(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

03.04.2013 Patentblatt 2013/14

(51) Int Cl.:

E06B 9/88 (2006.01)

E04F 15/20 (2006.01)

(21) Anmeldenummer: 12008641.8

(22) Anmeldetag: 16.01.2009

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

(30) Priorität: 16.01.2008 DE 102008004760 12.03.2008 DE 102008013844

13.05.2008 DE 102008023294

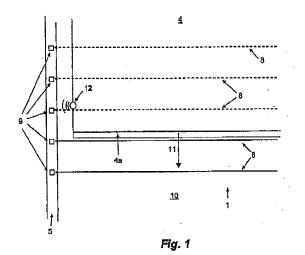
(62) Dokumentnummer(n) der früheren Anmeldung(en) nach Art. 76 EPÜ:

09702219.8 / 2 229 496

(71) Anmelder: Cedes AG 7302 Landquart (CH)

(72) Erfinder:

 De Coi, Beat 7320 Sargans (CH)


- Signer, Christian 7208 Malans (CH)
- Menzi, Markus
 8757 Filzbach (CH)
- Hug, René 8887 Mels (CH)
- (74) Vertreter: Dobler, Markus
 Otten, Roth, Dobler & Partner Patentanwälte
 Grosstobeler Strasse 39
 88276 Ravensburg / Berg (DE)

Bemerkungen:

This application was filed on 27-12-2012 as a divisional application to the application mentioned under INID code 62.

(54) Sicherungssystem zur Absicherung eines sich bewegenden, geführten Bewegungselements gegen ungewollte Kollisionen

(57)Vorgeschlagen wird ein Sicherungssystem (1, 2, 3) zur Absicherung eines sich bewegenden, geführten Bewegungselements (4) gegen ungewollte Kollisionen mit einem auf einem Bewegungsweg in Bewegungsrichtung (11) des Bewegungselements (4) liegenden Objekt, welches eine Objektdetektionseinrichtung zur Feststellung eines Objekts in einem Bereich des Bewegungselements (4) umfasst, die durch eine Bewegung des Bewegungselements (4) für eine Objekterkennung sperrbar ist, sowie eine Elektronikeinheit aufweist, mit welcher die Bewegung des Bewegungselements (4) steuerbar ist und die dazu ausgelegt ist, der Objektdetektionseinrichtung bei herannahendem Bewegungselement (4) einen Sperrzustand zuzuordnen, in welchem ein Objekt oder Bewegungselement keinen Sicherheitsmodus auslöst, wobei Abschaltmittel (12, 13, 14, 15, 16, 18) vorgesehen sind, die bei Detektion eines vom Bewegungselement (4) kommenden Abschaltsignals wenigstens einen Teil der Objektdetektionseinrichtung in den Sperrzustand überführen, dadurch gekennzeichnet, dass die Abschaltmittel ein Sendeorgan für ein Abschaltsignal umfassen, das auf einen Reflektor für elektromagnetische Strahlung, insbesondere optischen Reflektor (15, 27) am Bewegungselement (4) in einer Weise abgestimmt ist, dass von einem Empfänger der Abschaltmittel nur in einem vordefinierten Bewegungsbereich des Reflektors (15, 27) am Bewegungselement (4) ein Signal des Sendeorgans empfangen werden kann und wobei die Objektdetektionseinrichtung und/oder das Abschaltmittel als Distanzsensor, insbesondere als Time-of-flight-Sensor ausgebildet ist/sind.

EP 2 574 718 A2

15

25

35

Beschreibung

[0001] Die Erfindung betrifft ein Sicherungssystem zur Absicherung eines sich insbesondere vertikal bewegenden, geführten Bewegungselements gegen ungewollte Kollisionen nach dem Oberbegriff des Anspruchs 1.

Stand der Technik

[0002] Aus dem europäischen Patent EP 0 902 157 B1 ist es bekannt, Tore mit einem Lichtvorhang abzusichern, der in der Bewegungsebene eines Tores montiert ist. Damit das Tor nicht als Objekt erkannt wird, werden beim Schließen des Tores Überwachungsstrahlen des Lichtvorhangs durch jeweils einen in Bewegungsrichtung des Tores zurückliegenden Überwachungsstrahl für eine Objekterkennung gesperrt, bevor eine Vorderkante des Tores den jeweiligen Überwachungsstrahl erfasst. Auf diese Weise stehen die Überwachungsstrahlen des Lichtvorhangs bei einer Schließbewegung des Tores sukzessive für eine Objekterkennung nicht mehr zur Verfügung.

