µg/mL) (blue). Actin is stained in red (Phall.-RRX), Muc2 is stained in green
(α-Muc2). Observations were performed using a confocal microscope. Bar is 50 µm.
Figure 12. ClustalW sequence alignments of MUB domain repeats 1 to 13 found in L reuteri AF120104 and disclosed in Table 1 (SEQ ID N° 5 to SEQ ID N°16).
Figure 13. Staining of individual neutrophiles (white blood cells) in rabbit ileum sub-mucosa. Cy5-MUB70 was incubated on PFA 4% fixed tissues. Signal was colocalized with an
α-elastase (PMN) signal. (Primary antibody is α-elastase (PMN) 1:400 and secondary
antibody is anti-mouse GFP 1:400, MUBCys5 1:400, Phalloidin-RRX 1:400). This result
indicates that Cy5-MUB70 is binding specifically a neutrophile component. In particular,
granules staining is achieved.
Figure 14. Staining of individual neutrophiles (white blood cells) in human blood sample. Cy5-MUB70 was incubated on ethanol 100% fixed blood sample. Signal was detected as
diffused in neutrophile cytoplasm, due to membrane solubilisation following alcoholic
fixation. (Details are provided on the Figure). This result confirms that Cy5-MUB70
is binding specifically a neutrophile component. In particular, granules staining
is achieved.
Figure 15. Staining of individual neutrophiles (white blood cells) purified from fresh human
blood sample. Cy5-MUB70 was incubated on PFA 4% fixed neutrophiles (PFA treatment for 15 min, wash
3 times in PBS). Signal was detected as dots distributed in neutrophile cytoplasms.
(Staining with Dapi 1:1000 and EB1 C5 1:1000 in PBS + 10% FCS + 0.1% Saponin). This
result indicates that Cy5-MUB70 is binding specifically a neutrophile granule component.
In particular, granules staining is achieved.
Figure 16. GenBank data under access number AF120104.1 relating to the Mub protein sequence
of L. reuteri and the corresponding nucleic acid sequence (SEQ ID N° 17 and 18).
EXAMPLES
A. MATERIALS AND METHODS
Chemical synthesis
[0083] MUB70 synthesis. Synthesis was carried out on an ABI 433 synthesizer (Applied Biosystems, Foster
City, CA, USA) equipped with a conductivity flow cell to monitor Fmoc deprotection.
PS-PHB-Phe Fmoc resin (capacity 0,52 mmol/g) was purchased from Rapp Polymere GmbH
(Tübingen, Germany). Dmb- and pseudoproline (oxazolidine) dipeptides were purchased
from Merck-Novabiochem (Darmstadt, Germany). Standard Fmoc amino acids were obtained
from Applied Biosystems, and side-protected as followed : tBu for aspartic acid, glutamic
acid, serine, threonine and tyrosine, trityl for cysteine, histidine, Boc for lysine,
and 2,2,4,6,7- pentamethyl-dihydrobenzofuran-5-sulfonyl for arginine. Fmoc- amino
acids and pseudoproline dipeptides were activated with HATU/DIPEA and single coupled
with a eightfold molar excess with regard to the resin. Both coupling reagents, as
well as N-methyl pyrrolidone (NMP), were purchased from Applied Biosystems. Piperidine
was purchased from Sigma-Aldrich (St Louis, MO, USA). (Synthesis yield 85,4%). Synthesized
peptide was collected through classical resin cleavage and HPLC detection techniques.
Purification was achieved using a three-step purification method on the dimeric form
of MUB
70. Biotin and Cy5 conjugations are described herein..
[0084] Any synthesized peptide mass was calculated using electrospray ionization mass spectrometry.
Biochemical characterization and biological properties
[0085] Analytical Gel filtration. 25 µg of biot-MUB
70 was applied with a flow rate of 0.2 ml/min to a Superdex
™ 5/150 column (Tricorn™) (GE Healthcare, Uppsala, Sweden) that was equilibrated with
5 CV of gel filtration buffer (25 mM TRIS, 150 mM NaCl, pH 7.5) at 4 °C before use.
Standard proteins from the gel filtration calibration kit (ferritin, aldolase, ovalbumin,
ribonuclease A, aprotinin; GE Healthcare, Uppsala, Sweden) were used for calibration.
As control biot-MUB
70 was visualized on 10% SDS-PAGE gel stained by Coomassie.
[0086] Colonic tissue collection. Ex vivo human colon samples were obtained from Dr. E. Labruyère (Institut Pasteur) and tissue
processing was performed as described previously [27] and stored in serum free RMPI
media (surgical procedure is described herein). Rabbit colon and ileum samples were
collected on naïve New Zealand white rabbits weighting 2.5-3 kg and fixed in PFA 3%.
Same procedure was applied on intestine samples collected on guinea pigs (Charles
River) and C57/B6 mice (Janvier).
[0087] Cell culture. Hela cells were grown in DMEM medium supplemental with 10% FCS. HT-29 MTX colonic
epithelial cells [28] were grown to confluency in 24-well tissue culture plates in
RPMI medium supplemented with 10% FCS and 1% essential amino acids. Mucus production
in HT-29 MTX cells was observed after 21 days. Cell viability was determined by staining
with Sytox Green (Invitrogen) as described by the manufacturer. Sytox Green only penetrates
into and stains the DNA of non-viable cells. As a positive control, cells were killed
by incubation in 3% PFA for 15 min (data not shown). Fluorescence was measured using
a FACS flow cytometer (BD systems) recording at least 10,000 events. Data were analysed
with CellQuest Pro software (BD Biosciences), and expressed as percentage survival.
[0088] Antibodies and MUB70 probes. For immunofluorescence assay mouse α-MUC2 pAbs (Santa Cruz sc-15334) was diluted
1:1000 and FITC-conjugated rabbit anti-mouse was diluted 1:2000. Host cells were detected
with DAPI (nuclei, red) or using Phalloidin-Rhodamine red X (RRX)-conjugated donkey
anti-mouse antibodies (Jackson Immunoresearch Antibodies) as an actin marker (stained
red); both were used at a final dilution of 1:1000. Cy5-MUB
70 (1 mg/mL solution) was diluted 1:1000.
