EP 2 581 473 A1 (11)

EUROPÄISCHE PATENTANMELDUNG (12)

(43) Veröffentlichungstag: 17.04.2013 Patentblatt 2013/16

(21) Anmeldenummer: 12006874.7

(22) Anmeldetag: 04.10.2012

(51) Int CI.: C23G 1/12 (2006.01) C23C 18/18 (2006.01)

C23G 1/22 (2006.01) C23C 18/36 (2006.01)

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

(30) Priorität: 12.10.2011 DE 102011115802

(71) Anmelder: C. Hafner GmbH + Co. KG 75173 Pforzheim (DE)

(72) Erfinder:

Schenzel, Heinz-Günter 75173 Pforzheim (DE)

Meyer, Volker 75173 Pforzheim (DE)

(74) Vertreter: Leitner, Waldemar Leitner Zeiher Patent- und Rechtsanwälte Zerrennerstrasse 23-25 75172 Pforzheim (DE)

(54)Verfahren zur Korrosionsschutzbehandlung eines Werkstücks aus einem Aluminiumwekstoff, insbesondere aus einer Aluminiumknetlegierung

Die Erfindung betrifft ein Verfahren zur Korrosionsschutzbehandlung eines Werkstücks aus einem Aluminiumwerkstoff, insbesondere aus einer Aluminiumknetlegierung.

Erfindungsgemäß ist vorgesehen, dass das Werkstück, das eine Oberfläche aufweist, in die die Größe der Poren und/oder Hohlräume kleiner als 20 pm ist, in einem ersten Verfahrensschritt einer abtragenden Vorbehandlung mit einer Natriumhydroxid enthaltenden Lösung unterzogen wird, dass in einem nächsten Verfahrensschritt das Werkstück mit einer verdünnten Salpetersäure dekapiert wird, dass in einem weiteren Verfahrensschritt in der Oberfläche des Werkstücks kleine Vertiefungen erzeugt werden, indem das Werkstück mit einer fluoridhaltigen Beize behandelt wird, und dass anschließend eine Vor-Schicht und daran anschließend eine Chemisch-Nickel-Schicht aufgetragen wird.

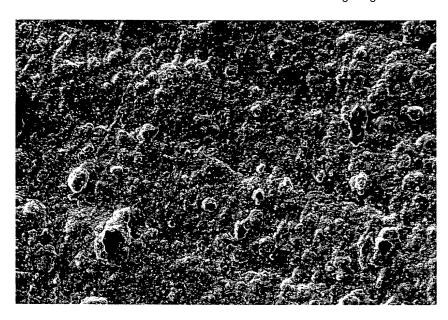


Abbildung 7

EP 2 581 473 A1

Beschreibung

30

35

45

50

55

[0001] Die Erfindung betrifft ein Verfahren zur Korrosionsschutzbehandlung eines Werkstücks aus einem Aluminiumwerkstoff, insbesondere aus einer Aluminiumknetlegierung.

[0002] Aus Aluminium hergestellte Werkstücke finden aufgrund des geringen spezifischen Gewichts von Aluminium und deren hinreichender mechanischer Stabilität vielfache Verwendung, wenn es um besonders starke Beanspruchungen geht, insbesondere auch im militärischen Bereich. Für den militärischen Einsatz bestimmte Stecker werden aus Aluminiumwerkstoffen hergestellt, die in und an der Kleidung von Soldaten und an Schnittstellen zu Fahr- und Waffensystemen eingesetzt werden. Aufgrund des unedlen Charakters von Aluminiumlegierungen ist aber ein Korrosionsschutz erforderlich, um die vom Militär geforderte Korrosionsbeständigkeit von 96 Stunden Neutralem Salzsprühtest (NSS) zu erfüllen. Die aus einem Aluminiumwerkstoff hergestellten Werkstücke müssen dabei entfettet, desoxidiert und aktiviert werden, bevor sie mit einer galvanischen Korrosionsschutzschicht überzogen werden können. Dazu werden in einem Entfettungsbad, das lösende und emulgierende Bestandteile enthält, die auf dem Aluminiumwerkstoff anhaftenden Fettund Ölrückstände entfernt. Anschließend werden in einem Beizbad, das Natronlauge enthält, die auf dem Aluminiumwerkstoff vorhandenen Oxidschichten entfernt, damit die galvanisch aufzutragende Korrosionsschutzschicht oder die galvanisch aufzutragenden Korrosionsschutzschichten auf dem Aluminiumwerkstoff haften können. Zusätzlich kann die Beizlösung hierbei eine abtragende Funktion erfüllen. Die aus dem Aluminiumwerkstoff hergestellten Werkstücke werden zur Entfernung von Rückständen und zur Reinigung ihrer Oberfläche dann in verdünnter Salpetersäure dekapiert. Zur Entfernung von Silizium und anderen schwerlöslichen Legierungsbestandteilen werden die Werkstücke in einer fluoridhaltigen Lösung vorher gebeizt, bevor durch die vorstehend genannte Salpetersäure-Behandlung eine Dekapierung erfolgt. Danach werden die Werkstücke in einem bekannten Prozeß einer Zinkataktivierung unterzogen, wobei eine dünne Zinkschicht aufgetragen wird. Darauf wird in der Regel eine dünne Chemisch-Nickel-Grundschicht mit einer Dicke von 0,5 bis 2,0 μm aus einem robusten Chemisch-Nickel-Prozess aufgebracht, bevor die eigentliche korrosionsschützende Chemisch-Nickel-Schicht in einer Dicke von mindestens 20 µm aufgebracht wird.

[0003] Chemisch-Nickel-Schichten bieten sich hierfür an, weil sie mit ihnen eine gleichmäßig dicke Schicht auch auf komplizierten Oberflächen-Geometrien der Werkstücke ausbildbar ist. Sie eignet sich daher insbesondere zur Beschichtung von elektrischen Nieder-, Mittel- oder Hochfrequenzsteckern. Wesentlich bei der Beschichtung des Werkstücks mit einer Chemisch-Nickel-Schicht ist, dass diese Schicht oder diese Schichten durchgehend geschlossen sind und keine Fehlstellen enthalten, so dass der Aluminiumwerkstoff geschlossen umhüllt ist. Ansonsten würde einer Korrosionsbeanspruchung die das mit Chemisch-Nickel beschichtete Werkstück beaufschlagende Lösung durch diese Fehlstelle das Aluminium sofort angreifen. Z. B. würde eine nur 5-prozentige NaCl-Lösung schon innerhalb von 24 Stunden durch diese Fehlstelle das Werkstück angreifen und dabei wesentlich Aluminium herauslösen und somit mit fortschreitender Korrosion das Werkstück zerstören.

