

(11) **EP 2 573 243 A1**

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

27.03.2013 Patentblatt 2013/13

(51) Int Cl.:

D04H 3/14 (2012.01) D04H 3/153 (2012.01) D04H 3/005 (2012.01)

(21) Anmeldenummer: 11007649.4

(22) Anmeldetag: 20.09.2011

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

(71) Anmelder: Firma Carl Freudenberg 69469 Weinheim (DE)

(72) Erfinder:

- Rutsch, Peter, Dr. 69518 Absteinach (DE)
- Goettel, Matthias 67659 Kaiserslautern (DE)
- Buechsel, Bartin 67659 Kaiserslautern (DE)

(54) Vliesstoff mit einer Elementarfilamente enthaltenden Matrix

(57) Die Erfindung betrifft ein Verfahren zur Herstellung eines Vliesstoffs enthaltend mindestens zwei Polymere, wobei der Schmelzpunkt mindestens eines ersten Polymers über dem Schmelzpunkt mindestens eines zweiten Polymers liegt, umfassend die folgenden Verfahrensschritte: Bereitstellen von Mehrkomponentenfasem, welche mindestens zwei Polymere mit unterschiedlichen Schmelzpunkten enthalten, flächiges Verbinden der Mehrkomponentenfasem durch Beaufschlagen mit einer Temperatur von 100 °C bis 300 °C sowie einem

Druck von 40 N/mm bis 150 N/mm, derart, dass mindestens ein erstes Polymer in Form von Elementarsegmenten in einer Matrix aus mindestens einem zweiten Polymer verteilt wird.

Mit dem erfindungsgemäßen Verfahren können Vliesstoffe mit einer hohen Biegesteifigkeit, Glätte, einer dichten Struktur und geringen Porosität hergestellt werden.

EP 2 573 243 A1

Beschreibung

[0001] Die vorliegende Erfindung betrifft das Gebiet der Textilerzeugnisse und deren Anwendungen.

[0002] Die Erfindung betrifft ein Verfahren zur Herstellung eines Vliesstoffs enthaltend mindestens zwei Polymere, wobei der Schmelzpunkt mindestens eines ersten Polymers über dem Schmelzpunkt mindestens eines zweiten Polymers liegt, durch Beaufschlagen von Mehrkomponentenfasem, welche mindestens zwei Polymere enthalten, mit Druck und Temperatur, so dass mindestens ein erstes Polymer in Form von Elementarsegmenten in einer Matrix aus mindestens einem zweiten Polymer verteilt wird. Die Erfindung betrifft ferner einen mit dem erfindungsgemäßen Verfahren hergestellten Vliesstoff, sowie die Verwendung dieses Vliesstoffs zur Herstellung eines Verbundwerkstoffs.

[0003] Mit der vorliegenden Erfindung soll insbesondere das herkömmliche Anwendungsgebiet von Vliesstoffen ausgeweitet werden, indem diesen physikalische, insbesondere mechanische Merkmale und Eigenschaften verliehen werden, welche denen von Papier bzw. Folien ähneln, wobei die vorteilhaften Merkmale und Eigenschaften von Vliesen aus Endlossegmenten aufrechterhalten bleiben.

15 Stand der Technik

10

20

30

35

45

50

[0004] Vliesstoffe sind textile Flächengebilde aus einzelnen Fasern und können mit den verschiedensten Herstellungsverfahren, wie Kardieren (dry laid), Schmelzspinnen / Melt-blown (spunbonding) oder auch aerodynamischem Vlieslegen (air laying) gewonnen werden.

[0005] Beim schmelzspinnen wird eine polymere Substanz in einem Extruder erhitzt und mittels Spinnpumpen durch eine Spinndüse gepresst. Das Polymer tritt aus der Düsenplatte äls Faden (Endlosfilament) in geschmolzener Form aus, wird durch einen Luftstrom abgekühlt und aus der Schmelze gestreckt. Der Luftstrom befördert die Endlosfilamente auf ein Förderband, das als Sieb ausgebildet ist. Durch eine Absaugung unter dem Siebband können die Fäden unter Bildung eines Fasergeleges fixiert werden. Die Verfestigung des Fasergeleges kann durch beheizte Walzen (Kalander), durch einen Dampfstrom oder durch mechanische bzw. chemische Bindung erfolgen. Bei der Verfestigung durch Kalander kann eine der beiden Walzen mit einer Gravur versehen sein, die aus Punkten, kurzen Rechtecken oder diamantähnlichen Flächen bestehen kann.

[0006] Vliesstoffe werden zu den verschiedensten Zwecken eingesetzt. Vliesstoffe mit hoher Festigkeit können alleine bzw. auch als Verstärkungslage in Faserverbundwerkstoffen verwendet werden. Im Verpackungsbereich werden üblicherweise einlagige Aufbauten unter Verwendung von Meltblown oder meltblownartigen Materialstrukturen, d.h. Faserstrukturen aus nur einer Domäne verwendet (vgl. Tyvek®).

[0007] Aus der WO2006/107695 A2 ist ein Verfahren zum Herstellen eines Vliesstoffs bekannt, in dem Bikomponentenfasern, die eine äußere und eine innere

[0008] Faserkomponente umfassen, mittels eines Spinnverfahrens hergestellt werden. Die äußere Faserkomponente umhüllt die innere Faserkomponente und weist eine höhere Bruchdehnung sowie eine niedrigere Schmelztemperatur als die innere Faserkomponente auf. Die Bikomponentenfasem werden auf einem Förderband positioniert und unter Einwirkung von Hitze zu einem Vliesstoff verfestigt. Die Vliesstoffe werden zur Herstellung von Zeiten, Markisen, Fallschirmen und Verpackungsmaterialien verwendet.

40 Darstellung der Erfindung

[0009] Der Erfindung lag die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Vliesstoffs mit papier bzw. folienähnlichen Merkmalen, insbesondere mit einer hohen Biegesteifigkeit sowie niedriger Haftreibung bereitzustellen. Die Vliesstoffe sollen ferner eine dichte Struktur und geringe Porosität aufweisen.

[0010] Diese Aufgabe wird erfindungsgemäß gelöst mit einem Verfahren zur Herstellung eines Vliesstoffs enthaltend mindestens zwei Polymere, wobei der Schmelzpunkt mindestens eines ersten Polymers über dem Schmelzpunkt mindestens eines zweiten Polymers liegt, umfassend die folgenden Vertahrensschritte:

- Bereitstellen von Mehrkomponentenfasem, welche mindestens zwei Polymere mit unterschiedlichen Schmelzpunkten enthalten,
- flächiges Verbinden der Mehrkomponentenfasern durch Beaufschlagen mit einer Temperatur von 100 °C bis 300 °C sowie einem Druck von 40 N/mm bis 150 N/mm, derart, dass mindestens ein erstes Polymer in Form von Elementarsegmenten in einer Matrix aus mindestens einem zweiten Polymer verteilt wird.

[0011] Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass Mehrkomponentenfasem durch Beaufschlagen mit einem Druck von mindestens 40 N/mm sowie mit einer Temperatur von mindestens 100 °C derart flächig verbunden werden, dass mindestens ein erstes Polymer in Form von Elementarsegmenten in einer Matrix aus mindestens

2

einem zweiten Polymer verteilt wird. Hierdurch kann ein Vliesstoff mit einer hohen Biegesteifigkeit, einer geringen Haftreibung sowie einer dichten Struktur bei geringer Porosität erhalten werden.

[0012] Der erfindungsgemäße Vliesstoff kann bei geringem Gewicht eine hohe Festigkeit und Wasserundurchlässigkeft aufweisen. Dies ermöglicht eine leichte Verarbeitung und Handhabung.

[0013] Praktische Versuche haben ergeben, dass Vliesstoffe mit einer besonders geringen Drapierbarkeit erhalten werden, wenn der Druck auf Werte von 45 bis 140 N/mm, vorzugsweise 50 bis 100 N/mm, noch bevorzugter 55 bis 90 N/mm, noch bevorzugter 60 bis 90 N/mm, insbesondere 70 bis 90 N/mm eingestellt wird.