[0089] For dot blot assay, goat α-MUC2 pAbs (sc-13312, Santa Cruz), mouse α-MUC5ac (Abcam),
mouse α-MUC5b mAbs (Abcam), mouse α-MUC6 mAbs (sc-33668, Santa Cruz), mouse α-lactoferrin
mAbs (sc-52048, Santa Cruz) and rabbit α-FCGBP pAbs (Sigma-Aldrich) antibodies were
used at a 1:100 dilution. Corresponding HRP-Conjugated antibodies were used at a 1:1000
dilution. For staining living HT-29 MTX cells and on human colon
ex vivo model, Cy5-MUB
70 was incubated (1 µg/mL) in a serum starved culture medium (DMEM and RPMI respectively)
for two hours at 37°C prior observation.
[0090] Mucus collection. In order to perform a pulldown assay, soluble human coionic mucus extracts were initially
obtained from HT-29 MTX cell secretion product (as described in [29]. Briefly, mucus
was collected using cold PBS. After sonication and centrifugation (14000rpm, 30 min),
the supernatant containing the soluble mucus fraction was lyophilized (Labologic,
Freeze Dryer). Eight independent batches of human mucus were processed.
[0091] Deglycosylation, desialylation. Mucus collected from HT-29 MTX (see above) was chemically deglycosylated using a
GlycoProfile IV chemical deglycosylation kit (Sigma-Aldrich). Each treatment was performed
on two independent samples. 4 mg of lyophilized mucus were processed per batch as
recommended by the manufacturer. Desialylation and desulfatation were performed on
2 mg lyophilized mucus batches by adding respectively 1 mU/mL of
C. perfringens neuraminidase (Neu1) (Sigma-Aldrich) in PBS 50 mM pH=6 and
A. aerogenes sulfatase in TrisHCl 50 mM pH=7.25, KCl 100 mM and 10 mM MgCl
2. Reaction mixtures were incubated 2h at 37°C.
[0092] Pulldown assay. Pulldown assays were performed in the presence of 600µg biot-MUB
70 bound to 500 µL Avidin-agarose beads (Thermo Scientific) in a Phosphate Buffer pH=8
buffer for 1 h at 4°C. After 3 washes, 10 mg soluble human colonic mucus extract were
incubated with the loaded beads for 2h at 4°C. After 3 washes, beads were boiled in
the presence of 1 X Laemli buffer. As a negative control, Avidin-agarose beads were
loaded with 15 µg biotin (Sigma-Aldrich) and processed using the same procedure. Experiments
were performed on two independent occasions.
[0093] Dot blot assay. Soluble mucus components used in pulldown assays (input and output) were transferred
to nitrocellulose membranes (Invitrogen), which were blocked in PBS/5% milk and further
incubated with the primary antibodies diluted in PBS/1% milk/0.01% Tween20 (Sigma-Aldrich)
overnight. Membranes were washed in PBS three times, then incubated with secondary
antibodies for 1 hr before washing. Antibody binding was detected with chemiluminescence
(ECL kit, GE Healthcare).
[0094] Tissue immunostaining. Following PFA 4% or Carnoy fixation, as indicated, samples were washed in PBS, incubated
at 4°C in PBS containing 12% sucrose for 90 min, then in PBS with 18% sucrose overnight,
and frozen in OCT (Sakura) on dry ice. 7 µm sections were obtained using a cryostat
CM-3050 (Leica).
[0095] Fluorescence microscopy. Fluorescent labeled tissues and cells were observed using a widefield epifluorescent
microscope (Zeiss Definite Focus), laser-scanning confocal microscope (Leica TCS SP5)
or a two-photons confocal microscope (Zeiss LSM710), as indicated. Image analysis
was performed using Axovision, ImageJ, Zen 2008 SP 1.1 (Zeiss) and Imaris softwares
as indicated.
[0096] Cleavage from the resin. Cleavage from the solid support and deprotection of the amino acid side chains were
accomplished in one step by treatment with 92.5 : 2.5 : 2.5 : 2.5 mixture of TFA (Applied
Biosystems), ethanedithiol, triisopropylsilane (Sigma-Aldrich) and water for 3 h at
room temperature. After filtration of the resin, the cleavage mixture was poured into
ice-cold diethyl ether. The precipitate was recovered by centrifugation, washed three
times, dried, resuspended in a mixture of aqueous acetic acid and acetonitrile and
lyophilised. (cleavage yield 76%).
[0097] HPLC analysis. Analysis of crude mixtures and purity control of the final peptides were performed
by RP-HPLC on an Agilent (Santa Clara, CA, USA) 1100 Series liquid chromatograph and
monitored with a photodiode array detector by absorbance at 230 nm, according to both
following methods a or b. A linear gradient (from a/ 30% to 40% or b/ 15% to 40%)
of B (acetonitrile) in aqueous solvent A (a/ 0.08% aqueous TFA, pH 2 or b/ 50mM ammonium
acetate, pH 6,5) over 20min was applied at a 0.35ml/min flow rate on a Symmetry300
C18 3.5 µm 2.1 x 100 mm column (Waters, Manchester, UK). LC-MS data were obtained
using a Waters Alliance 2695 system comprising a 2487 dual absorbance detector and
coupled with a TOF-MS detector (Waters Q-TOF Micro) with the following eluents: A:
water containing 0.05 formic acid and 0.04% TFA, B: solution of acetonitrile containing
0.025% formic acid. Data acquisition and process are described bellow.
[0098] Three-step purification. Solubilisation of quantitative amounts of crude peptides was achieved by mixing the
lyophilised material in glacial acetic acid and rapidly diluting with water so that
the final concentrations were 20 mg/ml of peptide in 20% aqueous acetic acid. This
material (loading 150 mg per run) was directly purified by RP-MPLC (AP-100/200 flash,
Armen Instrument, Saint Ave, France) on a preparative column (26 x 313 mm) packed
with 100 Å 20 µm C18 Nucleoprep packing (Macherey & Nagel GmbH & Co, Düren, Germany),
by applying a linear gradient (0,5%/min) of 30-60% solvent B (mixture of acetonitrile
and solvent A, 8:2v/v) in solvent A (0.08% aqueous TFA) over 60 min at a 20 ml/min
flow rate. Preserving acidic environment prevent dimerisation. The purification was
monitored at 214 nm (UV detector K2501, Knauer, Berlin, Germany). Suitable fractions
were pooled and lyophilised. (Yield 16,2%). This material was solubilised in water
by adding a small amount of aqueous ammoniac in order to raise a pH of 7,5, with 2,5
equivalents of TCEP, then subjected to a second step of purification using a linear
gradient (0,4%/min) of 15-40% solvent B (mixture of acetonitrile and solvent A, 8:2v/v)
in solvent A (50mM ammonium acetate, pH6,5) over 60 min at a 20 ml/min flow rate.