[0004] Aluminiumknetlegierungen haben ein feines, gleichmäßiges Gefüge, enthalten aber auch Poren und Hohlräume, die durch ein Strangpressen nicht beseitigt, sondern nur in Längsrichtung gestreckt werden, wobei ein gedehntes, steifes Gefüge entsteht. Die Aluminiumknetlegierungen werden zu Stangen gepresst und aus diesen Stangen werden unterschiedlichste Werkstücke, insbesondere Steckerkomponenten und -teile für die Konfektionierung von Steckersystemen, auf CNC-Maschinen gedreht. Diese Stangen enthalten nicht nur Poren und Hohlräume, sondern können auch auf der Oberfläche Verschmierungen enthalten, wenn keine geeigneten Drehwerkzeuge verwendet werden oder die Werkzeuge abgenutzt sind. Zusätzlich können durch defekte Werkzeuge oder Bearbeitungsfehler an den Werkstücken Defekte wie Grate, Späne, Ausbrüche, etc. entstehen.

[0005] Auf die derart gegen Korrosion geschützten Werkstücke werden noch zusätzlich Schichten aufgebracht, die funktionelle und/oder dekorative Anforderungen erfüllen, wie z. B. gewisse elektrische Eigenschaften, z. B. die Realisierung eines bestimmten Übergangswiderstandes, oder einer bestimmten Farbe des derart behandelten Werkstücks, um möglichst viel oder wenig Reflektionen sicherzustellen.

[0006] Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren zur Korrosionsschutzbehandlung eines aus einem Aluminiumwerkstoff bestehenden oder mit einem Aluminiumwerkstoff beschichteten Werkstücks zu entwickeln, durch das ein verbesserter Korrosionsschutz dieses Werkstücks erreicht wird. Das erfindungsgemäße Verfahren soll insbesondere für Aluminiumknetlegierungen geeignet sein.

[0007] Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass das Werkstück, das eine Oberfläche aufweist, in die die Größe der Poren und/oder Hohlräume kleiner als 20 µm ist, in einem ersten Verfahrensschritt einer abtragenden Vorbehandlung mit einer Natriumhydroxid enthaltenden Lösung unterzogen wird, dass in einem nächsten Verfahrensschritt das Werkstück mit einer verdünnten Salpetersäure dekapiert wird, dass in einem weiteren Verfahrensschritt in der Oberfläche des Werkstücks kleine Vertiefungen erzeugt werden, indem das Werkstück mit einer fluoridhaltigen Beize behandelt wird, und dass anschließend eine Vor- Schicht und daran anschließend eine Chemisch-Nickel-Schicht aufgetragen wird.

[0008] Durch die erfindungsgemäßen Maßnahmen wird in vorteilhafter Art und Weise ein Verfahren zur Korrosionsschutzbehandlung von aus einem Aluminiumwerkstoff gefertigten Werkstücken geschaffen, welches es in einfacher Art

und Weise erlaubt, derartige Werkstücke mit einer Korrosionsschutzschicht zu beschichten, die hohen Anforderungen genügt. Das erfindungsgemäße Verfahren ist insbesondere für aus einer Aluminiumknetlegierung gefertigte Werkstücke wie z. B. Stanal 32 oder Stanal 40A geeignet.

[0009] Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass die vor dem Aufbringen der Chemisch-Nickel-Schicht aufgebrachte Vor-Schicht durch eine VorNickel-Schicht ausgebildet ist.

[0010] Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass als Vor-Schicht eine Messing-Schicht abgeschieden wird.

[0011] Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass als Vor-Schicht eine dünne Kupfer-Schicht aus cyanidhaltigen Kupferelektrolyten abgeschieden wird.

[0012] Eine weitere vorteilhafte Weiterbildung der Erfindung sieht vor, dass auf die Chemisch-Nickel-Schicht eine funktionelle und/oder dekorative Eigenschaften bewirkende weitere Schicht abgeschieden wird.

[0013] Weitere vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.

15

20

30

35

40

50

[0014] Weitere Einzelheiten und Vorteile der Erfindung sind dem Ausführungsbeispiel zu entnehmen, das im folgenden beschrieben wird. Es zeigen:

Abbildungen 1 bis 7: vergrößerte Darstellungen eines Oberflächenbereichs des Werkstücks nach unterschiedlichen Verfahrensschritten.

[0015] Das beschriebene Verfahren geht davon aus, dass das aus einem Aluminium-werkstoff ausgebildete oder mit einem derartigen Aluminiumwerkstoff beschichtete, also aus einem Aluminium-Werkstoff hergestellte Werkstück eine Oberfläche aufweisen, in der die Größe der Poren und/oder Hohlräume kleiner als 20 µm, vorzugsweise kleiner als 10 µm ist, da ansonsten die auf das Werkstück aufzutragende Chemisch-Nickel-Schicht nicht in der Lage ist, den Aluminiumwerkstoff geschlossen zu beschichten. Außerdem dürfen die entsprechenden Werkstücke keine oder nur unwesentliche Defekte wie Grate, Späne und Beschädigungen aufweisen, da derartige Defekte dazu führen können, dass die Chemisch-Nickel-Schicht nicht in der Lage ist, das Werkstück sicher zu umschließen und dessen Oberfläche geschlossen zu machen.