[0014] Der mit dem erfindungsgemäßen Verfahren hergestellte Vliesstoff zeichnet sich dadurch aus, dass er eine Polymermatrix umfasst. Diese enthält ungeschmolzene Elementarsegmente, vorzugsweise Elementarendlosfilamente, die im Querschnitt kreissegmentförmig bzw. kuchenstückförmig, kreisförmig oder multilobal aufgebaut sein können.

10

30

35

45

50

[0015] Der Vliesstoff kann über die verschmolzenen Domänen einen folien- bzw. papierartigen Charakter aufweisen, dies jedoch ohne die Schwächen einer Folie oder eines Papieres. So ist es auf einfache Weise möglich die Oberfläche des Vliesstoffs glatt und nassfest auszugestalten. Ein derartiger Vliesstoff kann als "faserverstärkte Folie" angesehen werden.

[0016] Das erfindungsgemäße Verfahren ermöglicht es auf energieintensive mechanische Verfestigungstechnologien, wie z.B. Wasserstrahlverfestigung, zu verzichten. Die mit dem erfindungsgemäßen Verfahren hergestellten Vliesstoffe zeichnen sich durch isotrope mechanische Eigenschaften, wie beispielsweise ein isotropes Verhältnis von Höchstzugkraft oder Weitereißkraft in Maschinenzu Querrichtung, aus. Isotropie im Sinne der Erfindung bezeichnet die Unabhängigkeit einer Eigenschaft von der Richtung, Isotrope Festigkeitseigenschaften sind insbesondere für den Einsatz des Vliesstoffs als Verstärkungslage vorteilhaft, da hierdurch eine besonders gleichmäßige Stabilisierung erzielt wird.

[0017] Unter isotropem Maschinenrichtung/Querrichtungs-Verhältnis der Höchstzugkraft und/oder Weiterreißkraft im Sinne der Erfindung wird verstanden, dass das Maschinenrichtung/Querrichtungs-Verhältnis der Höchstzugkraft und/oder Weiterreißkraft im Bereich von 0,7 bis 1,6, vorzugsweise von 0,8 bis 1,5, insbesondere von 0,9 bis 1,1 liegt.

[0018] Unter Höchstzugkraft wird die Kraft verstanden, die aufgewendet werden muss, um eine Faserlage zu zerreissen. Unter Weiterreißkraft wird die Kraft verstanden, die notwendig ist um eine bereits eingerissene Faserlage weiter einzureißen oder weiter zu zerreißen. Je höher diese Werte sind, desto stabiler ist eine Lage. Die Höchstzugkraft wird gemessen in Maschinenrichtung oder quer zur Maschinenrichtung. Unter Maschinenrichtung wird die Richtung verstanden, unter der die Fasern in Längsrichtung auf einem sich in Längsrichtung bewegenden Förderband abgelegt werden. Die Richtung quer hierzu bzw. orthogonal hierzu ist die Querrichtung.

[0019] Der erfindungsgemäße Vliesstoff eignet sich hervorragend für die Herstellung von Faserverbundwerkstoffen, da seine Obertlächenstruktur z.B. über die Wahl der Polymere sowie durch Plasma- bzw. Coronabehandlung der Oberfläche auf einfache Weise auf die weiteren Verbundkomponenten abgestimmt werden kann. Dies ermöglicht einen vielfältigen Einsatz von Verbundkomponenten (Film, Folie, Extrudat, etc.).

[0020] Die Mehrkomponentenfasem können durch dem Fachmann bekannte Art und Weise hergestellt werden. Geeignete Verfahren sind insbesondere Melt-brown und Schmelzspinnen (spunbonding). Erfindungsgemäß besonders bevorzugt ist die Schmelzspinntechnologie.

[0021] Zur Herstellung der Mehrkomponentenfasem kann eine polymere Substanz unter Druck in einem Extruder erhitzt und durch eine Düse gepresst werden, wobei Endlosfilamente entstehen. Nach Austritt aus der Extnisionsdüse können die Endlosfilamente verstreckt und mittels dynamischer Legeverfahren auf einem Förderband unter Bildung einer Faserlage in Quenichtung abgelenkt positioniert werden. Vorteilhaft an einer in Querrichtung abgelenkten Positionierung der Endlosfilamente ist, dass sich hierdurch die Isotropie der mechanischen Eigenschaften des Vliesstoffs erhöht.

[0022] Die Temperatur, mit der die Verfestigung der Mehrkomponentenfasern erfolgt, kann in weiten Bereichen varieren und wird zweckmäßigerweise an die jeweils verwendeten Polymerkomponenten in den Mehrkomponentenfaser angepasst. Wesentlich hierbei ist, dass bei gewählter Temperatur und Druck ein im Wesentlichen vollständiges Aufschmelzen des ersten Polymers nicht jedoch des zweiten Polymers erfolgt.

[0023] Zweckmäßigerweise erfolgt das flächige Verbinden der Mehrkomponentenfasem durch Beaufschlagen mit einer Temperatur von 100 bis 300 °C, vorzugsweise von 100 bis 250 °C, noch bevorzugter von 110 bis 200 °C, insbesondere von 120 bis 180 °C.

[0024] Das Beaufschlagen mit Druck und Temperatur kann auf die dem Fachmann bekannte Art und Weise erfolgen. Zweckmäßigerweise werden hierzu Walzen, insbesondere Kalander, eingesetzt. Insbesondere geeignet sind Walzen mit glatter oder lediglich leicht aufgerauhter Oberfläche. Vorzugsweise weist die Oberfläche eine Rauhtiefe von 20 bis $60~\mu m$, insbesondere von 30 bis $45~\mu m$ auf.

[0025] Praktische Versuche haben gezeigt, dass Vliesstoffe mit besonders guten Festigkeitseigenschaften gewonnen werden, wenn als Mehrkomponentenfasem PIE-Fasern, Hollow-PIE-Fasern, Kern/Mantel-Fasern, multilobale Fasern, Islands-in-Sea-Fasern oder Side by Side-Fasern eingesetzt werden. Diese sind vorzugsweise als Endlosfilamente ausgebildet und aus mindestens zwei Polymeren aufgebaut.

[0026] Unter PIE-Fasern werden Fasern aus Elementarsegementen verstanden, welche im Querschnitt kuchenstück-

förmig bzw. kreissegmentförmig angeordnet sind.

10

30

35

45

50

55

[0027] Der Effekt beim Aufschmelzen einer PIE-Faser bzw. kuchenstückartigen Faser ist die Einbindung stabiler kuchenstückförmiger Segmente, die als Verstärkungsfäden in der Polymermatrix fungieren. Hierdurch wird eine Stabilisierung nach Art eines Stahlbetons erreicht. Dabei fällt vor allem bei PIE-Endlosfilamenten eine deutliche Geometrieveränderung der ursprünglichen Filamentstruktur auf.

[0028] Besonders vorteilhaft bei der Verwendung von PIE-Fasern ist, dass die kuchenstückförmigen Segmente im Querschnitt einen sehr geringen Durchmesser aufweisen und die Matrix daher besonders zahlreich durchsetzen können. Darüber hinaus wird durch die alternierende Anordnung der einzelnen Kernsegmente in den Fasern eine besonders homogene Verteilung der verschiedenen Polymere bewirkt. Dies führt dazu, dass ein äußerst gleichmäßiges Aufschmelzen unter Ausbildung der Matrix erfolgt.

[0029] Bei der Verwendung von Kern/Mantel-Fasern ist es bevorzugt, wenn die Mäntel aus dem niedriger schmelzenden Polymer bestehen. Auf diese Weise werden die Kerne in Form stabiler kreisförmiger Segmente in die Matrix aus dem Mantelpolymer eingebettet. Vorteilhaft beim Einsatz der Kern/Mantel-Fasern ist, dass sich aufgrund des kreisförmigen Querschnitts der Kemsegmente eine besonders dichte Struktur, analog einer Kugelpackung, ausbildet.

[0030] Die Mehrkomponentenfasem können zwei oder mehrere Polymere umfassen, sofern mindestens ein Polymer einen höheren Schmelzpunkt als mindestens ein weiteres Polymer aufweist. Praktische Versuche haben ergeben, dass bereits bei der Verwendung von zwei Polymeren (Bikomponentenfasem) Vliesstoffe mit einer stabilen Matrixstruktur erhalten werden können.