In this neutral pH conditions, dimerisation occurred during the run and was led to
completion before lyophilisation of the suitable fractions. (Yield 49%). The resultant
dimeric peptide enriched mixture was submitted to a third step of purification by
applying the first step procedure in the same acidic conditions. The retention time
of the dimeric form of the target peptide was shifted about four minutes as compared
to the monomeric form and the associated truncated peptides. (Yield 39%) Overall isolated
unlabeled peptide yield: 2% (to be compared with 25% observed yield from HPLC analysis).
[0099] Conjugation. Biotin and Cy5 conjugation were operated in water upon the dimeric form of the MUB
peptide using the correspondent maleimide derivatives in the presence of 3 equivalents
of TCEP per mole of cysteine residue. pH was adjusted to 8 with aqueous ammoniac solution.
The biotinylated peptide was obtained after addition of 2 equivalents of maleimide-PEG2-biotin
(Pierce, Rockford, IL, USA). The cy5 labeling was achieved by addition of 1,2 equivalent
of Cy5 Mono Maleimide (InvitroGen). Both conjugates were purified after 30 minutes
of coupling reaction by RP-HPLC on a nucleosil 5µm C18 300 Å semi-preparative column,
using a linear gradient (0,75%/min) of 30-45% acetonitrile in 0.08% aqueous TFA over
20 min at a 6 ml/min flow rate. The purity was checked according the former described
HPLC analytical method. The exact concentration of the purified conjugates was determined
by quantitative Amino Acid Analysis; giving 69% and 20% conjugation yields for the
biotinylated and the cy5-labeled products, respectively. Both constructs are resuspended
in a 0.1 M Phosphate buffer pH=8, containing 0.15 M NaCl.
[0100] Electrospray ionisation mass spectrometry. Mass spectrometry was carried out on a quadrupole-TOF Micro mass spectrometer (Waters)
equipped with a Z-spray API source and calibrated with a phosphoric acid calibration
solution. Capillary, sample cone and extraction cone voltages were set at 3kV, 40V
and 10V, respectively. Source and desolvation temperatures were set at 80 and 250°C,
respectively (raised to 120 and 400°C in the higher flow rate conditions of LC). Data
were acquired by scanning over the m/z range 150-2000 at a scan rate of 1 s and an
interscan delay of 0.1 s. Lyophilised crude and purified products were dissolved in
a mixture of water/methanol/acetic acid 49.5/49.5/1 v/v/v at a concentration of 1
µg/µl and analysed in positive-ion mode by infusion at a flow rate of 5 µl/min. Three
hundred spectra were combined and the resultant raw multicharged spectra were processed
using the MaxEnt 1 deconvolution algorithm embedded in the Masslynx software. LC/MS
data were obtained by selecting and combining spectra of separate peaks and shoulders
of the Total Ionic Current chromatograms. Final characterization was consistent with
the expected mass: biotinylated MUB (biot-MUB
70): experimental 8755,374 - expected 8755,468; Cy5-labeled MUB: experimental 9009,565
- expected 9009,797.
[0101] Colon explants surgical collection. In summary, human colon explant preparation Segments of human colon (ascending, descending
and sigmoid colon) were obtained from fully informed patients undergoing surgery for
colon carcinoma and were analyzed anonymously. Patient written consent was obtained,
according to the French bioethics law. None of the patients had undergone radiotherapy
or chemotherapy. According to the pathologist's examination rules for the longitudinally
bisected colon, a healthy segment of tissue which was distant from the tumour region
and devoid of metastatic cells was removed. Tissues were processed according to the
French Government guidelines for research on human tissues and the French Bioethics
Act, with the authorization n°RBM 2009-50.
[0102] Two-photons microscopy. Two-photons microscopy imaging of live healthy human colonic segment was performed
using a commercial laser-scanning microscope (LSM710, Meta, Zeiss, Germany). Tissue
autofluorescence and Cy5-MUB
70 (1µg.ml
-1) were detected using multiphoton excitation (MPE, red) and collagen was detected
using second harmonic generation (SHG, green). All samples were imaged immediately
following tissue dissection. Illumination of samples for both MPE and SHG was accomplished
using a TI: sapphire femtosecond laser (140 fs, 90Mhz) tunable from 690 to 1040 nm
(Cameleon ultra I, Coherent, inc). Excitation was performed using an output wavelength
of 820 nm. Beam was focused onto samples using a ZEISS Plan-apochromat 20x objective,
1-NA water-immersion (Axial resolution are; Rxy = 0,64µm, Rz = 5µm). Both MPE and
SHG were collected in a backscattering geometry using the nondescanned detection.
Detection bandwidth of MPE and SHG signals were respectively 570-610 nm (pseudocolored
red) and 300-480 (pseudocolored green). Two dimensional (x,y plane) images (512X512
pixels per frame, each image was acquired in 6,71 seconds) were acquired from various
depths (z increment of 3 µm). Acquisitions were performed with Zen 2008 SP 1.1 software
acquisition package developed by ZEISS. Imaris software (http://www.bitplane.com)
was used to prepare images.
B. RESULTS AND DISCUSSION
[0103] Identification of MUB70 in L. reuteri AF120104 protein sequence. MUB
70 was initially identified in Mucin Binding Proteins (MucBP), associated with the well-characterized
Mucin Binding Domains (MucBD, PFAM 06458). However, this domain was described as being
present in some but not all proteins of this family [26], reflecting the diversity
of MucBP sequences and sizes (Fig. 1A). Shorter MucBP do not contain MUB
70 (i.e.
