STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT
[0001] This invention was made with government support under contract number NNC11CA15C
awarded by NASA. The government has certain rights in the invention.
RELATED APPLICATION
BACKGROUND OF THE INVENTION
1. Field of the Invention
[0003] The present invention relates to airblast injection nozzles for gas turbine engine
combustors.
2. Description of Related Art
[0004] Multipoint lean direct injection (LDI) for gas turbine engines is well known in the
art. Multipoint refers to the use of a large number of small airblast injector nozzles
to introduce the fuel and air into the combustor. By using many very small airblast
injector nozzles there is a reduction of the flow to individual nozzles, therein reducing
the diameter of the nozzle. The volume of recirculation zone downstream of the nozzle
is thought to be a controlling parameter for the quantity of NOx produced in a typical
combustor. If the recirculation volume is proportional to the cube of the diameter
of the mixer, and if the NOx produced is proportional to the recirculation volume,
and the fuel flow is taken to be proportional to the square of the diameter of the
mixer, then a larger nozzle will produce greater fuel flow, but also a greater emission
index of NO
X (EINO
X).
[0005] In addition, conventional construction of small sized injectors, nozzles, atomizers
and the like, includes components bonding together with braze. The components have
milled slots or drilled holes to control the flow of fuel and prepare the fuel for
atomization. The components are typically nested within one another and form a narrow
diametric gap which is filled with a braze alloy. The braze alloy is applied as a
braze paste, wire ring, or as a thin sheet shim on the external surfaces or within
pockets inside the assembly. The assembly is then heated and the braze alloy melts
and flows into the narrow diametric gap and securely bonds the components together
upon cooling.
[0006] Such conventional methods and systems generally have been considered satisfactory
for their intended purpose. However, when using traditional brazing techniques, the
braze alloy must flow from a ring or pocket to the braze area. In doing so, it is
prone to flow imprecisely when melted. It is also not uncommon for braze fillets to
be formed on or in certain features. In some instances intricate or narrow passages
can become plugged if too much braze is used. These fillets and plugs can negatively
affect nozzle performance. There is a higher chance of formation of fillets and plugs
as the nozzle components become smaller, as in multipoint applications. The difficulties
in controlling braze flow employing traditional brazing techniques is a limiting factor
in the design of fuel and air flow passages. That is, the shape and size of the passages
is limited by the ability to control the flow of braze.
[0007] US 2007/0101727 discloses a fuel nozzle comprizing a fuel distributor formed of a cylindrical body.
An outer surface of the fuel distributor has a plurality of helical grooves which
form helical fuel channels when the fuel distributor is fitted into an air swirler.
[0008] There remains a need in the art for a method and system of assembling nozzles that
will eliminate or greatly reduce fillet formation and/or plugging and allow for formation
of intricate internal fuel and air flow passages. There also remains a need in the
art for such a method and system that are easy and inexpensive to make and use. The
present invention provides a solution for these problems.
SUMMARY OF THE INVENTION
[0009] There is described herein a new and useful airblast injector.
[0010] According to the invention, there is provided an airblast fuel injection nozzle for
a gas turbine engine comprising: a fuel distributor with a fluid inlet, and fluid
outlet, and a fluid circuit for fluid communication between the fluid inlet and the
fluid outlet, wherein the fluid circuit includes a passage defined along a cone; wherein
the fuel distributor includes an outer distributor ring and an inner distributor ring
mounted within the outer distributor ring; wherein the outer distributor ring includes
an internal conical surface and the inner distributor ring includes an outer conical
surface, wherein a helically threaded fluid passage is defined on at least one of
the internal conical surface of the outer distributor ring and the outer conical surface
of the inner distributor ring; wherein the fluid circuit is defined between a helically
threaded fluid passage of the internal conical surface of the outer distributor ring
and an outer conical surface of the inner distributor ring, or wherein the fluid circuit
is defined between a helically threaded fluid passage of the outer conical surface
of the inner distributor ring and an internal conical surface of the outer distributor
ring; wherein the helically threaded fluid passage is a multiple-start helically threaded
fluid passage with multiple helical threads; an inner heat shield mounted inboard
of the inner distributor ring for thermal isolation of fuel in the fuel distributor
from compressor discharge air inboard of the inner heat shield; a core air swirler
mounted inboard of the inner heat shield for swirling compressor discharge air inboard
of the fuel distributor for atomizing fuel from the fuel distributor; and an outer
heat shield assembly mounted outboard of the outer distributor ring for thermal isolation
of fuel in the fuel distributor from compressor discharge air outboard of the inner
heat shield and defining an outer air circuit configured and adapted to issue a swirl-free
flow of air converging towards a central axis of the nozzle.