[0016] Die Werkstücke werden zuerst - sofern nicht hinreichend fettfrei - einer abtragenden Vorbehandlung mit einer Natriumhydroxid enthaltenden Lösung unterzogen. Vorzugsweise enthält diese Lösung 0,5 bis 20 g/l Natriumhydroxid, vorzugsweise 9 bis 11 g/l Natriumhydroxid. Die Behandlungszeit liegt zwischen 1 und 30 Minuten, vorzugsweise bei 10 Minuten. Die abtragende Vorbehandlung der vorstehend beschriebenen Natriumhydroxid-Lösung erfolgt bei einer Temperatur zwischen 4 und 80 °C, vorzugsweise bei 20 °C. In der Vorbehandlungslösung ist des weiteren als restliches Entfettungssalz ein Gemisch aus Dinatriumetasilikat, Natriumcarbonat, Natriumdodecylbenzolsulfonat in einer Menge von 1 bis 20 kg/100 l Flüssigkeit enthalten, wobei bevorzugt wird, dass der Anteil dieses Entfettungssalzes in der Vorbehandlungslösung zwischen 9 bis 11 kg/100 l Flüssigkeit liegt.

[0017] Durch die Vorbehandlung des Werkstücks mit der vorstehend beschriebenen, Natriumhydroxid enthaltenen Lösung werden die auf der Oberfläche des Werkstücks vorhandenen Verschmierungen aufgelöst und weitestgehend entfernt. Die Wirkung dieser Vorbehandlung ist durch einen Vergleich der Abbildungen 1 a, 1 b und 2 ersichtlich. Die Abbildungen 1a und 1 b zeigen - in stark vergrößerter Darstellung - Oberflächenbereiche des Werkstücks. Man erkennt deutlich die darauf vorhandenen Verschmierungen. In der Abbildung 2 ist ein Oberflächenbereich des gleichen Werkstücks nach der Vorbehandlung abgebildet. Man erkennt aus der Abbildung 2, dass die Oberfläche deutlich eingeebnet ist. [0018] In einem darauf folgenden Verfahrensschritt werden die zu behandelnden Werkstücke mit einer verdünnten Salpetersäure dekapiert, um die auf dem Werkstück - wie aus Abbildung 2 ersichtlich - noch vorhandenen Rückstände zu entfernen und eine noch sauberere Oberfläche für den nächsten Behandlungsschritt zu erzeugen. Die in diesem Verfahrensschritt verwendete Salpetersäure weist eine Konzentration von 5 bis 75 % auf, wobei eine Konzentration von 50 % bevorzugt wird. Die Behandlung der Werkstücke erfolgt bei einer Temperatur von 4 bis 40 °C, vorzugsweise im Bereich zwischen 18 und 22 °C und insbesondere bei 20 °C, mit einer Zeitdauer zwischen 0,5 und 5 Minuten, vorzugsweise mit einer Zeitdauer zwischen 1 Minute.

[0019] Danach werden die Werkstücke mit einer fluoridhaltigen Beize behandelt, wodurch die Oberfläche derselben noch weiter eingeebnet wird und weitere Legierungsbestandteile der Aluminiumlegierung aus dem Werkstück herausgelöst werden. Die hierbei verwendete fluoridhaltige Beize enthält pro 100 I Flüssigkeit 1-30 kg, vorzugsweise 12 kg Ammoniumhydrogendifluorid, 1-50 I, vorzugsweise 25 I Schwefelsäure chemischrein, 1-60 I, vorzugsweise 50 I Salpetersäure chemischrein, und als Rest Wasser. Die Behandlungszeit der Werkstücke in dieser fluoridhaltigen Beize beträgt zwischen 1 bis 20 Minuten, vorzugsweise zwischen 3 und 7 Minuten und weiter vorzugsweise ungefähr 5 Minuten, dies bei einer Temperatur von 4 bis 40 °C , vorzugsweise bei einer Temperatur von 18 bis 22 °C und weiter vorzugsweise bei einer Temperatur von 20 °C. In diesem weiteren Dekapierungsschritt wird - wie auch in dem vorstehend beschriebenen Verfahrensschritt - der Behandlung mit Salpetersäure - die Oberfläche der Werkstücke weiter von Verunreinigungen gereinigt. Die Abbildungen 3a und 3b zeigen nun Aufnahmen von Oberflächenbereichen des derartig behandelten Werkstücks: Man erkennt, dass dessen Oberfläche eben und weitestgehend plan ist, aber kleine Vertiefungen aufweist.

Diese Vertiefungen erlauben es in vorteilhafter Art und Weise, dass die Chemisch-Nickel-Schicht auf der derart vorbehandelten Oberfläche verankert wird, nach Art eines "Druckknopf-Effekts". Dieser Effekt lässt sich nur dann erzielen, wenn der Werkstoff - wie bereits eingangs erwähnt - kaum Poren bzw. Poren kleiner als 20μm, vorzugsweise kleiner als 10 μm aufweist. Sind die in der Oberfläche des Aluminium-Werkstücks enthaltenen Poren zu groß aufgeweitet, bewirkt dies, dass eine vor Auftragung der Chemisch-Nickel-Schicht aufgetragene Vor-Schicht, insbesondere eine Vor-Nickelschicht, die in der Regel durch eine dünne Nickel-Phosphor-Schicht gebildet wird, auf der wie beschrieben behandelten Oberfläche nicht anhaften kann, so dass die durch das beschriebene Verfahren bewirkte Korrosionsschutzschicht nicht oder nicht vollständig den Werkstoff des Werkstücks umschließt.

[0020] Um nun das Aluminium-Werkstück mit einer Vor-Schicht und mindestens einer Chemisch-Nickel-Schicht zu beschichten, wird eine allgemein bekannte und daher nur kurz beschriebene zweistufige Zinkatbehandlung durchgeführt. Die dabei verwendete Lösung enthält 2,5 bis 25 g/l Zink, vorzugsweise 10 bis 15 g/l Zink und insbesondere 13 g/l Zink. Die Behandlungsdauer der ersten Stufe der zweistufigen Zinkatbehandlung beträgt ungefähr 0,5 bis 2 Minuten, vorzugsweise 0,8 bis 1,2 Minuten, insbesondere 1 Minute und wird bei einer Temperatur zwischen 10 und 40 °C, vorzugsweise zwischen 18 und 22 °C und insbesondere bei 20 °C durchgeführt. Die zweite Stufe der beschriebenen Zinkatbehandlung verwendet wiederum die gleiche Lösung und die Behandlungsdauer beträgt 0,25 bis 0,75 Minuten, vorzugsweise 0,5 Minuten. Die Abbildung 4 zeigt nun das Aluminium-Werkstück nach dieser Zinkatbehandlung. Man erkennt, dass sich die Oberfläche des Werkstücks optisch kaum von der der Abbildungen 3a und 3b unterscheidet, aber eine 0,5 bis 5 μm dicke Zink-Schicht aufweist.