L. plantarum Ip-1229 sequence [30], (Fig. 1A). The MUB
70 sequence could not be associated with a PFAM known homologous domain, thus its function
remained unknown [26]. The sequence was named MUB
70 as its minimum conserved sequence among
Lactobacillus strains is 70 amino acids. MUB
70 has been observed to be repeated from 1 to 18 times in different
L.
reuteri cell-surface proteins [26]. In
L. Reuteri AF120104 cell-surface precursor protein, MUB
70 homologous sequences are repeated 13 times (SEQ ID N°4 to SEQ ID N°15), as described
by Roos and co-workers [25] (Fig. 1 B). Sequence comparison was performed between
these sequences showing that repeats #7 and #9 are identical and are the most conserved
sequences among others (Table 1). MUB
70 repeat #7 sequence possesses 23% identity with AF120104 homologous proteins MUB
70 domains in other
lactobacillus strains (
L.
gasseri, L. johnsonii, L. fermentum and
L. delbrueckii) (Fig. 1 C). This peptide (MUB
70 repeat #7) was selected as a model for chemical synthesis.
[0104] Synthesis of Cy5-MUB70 and biot-MUB70. Despite considerable evolution in the field, straight chemical synthesis of long
peptide chains remains a difficult task. Considering Solid Phase Peptide Synthesis,
initiated by Merrifield [31], most of the deprotection and coupling difficulties are
related to inter or intra-molecular hydrogen bonds occurring over the synthesis. N-alkylated
amino-acids such as Dmb/Hmb [32] or pseudoproline [33] have been more recently developed
to overcome the aggregation propensity of the protected peptide chain anchored on
the resin. Here, the presence of hydroxyl amino acids into MUB
70 sequence has provided the opportunity to introduce several properly spaced pseudoproline
dipeptides. A single cystein was incorporated at the N-terminus to allow N-terminal
specific labeling (Fig. 5). Using a classical Fmoc/tBu methodology (Strategy 2, Fig.
5) [34], a first synthesis at a 100µmolar scale was achieved, from a polystyrene-based
resin. The peptide-resin was processed with a TFA cleavage solution and the resulting
crude product (weight yield 66%) was analyzed by HPLC and LC-MS in acid conditions.
A 0,5%/min gradient of acetonitrilin in acidic buffer was applied on a RP C18 Symmetry
column (Waters) and the low pH of the injected sample therefore preserved to prevent
oxidation of the cystein residue. In these conditions, the target peptide was detected
as a major peak (around 8% by area integration) in a quite complex chromatogram (Figure
6). Moreover, MS analysis of this major peak revealed the presence of a complex mixture
of similar peptides with a mass deviation of -18 or +67, reflecting the presence of
aspartimide and piperidide by-products in a mostly significant amount. Aspartimide
formation [35] and subsequent base-catalyzed ring-opening during Fmoc-SPPS has been
described to be strongly dependent of the previous coupled amino-acid [36] in relation
with the global mixing time of the Asp-containing peptide resin in the FMOC deprotection
solution [37]. Indeed MUB
70 sequence accumulates eight highly sensitive occurrences (3 Asp-Gly, 2 Asp-Asn, 2
Asp-Asp, 1 Asp-Thr), among which Asp-Gly sequences are particularly prone to aspartimide
formation. A systematic protection of each glycine amide moiety occurring before an
Asp derivative coupling was achieved by coupling Fmoc-Asp(OtBu)-(Dmb)Gly-OH dipeptides
(Strategy 2, Fig. 5), namely in position 29, 50 and 63 in reference to the C-terminus
[38]. As a result the disaggregation of the peptide chain was improved and accordingly
the deprotection and coupling efficiency (Fig. S1). The resulting resin was processed
and the crude was analyzed by LC-MS according to the same protocol. Although the weight
yields calculated from the crude products were similar (65%) the target peptide peak
area integration was increased from 8% to 25% (Fig. S2B).
[0105] A first RP-MPLC purification protocol was applied in acidic environment (pH=2) in
order to maintain the peptide in its reduced form. The remaining aspartimide and piperidide
side products (Fig. 6C) were shown to be well separated when analyzed by RP-HPLC in
neutral conditions, using 50mM ammonium acetate (pH6,5) as aqueous buffer (data not
shown). Despite the presence of 2,5 equivalents of TCEP as reductive agent into the
loaded mixture, scaling up this protocol through a second RP-MPLC purification step
revealed the high propensity of this material to dimerize in acetonitrile containing
solution. Moreover, oxidation of the sulfhydryl moiety occurred along the run and
was led to completion before lyophilization. RP analysis at pH=2 of the resulting
partially purified material showed a significant shift between both dimer and monomer-associated
truncated peptides retention times (Fig. 6D). Consequently a last RP-MPLC purification
step was achieved by repeating the former protocol to yield the MUB dimeric form with
above 90 % purity (Fig. 2A).
[0106] To summarize, improvement of the synthesis by the incorporation of Dmb and pseudoproline
dipeptides, followed by a three steps purification process were combined to isolate
the target peptide (Fig. 6E) as covalent dimer with an overall weight yield of 2%.
Monomer recovery and simultaneous conjugation of biotin or fluorophore via the maleimide
derivatives are described in Methods.
[0107] Biochemical properties of MUB70. MUB
70 is predicted to be a negatively charged peptide at a pH higher than 4 (net charge
at pH=7 is -12.9), (Fig. 7C) even though the surface charge of MUB
70 is still unknown. No specific hydrophobic domain was predicted through a Kyte-Doolittle
analysis of MUB
70 (Fig. 7D). This result is consistent with its high solubility in a phosphate buffer
at pH=8 (see Methods). The theoretical molecular weight (MW) of a biotinylated MUB
70 (biot-MUB
70) is 8,8 kDa. However when migrating on a SDS-PAGE gel, the apparent MW is around
28kDa and this result is independent from the pH, which seems to indicate a stable
oligomerization of biot-MUB
70 (Fig. 2B). This observation was confirmed with the fluorescent Cy5-MUB
70 compound (data not shown). In order to confirm the predicted trimeric organization
of MUB
70, an analytical gel filtration was performed on biot-MUB
70 in order to determine its quaternary structure. The elution profile was recorded
at 280 nm. At 0.1 and 1 mg/ml, biot-MUB
70 gave a single peak at an elution volume of 2.1 ml (Fig. 2C and Fig. 7A and 7B). The
molecular mass was determined to be 27.9 kDa, proposing that biot-MUB
70, with a theoretical mass of 8.8 kDa, exists as trimer in phosphate buffer.