[0011] The multiple-start helically threaded fluid passage may be defined on the internal
conical surface of the outer distributor ring, wherein the fluid circuit is defined
between the multiple-start helically threaded fluid passage of the internal conical
surface of the outer distributor ring and an outer conical surface of the inner distributor
ring.
[0012] The fuel distributor can also include a braze or a weld joint mounting the inner
and outer distributor rings together. The braze or weld joint bounds the fluid circuit
for confining fluid flowing therethrough.
[0013] These and other features of the systems and methods of the subject invention will
become more readily apparent to those skilled in the art from the following detailed
description of the preferred embodiments taken in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] So that those skilled in the art to which the subject invention appertains will readily
understand how to make and use the devices and methods of the subject invention without
undue experimentation, preferred embodiments thereof will be described in detail herein
below with reference to certain figures, wherein:
Fig. 1 is a perspective view of an exemplary embodiment of an airblast injector constructed
in accordance with the present invention;
Fig. 2 is an exploded perspective view of the airblast injector of Fig. 1, showing
how the fuel distributor constructed in accordance with the present invention can
be assembled;
Fig. 3 is a cross-sectional side elevation view of the airblast injector of Fig. 1,
showing components of the fuel distributor mounted together at a braze joint; and
Fig. 4 is an enlarged cross-section side elevation view of a portion of the airblast
injector of Fig. 1, showing a fluid circuit between an internal conical surface of
an outer distributor ring and an outer conical surface of an inner distributor ring.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0015] Reference will now be made to the drawings wherein like reference numerals identify
similar structural features or aspects of the subject invention. For purposes of explanation
and illustration, and not limitation, a partial view of an exemplary embodiment of
the airblast injectors for multipoint injection in accordance with the invention is
shown in Fig. 1 and is designated generally by reference character 100. Other embodiments
of the airblast injectors for multipoint injection in accordance with the invention,
or aspects thereof, are provided in Figs. 2-4, as will be described. Airblast injector
is adapted and configured for delivering fuel to the combustion chamber of a gas turbine
engine.
[0016] Nozzles used in conventional multipoint LDI configurations were pressure atomizing
air assist nozzles. The conventional pressure atomizing air assist nozzles were generally
inexpensive and light weight. In such conventional LDI configurations, it was found
that the air assist nozzles had to be very small in order to allow a very large number
of nozzles, for example nozzles in excess of 1000, in order to achieve the target
low NO
x emissions.
[0017] Conventional pressure atomizing air assist nozzle systems generally have been considered
satisfactory for their intended purpose, however it is desired to reduce cost, complexity
and poor low power operability since the fuel had to be divided among so many nozzles.
The air blast nozzle approach is advantageous in multipoint applications because of
its ability to mix fuel and air more efficiently, permitting the use of larger nozzles.
Fewer air blast nozzles are required than with the pressure atomizing types while
still achieving low NOx. This contravenes the idea that larger nozzles produce higher
NOx emissions index (EINOx). However it was found that continuing to increase the
diameter of the conventional air blast nozzles in order to reduce the total number,
again caused higher NO
x emissions. This means that there is an optimum size associated with nozzles to reduce
emissions and that air blast nozzles have had an advantage over conventional pressure
atomizing air assist permitting fewer nozzles.