[0031] Das Flächengewicht des erfindungsgemäßen Vliesstoffs kann in weiten Bereichen schwanken. Die Wahl des Flächengewichts erfolgt gemäß den Anforderungen an den Faserverbund. Üblicherweise beträgt das Flächengewicht 30 g/m² bis 400 g/m², vorzugsweise von 35 g/m² bis 200 g/m², noch bevorzugter von 40 g/m² bis 150 g/m², insbesondere von 40 g/m² bis 120 g/m².

[0032] Für manche Anwendungen des erfindungsgemäßen Vliesstoffs ist es zweckmäßig die Oberflächenenergie des Vliesstoffes durch Corona- und/oder Plasmabehandlung zu erhöhen. Dabei erfolgt die Plasma- oder Coronabehandlung vorzugsweise derart, dass der Oberfläche eine Oberflächenenergie gemäß ISO 9000 von mehr als 38 dyn, vorzugsweise 38 bis 70 dyn, insbesondere 40 bis 60 dyn verliehen wird. Hierbei ist vorteilhaft, dass die Oberfläche hydrophil bzw. hydrophob gestaltet werden kann, ohne Chemikalien beizumengen. Dies ist insbesondere bei köpemah eingesetzten Produkten, wie beispielsweise Bekleidung, von Vorteil.

[0033] Denkbar ist die antistatische Ausrüstung der Oberfläche, sowie ihre Versehung mit Pflegesubstanzen. Ebenfalls denkbar ist die nachträgliche Ausrüstung des Vliesstoffs mit hydrophilen, hydrophoben oder antistatischen Spinnpräparationen, sowie ihre Versehung mit Pflegesubstanzen. Es ist auch denkbar Additive zur Obertlächenmodifikation bereits bei der Endiosfitamenterzeugung in einen Extruder einzugeben. Auch bei einer Färbung ist keine nachträgliche Färbung nötig, da Pigmente bereits bei der Endlosfilamenterzeugung in einen Extruder eingebracht werden können.

[0034] Des Weiteren kann der Vliesstoff einer Bindung oder Veredelung chemischer Art unterzogen werden, wie beispielsweise einer Anti-Pilling-Behandlung, einer Hydrophillerung, einer antistatischen Behandlung, einer Behandlung zur Verbesserung der Feuerfestigkeit und/oder zur Veränderung der taktilen Eigenschaften oder des Glanzes, einer Behandlung mechanischer Art wie Aufrauhen, Sanforisieren, Schmirgeln oder einer Behandlung im Tumbler und/oder einer Behandlung zur Veränderung des Aussehens wie Färben oder Bedrucken.

[0035] Ein weiterer Gegenstand der Erfindung ist ein Vliesstoff ausgebildet als Basismaterial zur Beschichtung mit Folien, der mit einem erfindungsgemäßen Verfahren hergestellt wird. Erfindungsgemäß bevorzugt erfolgt das Beschichten mit Folien durch Laminieren und/oder Kaschieren des Basismateriales, ggf. unter Verwendung eines Bindemittels und/oder Druck und/oder Temperatur. Ebenfalls denkbar ist das Aufextrudieren einer folienbildenden polymeren Schmelze oder das Aufbringen eines thermoplastischen Materials in Pulverform mit anschließender thermischer Fixierung. Ein weiterer Gegenstand der Erfindung ist ein Vliesstoff ausgebildet als Basismaterial zur Imprägnierung oder Tränkung mit Bindemitteln. Geeignete Bindemittel sind insbesondere Acrylate und Aminoplaste. Der erfindungsgemäße Vliesstoff zeichnet sich durch eine hohe Biegesteifigkeit bei niedriger Haftreibung aus.

[0036] Der erfindungsgemäße Vliesstoff zeichnet sich ferner durch hervorragende Festigkeitseigenschaften aus. So kann die Weiterreißkraft in Maschinen-und/oder Querrichtung 10 N bis 60 N, vorzugsweise 20 N bis 50 N, insbesondere 30 N bis 40 N betragen. Die Höchstzugkraft in Maschinen-und/oder Querrichtung kann 70 bis 400 N /50 mm, vorzugsweise 100 bis 350 N /50 mm, insbesondere 150 bis 300 N /50 mm betragen.

[0037] Zur Charakterisierung besonderer, von allgemeiner Vliesstoffcharakteristik abweichender Eigenschaften, sind besonders die Biegesteifigkeit nach DIN 53350, sowie der Haftreibungskoeffizient nach ASTM D-4918-97 (2002) heranzuziehen. Praktische Versuche haben ergeben, dass der erfindungsgemäße Vliesstoff eine hohe Biegesteifigkeit bei gleichzeitig hoher Oberflächenglätte, d.h. niedrigem Reibungskoeffizient zeigt. So kann der erfindungsgemäße Vliesstoff eine Biegesteifigkeit von 0,5 N/mm² bis 10 N/mm², gemessen nach DIN 53350 bei einem Biegewinkel von 10 % aufweisen. Vorzugsweise weist der erfindungsgemäße Vliesstoff eine Biegesteifigkeit von 0,5 N/mm² bis 8 N/mm² bei einem Biegewinkel von 10 %, noch bevorzugter von 1 N/mm² bis 6 N/mm², insbesondere von 1 N/mm² bis 4 N/mm² auf. Die Biegesteifigkeitsangaben beziehen sich auf eine Messung in Längs- oder Querrichtung.

[0038] Ferner kann der erfindungsgemäße Vliesstoff eine Biegesteifigkeit von 1 N/mm² bis 20 N/mm², gemessen nach DIN 53350 bei einem Biegewinkel von 40 % aufweisen. Vorzugsweise weist der erfindungsgemäße Vliesstoff eine Biegesteifigkeit von 3 N/mm² bis 12 N/mm² bei einem Biegewinkel von 40 %, noch bevorzugter von 4 N/mm² bis 12 N/mm², insbesondere von 5 N/mm² bis 10 N/mm² auf. Die Biegesteifigkeitsangaben beziehen sich auf eine Messung in Längs- oder Querrichtung.

[0039] Der erfindungsgemäße Vliesstoff kann einen haftreibungskoeffizienten, gemessen nach ASTM D-4918-97 (2002), $\tan \alpha von 0,05$ bis 0,50, vorzugsweise von 0,10 bis 0,40, insbesondere von 0,10 bis 0,30 aufweisen.

[0040] Ein besonders vorteilhafter Haftreibungskoeffizient kann erzielt werden, wenn zur Ausbildung der Polymermatrix Polyethylen und/oder Polyamid verwendet wird.

[0041] Strukturell zeichnet sich der erfindungsgemäße Vliesstoff dadurch aus, dass er mindestens zwei Polymere umfasst, wobei der Schmelzpunkt mindestens eines ersten Polymers über dem Schmelzpunkt mindestens eines zweiten Polymers liegt. Das erste Polymer liegt in Form von Elementarsegmenten vor, welche in einer Matrix aus dem zweiten Polymer verteilt sind.

[0042] Die Differenz zwischen dem Schmelzpunkt des ersten und zweiten Polymers kann in weiten Bereichen variieren. Zweckmäßigerweise beträgt die Differenz mindestens 15 °C, insbesondere mindestens 20 °C. Vorzugsweise werden Polymere mit einer Temperaturdifferenz von 15 °C bis 450 °C, noch bevorzugter von 15 °C bis 200 °C, noch bevorzugter von 20 °C bis 150 °C, insbesondere von 70 °C bis 150 °C eingesetzt.

[0043] Als Polymere können die verschiedensten Materialien eingesetzt werden.

30

35

40

50

55

[0044] Bevorzugte Kombinationen für Mehrkomponentenfäsern umfassen vor allem thermoplastische Polymere, insbesondere ausgewählt aus der Gruppe bestehend aus Nylon 6, Nylon 6,

[0045] Durch Wahl der verwendeten Polymere kann das Benetzungsverhaken des Vliesstoffs beeinflusst werden. Zu diesem Zweck werden insbesondere folgende thermoplastische Polymere eingesetzt: Polyamide, Polyvinylacetate, verseifte Polyvinylacetate, verseifte Ethylenvinylacetate und weitere hydrophile Polymere.

