BACKGROUND OF THE INVENTION
[0001] The subject matter disclosed herein relates to the art of turbomachines and, more
particularly, to turbomachine components having a flow contour feature.
[0002] In general, gas turbomachines include a combustor assembly within which a fuel/air
mixture is combusted to release heat energy. The heat energy forms a high temperature
gas stream that is channeled to a turbine portion via a hot gas path. The turbine
portion converts thermal energy from the high temperature gas stream to mechanical
energy that rotates a turbine shaft. The turbine portion may be used in a variety
of applications, such as for providing power to a pump or an electrical generator.
[0003] The high temperature gas stream passes over vanes and blades arranged in sequential
stages along the hot gas path. A first stage of the turbine portion includes first
stage vanes including an airfoil that is configured to direct the high temperature
gas stream tangentially toward first stage blades. The high temperature gas stream
aerodynamically interacts with and induces rotation of the first stage blades.
[0004] With such construction, the first turbine stages exhibit strong secondary flows in
which high energy and high temperature fluids flow in a direction transverse to a
main flow direction. That is, if the main flow direction is presumed to be axial,
the secondary flows propagate circumferentially or radially. Thus, the secondary flows
can negatively impact the stage efficiency and has led to development of non-axisymetric
endwall contouring (EWC), which has been effective in reducing secondary flow losses
for turbines. Current EWC is, however, only geared towards gas path surfaces.
BRIEF DESCRIPTION OF THE INVENTION
[0005] According to one aspect of the invention, a turbomachine component includes a main
body having a gas path surface configured to be exposed to gases passing along a turbomachine
gas path, a non gas path surface configured to be arranged in a turbomachine wheelspace
outside the turbomachine gas path, and a non-axisymetric flow contour feature extending
from the gas path surface to the non gas path surface.
[0006] According to another aspect of the invention, a turbomachine bucket includes an airfoil
portion, and a base portion supporting the airfoil portion. The base portion includes
one or more gas path surfaces configured to be exposed to gases passing along a turbomachine
gas path, one or more non gas path surfaces configured to be arranged outside the
turbomachine gas path, and a non-axisymetric flow contour feature extending from at
least one of the one or more gas path surfaces to at least one of the one or more
non gas path surfaces.
[0007] According to yet another aspect of the invention, a turbomachine includes a housing,
a gas path extending through the housing, a wheelspace arranged within the housing
and substantially fluidly separated from the gas path, and at least one turbomachine
component arranged in the housing. The turbomachine component includes at least one
gas path surface arranged within the gas path, at least one non gas path surface arranged
within the wheelspace, and a non-axisymetric flow contour feature extending from the
at least one gas path surface to the at least one non gas path surface.
[0008] These and other advantages and features will become more apparent from the following
description taken in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWING
[0009] Embodiments of the present invention will now be described, by way of example only,
with reference to the accompanying drawings in which:
FIG. 1 is a schematic diagram of a turbomachine including a rotor blade having a flow
contour feature in accordance with an exemplary embodiment;
FIG. 2 is plan view of a rotor blade having a flow contour in accordance with an exemplary
embodiment;
FIG. 3 is a detail view of a portion of the rotor blade of FIG. 2 illustrating a flow
contour feature in accordance with one aspect of the exemplary embodiment;
FIG. 4 is a detail view of a portion of a rotor blade of FIG. 2 illustrating a flow
contour feature in accordance with another aspect of the exemplary embodiment; and
FIG. 5 is a detail view of a portion of a rotor blade of FIG. 2 illustrating a flow
contour feature in accordance with yet another aspect of the exemplary embodiment.
[0010] The detailed description explains embodiments of the invention, together with advantages
and features, by way of example with reference to the drawings.