[0021] Die hierzu typischerweise verwendeten Zinkatbeizen können folgende Zusammensetzung haben:

Die Herza typiodior weise verweitaten zumatbeizen komien leigentae zusammensetzung haben.

- 1. 345 g/l Natriumhydroxid, 87 g/l Zinkcarbonat, 23g/l Eisen(II)-chlorid, 23 g/l Zinkoxid, 100 g/l Kaliumnatriumtartrat. 2. 60 g/l Natriumhydroxid, 10 g/l Zinkoxid, 7g/l Natriumglukonat, 4 g/l Salicylsäure
- 3. 335 g/l Natriumhydroxid, 63 g/l Zinkoxid

10

20

25

30

35

40

45

50

55

- 4. 10 g/l Natriumhydroxid, 5 g/l Zinkoxid, 500 g/l Natriumhydroxid, 2 g/l Eisen(II)chlorid, 20 g/l Zinkoxid, 50 g/l Kaliumnatriumtartrat
- 5. 120 g/l Natriumhydroxid, 2 g/l Eisen (II)-chlorid, 20 g/l Zinkoxid, 50 g/l Kaliumnatriumtartrat.

[0022] Die für die hier beschriebene Anwendung bevorzugt eingesetzte Zinkatbeize ist die Zusammensetzung der Nummer 1 mit den zuvor beschriebenen Anwendungsparametern.

[0023] Diese Zink-Schicht bildet die Voraussetzung für eine autokatalytische Abscheidung einer dünnen Nickel-Phosphor-Schicht, also der bereits vorstehend angesprochenen Vornickel-Schicht. Zur Herstellung dieser Vornickel-Schicht wird das wie vorstehend behandelte Werkstück in einem Nickelbad eingebracht, welches Nickel, vorzugsweise in der Form von Nickelacetat, mit 2 bis 10 g/l Nickel, vorzugsweise 4 bis 8 g/l Nickel bei einem pH-Wert von 10,5 bis 11,5 enthält, wobei die Temperatur 15 bis 40 °C, vorzugsweise 18 bis 22 °C und insbesondere 20 °C beträgt. Die Abscheidezeit beträgt 1 bis 20 Minuten, vorzugsweise 8 bis 12 Minuten und insbesondere 10 Minuten, wobei eine Nickel-Phosphor-Schicht von 1 bis 3 μm Dicke abgeschieden wird. Die Abbildung 5 zeigt nun die Oberfläche des Werkstücks nach der Abscheidung der Vornickel-Schicht. Man erkennt, dass die Struktur der Oberfläche im wesentlichen derjenigen der Abbildungen 3a und 3b entspricht, obwohl auf dieser nun eine dünne Zinkschicht und eine Vornickel-Schicht aufgebracht wurden.

[0024] Alternativ zum Vernickeln kann auch als Vor-Schicht eine Messingschicht abgeschieden werden, die die gleiche Funktion erfüllt und auch die Grundlage für die anschließende Chemisch-Nickel-Schicht bildet. So ein Messingelektrolyt hat folgende Zusammensetzung: 20 g/l Kupfercyanid, 20 g/l Zinkcyanid, 40 g/l Natriumcyanid, 15 g/l Natriumcarbonat, 1,5 m/l Ammoniak. Die Abscheidung der Messingschicht erfolgt mit einer Stromdichte von 0,1 - 0,6 A/dm² vorzugsweise 0,3 A/dm² bei einer Temperatur von 10 - 40 °C, vorzugsweise 25 °C. Die Abscheidedauer beträgt 2 - 7 Min., vorzugsweise 5 Min. zur Erzielung einer Schichtdicke von 1 - 3 μm.

[0025] Als weitere Alternative zum Vernickeln zur Ausbildung der Vor-Schicht kann eine dünne Kupferschicht aus cyanidhaltigen Kupferelektrolyten abgeschieden werden, die bei höheren oder niedrigeren Stromdichten arbeiten. Ein Elektrolyt der bei höheren Stromschichten von 2 - 6 A/dm² arbeitet, enthält Kaliumnatriumtartrat und hat folgende Zusammensetzung: 45 g/l Kupfer(I)cyanid, 57 g/l Natriumcyanid, 30 g/l Natriumcarbonat, 45-60 g/l Kaliumnatriumtartrat vorzugsweise 50 g/l. Die Abscheidung erfolgt mit einer Stromdichte von 2 - 6 A/dm² vorzugsweise 4 A/dm² bei einer Temperatur von 50 bis 80°C vorzugsweise bei 65°C.

[0026] Ein weiterer bei dem beschriebenen Verfahren einsetzbarer cyanidischer Elektrolyt arbeitet bei niedrigeren Stromdichten, er enthält 25 g/l Kupfer(l)cyanid, 30 g/l Natriumcyanid, 3 g/l Natriumhydrogensulfit, 6 g/l Natriumcarbonat. Die Abscheidung erfolgt bei einer Stromdichte von 0,1 bis 1 A/dm² bei einer Temperatur von 20-40°C vorzugsweise bei 25°C.