[0003] Bei einer solchen Ausgestaltung ist es allerdings denkbar, dass ein zu detektierendes Objekt fälschlicherweise als herannahendes Tor interpretiert wird und somit ein unerwünschtes Sperren von Überwachungsstrahlen bewirken könnte.

Aufgabe und Vorteile der Erfindung

[0004] Der Erfindung liegt die Aufgabe zu Grunde, ein Sicherungssystem der einleitend bezeichneten Art bereitzustellen, das sich abhängig von einer Bewegung eines Bewegungselements vergleichsweise zuverlässiger für eine Objekterkennung sperren lässt.

[0005] Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. In den abhängigen Ansprüchen sind vorteilhafte und zweckmäßige Weiterbildungen der Erfindung angegeben.

[0006] Die Erfindung geht von einem Sicherungssystem zur Absicherung eines sich bewegenden, geführten Bewegungselements, z. B. einer Tür oder eines Torelements, gegen ungewollte Kollisionen mit einem auf einem Bewegungsweg in Bewegungsrichtung des Bewegungselement liegenden Objekts aus. Das Sicherungssystem umfasst eine Objektdetektionseinrichtung zur Feststellung eines Objekt in einem Bereich des Bewegungselements, die durch eine Bewegung des Bewegungselements für eine Objekterkennung sperrbar ist sowie eine Elektronikeinheit, mit welcher die Bewegung des Bewegungselements steuerbar ist und die dazu ausgelegt ist, der Objektdetektionseinrichtung bei herannahendem Bewegungselement einen Sperrzustand zuzuordnen, in welchem ein Objekt oder Bewegungselement keinen Sicherheitsmodus auslöst. Dazu sind Abschaltmittel vorgesehen, die bei Detektion eines vom Bewegungselement kommenden Abschaltsignals wenigstens einen Teil der Objektdetektionseinrichtung in den Sperrzu-

stand überführen. Der Kern der Erfindung liegt nun darin, dass die Abschaltmittel ein Sendeorgan für ein Abschaltsignal umfassen, das auf einen Reflektor für elektromagnetische Strahlung, insbesondere optischen Reflektor am Bewegungselement in einer Weise abgestimmt ist, dass von einem Empfänger der Abschaltmittel nur in einem vordefiniertem Bewegungsbereich des Reflektors am Bewegungselement ein Signal des Sendeorgans empfangen werden kann. Erfindungsgemäß sind/ist die Objektdetektionseinrichtung und/oder die Abschaltmittel als Distanzsensoren, insbesondere als Time-of-flight-Sensoren ausgebildet. Durch diese Vorgehensweise kann vermieden werden, dass eine Reflexion eines Objekts als Abschaltsignal interpretiert wird und damit fälschlicherweise eine Abschaltung der Objektdetektionseinrichtung oder zumindest eines Teils davon stattfindet.

[0007] Das erfindungsgemäße Sicherungssystem kann insbesondere bei Toren, z. B. Rolltoren oder Türen, z. B in Verschiebetüren wie bei Auszügen zum Einsatz kommen. Weitere Anwendungsgebiete können im Bereich Maschinen, z. B. Pressen liegen.

[0008] Dadurch dass es erforderlich ist, dass zum Sperren zumindest eines Teils der Objektdetektionseinrichtung ein Signal vom Bewegungselement unmittelbar empfangen werden muss, kann erreicht werden, dass Objekte im Torbereich eine derartige Sperrung nicht auslösen können, da derartige Objekte entsprechende Signale normalerweise nicht aussenden.

[0009] Im Gegensatz zur Ausgestaltung nach der EP 0 902 175 B1 erfolgt ein Sperren nicht aufgrund einer Unterbrechung eines Strahles, sondern durch das Erkennen eines vom Torelement kommenden spezifischen Signals, das sich von Signalreflexionen an Objekten regelmäßig unterscheidet. Das macht den Sperrvorgang deutlich sicherer.

[0010] Gegebenenfalls wird die Objektdetektionseinrichtung durch die Abschaltmittel ganz abgeschaltet.

[0011] In einer besonders bevorzugten Ausgestaltung der Erfindung umfasst die Objektdetektionseinrichtung einen Vorhang aus einer Mehrzahl von in der Bewegungsrichtung des Bewegungselements nacheinander angeordneten Objektdetektionsmitteln. Bei einer Abschaltung durch das herannahende Bewegungselement wird vorzugsweise das vor einer Vorderkante des Bewegungselements nächstkommende Objektdetektionsmittel für eine Objekterkennung gesperrt.