[0018] One source of difficulty associated with conventional air blast nozzles is the way
fuel is distributed. Fuel cannot be exposed to excessive heat, for example wall temperatures
exceeding 204°C (400° F), without destabilizing and depositing coke in the channel.
Coke can block the channel and impede nozzle performance of the nozzle. In conventional
pressure atomizing air assist nozzles, as discussed above, fuel emanates from a small
centrally located hole. The channels feeding the hole are usually located in a symmetrical,
location which is easily insulated from heat. In conventional air blast nozzles, fuel
is distributed over a large diameter near the exit of the nozzle. The fuel feed channels
in conventional air blast nozzles tend to be much larger than in the conventional
pressure atomizing air assist nozzles and they are generally adjacent to substantial
hot air channels which heat the nozzle. Keeping the fuel cool in conventional air
blast nozzles requires the use of substantial amounts of heat shielding which adds
to the cost and weight. In addition, the necessity of flowing air through the core
of the nozzle requires an asymmetric fuel feed channel be utilized which adds additional
complexity. In general, in order to increase the ultimate mixing rate with air at
the exit, the spread of fuel flow segregated from air within the geometry of the conventional
air blast nozzle makes the nozzle much more vulnerable to fuel overheating and coke
contamination. It is desired to reduce complexity of manufacture, weight, cost and
coke contamination of conventional air blast nozzles.
[0019] With reference to Figs. 1 and 2, the invention provides an injector 100 for use in
a multipoint fuel injection system. Injector 100 includes first and second nozzle
components, shown as outer and inner distributor rings 102 and 104, respectively,
to form a fuel distributor 106. Injector 100 includes an inner heat shield 108 mounted
inboard of inner distributor ring 104 for thermal isolation of fuel, as shown in Fig.
4, in fuel distributor 106 from compressor discharge air inboard of inner heat shield
108. Injector 100 further includes a core air swirler 109 mounted inboard of inner
heat shield 108 for swirling compressor discharge air inboard of fuel distributor
106 for atomizing fuel issued from fuel distributor 106. In addition, injector 100
includes an outer heat shield assembly 112 mounted outboard of first nozzle component
102 for thermal isolation of fuel in fuel distributor 106 from compressor discharge
air outboard of fuel distributor 106. Those having skill in the art will readily appreciate
that the spherical shape of outer heat shield assembly 112 allows injector 100 to
be rotated to avoid spraying fluid on adjacent walls while still permitting sealing
thereof within a cylindrical sealing feature to permit axial travel during thermal
growth and contraction of the combustor.
[0020] With reference now to Fig. 3, outer heat shield assembly 112 defines an outer air
circuit 114 configured and adapted to issue compressor discharge air outboard of fuel
issued from fuel distributor 106. Outer air circuit 114 is configured and adapted
to issue a swirl-free flow of air therethrough. Since outer air circuit 114 converges
toward the central axis, outer air circuit 114 issues a converging flow of air therethrough
to enhance swirl imparted on a flow of compressor discharge air issued from core air
swirler 109.
[0021] With reference now Figs. 3 and 4, fuel distributor 106 includes a fluid inlet 116,
and fluid outlet 118, and a fluid circuit 120. Fluid circuit 120 is for fluid communication
between fluid inlet 116 and fluid outlet 118 and includes a three-start helically
threaded fluid passage 128, defined along a cone, i.e. internal conical surface 125
of outer distributor ring 102. Fluid circuit 120 is defined between three-start helically
threaded fluid passage 128 of internal conical surface 125 of outer distributor ring
102 and an outer conical surface 127 of inner distributor ring 104. Although shown
and described herein as a three-start helically threaded fluid passage, those skilled
in the art will readily appreciate that the passage can be any suitable number of
starts for a given application. Typically, it is contemplated that one start should
be provided for every 1-inch (2.54 cm) or circumference of the passage, however, any
other suitable spacing can be used without departing from the scope of the invention.