[0108] Cell toxicity of MUB70. As Cy5-MUB
70 was envisaged to be used on living cells and organs, its cell-toxicity has been evaluated.
This probe was incubated on differentiated HT-29 MTX and on Hela cells as cell viability
was assessed using a Sytox Green assay (see Methods). Incubating MUB
70 (1µg/mL) for up to 10h in a serum starved media do not affect significantly cell
viability (Student test, NS, p>0.05, n=3) (Fig. 8A). This result was consistent with
the hydrophilic property of MUB
70 (Fig. 7D) which does not allow cell penetration. The absence of intracellular fluorescent
signal upon exposure of different living cell types (phagocytic and non-phagocytic
cells) exposed to Cy5-MUB
70 (1µg/mL in a serum free media) (i.e. human epithelial cells, human myeloid cells,
human ES cells, mouse dendritic cells, data not shown) was also confirmed.
[0109] Specific staining of human, rabbit and guinea pig colonic mucus using Cy5-MUB70. Cy5-MUB
70 was incubated on living differentiated HT-29 MTX human epithelial colonic cells,
which have the property to constitutively produce a mucus layer after differentiation
(see Methods). As observed using a live epifluorescent microscope, Cy5-MUB
70 was binding the mucus layer at the surface of the cells. A Z-projection observation
allowed the visualization of fluorescent mucus patches, typical of mucus aggregates
produced by differentiated HT-29 MTX cells [28], as cells remained unstained (Fig.
3A). This result demonstrates that MUB
70 is a new Mucus Binding Domain (MUcBD). This observation was confirmed by incubating
Cy5-MUB
70 on human colon explants. As shown in Fig. 3B, the mucus layer, observed using a two-photons
microscope, is stained heterogeneously on the whole width (estimated around 1000 µm)
as the epithelium and
lamina propria remain unstained. Proportion of mucus stained by Cy5-MUB
70 might depend on Cy5-MUB
70 concentration and on the thickness of the mucus layer, as thinner layers could be
stained until epithelium surface (Fig. 8C). Staining kinetic analysis indicates that
Cy5-MUB
70 is widely detected after 90 min onto a 1 mm thick mucus layer (Fig. 4D).
[0110] Different animal models were used to confirm this result: rabbit, guinea pig and
mouse colon were tested. Interestingly colonic mucus staining using Cy5-MUB
70 was confirmed on rabbit and guinea pig models (Fig. 11A and Fig. 11B). However, mouse
colonic mucus was not stained applying the same procedure (Fig. 11 C), which indicates
major differences in its composition compared to human. The specific colonic mucus
binding property of Cy5-MUB
70 was confirmed on the rabbit model, as negative results were obtained on ileal mucus
samples (Fig. 8D). These results rule out the possibility of aspecific trapping of
Cy5-MUB
70 in mucus layers and as a control, Cy5 fluorophore does not have the property to bind
human mucus (Fig. 10A). As a conclusion, these results suggest that Cy5-MUB
70 interacts with a colonic mucus secreted specific component present in human, rabbit
and guinea pig but not in mouse.
[0111] Biot-MUB70 binds specifically to glycosylated Muc2 from colonic mucus. In order to identify a MUB
70 ligand present in the soluble extracts of human colonic mucus, biot-MUB
70, a biotinylated form of MUB
70, was synthesized (see Methods) in order to perform pulldown assays. Biot-MUB
70 was incubated with avidin beads and further with human colonic mucus extracts (produced
in vitro from differentiated HT-29 MTX cells, see Methods). Biotin only was used as a negative
control. Following initial attempts aimed at separating eluted proteins on SDS-page
gel, Coomassie staining did not allow the identification of any specific protein (data
not shown). A dot blot assay was then performed, focusing on secreted mucins, which
are the major components of colonic mucus. Muc2 was immunodectected in the eluted
fraction, and not in the negative control, and Muc5ac, Muc5b or Muc6, all detected
in the input were absent from the eluted fraction (Fig. 4A). This result was confirmed
by immunofluorescence colocalization detection of Muc2 and Cy5-MUB
70 on human colon mucus purified from
ex vivo samples (Fig. 4B) and fixed purified human mucus and rabbit colon samples (Fig. 9A
and 9B). Processing a chemical deglycosylation step on the soluble mucus extract (see
Methods) prior to pulldown assay abolished the interaction between Muc2 and biot-MUB
70 (Fig. 4A). It was specifically demonstrated that desulfatation (glycosylsulfatase)
but not desialylation (neuramidase) lead to a loss of this interaction (Fig. 4A),
highlighting the role of sulfate groups found specifically on human colonic mucus
[12] in the binding of MUB
70. This result could explain the differential staining observed on rabbit ileal and
colonic mucus (see above and Fig. 8B) as Muc2 - expressed and secreted in both organs
- possesses differential glycosylation patterns [9] [12]. As a conclusio, MUB
70 binds sulfated Muc2 oligosaccharides in colonic mucus thus exploiting its specific
glycosylation profile. As a control, considering that Muc2 has been recently shown
to bind covalently Fcα-binding-protein (FCGBP) [39],the role of this partner of Muc2
in the association with MUB
70 was analyzed. As FCGBP binds aspecifically to the biotin-conjugated avidin beads
moiety (Fig. 10B), it was not possible to directly exclude a role of this protein
in the Muc2/MUB
70 interaction. However, indirectly, after deglycosylation, as an abolishment of the
Muc2/MUB
70 interaction was observed (see above, Fig. 4A) it was not the case of FCGBP binding
to biotin (Fig. 8B). In addition, the colon-versus-ileum specificity of mucus MUB
70 binding observed in rabbit samples (Fig. 8B) excludes any role of FCGBP. These results
suggest no specific role of FCGBP in the Muc2/MUB
70 interaction.