[0027] Im nächsten Schritt wird auf die Vor-Schicht, insbesondere die vorstehend beschriebene Vornickel-, Vormessing- oder Vorkupfer-Schicht, eine Chemisch-Nickel-Schicht aufgebracht, welche zwischen 15 und 30 μ m, vorzugsweise zwischen 18 und 25 μ m und weiter vorzugsweise 20 μ m dick ist. Der Abscheideprozess ist wiederum grundsätzlich

bekannt, so dass er an dieser Stelle nur kurz umrissen wird: Die Chemisch-Nickel-Schicht wird hier durch Abscheiden einer Nickel-Phosphor-Schicht ausgebildet, welche vorzugsweise mittels eines hochphosphorhaltigen Chemisch-Nickel-Prozesses abgeschieden wird, wobei der Anteil von Phosphor zwischen 5 und 15 Gew.-%, vorzugsweise zwischen 9 bis 14 Gew.-% beträgt. Der Prozess enthält 4 bis 8 g/l Nickel, vorzugsweise 5,5 bis 6,5 g/l Nickel und insbesondere 6 g/l Nickel. Als Reduktionsmittel wird Natriumhypophosfit zur stromlosen Abscheidung der Nickel-Phosphor-Schicht mit vorzugsweise mindestens 10,5 Gew.-% Phosphor verwendet. Die Abscheidung erfolgt dabei bei einer Temperatur zwischen 85 und 90 °C, vorzugsweise bei 88 °C bei einer Abscheidungsgeschwindigkeit von 9,5 bis 11 μm/Stunde. Die Abbildung 6 zeigt nun die Oberfläche der abgeschiedenen Nickel-Phosphor-Schicht mit einem Phosphor-Gehalt von größer als 10,5 %. Ein Vergleich der Abbildung 6 mit den Abbildungen 3a und 3b zeigt, dass die Oberfläche des beschichteten Werkstücks eingeebnet ist, es sind keine Poren mehr zu erkennen, lediglich eine leicht streifige Struktur, welche aus der Drehbearbeitung des Ausgangswerkstücks resultiert, ist zu erkennen. Die Nickel-Phosphor-Schicht sollte hierbei amorph sein, da ansonsten die Gefahr einer Schichtkorrosion an Nickel-Phosphor Schwachstellen besteht. [0028] Die Abbildung 7 zeigt nun die Rückseite einer Beschichtung aus einer Vor-Nickel-Schicht und einer Chemisch-Nickel-Schicht, nachdem sie von dem wie vorstehend beschrieben behandelten Werkstück abgezogen wurde. Man erkennt, dass diese Beschichtung aus ihr hervorstehende "Druckknöpfe" aufweist, welche ein gutes Anhaften dieser Beschichtung auf der wie vorstehend beschrieben vorbehandelten Oberfläche des Werkstücks bewirkt, indem diese "Druckknöpfe" in die durch den Vorbehandlungsprozess in der Oberfläche des Aluminium-Werkstücks hervorgerufene "Vertiefungen" eingreifen.

[0029] Das derart behandelte Werkstück weist dann eine Korrosionbeständigkeit von 96 Stunden NSS auf. Auf der Grundlage dieser Vorbehandlung und Beschichtung mit der wie vorstehend beschriebenen Korrosionsschutzschicht lassen sich zusätzlich dekorative und/oder funktionelle Oberflächenschichten, bevorzugt Edelmetallschichten, aber auch Nicht-Edelmetallschichten aufbringen, um gewisse mechanische, optische oder elektrische Eigenschaften zu bewirken. [0030] Hierzu muss die Nickel-Phosphor-Schicht in der Regel neu aktiviert werden, da sie sehr schnell passiviert, wenn sie mit Luft und/oder Feuchtigkeit in Verbindung kommt und sich dadurch auf der Oberfläche des Werkstücks eine Nickeloxid- oder Nickelhydroxid-Schicht bildet. Auf eine derartige Oberfläche kann ohne Aktivierung keine Edelmetall-Schicht mehr abgeschieden werden. Zur Aktivierung der Nickel-Phosphor-Schicht ist vorgesehen, dass - in Abhängigkeit von der aufzubringenden Funktionsschicht - entweder eine Au-Vorgalvanisierung, eine Ni-Vorgalvanisierung, eine PdNi-Vorgalvanisierung oder eine Fluorid-Aktivierung oder eine Beschichtung mit Gold oder Palladium durchgeführt wird.

20

30

35

50

[0031] Die Vorgalvanisierung mit Gold wird vorzugsweise bei einer Temperatur zwischen 20 und 50 °C, vorzugsweise bei einer Temperatur zwischen 30 und 40 °C, vorzugsweise bei 35 °C durchgeführt, wobei die Stromdichte zwischen 2 und 10 A/dm², vorzugsweise zwischen 4 und 6 A/dm² und insbesondere 5 A/dm² beträgt und während einer Zeitdauer von 2 bis 10 Minuten durchgeführt wird. Die verwendete Lösung weist 2 bis 6 g/l Au, vorzugsweise 4 g/l Au auf und der Prozess wird bei einem sehr sauren ph-Wert durchgeführt.

[0032] Bei einer Nickel-Vorgalvanisierung weist die verwendete Lösung 40 bis 60 g/l Nickel und 120 bis 170 g/l Chlorid auf, vorzugsweise 48 g/l Nickel und 150 g/l Chlorid. Es ist vorgesehen, dass diese Vorgalvanisierung bei einer Temperatur zwischen 20 und 30 °C, vorzugsweise bei 25 °C erfolgt. Die Stromdichte beträgt zwischen 2 bis 10 A/dm², vorzugsweise zwischen 4 und 6 A/dm² und insbesondere 5 A/dm². Die Behandlung dauert 2 bis 20 Minuten, vorzugsweise 4 bis 6 Minuten und insbesondere 5 Minuten und wird in einer sehr sauren ph-Umgebung durchgeführt.

[0033] Die PdNi-Vorgalvanisierung wird bei einer Temperatur von 30 bis 60 °C, vorzugsweise bei einer Temperatur zwischen 38 und 45 °C und insbesondere bei 42 °C durchgeführt. Die Behandlungsdauer beträgt zwischen 0,15 und 5 Minuten, wobei eine Behandlungsdauer von 0,5 Minuten bevorzugt wird. Die Stromdichte beträgt hierbei 0,25 bis 1,5 A/dm², vorzugsweise 0,5 bis 1 A/dm² und insbesondere 0,8 A/dm². Die Lösung enthält 60 bis 80 Gew.-% Palladium und 40 bis 20 Gew.-% Nickel, insbesondere 3 bis 4 g/l Palladium und 2 bis 3 g/l Nickel und wird bei einem neutralen ph-Wert durchgeführt.

[0034] Bei einer Fluorid-Aktivierung ist eine Lösung vorgesehen, die 1 bis 3 % FluorWasserstoffsäure, 1 bis 5 % Hexafluorokieselsäure und 20 bis 25 % Methansulfonsäure sowie 5 kg Ammoniumhydrogendifluorid auf 100 l Wasser enthält. Die Fluorid-Aktivierung wird in einem sehr sauren ph-Milieu durchgeführt, die Temperatur beträgt 22 bis 40 °C, vorzugsweise 23 bis 27 °C und insbesondere bei 35 °C und dauert 2 bis 10 Minuten, wobei eine Zeitdauer von 2 Minuten bevorzugt wird.