[0012] Im Weiteren ist es besonders bevorzugt, wenn die Abschaltmittel dazu ausgelegt sind, ein Abschaltsignal als solches nur dann zu werten, wenn es in einem vorgegebenen Zeitabschnitt während der Bewegung vom Bewegungselement kommt. Dadurch wird die Abschaltsicherheit noch weiter erhöht. Denn die Wahrscheinlichkeit, dass erstens ein Signal die Bedingungen erfüllt, um als Abschaltsignal grundsätzlich gewertet zu werden und zweitens noch in einem vorprognostizierten Zeitfenster auftritt, ist höchst unwahrscheinlich. Das vorprognostizierte Zeitfester lässt sich z. B. dadurch bestim-

men, dass aufgrund einer bekannten Geschwindigkeit des Bewegungselements und einer bekannten geometrischen Anordnung der Abschaltmittel vorhergesagt werden kann, zu welchem Zeitpunkt das Bewegungselement an einem vorgegebenen Ort der Abschaltmittel auftauchen muss.

[0013] Damit steigt die Wahrscheinlichkeit erheblich, der Objektdetektionseinrichtung bei herannahendem Bewegungselement, z. B. Torelement, richtigerweise einen Sperrzustand zuzuordnen, in welchem ein Objekt oder das Bewegungselement bei der Objektdetektionseinrichtung keinen Sicherheitsmodus auslöst, der z. B. das Bewegungselement stoppt und/oder reversiert.

[0014] Ein Reflektor im Signalweg der Abschaltmittel ist vorteilhaft, weil ein Reflektor Licht viel besser reflektiert als ein üblich zu detektierendes Objekt, so dass bei den Abschaltmitteln mit vergleichsweise geringer Lichtleistung gearbeitet werden kann. Außerdem lässt sich dadurch eine Fehlinterpretation einer Reflexion von einem detektierenden Objekt ausschließen, wenn nur definiert gerichtetes und/oder beschaffenes Licht zur Auswertung herangezogen wird.

[0015] Das vom Bewegungselement, z. B. einer Tür, einem Tor oder einem anderen sich bewegt geführten Bauteil kommende Abschaltsignal kann ein Schall- und/ oder Lichtsignal und/oder elektromagnetischer bzw. magnetischer Natur sein. Es kann auch polarisiertes Licht zur Anwendung kommen, was die Störsicherheit weiter erhöht.

[0016] Es ist beispielsweise denkbar, dass ausgesandte elektromagnetische Strahlung, z.B. Licht, über einen Modulator mit einer vorgegebenen Eigenschaft versehen wird, wobei das modulierte Licht auf einen Analysator abgestimmt ist, der vor dem Empfänger sitzt, in einer Weise, dass nur das veränderte, modulierte Licht empfangen werden kann. Durch diese vorgehensweise steigt die Sicherheit bei der Signalerkennung erheblich. Beispielsweise wird Licht über einen Polfilter oder eine Verzögerungsplatte in einer vordefinierten Weise verändert. Der Empfänger ist so ausgestaltet, dass dieser nur das veränderte Licht empfangen kann. Zum Beispiel wird das ausgesandte Licht linear polarisiert, wobei ein Reflektor die Polarisationseigenschaften in einer Weise ändert, dass auf den Empfänger zirkular polarisiertes Licht trifft. Das zirkular polarisierte Licht lässt sich am Empfänger auswerten.

[0017] Auch durch entsprechende Auswahl der Art des Signals in Abhängigkeit vom Standort des Tores kann ausgeschlossen werden, dass es zu Fehlinterpretationen beim Sperren von Objektdetektionsmittel der Objektdetektionseinrichtung kommt, weil z.B. eine Reflexion von einem Objekt durch einen Sensor der Objektdetektionsmittel falsch interpretiert wird.

[0018] In einer besonders bevorzugten Ausgestaltung der Erfindung umfassen die Abschaltmittel im Bereich einer Führungsleiste des Bewegungselements einen Sender oder Empfänger, der zusammen mit einem Empfänger oder Sender der Objektdetektionseinrichtung die

Abschaltmittel ausbilden. Durch diese Maßnahme kann das Sicherungssystem kostengünstig ausgestaltet werden, da vorhandene Elemente der Objektdetektionseinrichtung für die Abschaltmittel mit verwendet werden. Beispielsweise sind Empfänger und deren Auswerteelektronik vergleichsweise teuer. Dementsprechend ist es von Vorteil, dass die Abschaltmittel die bestehenden Empfänger der Objektdetektionseinrichtung nutzen, aber gegebenenfalls zusätzliche Sender besitzen, so dass mit Hilfe der Sender ein Signal über das Bewegungselement, also vom Bewegungselement kommend, an den bestehenden Empfänger gerichtet und dort ausgewertet werden kann, um ein Sperren zumindest eines Teils der Objektdetektionseinrichtung zu bewirken.