Those having skill in the art will readily appreciate that the multiple-start thread
and multiple individual outlets provide enhanced performance when operating at low
pressure, for example, the multiple-starts and multiple outlets of thread allow for
even fuel distribution.
[0022] In addition, the circumferential distribution of the fuel was aided by the use multiple-start
threaded passages 128 because their inherent flow resistance divided very small quantities
of fuel uniformly between fluid circuit 120. Therein, the velocity of the fuel through
fluid circuit 120 was substantially higher than it would be in a conventional airblast
nozzle without threads 132. High velocity and fluid friction increase fuel cooling
ability and helps to keep the metallic walls temperature adjacent to threads 132 cool
without overheating the fuel. Therefore, permitting the multiple-start threaded passages
128 maintain an extremely small wetted surface area of the nozzle as compared to conventional
airblast nozzles. The smaller the wetted surface of the nozzle, the less coke contamination
occurs. In addition, the use of the multiple-start threaded passage along a conical
surface, i.e. internal conical surface 125 and/or outer conical surface 127, reduces
the profile of wetted components and thus permits more space for air through the interior
of the nozzle.
[0023] Further, the geometry of the multiple-start threaded passages 128 inherently imparts
high degrees of swirl to the exiting fuel. The fuel flows nearly circumferentially
at the exit 118 of the threads 132 and forms a uniform film on a short downstream
lip of the nozzle. Intensely co-swirling air helps distribute the fuel circumferentially
while it progresses to the final exit. Those having skill in the art would readily
appreciate that the fuel film helps keep the short filming lip cool as it intervenes
between the lip and the hot core air.
[0024] Now referring to Fig. 4, fuel distributor 106 also includes a braze joint 130 mounting
together inner and outer distributor rings, 104 and 102. Braze joint 130 bounds fluid
circuit 120 for confining fluid flowing therethrough. Since distributor 106 includes
multiple-start helically threaded fluid passages 128, braze joint 130 bounds fluid
circuit 120 for confining fluid flowing therethrough.
[0025] With reference now to Fig. 2, a method of assembling an airblast injector, i.e. injector
100, is described. The method includes forming a fluid passage, i.e. multiple start
helically threaded fluid passage 128, on an at least one of an internal conical surface,
i.e. internal conical surface 125, of a first nozzle component, i.e. outer distributor
ring 102, and an outer conical surface, i.e. outer conical surface 127, of a second
nozzle component, i.e. inner distributor ring 104. While shown herein in the exemplary
context of fluid passage 128 formed on internal conical surface 125 of outer distributor
ring 102, those skilled in the art will readily appreciate that fluid passage 128,
e.g. including a multiple-start thread as described above, in addition or instead,
can be formed on outer conical surface 127 of inner distributor ring 104. The inner
distributor ring is configured and adapted to mate with the outer distributor ring
to form at least a portion of a fluid circuit, i.e. fluid circuit 120, therebetween.
The fluid passage is configured and adapted to provide passage for fluid in the fluid
circuit between the outer and inner distributor rings.
[0026] With continued reference to Fig. 2, the method further includes joining the outer
and inner distributor rings together by engaging the inner distributor ring within
first the nozzle component. Joining inner and outer distributor rings together also
includes engaging the inner distributor ring into the outer distributor ring in an
interference fit. The inner distributor ring can be engaged in an interference fit
with the outer distributor ring by forcefully pulling the inner distributor ring towards
the outlet of the outer distributor ring. Those skilled in the art will readily appreciate
that due to the conical surfaces involved joining the outer and inner distributor
rings together, an interference fit is not required, for example, the inner distributor
ring can be disposed within the outer distributor ring and fixed with a weld or braze
at joint 130. Those skilled in the art will readily appreciate that without the inner
and outer rings joined together in an interference fit, fuel will still follow the
helically threaded fluid passage 128 due to the pressure differential between the
inlet 116 and outlet 118. In addition, those having skill in the art will readily
appreciate that due to the conical surfaces involved joining the outer and inner distributor
rings together does not require thermal resizing to tightly fit the inner distributor
ring over the threads to seal the fuel, thereby permitting more efficient and cost
effective manufacture and assembly.