DETAILED DESCRIPTION OF THE INVENTION
[0011] With reference to FIG. 1, a turbomachine in accordance with an exemplary embodiment
is indicated generally at 2. Turbomachine 2 includes a compressor portion 4 and a
turbine portion 6. Compressor portion 4 is fluidly coupled to turbine portion 6 through
a combustor assembly 8. Compressor portion 4 is also mechanically linked to turbine
portion 6 via a common compressor/turbine shaft 10. Turbine portion 6 includes a plurality
of stages 14 that extend along a hot gas path 15. Stages 14 include a first stage
16, a second stage 18, and a third stage 20. The number of stages for turbine portion
6 could of course vary. First stage 16 includes a plurality of stationary vanes one
of which is indicated at 22 and a plurality of rotating airfoil members or buckets
one of which is indicated at 24. Likewise, second stage 18 includes a plurality of
second stage stationary vanes one of which is indicated at 26 and second stage rotating
airfoil members or buckets one of which is indicated at 28. Third stage 20 includes
a plurality of third stage stationary vanes one of which is indicated at 30 and a
plurality of third stage rotating airfoil members or buckets one of which is indicated
at 32.
[0012] At this point reference will be made to FIGS. 2-3 in describing second stage bucket
28 with an understanding that first and third stage buckets 24 and 32 may include
similar structure. As shown, second stage bucket 28 includes an airfoil portion 40
and a base portion 44. Airfoil portion 40 extends from base portion 44 and includes
a pressure side 47, a suction side 48, a leading edge 49, and a trailing edge 50.
Airfoil portion 40 is exposed to combustion gases flowing along a hot gas path (not
separately labeled) of turbine portion 6. Base portion 44 includes a main body 52
having a front face 54, an aft face 55, and an airfoil support surface 57 and a connection
member (not shown). Airfoil support surface 57 supports airfoil portion 40 while the
connection member provides an interface to a second stage turbine wheel or rotor (also
not shown).
[0013] Second stage bucket 28 includes a gas path portion 61 that includes airfoil portion
40 and portions of base portion 44 above a point denoted by a line 64, and a non-gas
path portion 68 that includes portions of base portion 44 below line 64. Gas path
portion 61 includes all portions of second stage blade 28 that are exposed to combustion
gases flowing along the hot gas path. Non-gas path portion 68 includes all surfaces
of base portion 44 that are arranged in a wheelspace (not shown) of turbine portion
6. Base portion 44 includes a first gas path surface 71 that includes airfoil support
surface 57 and a second gas path surface 73 that includes a portion of front face
54 above line 64. Base portion 44 also includes non-gas path surfaces 77 that include
a trench surface portion 79, a buffer surface portion 81, an upper angel wing 83 and
a lower angel wing 85. Of course, it should be understood that aft face 55 also includes
gas path and non-gas path surfaces (not separately labeled).
[0014] In accordance with an exemplary embodiment, second stage bucket 28 includes a flow
contour feature 94. Flow contour feature 94 is shown positioned on front face 54 and
extends from first gas path surface 71 onto non-gas path surfaces 77. In the exemplary
embodiment shown, flow contour feature 94 takes the form of a non-axisymetric feature
including a trough/depression 100 and a protrusion 102 formed in base portion 44.
Flow contour feature is positioned so as to alter local pressures at circumferential
locations within the turbine portion wheelspace. More specifically, flow contour feature
94 creates an elevation in wheelspace static pressure at particular circumferential
locations that generally experience high pressures at a wheelspace/gas path border
due to wakes, bow waves shocks and the like. Thus, flow contour feature 94 increases
local backflow margins that prevent localized hot gas ingestions from the gas path
to the wheelspace thereby reducing the need for additional purge flows in the wheelspace
while also maintaining cooler wheelspace temperatures.
[0015] Reference will now be made to FIG. 4 in describing a second stage bucket 101 in accordance
with another aspect of the exemplary embodiment. Second stage bucket 101 includes
an airfoil portion 102 and a base portion 103. Airfoil portion 102 extends from base
portion 103 and includes a pressure side 104, a suction side 105, a leading edge 106,
and a trailing edge 107. In a manner similar to that described above, airfoil portion
102 is exposed to combustion gases flowing along the hot gas path (not separately
labeled) of turbine portion 6. Base portion 103 includes a main body 110 having a
front face 111, an aft face (not shown), an airfoil support surface 113, and a connection
member (also not shown). Airfoil support surface 113 supports airfoil portion 102
while the connection member provides an interface to a second stage turbine wheel
or rotor (also not shown).