4

[0019] Dabei muss nicht jedem Objektdetektionsmittel der Objektdetektionseinrichtung ein Sender zugeordnet sein. Es ist denkbar, dass ein Sender mit mehreren Empfängern der Objektdetektionsmittel zusammenarbeitet, beispielsweise werden Objektdetektionsmittel blockweise passiv geschaltet bzw. gesperrt oder ganz abgeschaltet. Denkbar ist auch, dass ein Sender der Abschaltmittel nur einzelnen Empfängern der Objektdetektionsmittel zugeordnet ist, wobei eine Abschaltung von weiteren, insbesondere in Schließrichtung des Bewegungselements nachfolgenden Objektdetektionsmitteln ohne einen zugeordneten Sender über einen Algorithmus erfolgt, z.B. mittels einer Geschwindigkeitsberechnung.

[0020] In einer außerdem bevorzugten Ausgestaltung der Erfindung sind die Abschaltmittel dazu ausgelegt, einen komplett geschlossenen Zustand des Bewegungselements, z. B. eines Torelements festzustellen. Es kann z.B. in der geschlossenen Position des Torelements ein Signal vom Torelement ausgewertet werden, das in dieser Position dauerhaft empfangen werden muss. Einer Torsteuerung kann die detektierte Geschlossenposition zur Verfügung gestellt werden.

[0021] In diesem Zusammenhang ist es auch bevorzugt, wenn eine Schnittstelle vorgesehen ist, um die aktuelle Position des Bewegungselements auszugeben oder einzulesen. Entsteht die Möglichkeit, die Endposition des Bewegungselements an die Steuerung zu übermitteln, kann z.B. überprüft werden, ob sich das Bewegungselement ordnungsgemäß verhält. Wird z. 8. ein Tor durch Windkraft aus der vorgesehenen Bahn gedrückt, was bei flexiblen Rolltoren nicht ausgeschlossen ist, kann der Steuerung ein entsprechendes Signal, z.B, ein Stoppsignal übermittelt werden.

[0022] Grundsätzlich müssen die Objektdetektionsmittel entlang der Bewegungsbahn des Bewegungselements nicht äquidistant angeordnet sein. Z.B. ist im Endbereich, z.B. Bodenbereich, ein Abstand von 5 cm und im übrigen Bereich von 20 cm realisiert. Damit können insbesondere im Bodenbereich eines Tores kleinere Objekte noch sicher erfasst werden. Insgesamt ist es aber dadurch nicht erforderlich, dass über die gesamte Bewegungshöhe des Bewegungselements eine große Sensordichte realisiert ist.

[0023] Im Weiteren ist es von Vorteil, wenn Elemente

40

der Abschaltmittel, die am Bewegungselement befestigt werden, eine vorgegebene Distanz zur Vorderkante aufweisen. Denn die Vorderkante von Bewegungselementen, z.B. Torelementen, ist in der Regel zur Befestigung von Gegenständen nicht geeignet. Sie ist meist weich, um einerseits einen Spalt zwischen dem Torelement und einer Bodenebene ausreichend verschließen zu können, andererseits wird so die Gefahr von Verletzungen bei ungewollten Kollisionen herabgesetzt.

[0024] Damit die Signale der Objektdetektionseinrichtung rechtzeitig gesperrt werden können, wird vorgeschlagen, dass Empfänger der Abschaltmittel gegenüber Empfängern der Objektdetektionseinrichtung versetzt angeordnet sind.

[0025] Um eine weitere Verbesserung der Funktionssicherheit des Sicherungssystems zu erhalten, sind folgende Maßnahmen denkbar:

- a) Der Öffnungswinkel von eingesetzten Optiken wird insbesondere gemäß einschlägiger Norm gewählt.
- b) Die Signalkette wird überwacht, z.B. indem die Anzahl von für die Objekterkennung aktiven Objektdetektionsmitteln überwacht wird.
- c) Schaltausgänge der Objektdetektionsmittel werden beispielsweise mit einem Testeingang zur Ausführung von Testprozeduren versehen.
- d) Außerdem können "Online-Tests" implementiert sein, in der Art eines ROM-Checks, der während eines Betriebs kontinuierlich ausgeführt wird.