[0027] With reference now to Fig. 2 and 3, inner distributor ring can be employed to form
the inner wetted surface. It can be easily slid into position from the upstream end
of the nozzle. The threads are cut on an adjacent conical surface, i.e. internal conical
surface 125 of outer distributor ring 102, which provides a stop for the inner distributor
ring. Once the inner distributor ring is in position, it can be tacked into place
at a joint location, i.e. joint location 130, while pressing against the threads.
The upstream end at the joint location is then brazed or welded to keep the ring in
position and to seal the fluid circuit. Those having skill in the art will readily
appreciate that this permits a purely mechanical placement.
[0028] In addition, those having skill in the art will appreciate that because the inner
distributor ring is so short, it minimizes weight it is effectively cooled by fuel.
Reducing or minimizing the wetted surface of the nozzle reduces the length of the
heat shield, i.e. inner or outer heat shields 108 and 112, respectively, required
to keep the wetted surface carrying components cool. It can also be appreciated that
the heat shielding was functionally integrated into the components of injector 100.
Inner heat shield 108 forms the shroud for inner air swirler 109 into which swirler
109 could be brazed or welded. It also forms the inside of the heat shield for the
feed tube of fuel circuit 120.
[0029] In reference to Figs. 1 and 2, outer heat shield 112 can form the inner air shroud
for outer air circuit 114. Both inner and outer heat shields, 108 and 112, can be
configured to attach together at the back of injector 100 where an air sealing weld
or braze could be located. Once attached, the heat shields, 108 and 112, thermally
encapsulate inner and outer distributor rings 104 and 102, allowing them to remain
at around fuel temperature even if the air is at a much higher temperature as it arrives
from the compressor. Gaps between adjacent shells permit the hot components to grow
radially and axially unimpeded by the cold components. Zones where hot air can touch
the fuel conveying components are reduced to an absolute minimum. By keeping injector
100 components small, the heat shielding is kept at a reduced weight as compared to
conventional injectors. Combining functionality of heat shields 108 and 112 keep cost
of the components to a minimum.
[0030] Now with reference to Fig. 3, the method also includes applying braze directly to
the joint location on at least one of the outer and inner distributor rings. The braze
is applied over tack beads between the outer and inner distributor rings at the braze
location, i.e. braze joint 130. Heat is then applied to the braze to form a braze
joint at the joint location. Those having skill in the art will readily appreciate
that by applying braze directly to the braze joint, there is less chance for the braze
to form fillets on or in certain features, for example, the fluid circuit.