[0016] Second stage bucket 101 includes a gas path portion 120 that includes airfoil portion
102 and portions of base portion 103 above a point denoted by a line 124, and a non-gas
path portion 128 that includes portions of base portion 103 below line 124. Gas path
portion 120 includes all portions of second stage blade 101 that are exposed to combustion
gases flowing along the hot gas path. Non-gas path portion 128 includes all surfaces
of base portion 103 that are arranged in a wheelspace (not shown) of turbine portion
6. Base portion 103 includes a first gas path surface 131 that includes airfoil support
surface 113 and a second gas path surface 133 that includes a portion of front face
111 above line 124. Base portion 103 also includes non-gas path surfaces 140 that
include a trench surface portion 141, a buffer surface portion 142, an upper angel
wing 143 and a lower angel wing 145. Of course, it should be understood that the aft
face also includes gas path and non-gas path surfaces (not separately labeled).
[0017] In accordance with an exemplary embodiment, second stage bucket 101 includes a flow
contour feature 150. Flow contour feature 150 is shown positioned on front face 111
extending from first gas path surface 131 onto non-gas path surfaces 140. In the exemplary
embodiment shown, flow contour feature 150 takes the form of non-axisymetric trench
or depression 160 formed in base portion 103. As discussed above, flow contour feature
150 is positioned so as to alter local pressures at circumferential locations within
the turbine portion wheelspace. More specifically, flow contour feature 150 creates
an elevation in wheelspace static pressure at particular circumferential locations
that generally experience high pressures at a wheelspace/gas path border due to wakes,
bow waves shocks and the like. Thus, flow contour feature 150 increases local backflow
margins that prevent localized hot gas ingestions from the gas path to the wheelspace
thereby reducing the need for additional purge flows in the wheelspace while also
maintaining cooler wheelspace temperatures.
[0018] Reference will now be made to FIG. 5, wherein like reference numbers represent corresponding
parts in the respective views, in describing second stage bucket 180 in accordance
with another aspect of the exemplary embodiment. Second stage bucket 180 includes
an airfoil portion 185 and a base portion 186. Airfoil portion 185 extends from base
portion 186 and includes a pressure side 188, a suction side 189, a leading edge 190,
and a trailing edge 191. In a manner similar to that described above, airfoil portion
185 is exposed to combustion gases flowing along a hot gas path (not separately labeled)
of turbine portion 6. Base portion 186 includes a main body 187 having a front face
193, an aft face (not shown), an airfoil support surface 195, and a connection member
(also not shown). Airfoil support surface 195 supports airfoil portion 185 while the
connection member provides an interface to a second stage turbine wheel or rotor (also
not shown).
[0019] Second stage bucket 180 includes a gas path portion 211 that includes airfoil portion
185 and portions of base portion 186 above a point denoted by a line 214, and a non-gas
path portion 218 that includes portions of base portion 190 below line 214. Gas path
portion 211 includes all portions of second stage bucket 180 that are exposed to combustion
gases flowing along the hot gas path. Non-gas path portion 218 includes all surfaces
of base portion 190 that are arranged in a wheelspace (not shown) of turbine portion
6. For example, base portion 186 includes a first gas path surface 221 that includes
airfoil support surface 195 and a second gas path surface 223 that includes a portion
of front face 193 above line 214. Base portion 186 also includes non-gas path surfaces
227 that include a trench surface portion 229, a buffer surface portion 231, an upper
angel wing 233 and a lower angel wing 235. Of course, it should be understood that
aft face also includes gas path and non-gas path surfaces (not separately labeled).
[0020] In accordance with an exemplary embodiment, second stage bucket 180 includes a flow
contour feature 244. Flow contour feature 244 is shown positioned on front face 193
extending from first gas path surface 221 onto non-gas path surfaces 227. In the exemplary
embodiment shown, flow contour feature 244 takes the form of a non-axisymetric ridge
or raised area 250 formed on base portion 190. In a manner similar to that discussed
above, flow contour feature is positioned so as to alter local pressures at circumferential
locations within the turbine portion wheelspace. More specifically, flow contour feature
244 creates an elevation in wheelspace static pressure at particular circumferential
locations that generally experience high pressures at a wheelspace/gas path border
due to wakes, bow waves shocks and the like. Thus, flow contour feature 244 increases
local backflow margins that prevent localized hot gas ingestions from the gas path
to the wheelspace thereby reducing the need for additional purge flows in the wheelspace
while also maintaining cooler wheelspace temperatures.