[0026] Die einzelnen Bestandteile des Sicherungssystems auf einer Seite eines Bewegungselements müssen nicht zwangsläufig in einer Baueinheit untergebracht werden. Es ist denkbar, dass z.B. über einen Bus kommunizierend Einzelsensorpaare oder Gruppen von Sensoren montiert werden. Damit lässt sich eine höhere Flexibilität erreichen, wenn die Objektdetektionseinrichtung und/oder Abschaltmittel des Sicherungssystems auf unterschiedliche bauliche Gegebenheiten, insbesondere kleinere oder größere Überwachungsbereiche anzupassen sind.

[0027] Die Sensoren lassen sich dann abhängig vom Leistungsprofil auswählen, das an dem jeweiligen Torelement gefordert ist.

<u>Figuren</u>

[0028] Mehrere Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden unter Angabe weiterer Vorteile und Einzelheiten nachstehend näher erläutert. Es zeigen

Figuren 1 - 3 einen Ausschnitt eines Torelements sowie eines Torsicherungssystems an einer Seite des Torelements in jeweils einer schematischen Darstellung für unterschiedliche Ausgestaltungen von Abschaltmitteln, die ein Sperren von Überwachungslichtstrahlen einer Lichtschrankenanordnung für die Objekterkennung bewirken,

Figur 4 und 5

Möglichkeiten von Reflexionsmitteln, die Teil eines Signalwegs von Abschaltmitteln sind, in jeweils schematischen Ansichten und

Figur 6

15

einer perspektivischen Ansicht ein Reflektor für Abschaltmittel.

Beschreibung der Ausführungsbeispiele

[0029] In den Figuren 1 - 3 ist jeweils die linke Seite von unterschiedlichen Torsicherungssystemen 1, 2, 3 abgebildet. Von einem Torelement 4 ist jeweils die linke untere Ecke schematisiert wiedergegeben. Die Torsicherungssysteme 1, 2, 3 umfassen auf der linken Seite jeweils eine Empfängerleiste 5, 6, 7. Die dazugehörigen Sender, die Überwachungslichtstrahlen 8 zu jeweils einem Empfänger 9 aussenden, sind in den Figuren 1 - 3 nicht zu sehen. Die Überwachungslichtstrahlen 8 sorgen dafür, dass bei Eintreten eines Objekts in einen Bereich 10 unterhalb einer Vorderkante 4a des Torelements 4 aufgrund einer Unterbrechung der Überwachungslichtstrahlen 8 das Torelement 4 stoppt, g reversiert, um Kollisionen mit dem Objekt zu verhindern.

[0030] Beim Herunterfahren des Torelements 4 ist allerdings sicherzustellen, dass das Torelement 4 nicht selbst einen Sicherheitsmodus auslöst, weil das Tor einen Überwachungslichtstrahl 8 unterbrochen hat. Dies lässt sich dadurch erreichen, dass vor Erreichen des jeweiligen Überwachungslichtstrahls 8 durch die Vorderkante 4a des Torelements 4 bei einer Bewegung des Torelements 4 in eine Bewegungsrichtung 11 ein jeweiliges Sendeempfängerpaar zur Erzeugung des Überwachungslichtstrahls in einen passiven, den Sicherheitsmodus nicht mehr auslösenden Zustand gebracht wird.

[0031] In den Figuren 1 - 3 geschieht das auf unterschiedliche Weise:

[0032] In Figur 1 ist im linken vorderen Bereich des Torelements 4 ein Sender 12 positioniert. Der Sender 12 arbeitet mit Empfängern (nicht dargestellt) zusammen, die grundsätzlich auch die Empfänger 9 sein könnten, wodurch beim Herunterfahren des Torelements 4 sukzessive die Überwachungslichtstrahlen 8 für die Objekterkennung gesperrt werden. Die gesperrten Überwachungslichtstrahlen sind in den Figuren 1 - 3 gestrichelt dargestellt. Der Sender 12 arbeitet vorzugsweise mit den Empfängern derart zusammen, dass vor Erreichen eines Überwachungslichtstrahls 8 durch die Vorderkante 4a des Torelements ein jeweiliger Empfänger erkennt, dass sich das Torelement in dieser Position durch ein vom

40

15

35

40

45

Sender 12 ausgesandtes Signal befindet, wodurch die jeweilige Empfängersenderpaarung für den Überwachungslichtstrahl in einen Passivzustand versetzt wird. [0033] Vorzugsweise sind die Empfänger der Abschaltmittel versetzt zu den Empfängern für die jeweiligen Überwachungslichtstrahlen 8 angeordnet.