1. An airblast fuel injection nozzle (100) for a gas turbine engine comprising:
a fuel distributor (106) with a fluid inlet (116), and fluid outlet (118), and a fluid
circuit (120) for fluid communication between the fluid inlet and the fluid outlet,
wherein the fluid circuit includes a passage defined along a cone;
wherein the fuel distributor includes an outer distributor ring (102) and an inner
distributor ring (104) mounted within the outer distributor ring;
wherein the outer distributor ring includes an internal conical surface (125) and
the inner distributor ring includes an outer conical surface (127),
wherein a helically threaded fluid passage (128) is defined on at least one of the
internal conical surface of the outer distributor ring and the outer conical surface
of the inner distributor ring;
wherein the fluid circuit is defined between a helically threaded fluid passage of
the internal conical surface of the outer distributor ring and an outer conical surface
of the inner distributor ring, or wherein the fluid circuit is defined between a helically
threaded fluid passage of the outer conical surface of the inner distributor ring
and an internal conical surface of the outer distributor ring;
wherein the helically threaded fluid passage is a multiple-start helically threaded
fluid passage with multiple helical threads;
an inner heat shield (108) mounted inboard of the inner distributor ring (104) for
thermal isolation of fuel in the fuel distributor (106) from compressor discharge
air inboard of the inner heat shield (108);
a core air swirler (109) mounted inboard of the inner heat shield (108) for swirling
compressor discharge air inboard of the fuel distributor (106) for atomizing fuel
from the fuel distributor (106); and
an outer heat shield assembly (112) mounted outboard of the outer distributor ring
(102) for thermal isolation of fuel in the fuel distributor (106) from compressor
discharge air outboard of the inner heat shield (108) and defining an outer air circuit
(114) configured and adapted to issue a swirl-free flow of air converging towards
a central axis of the nozzle.
2. An airblast fuel injection nozzle (100) as recited in claim 1, wherein the airblast
fuel injection nozzle further comprises a braze joint (130) mounting the inner and
outer distributor rings (104, 102) together, wherein the braze joint bounds the fluid
circuit (120) for confining fluid flowing therethrough.
3. An airblast fuel injection nozzle (100) as recited in claim 1, wherein the multiple-start
helically threaded fluid passage (128) is defined on the internal conical surface
(125) of the outer distributor ring (102), and wherein the fluid circuit (120) is
defined between the multiple-start helically threaded fluid passage of the internal
conical surface of the outer distributor ring and an outer conical surface (127) of
the inner distributor ring (104).
4. An airblast fuel injection nozzle (100) as recited in claim 1 or 3, wherein the airblast
fuel injection nozzle further comprises a weld joint mounting the inner and outer
distributor rings (104, 102) together, wherein the weld joint bounds the fluid circuit
(120) for confining fluid flowing therethrough.
5. An airblast fuel injection nozzle (100) as recited in any preceding claim, wherein
at least one of the multiple helical threads extends at least to a downstream tip
of the inner distributor ring (104).
6. An airblast fuel injection nozzle (100) as recited in any preceding claim, wherein
at least one of the multiple helical threads is defined in the internal conical surface
(125) of the outer distributor ring (102) and terminates downstream of the tip of
the inner distributor ring (104).
1. Drucklufttreibstoffeinspritzdüse (100) für ein Gasturbinentriebwerk, umfassend:
einen Treibstoffverteiler (106) mit einem Fluideinlass (116) und einem Fluidauslass