[0035] Bei einer Gold-Abscheidung wird eine Lösung verwendet, die 4 g/l Au verwendet und der Prozess in einem sehr sauren ph-Milieu bei einer Temperatur zwischen 30 und 70 °C, vorzugsweise zwischen 40 und 50 °C und insbesondere bei 45 °C durchgeführt und dauert 0,5 bis 5 Minuten, vorzugsweise 4 Minuten. Die Stromdichte beträgt dabei 0,5 bis 5 A/dm², vorzugsweise 1 bis 2 A/dm² und insbesondere 1,5 A/dm²

[0036] Die Palladium-Abscheidung wird in einer Lösung durchgeführt, die 4 bis 8 g/l Palladium, insbesondere 6 g/l Palladium enthält. Der Prozess wird bei einem neutralen ph-Wert und bei einer Temperatur zwischen 30 und 70 °C, insbesondere bei 40 °C, durchgeführt. Er dauert 0,15 bis 5 Minuten, insbesondere 1 Minute und die Stromdichte beträgt dabei 0,15 bis 3 A/dm², vorzugsweise 0,5 bis 1,5 A/dm² und insbesondere 1 A/dm².

[0037] Bevorzugt wird von Seiten der Anmelderin hierbei zur Aktivierung der Nickel-Phosphor-Schicht die PdNi-Vor-

galvanisierung, um anschließend haftfeste Edelmetall-Schichten aufzubringen.

[0038] Auf die derart aktivierte Oberfläche können dann z. B. eine Schwarz-Ruthenium-Schicht, eine Schwarz-Palladium-Schicht, eine Schwarz-Rhodium-Schicht aufgebracht werden, um die Werkstückoberfläche eine gezielte Farbgebung sowie eine geringe Reflektion zu geben. Es ist auch möglich, dass eine Gelbgold-Schicht, eine Rotgold-Schicht oder weiße Schichten aus Platin, Palladium oder Ruthenium aufgebracht werden.

[0039] Für die funktionellen Eigenschaften, insbesondere um elektrische Kontakteigenschaften zu zeugen, bieten sich Gold-Schichten, Silber-Schichten, Palladium-Schichten an und, um eine hohe chemische Beständigkeit sicherzustellen, Feingold-Schichten.

[0040] Der bevorzugte Prozess für dekorative Eigenschaften wie dunkle Farbe mit geringer Reflexion ist die Beschichtung mit Schwarz-Ruthenium. Dazu wird ein kommerziell erhältlicher Schwarz-Ruthenium-Prozess eingesetzt mit 4,5 bis 6 g/l Ru vorzugsweise 5 g/l Ru. Abgeschieden wird bei 50°C bis 90°C, vorzugsweise bei 65°C mit 0,8 bis 1,5 A/dm² vorzugsweise mit 1 A/dm². Der Schwärzezusatz beträgt 30 bis 38 ml/l vorzugsweise 35 ml/l. Die Beschichtungszeit beträgt 7 bis 10 Min. vorzugsweise 8 Min., um eine Schichtdicke von 0,2 bis 0,6 μm Ru abzuscheiden.

[0041] Diese aufgebrachte Schwarz-Ruthenium-Schicht wird vorzugsweise abschließend einer Passivierung mit Chromsäure unterzogen um den Beschichtungsprozess abzuschließen. Die hierbei vorzugsweise verwendete Lösung enthält 1 g/l Chromsäure. Der Passivierungsprozess wird vorzugsweise bei einer Temperatur zwischen 50 und 70 °C, vorzugsweise bei 60 °C, durchgeführt. Die Behandlungsdauer beträgt 5 bis 15 Minuten, vorzugsweise ca. 10 Minuten. [0042] Alternativ zu Edelmetallschichten um eine dunkle Farbe mit geringer Reflexion zu erzielen, kommen auch Nichtedelmetallbeschichtungen in Frage, wie Schwarz-Chrom-Schichten oder Schwarz-Nickel-Schichten. Schichtaufbauten mit diesen Endschichten zeigen selbst nach einer Passivierung durchgehend eine schlechtere Korrosionsbeständigkeit als bei Edelmetallschichten und daher werden die Edelmetallschichten vorzugsweise eingesetzt.

[0043] Diese Passivierungen sind für alle dunklen Schichten zur Sicherstellung des Korrosionsschutzes von Vorteil.

25 Patentansprüche

10

20

30

35

50

- 1. Verfahren zur Korrosionsschutzbehandlung eines Werkstücks aus einem Aluminiumwerkstoff, insbesondere aus einer Aluminiumknetlegierung, dadurch gekennzeichnet, dass das Werkstück, das eine Oberfläche aufweist, in die die Größe der Poren und/oder Hohlräume kleiner als 20 µm ist, in einem ersten Verfahrensschritt einer abtragenden Vorbehandlung mit einer Natriumhydroxid enthaltenden Lösung unterzogen wird, dass in einem nächsten Verfahrensschritt das Werkstück mit einer verdünnten Salpetersäure dekapiert wird, dass in einem weiteren Verfahrensschritt in der Oberfläche des Werkstücks kleine Vertiefungen erzeugt werden, indem das Werkstück mit einer fluoridhaltigen Beize behandelt wird, und dass anschließend eine Vor-Schicht und daran anschließend eine Chemisch-Nickel-Schicht aufgetragen wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die fluoridhaltige Beize pro 100 l Flüssigkeit 1 bis 30 kg, vorzugsweise 12 kg Ammoniumhydrogendifluorid, 1 bis 50 l, vorzugsweise 25 l Schwefelsäure chemisch rein, 1 bis 60 l, vorzugsweise 50 l Salpetersäure chemisch rein und als Rest Wasser enthält.
- 3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Behandlungszeit des Werkstücks in dieser fluoridhaltigen Beize zwischen 1 bis 20 Minuten, vorzugsweise zwischen 3 und 7 Minuten, und weiter vorzugsweise ungefähr 5 Minuten beträgt, wobei die Temperatur zwischen 4 und 40 °C, vorzugsweise zwischen 18 und 22 °C und weiter vorzugsweise 20 °C beträgt.
- 45 4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass als Vor-Schicht eine Nickel-Schicht, eine Messing-Schicht oder eine Kupfer-Schicht aus cyanidhaltigen Kupferelektrolyten abgeschieden wird.
 - **5.** Verfahren nach einem der vorangehenden Ansprüche, **dadurch gekennzeichnet**, **dass** die Chemisch-Nickel-Schicht durch Abscheiden einer Nickel-Phosphor-Schicht ausgebildet wird.
 - **6.** Verfahren nach einem der vorangehenden Ansprüche, **dadurch gekennzeichnet, dass** vor dem Aufbringen einer Vor-Schicht eine zweistufige Zinkat-Behandlung zur Ausbildung einer Zink-Schicht durchgeführt wird.
- 7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zur Herstellung der Vornickel-Schicht das zu behandelnde Werkstück in ein Nickelbad eingebracht wird, welches Nickel, vorzugsweise in der Form von Nickelacetat, mit 2 bis 10 g/l Nickel, vorzugsweise 4 bis 8 g/l Nickel einem pH-Wert von 10,5 bis 11,5 enthält.