[0021] At this point it should be understood that the exemplary embodiments flow contour
features for turbine buckets that enhance back flow margins to limit the need for
additional purge flows from the compressor to the wheelspace. By limiting purge flows
to the wheelspace, more compressor flow can be passed to the turbine portion to generate
shaft work. The flow contour features are not only positioned on surfaces exposed
to combustion gases but also on surfaces that are arranged in the wheelspace. Positioning
the flow contour feature on surfaces exposed to the wheelspace creates localized pressure
increases at points which experience higher combustion gas pressures. In this manner,
the flow contour features limit ingestion of combustion gases to the wheelspace. It
should be further understood that while shown and described in connection with a rotating
turbomachine component, the flow contour feature in accordance with the exemplary
embodiments could also be provided on stationary turbomachine components. In addition,
while shown on a leading edge of the turbomachine component, the flow contour feature
is not limited to any one physical location and may be arranged on other surfaces.
[0022] While the invention has been described in detail in connection with only a limited
number of embodiments, it should be readily understood that the invention is not limited
to such disclosed embodiments. Rather, the invention can be modified to incorporate
any number of variations, alterations, substitutions or equivalent arrangements not
heretofore described, but which are commensurate with the spirit and scope of the
invention. Additionally, while various embodiments of the invention have been described,
it is to be understood that aspects of the invention may include only some of the
described embodiments. Accordingly, the invention is not to be seen as limited by
the foregoing description, but is only limited by the scope of the appended claims.
1. A turbomachine component comprising:
a main body (52) having one or more gas path surfaces (61) configured to be exposed
to gases passing along a turbomachine gas path, one or more non gas path surfaces
(68) configured to be arranged in a turbomachine wheelspace outside the turbomachine
gas path, and a non-axisymetric flow contour feature (94) extending from at least
one of the one or more gas path surfaces (61) to at least one of the one or more non
gas path surfaces (68).
2. The turbomachine component according to claim 1, wherein the main body (52) includes
a front face (54) and an aft face (55), the non-axisymetric flow contour feature (94)
being arranged on the front face (54).
3. The turbomachine bucket according to claim 1 or 2, wherein the at least one of the
one or more non gas path surfaces (77) defines one or more an angle wings (83,85).
4. The turbomachine bucket according to any of claims 1 to 3, wherein the non-axisymetric
flow contour member (94) comprises a trough (100) formed in the at least one of the
one or more gas path surfaces (71) and the at least one of the one or more non gas
path surfaces (77).
5. The turbomachine bucket according to any of claims 1 to 3, wherein the non-axisymetric
flow contour member (244) comprises a ridge (250) formed in the at least one of the
one or more gas path surfaces (221,223) and the at least one of the one or more non-gas
path surfaces (77).
6. The turbomachine bucket according to any of claims 1 to 3, wherein the non-axisymetric
flow contour feature (94) comprises a depression (100) and a protrusion (102) formed
in the at least one of the one or more gas path surfaces (71) and the at least one
of the one or more non gas path surfaces (77).
7. The turbomachine component according to claim 6, wherein the depression (100) is formed
in the gas path surface (71).
8. The turbomachine component according to claim 6 or 7, wherein the protrusion (102)
is formed in the non gas path surface (77).
9. A turbomachine bucket (28) comprising:
an airfoil portion (40); and
a base portion (44) supporting the airfoil portion (40), the base portion (44) comprising
the turbomachine component of any of claims 1 to 8.
10. A turbomachine comprising:
a housing (2);
a gas path (15) extending through the housing;
a wheelspace arranged within the housing and substantially fluidly separated from
the gas path (15); and
at least one turbomachine component (28) arranged in the housing, the turbomachine
component as recited in any of claims 1 to 8.