[0034] In Figur 2 werden die gleichen Empfänger der Detektionsmittel auch für die Abschaltmittel genutzt. Um ein rechtzeitiges Abschalten auch des ersten Strahls 8 zu ermöglichen, ist in Figur 2 ein zusätzlicher Empfänger 9a vorgesehen, der Licht von einem zusätzlichen Sender 13 auswertet, um den in Bewegungsrichtung 11 folgenden Überwachungslichtstrahl 8a zu sperren bzw. das dazugehörige Empfängersenderpaar im Hinblick auf die Objektauswertung in einen Passivzustand zu bringen. Das Signal des zusätzlichen Senders 13 wird über einen Reflektor 15 zum Empfänger 9a gelenkt. Der Reflektor 15 sitzt am Torelement 4, so dass auf diese Weise das Vorhandensein des Torelements sicher erfassbar ist. Beim Weiterbewegen des Torelements 4 in Bewegungsrichtung 11 arbeiten dann weitere zusätzliche Sender 14 mit versetzt angeordneten Empfängern 9 zusammen, um jeweils das Sperren der Überwachungslichtstrahlen zu erhalten.

[0035] In Figur 3 umfassen die Abschaltmittel einen einzigen Sender 16, der über den am Torelement 4 montierten Reflektor 15 Licht zu bereits vorhandenen Empfängern 9 reflektiert. Sobald ein Empfänger 9 ein vom Sender 16 kommendes Signal erfasst, wird dieser Empfänger 9 und ein dazugehöriger Sender auf der anderen Seite des Tores im Hinblick auf eine Objekterkennung in einen gesperrten Zustand gebracht, so dass der Sicherheitsmodus nicht ausgelöst wird, wenn die Vorderkante 4a den Signalweg zwischen dieser Sensorpaarung unterbricht.

[0036] Grundsätzlich ist es denkbar, dass zur Torerkennung auch ein Transpondersystem zum Einsatz kommt, wobei ein Transponder am Torelement montiert ist. Zum Beispiel kann ein RFID-System verwendet werden mit einem Transponder am Torelement. Der Transponder kann passiv sein, d.h. er besitzt dann keine eigene Energieversorgung. Bei Verwendung eines RFID am Bewegungselement, z.B. einem Tor, kann über Triangulation die Position des Tores bestimmt werden. Z.B. wird am oberen Ende und am unteren Ende am Laufweg des Tores je ein RFID Empfänger vorgesehen.

[0037] Wichtig ist, dass der Signalweg mit Abschaltmitteln 12, 13, 14, 15, 16 möglichst wenig Störungen unterworfen ist. Dies kann z.B. dadurch erreicht werden, dass ein Reflektor 15 an einem Torelement, so wie in Figur 4 veranschaulicht, eine nur geringe Reflexionskeule aufweist, was die Pfeile 17a - 17e veranschaulichen sollen. Damit wird erreicht, dass die Möglichkeit einer Strahlabschaltung durch Streulicht auch zum nächsten Empfänger der Abschaltmittel praktisch ausgeschlossen ist.

[0038] Anstatt eines Reflektors 15, der mehr oder weniger offen montiert ist, kann eine Art Lichtleiter 18 zum

Einsatz kommen, der eine definierte Empfangskeule 19 und eine definierte Sendekeule 20 auf einen Sender 21 bzw. in Bezug auf einen Empfänger 22 aufweist, so dass auch hierdurch eine Falschinterpretation von Signalen praktisch nicht mehr stattfinden kann (siehe Figur 5). Im Signalweg kann so wie in Figur 5 dargestellt eine Kollimationseinrichtung verwendet werden, z. B. eine Linse 22a, womit es noch schwieriger wird, dass eine Spiegelung von Licht vom Sender 21 zum Empfänger 22 stattfindet, das als Abschaltsignal interpretiert wird. Zur weiteren Lichtstrahl-Definition kann wie in Fig. 5 ebenfalls abgebildet, insbesondere im Lichtweg vom Sender 21 zum Lichtleiter 18 eine Blende 22b vorgesehen sein.

[0039] In den Lichtweg kann zusätzlich ein Modulator nach dem Senden 21 und ein Analysator vor dem Empfänger 22 angeordnet werden, was die Sicherheit noch weiter steigert.

[0040] In Figur 6 ist ein Reflektor 27 dargestellt.