- **8.** Verfahren nach einem der vorangehenden Ansprüche, **dadurch gekennzeichnet**, **dass** auf die Chemisch-Nickel-Schicht mindestens eine dekorative und/oder funktionelle Oberflächenschicht aufgebracht wird.
- **9.** Verfahren nach Anspruch 8, **dadurch gekennzeichnet, dass** die Chemisch-Nickel-Schicht vor dem Aufbringen der dekorativen und/oder funktionellen Oberflächenschicht aktiviert wird.

- 10. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zur Farbgebung des Werkstücks auf dieses eine Schwarz-Ruthenium-Schicht, eine Schwarz-Palladium-Schicht, eine Schwarz-Rhodium-Schicht, eine Gelb-Gold-Schicht, eine Rot-Gold-Schicht oder eine weiße Schicht aus Platin, Palladium oder Ruthenium aufgebracht wird.
- **11.** Verfahren nach Anspruch 10, **dadurch gekennzeichnet**, **dass** die wie vorstehend aufgebrachte Schicht einer Passivierung, vorzugsweise mit Chromsäure, unterzogen wird.

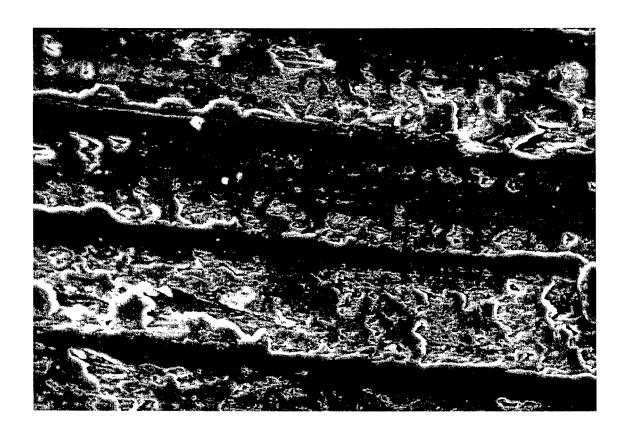


Abbildung 1a

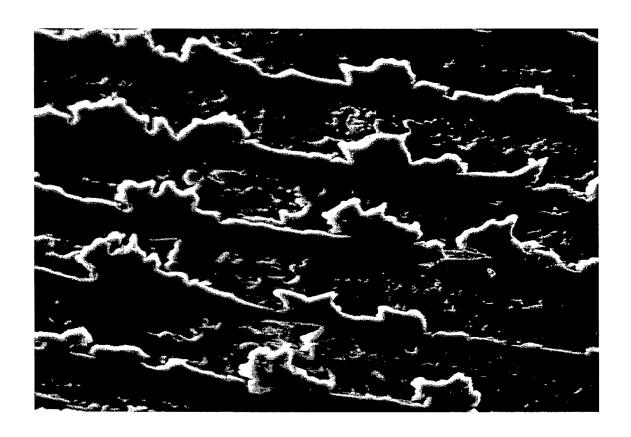


Abbildung 1b

Abbildung 2

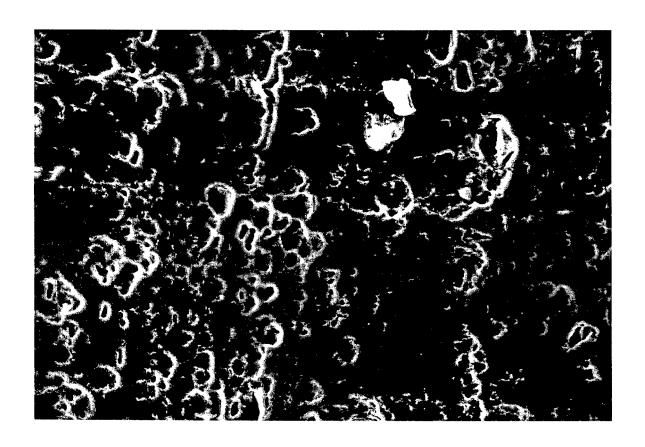


Abbildung 3a

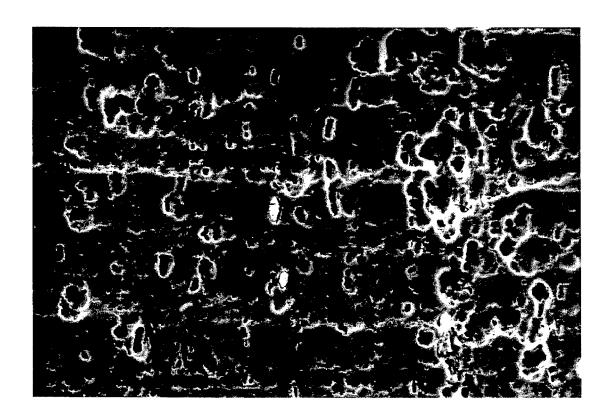


Abbildung 3b

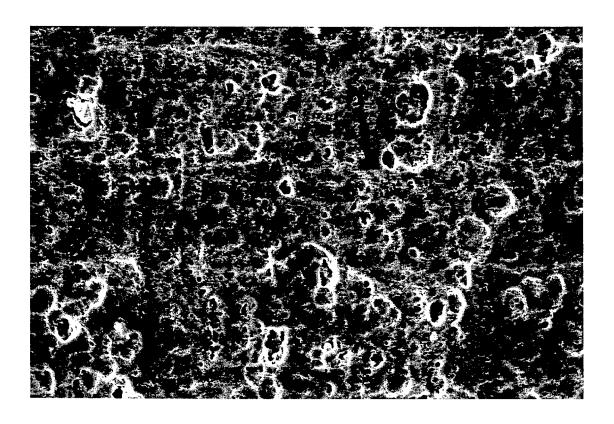


Abbildung 4

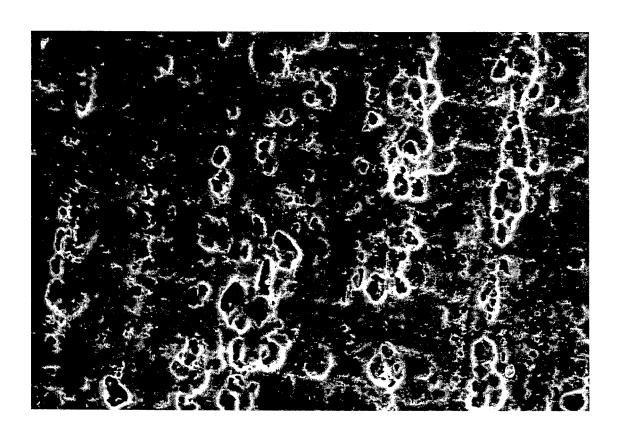


Abbildung 5

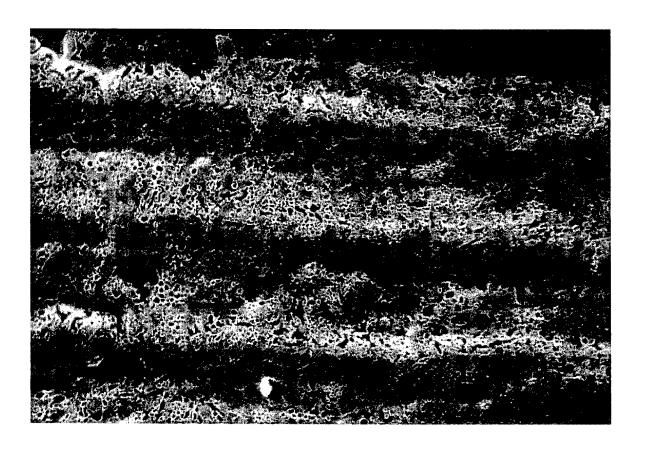


Abbildung 6

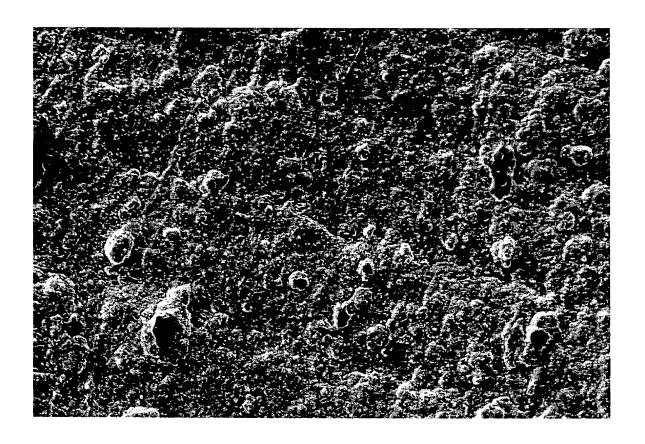


Abbildung 7

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 12 00 6874

	EINSCHLÄGIGE	DOKUMENTE				
Kategorie	Kennzeichnung des Dokun der maßgebliche	nents mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)		
Х	US 2004/067314 A1 (AL) 8. April 2004 (* Absatz [0044] - A		1-11	INV. C23G1/12 C23G1/22 C23C18/18 C23C18/36		