[0046] Alternativ können auch elastische Polymere eingesetzt werden. Diese Polymere werden vorzugsweise ausgewählt aus der Gruppe bestehend aus: Styrol/Butadien Copolymeren, elastischem Polypropylen, Polyethylen, Metallocen-katalysierten α-Olefin-Homopolymeren, sowie Copolymeren mit einer Dichte von weniger als 0,89 g/cm³. Darüber hinaus ist die Verwendung von amorphen Polyalphaolefinen mit einer Dichte von weniger als 0,89 g/cm³, Ethylenvinylacetat, sowie Ethylen-Propylenkautschuk und Propylen-1-Buten-Copolymer und Terpolymere denkbar.

[0047] Gemäß einer besonders bevorzugten Ausführungsform der Erfindung enthalten die Mehrkomponentenfasem Polypropylen, Polyethylen, Polyamid, syndiotatkisches Polystyrol, Polyester, und/oder Mischungen aus diesen Polymeren, vorzugsweise Polyethylenterephthalat.

[0048] Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung wird das erste Polymer aus der Gruppe bestehend aus: Polyester, vorzugsweise Polyethylenterephthalat ausgewählt und/oder das zweite Polymer aus der Gruppe bestehend aus: Polypropylen, Polyethylen, Polyamid und/oder Polyester, vorzugsweise Polyethylenterephthalat.

[0049] Werden als Mehrkomponentenfasem Kern/Mantel-Fasern oder Islands-in-Sea-Fasern eingesetzt, so wird der Mantel bzw. die Sea vorzugsweise aus dem zweiten, matrixerzeugenden Polymer gebildet. Bevorzugte Polymere für die Matrix sind Polyethylen, lineares Niederdruck-Polyethylen mit einem α -Olefinmonomeranteil größer als 10 Gew.-%, Ethylencopolymer mit mindestens einem Vinylmonomer oder Ethylencopolymer mit ungesättigten aliphatischen Carboxylsäuren.

[0050] Der mit dem erfindungsgemäßen Verfahren hergestellte Vliesstoff zeichnet sich dadurch aus, dass im Vliesstoff eine filmähnlich aufgeschmolzene Polymermatrix vorliegt. Diese enthält ungeschmolzene Elementarsegmente, die im Querschnitt kreissegmentförmig bzw. kuchenstückförmig, multilobal oder kreisförmig aufgebaut sein können.

[0051] Elementarsegmente eines kreissegmentförmigen Querschnitts zeigen eine etwa 1,75-mal größere Oberfläche als ein Elementarsegment mit einem runden Querschnitt. Aufgrund der größeren Oberfläche wird eine größer Adhäsionsfläche ausgebildet.

[0052] Wie oben bereits erläutert ist es mit dem erfindungsgemäßen Verfahren möglich, Vliesstoffe mit einer dichten Struktur und geringen Porosität herzustellen, die bei geringem Gewicht eine hohe Festigkeit und Wasserundurchlässigkeit aufweisen. Vorzugsweise weisen die Fasertiter der Mehrkomponentenfasem unabhängig voneinander Werte von 1 dtex bis 4 dtex, vorzugsweise von 1,5 bis 3 dtex, noch bevorzugter von 2 dtex bis 3 dtex auf.

[0053] Das Gewichtsverhältnis von erstem Polymer zu zweitem Polymer im Vliesstoff kann in weiten Bereichen schwanken, sofern gewährleistet ist, dass im Vliesstoff das erste Polymer in Form von Elementafilamenten vorliegt, welche in einer Matrix aus dem zweiten Polymer verteilt sind. Vorzugsweise beträgt das Gewichtsverhältnis von erstem Polymer zu zweitem Polymer im Vliesstoff 50 %: 50 %, vorzugsweise 70% bis 30%, noch bevorzugter 60% zu 40%.

[0054] Bevorzugterweise beträgt der Anteil der Matrix im Vliesstoff von 1 Gew.-% bis 60 Gew.-%, vorzugsweise von 5 Gew.-% bis 50 Gew.%, insbesondere von 10 Gew.% bis 40 Gew.%. Bei diesen Matrixanteilen kann ein Vliesstoff mit einer besonders guten Biegesteifigkeit erhalten werden.

[0055] Der erfindungsgemäße Vliesstoff eignet sich aufgrund seines geringen Gewichts, seiner hohen Festigkeit und Wassebeständigkeit hervorragend zur Herstellung von Verpackungsmaterialien, Beuteln, Taschen, Umschlägen, insbesondere Briefumschlägen, Bändern, Bannern, Verstärkungslagen, Trennlagen und/oder Isolationslagen.

[0056] Ebenfalls hervorragend geeignet ist der erfindungsgemäße Vliesstoff als Basismaterial zur Behandlung mit Imprägnierungsmitteln, insbesondere Bindemitteln, Harzen und/oder Polymerdispersionen.

[0057] Ein weiterer Gegenstand der Erfindung ist ein Verbundwerkstoff umfassend mindestens eine erste Lage, die einen erfindungsgemäßen Vliesstoff enthält, sowie mindestens eine zweite Lage, vorzugsweis ausgebildet alsfolie.

[0058] Gemäß einer bevorzugten Ausführungsform der Erfindung ist die zweite Lage als Folie mit einer Dicke von 0,01 mm bis 1 mm, vorzugsweise von 0,05 mm bis 0,5 mm, insbesondere von 0,1 mm bis 0,2 mm ausgebildet. Die jeweiligen Lagen des erfindungsgemäßen Vliesstoffs können in Abhängigkeit von den verwendeten Materialien auf verschiedene Arten und Weisen miteinander verbunden werden. Praktische Versuche haben ergeben, dass besonders feste Verbunde erhalten werden, wenn die erste und zweite Lage stoffschlüssig und/oder mittels eines Bindemittels miteinander verbunden vorliegen.

[0059] Die Zusammensetzung der erfindungsgemäß eingesetzten Folie kann in Abhängigkeit von dem jeweiligen Einsatzzweck des Verbundwerkstoffs in weiten Bereichen variieren. Vorzugsweise enthält die Folie Kunststoffe, vorzugsweise Polyolefine, insbesondere Polyethlyen und/oder Polypropylen und/oder deren Copolymere oder Metalle. Denkbar ist auch die Verwendung einer metallisierten Folie.

[0060] In Abhängigkeit von der erwünschten Verstärkungsintensität kann die Dicke der ersten Lage variieren. Vorzugsweise weist die erste Lage eine Dicke von 0,01 mm bis 1 mm, noch bevorzugter von 0,05 mm bis 0,5 mm, insbesondere von 0,1 mm bis 0,2 mm auf.

[0061] Es gibt nun verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung auf vorteilhafte Weise auszugestalten und weiterzubilden. Dazu ist einerseits auf die nachgeordneten Ansprüche, andererseits auf die nachfolgende Erläuterung bevorzugter Ausführungsbeispiele der Erfindung anhand der Zeichnung sowie der Tabellen zu verweisen.

Kurzbeschreibung der Zeichnung

30 [0062] In der Zeichnung zeigen

10

- Fig. 1 eine Rasterelektronenmikroskopische(REM)-Aufnahme des Faserquerschnitts des im Ausführungsbeispiel 1, Beispiel 8 hergestellten Vliesstoffs (Kern/Mantel-Filamente/ PET/PE) bei 500-facher Vergrößerung,
- Fig. 2 eine Rasterelektronenmikroskopische (REM)-Aufnahme eines Faserquerschnitts eines handelsüblichen Vliesstoffs (PE) bei 500-facher Vergrößerung, und
 - Fig. 3 eine Rasterelektronenmikroskopische (REM)-Aufnahme des Faserquerschnitts eines im Ausführungsbeispiel 4 hergestellten Vliesstoffs (PIE-Filamente /PET/PA) bei 1000-facher Vergrößerung.

Ausführung der Erfindung

[0063] Im Folgenden wird die Erfindung anhand der folgenden Ausführungsbeispiele näher erläutert.