C. CONCLUSION
[0112] As a summary of the experiments described here-above, the synthesized
L.
reuteri MUBAD or MUB
70 is a new Mucus Binding Domain (MUcBD) which possesses oligomerisation properties
which might contribute to the anchoring of these commensal bacteria in the colonic
mucus layer. Chemically synthesized MUB
70 is a novel specific colonic mucus marker interacting with the sulfated moiety of
Muc2 oligosaccharides, known as the main component of this epithelium surface protective
layer. MUB
70 trimerisation property is believed to contribute to its interaction with Muc2 found
in human, rabbit and guinea pig colonic mucus, not in mouse model. Conjugating MUB
70 with a fluorescent dye (i.e. Cy5) enables the provision of a new generation physiological
probe allowing direct observation of colonic mucus in
ex vivo and
in vivo live imaging approaches, beyong classical immunofluorescence techniques. Furthermore,
as mucins (including Muc2) expression and glycosylation modifications are frequently
observed in mucinous carcinomas and IBD, targeting Muc2 with MUB
70 provides promising innovative approaches to develop new diagnostic tools.
[0113] The invention thus provides a solution for imaging living cells and organs, which
requires innovative specific, efficient and well-tolerated fluorescent probes targeting
cellular components and provides tools allowing to perform dynamic analysis of cell(s)
and tissue(s) adaptation to environmental cues.
[0114] According to a particular embodiment of the invention, a novel non-toxic fluorescent
marker of 70 amino acid peptide of unknown function frequently associated to MUB domains,
named MUB
70, allowing specific fluorescent staining of human colonic mucus was identified, characterized
and synthesized. In humans, the colonic mucus layer is on the average 500 µm thick
and composed of different secreted gel-forming mucins (Muc2, Muc5ac, Muc5b, Muc6).
Muc2 is the most abundant secreted mucin forming the backbone of this cell surface
protective layer. The synthesized peptide is highly conserved among
Lactobacillus strains. Its chemical synthesis was achieved using the human commensal bacterium
L.
reuteri AF120104 protein as a template.
[0115] The synthesized Cy5-MUB
70 conjugated probe specifically stained colonic mucus, on fixed human, rabbit and guinea
pig tissues, but not on murine tissues, indicating that the later shows significant
difference in the composition of its colonic mucus. It was also shown that this probe
also stained the mucus produced by cultured human colonic cells (HT29-MTX) and by
human colonic tissue explants. As demonstrated using a biotinylated derivative of
MUB
70, this peptide specifically binds to the glycoprotein Muc2, through its glycosylated
moiety.
[0116] Hence Cy5-MUB
70 is a novel, specific fluorescent marker for mammalian colonic mucus that can be used
for live imaging analysis and as marker for diagnostic and prognosis of mucinous carcinomas
and IBD.
[0117] The chemical synthesis of a fluorescent conjugated Cy5-MUB
70 marker allowed the construction of a new generation of specific markers of mucus,
especially colonic mucus, that might be used as a probe for live experimental imaging
of the colon. In addition, further developments are anticipated in IBD and mucinous
carcinomas to envision more accurate diagnostic and prognostic tools.
Bibliography
[0118]
- 1. Bergstrom, K.S., et al., Muc2 protects against lethal infectious colitis by disassociating
pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathog. 6(5): p. e1000902.
- 2. Rubinstein, A. and B. Tirosh, Mucus gel thickness and turnover in the gastrointestinal
tract of the rat: response to cholinergic stimulus and implication for mucoadhesion.
Pharm Res, 1994. 11(6): p. 794-9.
- 3. Marteyn, B., et al., Modulation of Shigella virulence in response to available oxygen
in vivo. Nature, 2010. 465(7296): p. 355-8.
- 4. Marteyn, B., et al., Breathing life into pathogens: the influence of oxygen on bacterial
virulence and host responses in the gastrointestinal tract. Cell Microbiol, 2010.
- 5. Johansson, M.E., J.M. Larsson, and G.C. Hansson, The two mucus layers of colon are
organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial
interactions. Proc Natl Acad Sci USA. 108 Suppl 1: p. 4659-65.
- 6. Wong, W.M., R. Poulsom, and N.A. Wright, Trefoil peptides. Gut, 1999. 44(6): p. 890-5.
- 7. Lesuffleur, T., A. Zweibaum, and F.X. Real, Mucins in normal and neoplastic human
gastrointestinal tissues. Crit Rev Oncol Hematol, 1994. 17(3): p. 153-80.
- 8. Tytgat, K.M., et al., Biosynthesis of human colonic mucin: Muc2 is the prominent secretory
mucin. Gastroenterology, 1994. 107(5): p. 1352-63.
- 9. Karlsson, N.G., et al., Molecular characterization of the large heavily glycosylated
domain glycopeptide from the rat small intestinal Muc2 mucin. Glycoconj J, 1996. 13(5):
p. 823-31.
- 10. Allen, A., D.A. Hutton, and J.P. Pearson, The MUC2 gene product: a human intestinal
mucin. Int J Biochem Cell Biol, 1998. 30(7): p. 797-801.
- 11. van Klinken, B.J., et al., Gastrointestinal expression and partial cDNA cloning of
murine Muc2. Am J Physiol, 1999. 276(1 Pt 1): p. G115-24.
- 12. Robbe, C., et al., Evidence of regio-specific glycosylation in human intestinal mucins:
presence of an acidic gradient along the intestinal tract. J Biol Chem, 2003. 278(47):
p. 46337-48.
- 13. Schultsz, C., et al., The intestinal mucus layer from patients with inflammatory bowel
disease harbors high numbers of bacteria compared with controls. Gastroenterology,
1999. 117(5): p. 1089-97.
- 14. Shaoul, R., et al., Colonic expression of MUC2, MUC5AC, and TFF1 in inflammatory bowel
disease in children. J Pediatr Gastroenterol Nutr, 2004. 38(5): p. 488-93.
- 15. Faure, M., et al., The chronic colitis developed by HLA-B27 transgenic rats is associated
with altered in vivo mucin synthesis. Dig Dis Sci, 2004. 49(2): p. 339-46.
- 16. Lau, S.K., L.M. Weiss, and P.G. Chu, Differential expression of MUC1, MUC2, and MUC5AC
in carcinomas of various sites: an immunohistochemical study. Am J Clin Pathol, 2004.
122(1): p. 61-9.
- 17. Mesquita, P., et al., Coordinated expression of MUC2 and CDX-2 in mucinous carcinomas
of the lung can be explained by the role of CDX-2 as transcriptional regulator of
MUC2. Am J Surg Pathol, 2004. 28(9): p. 1254-5.