(118) und einen Fluidkreis (120) zur Fluidkommunikation zwischen dem Fluideinlass
und dem Fluidauslass, wobei der Fluidkreis einen Durchgang beinhaltet, welcher entlang
eines Kegels definiert ist;
wobei der Treibstoffverteiler einen äußeren Verteilerring (102) und einen inneren
Verteilerring (104) beinhaltet, welcher in dem äußeren Verteilerring befestigt ist;
wobei der äußere Verteilerring eine innere kegelförmige Fläche (125) beinhaltet und
der innere Verteilerring eine äußere kegelförmige Fläche (127) beinhaltet,
wobei ein spiralförmig gewundener Fluiddurchgang (128) auf mindestens einer der inneren
kegelförmigen Fläche des äußeren Verteilerrings und der äußeren kegelförmigen Fläche
des inneren Verteilerrings definiert ist;
wobei der Fluidkreis zwischen einem spiralförmig gewundenen Fluiddurchgang der inneren
kegelförmigen Fläche des äußeren Verteilerrings und einer äußeren kegelförmigen Fläche
des inneren Verteilerrings definiert ist, oder wobei der Fluidkreis zwischen einem
spiralförmig gewundenen Fluiddurchgang der äußeren kegelförmigen Fläche des inneren
Verteilerrings und einer inneren kegelförmigen Fläche des äußeren Verteilerrings definiert
ist;
wobei der spiralförmig gewundene Fluiddurchgang ein spiralförmig gewundener Mehrfachstartfluiddurchgang
mit mehreren spiralförmigen Windungen ist;
einen inneren Hitzeschild (108), welcher zur Wärmeisolierung von Treibstoff in dem
Treibstoffverteiler (106) von Kompressorabluft innerhalb des inneren Hitzeschilds
(108) innerhalb des inneren Verteilerrings (104) befestigt ist;
einen Kernluftverwirbeler (109), welcher innerhalb des inneren Hitzeschilds (108)
angebracht ist, um Kompressorabluft innerhalb des Treibstoffverteilers (106) zu verwirbeln,
um Treibstoff von dem Treibstoffverteiler (106) zu zerstäuben; und
eine äußere Hitzeschildbaugruppe (112), welche zur Wärmeisolierung von Treibstoff
in dem Treibstoffverteiler (106) von Kompressorabluft außerhalb des inneren Hitzeschilds
(108) außerhalb des äußeren Verteilerrings (102) befestigt ist und einen Außenluftkreis
(114) definiert, welcher dazu konfiguriert und ausgelegt ist, einen verwirbelungsfreien
Luftstrom auszugeben, welcher in Richtung einer Mittelachse der Düse zusammenfließt.
2. Drucklufttreibstoffeinspritzdüse (100) nach Anspruch 1, wobei die Drucklufttreibstoffeinspritzdüse
ferner eine hartgelötete Verbindung (130) umfasst, welche den inneren und den äußeren
Verteilerring (104, 102) aneinander befestigt, wobei die hartgelötete Verbindung den
Fluidkreis (120) begrenzt, um ein Fluidstrom dort hindurch zu beschränken.
3. Drucklufttreibstoffeinspritzdüse (100) nach Anspruch 1, wobei der schraubenförmig
gewundene Mehrfachstartfluiddurchgang (128) auf der inneren kegelförmigen Fläche (125)
des äußeren Verteilerrings (102) definiert ist, und wobei der Fluidkreis (120) zwischen
dem schraubenförmig gewundenen Fluiddurchgang der inneren kegelförmigen Fläche des
äußeren Verteilerrings und einer äußeren kegelförmigen Fläche (127) des inneren Verteilerrings
(104) definiert ist.
4. Drucklufttreibstoffeinspritzdüse (100) nach Anspruch 1 oder 3, wobei die Drucklufttreibstoffeinspritzdüse
ferner eine Schweißverbindung umfasst, welche den inneren und den äußeren Verteilerring
(104, 102) aneinander befestigt, wobei die Schweißverbindung den Fluidkreis (120)
begrenzt, um ein Fluidstrom dort hindurch zu beschränken.
5. Drucklufttreibstoffeinspritzdüse (100) nach einem der vorstehenden Ansprüche, wobei
sich mindestens eine der mehreren schraubenförmigen Windungen mindestens bis zu einer
stromabwärtigen Spitze des inneren Verteilerrings (104) erstreckt.
6. Drucklufttreibstoffeinspritzdüse (100) nach einem der vorstehenden Ansprüche, wobei
mindestens eine der mehreren schraubenförmigen Windungen in der inneren kegelförmigen
Fläche (125) des äußeren Verteilerrings (102) definiert ist und stromabwärts von der
Spitze des inneren Verteilerrings (104) endet.