45 Ausführungsbeispiel 1:

40

50

55

[0064] Herstellung eines Spinnvlieses aus Kern/Mantel-Filamenten (PET/PE)

[0065] Zur Herstellung der Kern/Mantel-Filamente werden Polyethylenterephthalat und Polyethylen in bekannter Weise mit einem pro Lochdurchsatz von 0,65 g/L min coextrudiert und aerodynamisch verstreckt. Die Endlosfilamente werden darauf auf einem Förderband dynamisch abgelegt. Unter dynamischem Ablegen wird verstanden, dass sich die Orientierung der abzulegenden Filamente in Querrichtung gezielt beeinflussen lässt. Darauf erfolgt eine Verfestigung der Endlosfilamente durch eine raue Stahlwalze unter Druck und Wärme. Die Stahlwalze weist Temperaturen zwischen 125 °C und 132 °C auf, Durch das Beaufschlagen der Endlosfilamente mit Druck und Temperatur wird das Polyethylen aufgeschmolzen und das Polyethylenterephthalat in Form von Elementarfilamenten in einer Matrix aus Polyethylen verteilt. Hierbei wird ein Spinnvlies mit einem Flächengewicht von 80 g/m² erhalten. Das Spinnvlies weist eine dichte Struktur sowie eine geringe Porosität bei charakteristischen mechanischen Werten (Höchstzugkraft (HZK), Weiterreißkraft (WRK), Maschinenrichtung (MD):Querrichtung (CD) Verhältnis) auf. Die Parameter des Ausführungsbeispiels sind in Tabelle 1 dargestellt.

5		WRK CD	internal	z	35,1	55,6	49,6	55,6	35,7	41,9
Ü		WRK MD	internal	z	36,4	34,5	52,7	44	36,7	43,1
10	ıschaften.	нгр ср	EN 29073 T3	%	41,6	71,9	52,9	78,3	38,1	68,5
15 20	nte, mech. Eiger	нак ср	EN 29073 T3	N/50mm	87,4	159,1	105,9	188,7	78	144,9
25	Tabelle 1: Ausführungsbeispiel 1, 80 g/m 2 PET/PE Vliesstoff, Kern/Mantel-Filamente, mech. Eigenschaften.	HZD MD	EN 29073 T3	%	42,9	71,4	51	80,1	33,7	63,4
30	∃ Vliesstoff, Kerr	HZK MD	EN 29073 T3	N/50 mm	89,4	172,5	113,6	208	74,8	157,2
35	80 g/m² PET/PE	LD 5cm ¹ /100 Pa	DIN EN ISO 9273	l/m²sec	247	285	148	187	181	236
40	ungsbeispiel 1,	Dicke	DIN EN ISO 9073-2	mm	0,17	0,2	0,14	0,17	0,17	0,17
45	əlle 1: Ausführu	PE-Ant all		%	14	14	14	14	36	36
50	Tabe	Kalanderdruck		N/mm	50	50	80	80	20	20
55		Kalandertemp.		၁့	125	132	125	132	125	132
				<u> </u>	<u> </u>	<u> </u>	<u> </u>		,	

[0066] In Figur 1 ist der filmartige Aufbau der Oberfläche bzw. der Materialstruktur von gesponnenen Kern-Mantel-Filamenten zu erkennen. Bei diesem liegen teilweise Polyethylen-Domänen vor, die durch Polyethylenterephthalat-Endlosfilamente verstärkt sind.

[0067] Der Luftdurchlass kann dabei im Bereich von 135 bis 285 l/m²sec gesteuert werden. Bei der Verfestigung bleibt der runde Querschnitt der Kemstruktur aus Polyester im Wesentlichen erhalten. Im Spinnvlies liegen Polyethylen-Domänen, die mit den Kemsegmenten armiert sind, vor. Besonders gut sichtbar ist dies bei den Spinnvliesen mit einem Polyethylenanteil von 36 Gew.-% im Mantel, Durch die spezifische Faserorientierung kommt es dabei zu typisch isotropen Maschinendchtung/Quenichtungs-Verhältnissen, wie in Tabelle 2 dargestellt.

Tabelle 2: Ausführungsbeispiel 1, 80 g/m² PET/PE Vliesstoff, Kern/Mantel-Filamente, mech. Eigenschaften.

Kalandertemp.	Kalanderdruck	PE-Anteil	MD:CD-Verhältnis	MD:CD-Verhältnis
			HZK	WRK
°C	N/mm	%		
125	50	14	1.0	1,0
132	50	14	1,1	0,6
125	80	14	1,1	1,1
132	80	14	1,1	0,8
125	50	36	1,0	1,0
132	50	36	1,1	1,0
125	80	36	1,2	1,1

[0068] In Figur 2 ist der Querschnitt von handelsüblichen flash- spun Polyethylen zu erkennen (Du Pont Tyvek ®). Dieser zeigt ausschließlich Fasern eines einzigen Polymers in abweichender Größe und Gestalt. Zum Vergleich der Oberflächenenergien wurde ein handelsüblicher Verpackungsvliesstoff aus flash- spun Polyethylen genutzt (Du Pont Tyvek ®).

Ausführungsbeispiel 2:

Herstellung eines erfindungsgemäßen Vliesstoffes aus Kern Mantel Endlosfilamenten (PET/PE)

[0069] Zur Herstellung der Kern/Mantel-Filamente werden Polyethylenterephthalat und Polyethylen in bekannter Weise mit einem pro Lochdurchsatz von 0,65 g/L min coextrudiert und aerodynamisch verstreckt wobei Kern/Mantel-Filamente entstehen. Der Polyethylenanteil im Extrudat beträgt 36 bis 40 Gew.-%. Die Endlosfilamente werden darauf auf einem Förderband dynamisch abgelegt. Unter dynamischem Ablegen wird verstanden, dass sich die Orientierung der abzulegenden Filamente in Querrichtung gezielt beeinflussen lässt. Darauf erfolgt eine Verfestigung der Endlosfilamente durch eine raue Stahlwalze unter Druck und Wärme. Die Stahlwalze weist Temperaturen zwischen 128 °C und 132 °C bei einem Liniendruck von 80 N/mm (Rauhtiefe von 40 μ m) auf. Durch das Beaufschlagen der Endlosfilamente mit Druck und Temperatur wird das Polyethylenterephthalat in Form von Elementarfilamenten in einer Matrix aus Polyethylen verteilt. Hierbei werden Spinnvliese mit einem Flächengewicht von 40, 60 und 80 g/m² erhalten. Es entstehen Vliesstoffe mit dichter Struktur und geringer Porosität bei charakteristischen mechanischen Werten (HZK WRK, MD:CD Verhältnis). Die Parameter des Versuchs sind in Tabelle 3 und 4 dargestellt.

8

50

45

10

15

20

25

30

35

5	WRK CD	internal	z	40	33.5	22,9
	WRK MD	internal	z	40,5	35,5	22,6
or genschaften.	нхр ср	EN 29073 T3	%	72.2	2,69	6'59
e, mech. Eiç	п с м	EN 29073 T3	m w05/N	174,3	109,8	8,68
os tel-Filament	HZD MD	EN 29073 T3	%	68,2	53,8	61,7
g, Kern/Man	HZK MD	EN 29073 T3	N/50m m	161,8	126,8	104,1
S S S S S S S S S S S S S S S S S S S	LD 5cm ² /100 Pa	DIN EN ISO 9273	l/m²sec	140	171	474
80 g/m² PE [.]	Dicke	DIN EN ISO 9073-2	mm	0,13	0,13	60,0
⁵⁵ 2, 40, 60 und	Gewicht	EN 29073 ang.	g/m²	80	80	40
	PE-Anteil		%	36	40	40
Tabelle 3: Ausführungsbeispiel	Kalanderdruck		ш.			
50	Kala		N/mm	80	80	92
55	Kalandertemp		ວຸ	132	128	128

Tabelle 4: Ausführungsbeispiel 2, 40, 60 und 80 g/m² PET/PE Vliesstoffe, Kern/Mantel-Filamente, mech. Eigenschaften.