- 18. Strugala, V., P.W. Dettmar, and J.P. Pearson, Thickness and continuity of the adherent
colonic mucus barrier in active and quiescent ulcerative colitis and Crohn's disease.
Int J Clin Pract, 2008. 62(5): p. 762-9.
- 19. Khattab, A.Z., W.A. Nasif, and M. Lotfy, MUC2 and MUC6 apomucins expression in human
gastric neoplasm: an immunohistochemical analysis. Med Oncol.
- 20. Mukhopadhyay, P., et al., Mucins in the pathogenesis of breast cancer implications
in diagnosis, prognosis and therapy. Biochim Biophys Acta. 1815(2): p. 224-40.
- 21. Zhang, S., et al., Expression of potential target antigens for immunotherapy on primary
and metastatic prostate cancers. Clin Cancer Res, 1998. 4(2): p. 295-302.
- 22. Park, S.Y., et al., Expression of MUC1, MUC2, MUC5AC and MUC6 in cholangiocarcinoma:
prognostic impact. Oncol Rep, 2009. 22(3): p. 649-57.
- 23. Travo, A., et al., IR spectral imaging of secreted mucus: a promising new tool for
the histopathological recognition of human colonic adenocarcinomas. Histopathology.
56(7): p. 921-31.
- 24. Ouwehand, A.C., et al., Assessment of adhesion properties of novel probiotic strains
to human intestinal mucus. Int J Food Microbiol, 2001. 64(1-2): p. 119-26.
- 25. Roos, S. and H. Jonsson, A high-molecular-mass cell-surface protein from Lactobacillus
reuteri 1063 adheres to mucus components. Microbiology, 2002. 148(Pt 2): p. 433-42.
- 26. Boekhorst, J., et al., Comparative analysis of proteins with a mucus-binding domain
found exclusively in lactic acid bacteria. Microbiology, 2006. 152(Pt 1): p. 273-80.
- 27. Bansal, D., et al., An ex-vivo human intestinal model to study Entamoeba histolytica
pathogenesis. PLoS Negl Trop Dis, 2009. 3(11): p. e551.
- 28.
- 29. Huet, G., et al., Characterization of mucins and proteoglycans synthesized by a mucin-secreting
HT-29 cell subpopulation. J Cell Sci, 1995. 108 (Pt 3): p. 1275-85.
- 30. Pretzer, G., et al., Biodiversity-based identification and functional characterization
of the mannose-specific adhesin of Lactobacillus plantarum. J Bacteriol, 2005. 187(17):
p. 6128-36.
- 31. Merrifield, R.B., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide.
Journal of the American Chemical Society, 1963. 85(14): p. 2149-2154.
- 32. Johnson, T., M. Quibell, and R.C. Sheppard, N,O-bisFmoc derivatives of N-(2-hydroxy-4-methoxybenzyl)-amino
acids: useful intermediates in peptide synthesis. J Pept Sci, 1995. 1(1): p. 11-25.
- 33. Wohr, T., Pseudo-prolines as a solubilizing, structure-disrupting protection technique
in peptide synthesis. Journal of the American Chemical Society, 1996. 118(39): p.
9218-9227.
- 34. Chan, C.C.a.P.D.W., Fmoc Solid Phase Peptide Synthesis. A Practical Approach.. Oxford
University Press, Oxford., 2000.
- 35. Mergler, M., et al., The aspartimide problem in Fmoc-based SPPS. Part I. J Pept Sci,
2003. 9(1): p. 36-46.
- 36. Lauer, J.L., C.G. Fields, and G.B. Fields, Sequence dependence of aspartimide formation
during 9-fluorenylmethoxycarbonyl solid-phase peptide synthesis. Letters in Peptide
Science, 1995. 1: p. 197-205.
- 37. Quibell, M., et al., Suppression of piperidine-mediated side product formation for
Asp(Obu(T))-containing peptides by the use of N-(2-Hydroxy-4-Methoxybenzyl) (Hmb)
backbone amide protection. Journal of the Chemical Society-Chemical Communications,
1994. 20: p. 2343-2344.
- 38. Cardona, V., et al., Application of Dmb-Dipeptides in the Fmoc SPPS of Difficult and
Aspartimide-Prone Sequences. International Journal of Peptide Research and Therapeutics,
2008. 14(4): p. 285-292.
- 39. Johansson, M.E., K.A. Thomsson, and G.C. Hansson, Proteomic analyses of the two mucus
layers of the colon barrier reveal that their main component, the Muc2 mucin, is strongly
bound to the Fcgbp protein. J Proteome Res, 2009. 8(7): p. 3549-57.

1. A polypeptide having a length from 10 to 80 amino-acid residues and whose polypeptidic
sequence comprises or consists of the consensus sequence P1(X
a)P3(X
b)P5(X
c)P6(X
d)P7 (SEQ ID N° 1) disclosing, from N-terminal to C-terminal ends, patterns P1, P3,
P5, P6 and P7, which are defined as follows:
P1 represents the amino-acid sequence VXYXD/N, where X represents any amino-acid,
P3 represents the amino-acid sequence GY,
P5 represents the amino-acid sequence F/YD,
P6 represents amino-acid residue D, and
P7 represents amino-acid residue Q;
and wherein said patterns are further
characterized by spacer amino-acid segments (X
a), (X
b), (X
c) and (X
d) containing respectively a, b, c and d numbers of any amino-acid residue(s) which
are defined as follows:
a ranges from 2 to 33,
b ranges from 2 to 11,
c ranges from 1 to 2,
d ranges from 1 to 3;
and wherein said polypeptide interacts with glycosylated Muc2 protein(s), in particular
interacts with sulfated moieties of glycosylated Muc2 protein, of human colonic mucus
or human intestinal mucus.