[0041] Der Reflektor 27 ist z. B. ein massiver Vielflächer aus einem lichtdurchlässigen, insbesondere glasklaren Material. Gemäß Figur 6 tritt z. B. an einer Fläche 28 ein Lichtstrahl 29 in den Reflektor 27 ein und wird dann durch Totalreflexion an der Fläche 30 gespiegelt, weiter zu den Flächen 31 und 32, wo ebenfalls Totalreflexion stattfindet, so dass der Lichtstrahl 29 den Reflektor 27 über die Fläche 28 wieder verlässt.

[0042] Die Spezialität dieses Reflektors besteht darin, dass ein einfallender Lichtstrahl 29a im Vergleich zum ausfallenden Lichtstrahl 29b lediglich um eine gewisse Distanz versetzt wird. Die Richtung des einfallenden Lichtstrahls 29a zum ausfallenden Lichtstrahl 29b bleibt unverändert. Werden mehrere solche Reflektoren nebeneinander angeordnet, wird Licht, das z. B. von einer Punktquelle ausgestrahlt wird, zu einem versetzten Punkt reflektiert. Durch diesen Reflektor kann somit gezielt Licht, z. B. zu einem Empfänger reflektiert werden, das zusätzlich noch eine vorgegebene Richtung mit der gewünschten Lichtintensität aufweist.

[0043] Damit lässt sich die Sicherheit des Systems weiter erhöhen, da es unwahrscheinlich ist, dass falsche Reflexionen als tatsächlich reflektiertes Abschaltsignal interpretiert werden.

Bezugszeichenliste:

[0044]

- 1 Torsicherungssystem
- 2 Torsicherungssystem
 - 3 Torsicherungssystem
 - 4 Torelement
 - 4a Vorderkante
 - 4b Stirnseite

5	Empfängerseite		29a	einfallender Lichtstrahl
6	Empfängerseite		29b	ausfallender Lichtstrahl
7	Empfängerseite	5	30	Fläche
8	Überwachungslichtstrahl		31	Fläche
8a	Überwachungslichtstrahl	10	32	Fläche
9	Empfänger	10	D-4	
9a	Empfänger			rentansprüche
10	Bereich	15	1.	Sicherungssystem (1, 2, 3) zur Absicherung eines sich bewegenden, geführten Bewegungselements
11	Bewegungsrichtung			(4) gegen ungewollte Kollisionen mit einem auf einem Bewegungsweg in Bewegungsrichtung (11) des Bewegungselements (4) liegenden Objekt, wel-
12	Sender	20		ches eine Objektdetektionseinrichtung zur Feststellung eines Objekts in einem Bereich des Bewe-
13	Sender	20		gungselements (4) umfasst, die durch eine Bewe-
14	Sender			gung des Bewegungselements (4) für eine Objekter- kennung sperrbar ist, sowie eine Elektronikeinheit
15	Reflektor	25		aufweist, mit welcher die Bewegung des Bewegungselements (4) steuerbar ist und die dazu aus-
16	Sender			gelegt ist, der Objektdetektionseinrichtung bei her- annahendem Bewegungselement (4) einen Sperr-
17a	Lichtstrahlen			zustand zuzuordnen, in welchem ein Objekt oder Bewegungselement keinen Sicherheitsmodus auslöst,
17b	Lichtstrahlen	30		wobei Abschaltmittel (12, 13, 14, 15, 16, 18) vorgesehen sind, die bei Detektion eines vom Bewegungs-
17c	Lichtstrahlen			element (4) kommenden Abschaltsignals wenigstens einen Teil der Objektdetektionseinrichtung in
17d	Lichtstrahlen	35		den Sperrzustand überführen, dadurch gekennzeichnet, dass die Abschaltmittel ein Sendeorgan
17e	Lichtstrahlen			für ein Abschaltsignal umfassen, das auf einen Reflektor für elektromagnetische Strahlung, insbeson-
18	Lichtleiter			dere optischen Reflektor (15, 27) am Bewegungs- element (4) in einer Weise abgestimmt ist, dass von
19	Sendekeule	40		einem Empfänger der Abschaltmittel nur in einem vordefinierten Bewegungsbereich des Reflektors
20	Empfangskeule			(15, 27) am Bewegungselement (4) ein Signal des Sendeorgans empfangen werden kann und wobei
21	Sender	45		die Objektdetektionseinrichtung und/oder das Abschaltmittel als Distanzsensor, insbesondere als
22	Empfänger			Time-of-flight-Sensor ausgebildet ist/sind.
22a	Linse	50	2.	System nach Anspruch 1, dadurch gekennzeich- net , dass das Sicherungssystem ein Tür-/Torsiche- rungssystem ist.
22b	Blende		2	
27	Reflektor		3.	System nach Anspruch 1, dadurch gekennzeichnet, dass die Objektdetektionseinrichtung einen Verhang aus einer Mehrzehl von in der Reusegunge
28	Fläche	55		Vorhang aus einer Mehrzahl von in der Bewegungsrichtung des Bewegungselements nacheinander angeordneten Objektdetektionsmittel umfasst.
29	Lichtstrahl		4.	System nach einem der vorhergehenden Ansprü-