Katandertemp.	Kalanderdruck	PE-Anteil	MD:CD-Verhältnis	MD:Verhältnis
			HZK	WRK
°C	N/mm	%		
132	80	36	0,9	1,0
128	80	40	1,2	1,1
128	76	40	1,2	1,0

Ausführungsbeispiel 3:

Herstellung eines Spinnvlieses aus Kern/Mantel-Filamenten (PET/Co-PET)

[0070] Zur Herstellung der Kern/Mantel-Filamente werden Polyethylenterephthalat und ein niedrig schmelzender Co-Polyester in bekannter Weise mit einem pro Lochdurchsatz von 0,74 und 0,8 g/L min coextrudiert und aerodynamisch verstreckt, wobei Kern/Mantel-Filamente entstehen. Der Anteil an Co-Polyethylenterephthalat beträgt 20 Gew.%. Die Endlosfilamente werden darauf auf einem Förderband dynamisch abgelegt. Unter dynamischem Ablegen wird verstanden, dass sich die Orientierung der abzulegenden Filamente in Quenichtung gezielt beeinflussen lässt. Darauf erfolgt eine Verfestigung der Endlosfilamente durch eine raue Stahlwalze unter Druck und Wärme. Die Stahlwalze weist eine Temperatur von 130 °C bei einem Liniendruck von 80 N/mm (Rauhtiefe von 40 μm) auf. Durch das Beaufschlagen der Endlosfilamente mit Druck und Temperatur wird das Polyethylenterephthalat in Form von Elementarfilamenten in einer Matrix aus Co-Polyethylenterephtalat verteilt. Anschließend erfolgt eine Nachbehandlung im Heißluftofen bei einer Temperatur von 160°C. Hierbei wird ein Spinnvlies mit einem Flächengewicht von 100 g/m² erhalten. Hierdurch entsteht ein Vliesstoff mit dichter Struktur und geringer Porosität bei charakteristischen mechanischen Werten (HZK, WRK, MD:CD Verhältnis). Die Parameter des Ausführungsbeispiels sind in Tabelle 5 und Tabelle 6 dargestellt.

5	WRK CD	internal	Z	12	16
	WRK MD	internal	z	13	16
10 aften.	НZD СD	EN 29073 T3	%	53	41
Eigensch	HZK CD	EN 29073 T3	M/50	304	220
inte, mech	HZD MD	EN 29073 T3	%	43	32
oz tel-Filame	HZK MD	EN 29073 T3	աա 09/N	329	268
ueW/Wan Kem/Man	LDSc m ² / 100 Pa	DIN EN ISO 927 3	I/m² sec	120	151
Vliesstoff,	Dicke	DIN EN ISO 9073-2	mm	0,18	0,2
% PET/CoPET	Gewicht	EN 29073 ang.	g/m²	100	100
⁵² piel 4, 100 g/m	PET-Antell				
dsiegsbu	Co-PE		%	20	20
5 5 57 Tabelle 5: Ausführungsbeispiel 4, 100 g/m² PET/CoPET Vliesstoff, Kem/Mantel-Filamente, mech. Eigenschaften.	Kalanderdruck		mm/N	08	08
50	PLD		g/L min	0,74	8,0
55	Kalandertemp.		၁့	130	130

Tabelle 6: Ausführungsbeispiel 4, 100 g/m² PET/CoPET Vliesstoff, Kern/Mantel-Filamente, mech. Eigenschaften.

Kalandertemp.	PLD	Kalanderdruck	Co-PET-Anteil	MD:CD-Verhältnis	MD:CD-Verhältnis
				HZK	WRK
°C	g/Lmin	daN	%		
130	0,74	80	20	1,1	1,1
130	0,8	80	20	1,2	1,0

Ausführungsbeispiel 4:

Herstellung eines Spinnvlieses aus PIE-Filamenten (PET/PA)

[0071] Zur Herstellung der PIE-Filamente werden Polyethylenterephthalat und Polyamid in bekannter Weise mit einem pro Lochdurchsatz von 0,76 g/L min coextrudiert und aerodynamisch verstreckt, wobei 16 PIE-Filamente entstehen. Der Anteil an Polyamid liegt zwischen 30 und 50 Gew.-%. Die Endlosfilamente werden darauf auf einem Förderband dynamisch abgelegt. Unter dynamischem Ablegen wird verstanden, dass sich die Orientierung der abzulegenden Filamente in Querrichtung gezielt beeinflussen lässt. Darauf erfolgt eine Verfestigung der Endlosfilamente durch eine raue Stahlwalze unter Druck und Wärme. Die Stahlwalze weist Temperaturen zwischen 130 °C und 180 °C bei einem Liniendruck zwischen 50 N/mm und 80 N/mm (Rauhtiefe von 40 µm) auf.

[0072] Durch das Beaufschlagen der Endlosfilamente mit Druck und Temperatur wird das Polyamid verschmolzen und das Palyethylenterephthalat in Form von im Querschnitt kreissegmentförmigen bzw. kuchenstückartigen Elementarfilamenten in einer Matrix aus dem Polyamid verteilt. Hierbei wird ein Spinnvlies mit einem Flächengewicht von 105 g/m² erhalten. Es entsteht ein Spinnvlies mit dichter Struktur und geringer Porosität bei charakteristischen mechanischen Werten (HZK, WRK, MD:CD Verhältnis). Die Parameter des Versuchs sind in Tabelle 7 und Tabelle 8 dargestellt.

12

10

5

15

20

25

30

35

40

45

50

1	_										
_	Trap Tear CD	ASTMD 5733	z	163,9	170,3	90'6	84,7	68,7	55,6	155,7	06
5	Trap Tear MD	AST M D 573 3	z	185	185, 4	2,06	2'98	69,2	54,2	174, 9	28
10	Dehnung CD	EN 29073 T3	%	41,3	50,1	48,5	52,3	44,7	40,4	39,9	42,6
57 Eigenschafter	Grab Tensile CD	EN 2907 3 T3	N/50 mm	174,2	205	272,2	260,3	226,5	221,1	180	179,1
os mente, mech. I	Dehnung MD	EN 29073 T3	%	43,7	8,74	46,4	1,94	41,6	6,04	43,6	44,3
stoff, PIE-Fila	Grab Tensile MD	EN 2907 3 T3	M/50 mm	224,9	252,5	319,2	321,8	273,8	595,9	244,6	233,2
\$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	LD 20cm ² /50 Pa	DIN EN ISO 9237	I/m²s ec	68	81	27	31	31	25	46	65
⁵² el 4, 105 g/m	Dicke	DIN EN ISO 9073-2	mm	0,2	0,22	0,14	0,15	0,15	0,15	0,17	0,2
os ührungsbeispie	Gewicht	EN 2907 3 angel	g/m²	103,9	104,7	106,6	106,7	104,4	106,3	105,7	106
54 Tabelle 7: Ausführungsk	PA-Anteil		%	30	30	30	30	20	20	20	20
50	Kalanderdruck		N/mm	20	80	80	20	50	80	80	50
55	Kalander temp.		၁့	130	130	180*	180*	180*	180*	130	130

Tabelle 8: Ausführungsbeispiel 4, 105 g/m² PET/PA Vliesstoff, PIE-Filamente, mech. Eigenschaften.

Kalandertemperatur	Kalanderdruck	PA-Anteil	MD:CD Verhältnis	MD:CD Verhältnis
			Grab Tensile	Trap Tear
°C	N/mm	%		
130	50	30	1,3	1,1
130	80	30	1,2	1,1
180*	80	30	1,2	1,0
180*	50	30	1,2	1,0
180*	50	50	1,2	1,0
118*	80	50	1,3	1,0
130	80	50	1,4	1,1
130	50	50	1,3	1,0

[0073] Gemäß einer Ausführungsform der Erfindung, die insbesondere in Figur 3 dargestellt ist, weisen die Verbundfilamente im Querschnitt eine kreissegmentförmige Ausgestaltung der die Querschnitte der verschiedenen Elementarsegmente darstellenden Bereiche auf. Es ist ein filmartiger Aufbau im Querschnitt der Materialstruktur des erfindungsgemäßen Vliesstoffs zu erkennen. Es liegen Polyamid-Domänen vor, die durch Polyethylenterephthalat-Filamente verstärkt sind. Der ursprüngliche runde Faserquerschnitt ist dabei großteils durch Hitze- und Druckeinfluss deformiert bzw. nicht mehr festzustellen.

Ausführungsbeispiel 5:

Corona- und Plasmabehandlung eines Spinnvlieses

[0074] Die Oberflächenenergie der hergestellten Spinnvliese wird durch eine Corona-oder Plasmabehandlung verändert. In Tabelle 9 ist dies am Beispiel 8 (132°C / 80 daN / 36 % PE) des Ausführungsbeispiels 1 beschrieben. Die mit * markierte Seite ist die der Aufladung zugewandten Seite im Prozess. Die Coronaaufladung erfolgt bei Standardbedingungen (Raumtemperatur, 7500 V) und verschiedenen Geschwindigkeiten. Die Plasmatisierung erfolgt in einer Niederdruck-Atmosphärenplasmaanlage der Firma Freudenberg Forschungsdienste KG bei Raumtemperatur. Die Messung der Oberflächenenergien erfolgt gemäß ISO 9000 mit Sherman Testtinten der Firma Schnick D-42579 Heiligenhaus. Zum Vergleich der Oberflächenenergien wurde ein handelsüblicher Verpackungsvliesstoff aus flash- spun Polyethylen genutzt.