A	elements in aluminu activations on zinc electroless nickel- KEIKINZOKU/JOURNAL LIGHT METALS FEBRUA OF LIGHT METALS JPM	cate treatment and phosphorus plating", OF JAPAN INSTITUTE OF ARY 2010 JAPAN INSTITUTE, uar 2010 (2010-02), 2690628,	1-11			
A	US 3 982 055 A (HOW 21. September 1976 * das ganze Dokumer	(1976-09-21)	1-11			
А	JP 2011 137206 A (S 14. Juli 2011 (2011 * Zusammenfassung *	07-14)	1-11	RECHERCHIERTE SACHGEBIETE (IPC) C23G C23C		
Der vo		rde für alle Patentansprüche erstellt				
	Recherchenort	Abschlußdatum der Recherche		Prüfer		
	München	18. Januar 2013	Mau	ger, Jeremy		
KATEGORIE DER GENANNTEN DOKUMENTE X : von besonderer Bedeutung allein betrachtet Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur		E : älteres Patentdol tet nach dem Anmel mit einer D : in der Anmeldun jorie L : aus anderen Grü	T : der Erfindung zugrunde liegende Theorien oder Grundsätze E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D : in der Anmeldedatum der Gründen erst aus anderen Gründen angeführtes Dokument L : aus anderen Gründen angeführtes Dokument & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument			

EPO FORM 1503 03.82 (P04C03)

1

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 12 00 6874

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

18-01-2013

	Recherchenbericht ihrtes Patentdokumer	nt	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichur
US	2004067314	A1	08-04-2004	AU CA CN EP TW US US WO	2003304124 2502672 1703535 1554414 1229016 2004067314 2004173467 2004101854	A1 A2 B A1 A1	03-12-20 25-11-20 30-11-20 20-07-20 11-03-20 08-04-20 09-09-20 25-11-20
US	3982055	Α	21-09-1976	KEII	NE		
JP	2011137206	Α	14-07-2011	KEII	NE		

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

18

EPO FORM P0461