che, dadurch gekennzeichnet, dass die Abschaltmittel dazu ausgelegt sind, ein Abschaltsignal als solches zu werten, nur wenn es in einem vorgegebenem Zeitabschnitt während der Bewegung des Bewegungselements vom Bewegungselement kommt.

System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Abschaltsignal ein Signal auf der Grundlage von Licht, Schall, elektromagnetischer Strahlung und/oder eines Magnetfeldes ist.

6. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Bereich einer Führungsleiste (23) eines Bewegungselements (4) die Abschaltmittel einen Sender (13, 14) oder Empfänger umfassen, der zusammen mit einem Empfänger (9) oder Sender der Objektdetektionseinrichtung die Abschaltmittel ausbilden.

7. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abschaltmittel dazu ausgelegt sind, eine Endlage, insbesondere einen komplett geschlossenen Zustand eines Bewegungselements (4) festzustellen.

8. System nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Objektdetektionsmittel nicht äquidistant in Bewegungsrichtung des Bewegungselements angeordnet sind.

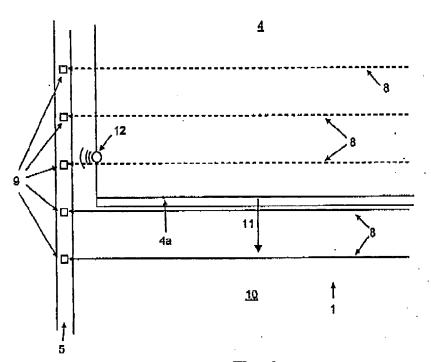
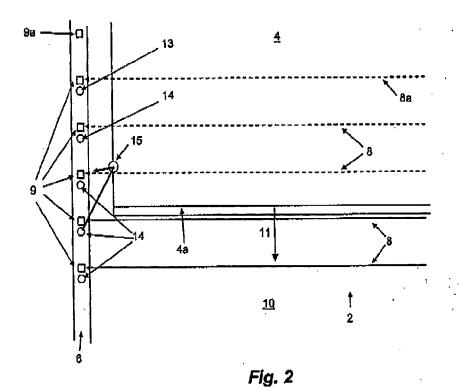
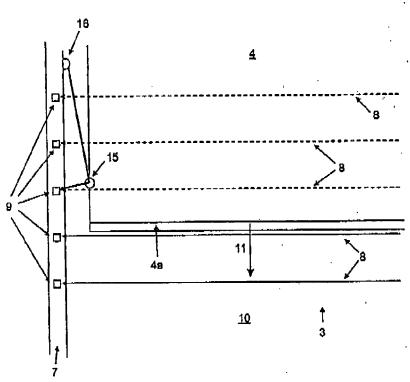




Fig. 1

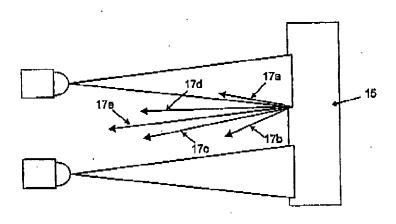


Fig. 4

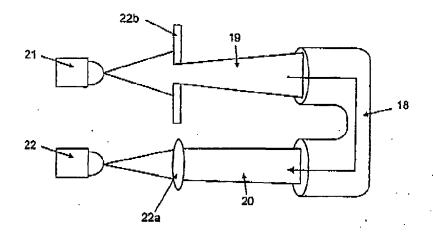


Fig. 5

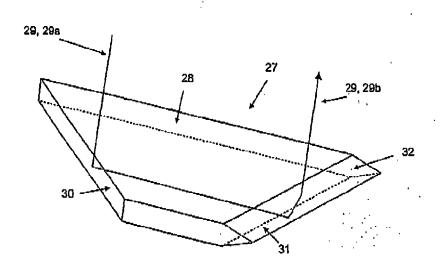


Fig. 6

EP 2 574 718 A2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

EP 0902157 B1 [0002]

EP 0902175 B1 [0009]