Tabelle 9: Ausfürungsbeispiel 1, Beispiel 8, 80 g/m² PET/PE Vliesstoff, Kern/Mantel-Filamente, Oberflächenenergien unbehandelt und nach Corona- bzw. Plasmabehandlung.

		unbena	nuen unu na	acii Cololla	- DZW. 1 1831	nabenandi	arig.			
		Oberfläch	enenergie/[dyn]		Oberflächenenergie/[dyn]				
		Seite 1	Seite 2*	Seite 1*	Seite 2	Seite 1	Seite 2*	Seite 1*	Seite 2	
Referenz PE		40-42	40-42	#	#	40-42	40-42	#	#	
Versuch 8	unbeh.	38-40	38-40	#	#	38-40	38-40	#	#	
Versuch 8		Corona		Plasma	Plasma		Corona		Plasma	
	5 m/min	#	#	>50	>50	#	#	>50	>50	
	10 m/min	#	#	>50	>50	#	#	>50	>50	
	25 m/min	40-42 dyn	44-46 dyn	>50	>50	40-42 dyn	42-44 dyn	>50	>50	

(fortgesetzt)

	Oberflächenenergie/[dyn]				Oberflächenenergie/[dyn]				
	Seite 1	Seite 2*	Seite 1*	Seite 2	Seite 1	Seite 2*	Seite 1*	Seite 2	
35 m/min	38-40 dyn	44-46 dyn	>50	>50	38-40 dyn	42-44 dyn	>50	>50	
45 m/min	Messung 1			Messung 1,10 Tage Lagerzelt bei Raumtemperatur					

[0075] Wie aus den Werten von Tabelle 9 ersichtlich, eignet sich der erfindungsgemäße Vliesstoff hervorragend zur Behandlung mit Plasma-und/oder Coronabehandlung. Überraschenderweise können auch sehr dünne Vlieslagen derart behandelt werden, dass diese eine Oberflächenenergie von 40 bis 42 dyn. aufweisen, ohne dass eine Zerstörung des Vliesstoffes stattfindet.

Ausführungsbeispiel 6:

5

10

15

20

25

30

35

40

45

50

55

Biegesteifigkeit und Haftreibungskoeffizient verschiedener Materialien

[0076] Zur Charakterisierung besonderer, von allgemeiner Vliesstoffcharakteristik abweichender, Eigenschaften, sind besonders die Biegesteifigkeit nach DIN 53350, sowie der Haftreibungskoeffizient nach ASTM D-4918-97 (2002) heranzuziehen. Aus einem Vergleich der Messwerte ausgewählter Ausführungsbeispiele zeigt sich eine hohe Biegesteifigkeit bei gleichzeitig hoher Oberflächenglätte, d.h. niedrigem Reibungskoeffizient. Es ist ersichtlich, dass ein besonders vorteilhafter Reibungskoeffizient dann erzielt werden kann, wenn zur Ausbildung der Polymermatrix Polyethylen oder Polyamid verwendet wird.

Tabelle 10: Verschiedene Ausführungsbeispiele, Biegesteifigkeit längs gem. DIN 53350.

	Längs						
	Biegesteifigkeit nach DIN 53350 [N/mm²]						
Biegewinkel [Neigung in %]	10%	20%	30%	40%			
100gsm, PIE 16, PET/PA, 30% PA	1,8	3,5	5	5,3			
100gsm, PIE 16, PET/PP, 38% PP	3,6	6,8	8,6	10			
80gsm, SC, PET/PE, 40% PE	1,2	2,2	2,8	3,3			
100gsm,SC, PET/CoPET, 20% CoPET	3,4	7,7	10	13			
100gsm, PIE 16, PET/PA, 30 % PA	1,8	3,7	4,4	5,6			

Tabelle 11: Verschiedene Ausführungsbeispiele, Biegesteifigkeit quer gem. DIN 53350.

	Quer						
	Biegesteifigkeit nach DIN 53350 [N/mm²]						
Biegewinkel [Neigung in %]	10%	20%	30%	40%			
100gsm, PIE 16. PET/PA, 30% PA	1,7	3,3	5,1	5,7			
100gsm, PIE 16, PET/PP, 38% PP	2,9	5,7	7,3	8,1			
80gsm, SC, PET/PE, 40% PE	1,3	2,1	2,5	3			
10Ogsm,SC, PET/CoPET, 20% CoPET	2,3	4,5	6,8	8,3			
100gsm, PIE 16, PET/PA, 30 % PA	1,9	4,3	6,9	6,9			

Tabelle 12: Verschiedene Ausführungsbeispiele, Haftreibungskoeffizient tan a gem. ASTM D-4918-97, Seitenzuordnung A = glatte Walze, B = Rauhwalze.

	Haftreibur	ngskoeffizient nach ASTI	M D-4918-97			
		[°]		tan α		
	А	В	Α	В		
100gsm, PIE 16, PET/PP, 38% PP	18	16	0,32	0,29		
60gsm, SC, PET/PE, 40% PE	10	11	0,18	0,19		
100gsm,SC, PET/CoPET, 20% CoPET	14	16	0,25	0,29		
100gsm, PIE 16, PET/PA, 30 % PA	13	13	0,23	0,23		

Patentansprüche

5

10

15

20

25

30

35

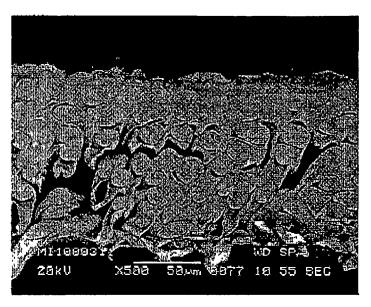
40

- 1. Verfahren zur Herstellung eines Vliesstoffs enthaltend mindestens zwei Polymere, wobei der Schmelzpunkt mindestens eines ersten Polymers über dem Schmelzpunkt mindestens eines zweiten Polymers liegt, umfassend die folgenden Verfahrensschritte:
 - Bereitstellen von Mehrkomponentenfasem, welche mindestens zwei Polymere mit unterschiedlichen Schmelzpunkten enthalten,
 - flächiges Verbinden der Mehrkomponentenfasem durch Beaufschlagen mit einer Temperatur von 100 °C bis 300 °C sowie einem Druck von 40 N/mm bis 150 N/mm, derart, dass mindestens ein erstes Polymer in Form von Elementarsegmenten in einer Matrix aus mindestens einem zweiten Polymer verteilt wird.
- Verfahren zur Herstellung eines Vliesstoffs nach Anspruch 1, dadurch gekennzeichnet, dass das flächige Verbinden der Mehrkomponentenfasem durch Beaufschlagen mit einem Druck von 40 N/mm bis 100 N/mm, vorzugsweise von 60 N/mm bis 80 N/mm, insbesondere von 50 N/mm bis 90 N/mm durchgeführt wird.
- 3. Verfahren zur Herstellung eines Vliesstoffs nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das flächige Verbinden der Mehrkomponentenfasern durch Beaufschlagen mit einer Temperatur von mehr als 100 °C, vorzugsweise von 100 °C bis 300 °C, noch bevorzugter von 110 °C bis 200 °C, insbesondere von 120 °C bis 180 °C durchgeführt wird.
- **4.** Verfahren zur Herstellung eines Vliesstoffs nach einem der voranstehenden Ansprüche, **dadurch gekennzeichnet, dass** Mehrkomponentenfasern eingesetzt werden, deren Herstellungsverfahren folgende Schritte umfasst:
 - Erhitzen einer polymeren Substanz in einem Extruder,
 - Verpressen der polymeren Substanz durch eine Düse,
 - Verstrecken der polymeren Substanz,
 - Dynamisches Positionieren der polymeren Substanz auf einem Band unter Bildung einer Faserlage.
- 5. Verfahren zur Herstellung eines Vliesstoffs nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass als Mehrkomponentenfasem PIE-Fasern, Hollow-PIE-Fasern, Kern/Mantel-Fasern, multilobale Fasern oder Side by Side-Fasem eingesetzt werden, welche aus mindestens zwei Polymeren mit unterschiedlichen Schmelzpunkten aufgebaut sind.
- 6. Verfahren zur Herstellung eines Vliesstoffs nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Mehrkomponentenfasern als Bikomponentenfilamente ausgestaltet sind.