2. The polypeptide of Claim 1, whose polypeptidic sequence:
i. comprises or consists of the consensus sequence P1(Xm)P2(Xn)P3XP4(Xp)P5(Xq)P6(Xr)P7X3P8 (SEQ ID N°2), X being any amino-acid residue, said consensus sequence disclosing,
from N-terminal to C-terminal ends, patterns P1, P2, P3, P4, P5, P6, P7 and P8, which
are defined as follows:
P1 represents the amino-acid sequence VXYXD/N, where X represents any amino-acid,
P2 represents the amino-acid sequence YS/TT,
P3 represents the amino-acid sequence GY,
P4 represents amino-acid residue L,
P5 represents the amino-acid sequence F/YD,
P6 represents amino-acid residue D,
P7 represents amino-acid residue Q, and
P8 represents amino-acid residue V,
and wherein said patterns are further
characterized by spacer amino-acid segments (X
m), (X
n), (X
p), (X
q) and (X
r) containing respectively m, n, p, q and r numbers of any amino-acid residue(s) which
are defined as follows:
m ranges from 1 to 23,
n and p range from 1 to 10,
q is 1 or 2,
r ranges from 1 to 3; or
ii. comprises or consists in a sequence having at least 30% identity with SEQ ID N°3,
or;
iii. comprises or consists in SEQ ID N° 3, or;
iv. comprises or consists of a fragment, especially a fragment of contiguous amino-acid
residues of at least 10 amino-acid residues, of any one of the sequences defined in
i) or ii) or iii).
3. The polypeptide according to any one of Claims 1 or 2, whose polypeptidic sequence
is part of the N-terminal sequence of a mucus-binding (MUB) domain, especially a mucus-binding
(MUB) domain of a species selected amongst the Lactobacillus, Streptococcus, Cryptobacterium, Weissella, Granulicatella or Leuconostoc species, and in particular is part of any one of the repeats of a L. reuteri mucus-binding (MUB) domain.
4. The polypeptide according to any one of claims 1 to 3, whose sequence can be identified
in the N-terminal sequence of a Mucus Binding Domain (MUB) present in a mucus binding
protein of L. gasseri, L. johnsonii, L fermentum or L. acidophilus.
5. The polypeptide according to any one of Claim 1 to Claim 4, which comprises or consists
of a fragment of the polypeptide having the sequence of any one of SEQ ID N°5 to SEQ
ID N°16, or any one of SEQ ID N°19 to SEQ ID N°22, especially a fragment within the
N-terminal extremity of said polypeptide, or which has an amino-acid sequence comprising
or consisting of any one of SEQ ID N°23 to 57 or a fragment thereof.
6. The polypeptide of any of claims 1 to 5 which lacks hydrophobic domain(s) and does
not penetrate into living eukaryotic cells.
7. The polypeptide according to any one of Claims 1 to Claim 6, which has the sequence
SEQ ID N°3 or a fragment thereof of contiguous amino-acid residues of at least 10
amino-acid residues.
8. The polypeptide according to any one of Claim 1 to Claim 7, which has an additional
Cysteine residue at its N-terminal extremity.
9. A chimeric molecule comprising a polypeptide according to any one of Claims 1 to Claim
8, which polypeptide is labelled, especially by coupling with a fluorophore or a biotin,
or which polypeptide is associated with a reporter or a carrier entity, or with an
active molecule such as a drug or an enzyme.
10. A method for synthesizing a polypeptide or a fragment of polypeptide according to
Claim 7 or Claim 8 by Solid-Phase synthesis, including steps of coupling with Fmoc-Asp(OtBu)-(Dmb)Gly-OH
dipeptides when the synthesis reaches the positions 29 and/or 50 and/or 63 in reference
to the C-terminus of SEQ ID N°3, and, optionally, including steps of incorporation
of pseudoproline dipeptides when the synthesis reaches positions 10 and/or 40 in reference
to the C-terminus of SEQ ID N°3.
11. A nucleic acid molecule encoding a polypeptide according to any one of Claims 1 to
8.
12. A vector, especially a plasmid, comprising a nucleic acid molecule according to Claim
11.
13. A method for producing a polypeptide according to any one of Claims 1 to 8 through
the transfection of a vector according to Claim 12 in a cell, the culture of said
cell and the recovery of said polypeptide, or through chemical synthesis.
14. A cell or a population of cells comprising a nucleic acid molecule or a vector according
to any one of Claims 11 or 12, especially for use in the method of Claim 13.
15. A composition comprising a polypeptide according to any one of Claims 1 to 9, in particular
a pharmaceutical composition further comprising pharmaceutically acceptable excipient(s),
especially carrier(s) and/or adjuvant(s).
16. Use of a polypeptide according to any one of Claims 1 to 9, as a probe or marker for
staining living cell(s) or tissue(s) in in vitro experiments, in particular in live microscopy experiments.
17. Use of a polypeptide according to any one of Claims 1 to 9 or 16, as a probe or marker
for staining Muc2 protein(s) contained in mucus layer(s), especially in adhesive mucus
layers, of a cell or tissue sample, especially colonic or intestine tissue sample.
18. Use of a polypeptide of any of claims 1 to 9, or of a composition according to Claim
15:
- as a physiological labelled probe to detect in vitro interaction with human colonic mucus in the adhesive mucus layer of colonic tissue
sample, or
- to detect in vitro mucus production or mucus composition in human colon, said use comprising contacting
said polypeptide with a sample of colonic tissue comprising adhesive mucus layer and
goblet cells, or
- in vitro detecting or monitoring any one of the following disease conditions: neoplasic disease(s),
including mucinous carcinoma(s), gastric cancer(s) or colorectal cancer(s), especially
colon cancer(s), cystic fibrosis, intestine inflammatory disease(s) such as inflammatory
bowel disease (IBD) and ulcerative colitis.
19. A polypeptide according to any one of claims 1 to 9, which is labelled, for use as
a probe for in vivo detection of mucus production or mucus composition in human colon.
20. Method for manufacturing a medicament comprising a step of association, especially
coupling, grafting or fusing a polypeptide according to any one of Claims 1 to 8 with
a biologically active molecule such as a drug or an enzyme.
21. A polypeptide according to Claim 9, or of a composition according to Claim 15, or
a medicament resulting from Claim 20 for use in a method of therapy practised on a
human or animal body, in particular for use in treating a disease selected from the
following group, or its symptom(s): neoplasic disease(s), including mucinous carcinoma(s),
gastric cancer(s) or colorectal cancer(s), especially colon cancer(s), cystic fibrosis,
intestine inflammatory disease(s) such as inflammatory bowel disease (IBD) and ulcerative
colitis.
22. Use of a polypeptide according to any one of Claims 1 to 9 as an in vitro marker of degranulation event(s) in neutrophiles.