1. Injecteur de carburant à air comprimé (100) pour un moteur à turbine à gaz comprenant
:
un distributeur de carburant (106) avec une entrée de fluide (116) et une sortie de
fluide (118), et un circuit de fluide (120) pour la communication fluidique entre
l'entrée de fluide et la sortie de fluide, dans lequel le circuit de fluide comporte
un passage défini le long d'un cône ;
dans lequel le distributeur de carburant comporte un anneau de distributeur externe
(102) et un anneau de distributeur interne (104) monté dans l'anneau de distributeur
externe ;
dans lequel l'anneau de distributeur externe comporte une surface conique intérieure
(125) et l'anneau de distributeur interne comporte une surface conique externe (127),
dans lequel un passage de fluide à filetage hélicoïdal (128) est défini sur au moins
l'une de la surface conique intérieure de l'anneau de distributeur externe et de la
surface conique externe de l'anneau de distributeur interne ;
dans lequel le circuit de fluide est défini entre un passage de fluide à filetage
hélicoïdal de la surface conique intérieure de l'anneau de distributeur externe et
une surface conique externe de l'anneau de distributeur interne, ou dans lequel le
circuit de fluide est défini entre un passage de fluide à filetage hélicoïdal de la
surface conique externe de l'anneau de distributeur interne et une surface conique
intérieure de l'anneau de distributeur externe ;
dans lequel le passage de fluide à filetage hélicoïdal est un passage de fluide à
filetage hélicoïdal à pas multiple avec plusieurs filets hélicoïdaux ;
un bouclier thermique interne (108) monté à l'intérieur de l'anneau de distributeur
interne (104) pour isoler thermiquement le carburant dans le distributeur de carburant
(106) de l'air de refoulement de compresseur à l'intérieur du bouclier thermique interne
(108) ;
un dispositif de tourbillonnement d'air central (109) monté à l'intérieur du bouclier
thermique interne (108) pour faire tourbillonner l'air de refoulement de compresseur
à l'intérieur du distributeur de carburant (106) afin d'atomiser le carburant provenant
du distributeur de carburant (106) ; et
un ensemble bouclier thermique externe (112) monté à l'extérieur de l'anneau de distributeur
externe (102) pour isoler thermiquement le carburant dans le distributeur de carburant
(106) de l'air de refoulement de compresseur à l'extérieur du bouclier thermique interne
(108) et définissant un circuit d'air externe (114) configuré et adapté pour émettre
un flux d'air sans tourbillon convergeant vers un axe central de l'injecteur.
2. Injecteur de carburant à air comprimé (100) selon la revendication 1, dans lequel
l'injecteur de carburant à air comprimé comprend en outre un joint de brasage (130)
assurant le montage des anneaux de distributeur interne et externe (104, 102) ensemble,
dans lequel le joint de brasage délimite le circuit de fluide (120) pour confiner
le fluide s'écoulant à travers celui-ci.
3. Injecteur de carburant à air comprimé (100) selon la revendication 1, dans lequel
le passage de fluide à filetage hélicoïdal à pas multiple (128) est défini sur la
surface conique intérieure (125) de l'anneau de distributeur externe (102), et dans
lequel le circuit de fluide (120) est défini entre le passage de fluide à filetage
hélicoïdal à pas multiple de la surface conique intérieure de l'anneau de distributeur
externe et une surface conique externe (127) de l'anneau de distributeur interne (104).
4. Injecteur de carburant à air comprimé (100) selon la revendication 1 ou 3, dans lequel
l'injecteur de carburant à air comprimé comprend en outre un joint de soudure assurant
le montage des anneaux de distributeur interne et externe (104, 102) ensemble, dans
lequel le joint de soudure délimite le circuit de fluide (120) pour confiner le fluide
s'écoulant à travers celui-ci.
5. Injecteur de carburant à air comprimé (100) selon une quelconque revendication précédente,
dans lequel au moins l'un des plusieurs filets hélicoïdaux s'étend au moins jusqu'à
une pointe aval de l'anneau de distributeur interne (104).
6. Injecteur de carburant à air comprimé (100) selon une quelconque revendication précédente,
dans lequel au moins l'un des plusieurs filets hélicoïdaux est défini dans la surface
conique intérieure (125) de l'anneau de distributeur externe (102) et se termine en
aval de la pointe de l'anneau de distributeur interne (104).