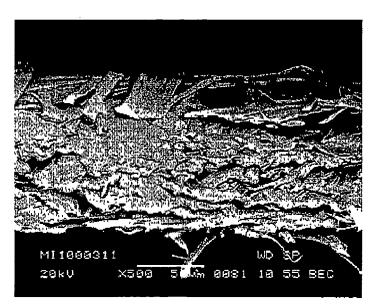
- 7. Vliesstoff, ausgebildet als Basismaterial zur Beschichtung mit Folien, hergestellt mit einem Verfahren gemäß einem der vorangehenden Ansprüche, gekennzeichnet durch eine Biegesteifigkeit von 1 N/mm² bis 10 N/mm², gemessen nach DIN 53350 bei einem Biegewinkel von 10 % und/oder eine Biegesteifigkeit von 2 N/mm² bis 13 N/mm², bei einem Biegewinkel von 40 %.
- 8. Vliesstoff nach Anspruch 7, **gekennzeichnet durch** ein Maschinenrichtung/Querrichtungs-Verhältnis der Höchstzugkraft gemäß EN 29073 T3 von 0,7 bis 1,6, vorzugsweise von 0,8 bis 1,5, insbesondere von 0,9 bis 1,1.
- 9. Vliesstoff nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der Vliesstoff mindestens zwei Polymere enthält, wobei der Schmelzpunkt mindestens eines ersten Polymers über dem Schmelzpunkt mindestens eines zweiten Polymers liegt und wobei das erste Polymer in Form von Elementarsegmenten vorliegt, die in einer Matrix aus dem zweiten Polymer verteilt sind.

5

20


30

35


45

50

- 10. Vilesstoff nach einem oder mehreren Ansprüche 7 bis 9, dadurch gekennzeichnet, dass der Anteil der Matrix im Vliesstoff im Bereich von von 1 Gew.-% bis 60 Gew.-%, vorzugsweise von 5 Gew.-% bis 50 Gew.-%, insbesondere von 10 Gew.-% bis 40 Gew.-% beträgt.
 - **11.** Vliesstoff nach Anspruch 9 oder 10, **dadurch gekennzeichnet**, **dass** die Differenz zwischen den Schmelzpunkten des ersten und zweiten Polymers mindestens 15 °C, vorzugsweise mindestens 20 °C beträgt.
 - **12.** Vliesstoff nach einem oder mehreren Ansprüche 7 bis 11, **dadurch gekennzeichnet**, **dass** im Vliesstoff Elementarsegmente aus einem ersten Polymer vorliegen, die im Querschnitt kreissegmentförmig bzw. kuchenstückförmig, kreisförmig oder multilobal aufgebaut sind, welche in einer Matrix aus dem zweiten Polymer verteilt sind.
- 25 **13.** Vliesstoff nach einem oder mehreren Ansprüche 7 bis 12, **dadurch gekennzeichnet**, **dass** der Anteil des zweiten Polymers im Vliesstoff im von 50 %: 50 %, vorzugsweise 70 % bis 30 %, noch bevorzugter 60 % zu 40 % liegt.
 - 14. Vliesstoff nach einem oder mehreren Ansprüche 7 bis 13, dadurch gekennzeichnet, dass das erste Polymer ausgewählt ist aus der Gruppe bestehend aus: Polyester, vorzugsweise Polyethylenterephthalat und/oder dass das zweite Polymer ausgewählt ist aus der Gruppe bestehend aus: Polypropylen, Polyethylen, Polyamid und/oder Polyester, vorzugsweise Polyethylenterephthalat.
 - **15.** Verwendung eines Vliesstoffes nach einem oder mehreren der Ansprüche 7 bis 14 zur Herstellung eines Verbundwerkstoffs.
 - **16.** Verbundwerkstoff umfassend mindestens eine erste Lage, die einen Vliesstoffs nach einem oder mehreren der Ansprüche 7 bis 15 enthält, sowie mindestens eine zweite Lage, vorzugsweise als Filmaufweist.
- 17. Verbundwerkstoff nach Anspruch 16, **dadurch gekennzeichnet**, **dass** die erste Lage eine Dicke von 0,01 mm bis 1 mm, vorzugsweise von 0,05 mm, insbesondere von 0,1 mm bis 0,2 mm und/oder die zweite Lage eine Dicke von 0,01 mm bis 1 mm, vorzugsweise von 0,05 mm bis 0,5 mm, insbesondere von 0,1 mm bis 0,2 mm aufweist.

Figur 1.

Figur 2.

Figur 3.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 11 00 7649

	EINSCHLÄGIGE DO	OKUMENTE		
Kategorie	Kennzeichnung des Dokuments der maßgeblichen Te	mit Angabe, soweit erforderlich, ile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)
X	WO 2005/059219 A1 (DU VISHAL [US]; LIM HYUN DAVID MATT) 30. Juni 2 * Seite 3, Zeile 27 - Ansprüche 1-5,7-21 *	1-17	INV. D04H3/14 D04H3/005 D04H3/153	
<	US 4 039 711 A (NEWMAN 2. August 1977 (1977-0 * Spalte 3, Zeile 12 - Ansprüche; Beispiele *)8-02) - Zeile 28;	1-3,7,8	
(WO 03/021024 A1 (BBA N SIMPSONVILLE INC [US]; [US]; GILLESPIE) 13. März 2003 (2003-03 * Seite 7, Zeile 6 - S Ansprüche 1-19 *	FARRELL GREGORY W 3-13)	1-17	
X	EP 2 151 270 A1 (TORA) 10. Februar 2010 (2010 * Seite 3, Zeile 31 - * Absatz [0013] - Absa * Absätze [0042], [00	0-02-10) Zeile 33 * atz [0018] *	1-17	RECHERCHIERTE SACHGEBIETE (IPC)
A	DE 10 2007 049031 A1 (GMBH [DE]) 16. April 2 * Ansprüche 19-25; Abb. *	2009 (2009-04-16)	1-17	
Der vo	rliegende Recherchenbericht wurde fu	ür alle Patentansprüche erstellt Abschlußdatum der Recherche		Prüfer
	Den Haag	27. Januar 2012	Mir	za, Anita
X : von Y : von ande A : tech O : nich	ATEGORIE DER GENANNTEN DOKUMEN besonderer Bedeutung allein betrachtet besonderer Bedeutung in Verbindung mit erren Veröffentlichung derselben Kategorie nologischer Hintergrund tschriftliche Offenbarung ochenliteratur	E : älteres Patentdo nach dem Anme iner D : in der Anmeldur L : aus anderen Gri	Jugrunde liegende T okument, das jedoc Idedatum veröffen ng angeführtes Dol unden angeführtes	heorien oder Grundsätze oh erst am oder tlicht worden ist kument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 11 00 7649

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.

Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

27-01-2012

	Recherchenbericht hrtes Patentdokumen	t	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO	2005059219	A1	30-06-2005	CN EP JP JP WO	1890419 1694897 4648331 2007514073 2005059219	A1 B2 A	03-01-200 30-08-200 09-03-201 31-05-200 30-06-200
US	4039711	Α	02-08-1977	KEI	NE		
WO	03021024	A1	13-03-2003	AT CN DE DE EP MX US WO	304622 1571871 60206186 60206186 1432860 PA04001877 2003041953 03021024	A D1 T2 A1 A A1	15-09-200 26-01-200 20-10-200 22-06-200 30-06-200 15-06-200 06-03-200 13-03-200
EP	2151270	A1	10-02-2010	CN EP US WO	101678255 2151270 2010180558 2008149737	A1 A1	24-03-201 10-02-201 22-07-201 11-12-200
DE	102007049031	A1	16-04-2009	CN DE EP JP RU US	101821330 102007049031 2197952 2011503367 2010118479 2010228214	A1 A1 A	01-09-201 16-04-200 23-06-201 27-01-201 20-11-201 09-09-201

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EPO FORM P0461

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

WO 2006107695 A2 [0007]