[0001] The present patent application for industrial invention relates to a low-noise fume
extractor hood.
[0002] Although specific reference will be made hereinafter to an extractor hood for kitchen,
the invention is also extended to an industrial extractor hood.
[0003] As it is known, an extractor hood comprises a fan disposed in an extractor conduit
provided with inlet filter. The fan is driven into rotation by an electric motor in
order to extract fumes through the extraction conduit.
[0004] Said types of hoods are impaired by the very high noise level, both for the noise
generated by motor, fan, and other mechanical moving parts, for the noise generated
by the turbulent vortical air flow that is extracted in the conduit of the hood, and
for the noise of the air passing through the inlet filter.
[0005] In order to solve such a drawback, at least partially, solutions provided with active
noise suppression system are known.
[0006] Patent application
EP 0 596 846 discloses a kitchen extractor hood provided with active noise suppression system.
The hood is provided with microphones to detect noise, a loudspeaker generating a
sound adapted to suppress noise and a control unit that controls the loudspeaker according
to the noise detected by the microphones. The single loudspeaker is disposed with
axis of emission substantially horizontal to the axis of conduit of hood, which is
substantially vertical.
[0007] Patent applications
US 2004/194776 and
WO2010094718 disclose a hood with noise suppression system that provides for a loudspeaker disposed
in central position inside the conduit of the hood. Said position of the loudspeaker
results in a series of drawbacks, because of turbulence of the air flow extracted
in the conduit of the hood that meets with the central support of the loudspeaker.
Consequently, it is necessary to increase the power of motor, so that the flow of
extracted air passes beyond the obstacle represented by the loudspeaker. Moreover,
the loudspeaker in central position tends to get dirty because of direct contact with
fumes extracted by the hood.
[0008] In any case, the known active noise suppression systems provide for one loudspeaker
only, and do not allow for directivity of the sound signal beam, unless very expensive
loudspeakers are used. Instead, according to the position of the hood, it is especially
important to direct the sound beam of loudspeakers in a preferential direction with
higher noise.
[0009] EP 0 671 720 discloses a hood with noise suppression system that can comprise one or more loudspeakers.
However,
EP 0 671 720 illustrates only one loudspeaker with emission surface parallel to axis of conduit
of hood.
[0010] WO01/6359 discloses a generic active noise reduction system not applied to an air extraction
conduit.
WO01/6359 teaches that loudspeakers must be generally disposed on a plane, but such a condition
is not essential.
WO01/6359 contains no teachings about how to dispose loudspeakers in case of air extraction
conduit.
[0011] EP 0 961 087 discloses a fan provided with active noise suppression system.
[0012] Moreover, active noise suppression systems take into account only the noise generated
by air extraction and do not consider the noise generated by vibration of walls of
conduit housing fan and motor of hood.
[0013] The purpose of the present invention is to eliminate the drawbacks of the prior art
by devising a low-noise fume extractor hood provided with active noise suppression
system that does not obstruct the air extraction flow and at the same time allows
for directivity of sound beam.
[0014] Another purpose of the present invention is to provide a low-noise extractor hood
that is able to suppress also the vibration noise of the parts of the hood conduit.
[0015] These purposes are achieved according to the invention, with characteristics claimed
in independent claim 1.
[0016] Advantageous embodiments appear from the dependent claims.
[0017] The fume extractor hood of the invention comprises:
- a box containing a motor-fan assembly comprising a motor that actuates at least one
fan, and
- a muffler module disposed under said box of motor-fan assembly. The muffler module
comprises:
- a bearing frame defining an air extractor conduit with axis,
- an active noise suppression system comprising at least one electro-acoustic transducer
and two microphones connected to a control unit, and
- a passive noise suppression system comprising sound absorbent material disposed between
said microphones.
[0018] Said muffler module comprises at least two electro-acoustic transducers connected
to the walls of said bearing frame, in opposite positions with respect the axis of
conduit, in such manner to leave the central part of said conduit free.
[0019] Each electro-acoustic transducer has a sound emission surface inclined by an angle
higher than 0° with respect to the axis of conduit to generate a sound beam with axis
inclined by an angle lower than 90° with respect to axis of conduit.
[0020] In such a way, the sound beams coming from said at least two electro-acoustic transducers
can be combined to obtain a resulting sound beam that can be directed in a preferred
direction by means of beam forming algorithms.
[0021] Advantageously, the sound emission surface of the loudspeaker is inclined with respect
to the axis of conduit by an angle comprised in the range from 40° to 65°.
[0022] Additional characteristics of the invention will become clearer from the detailed
description below, which refers to merely illustrative, not limiting, embodiments,
illustrated in the attached drawings, wherein:
Fig. 1 is a perspective view of the hood of the invention;
Fig. 2 is a perspective view as Fig. 1 without sound absorbent material;
Fig. 2 is a top view of the muffler module of the hood of Fig. 1;
Fig. 3 is a cross-sectional view of the hood of Fig. 1;
Fig. 3A is an enlarged view of the muffler module Fig. 3;
Fig. 4 is a cross-sectional view along sectional plane IV-IV of Fig. 3;
Fig. 5 is a cross-sectional view along sectional plane V-V of Fig. 1 without sound
absorbent material;
Fig. 6 is a bottom view of the hood of Fig. 1;
Fig. 7 is a diagrammatic view showing the operation of the active noise suppression
system of the hood of the invention;
Fig. 8 is a block diagram showing the beam forming system of the hood of the invention;
and
Fig. 9 is a bottom view of a second embodiment of a muffler module.
[0023] Referring to the aforementioned figures, a low-noise fume extractor hood is disclosed,
generally indicated with numeral (1).
[0024] The hood (1) comprises a box (2) containing an electric motor (20) that drives into
rotation at least one fan (21) to extract fumes ejected from a discharge conduit (22).
[0025] For illustration purposes, the hood (1) comprises two fans (21) with horizontal axis
of rotation that, by means of centrifugal force, cause extraction of fumes through
lateral inlets (23) provided with grilles and discharge of fumes through the discharge
conduit (22).
[0026] The box (2) of the motor-fan assembly comprises two lateral walls (24) opposite to
the inlets (23) of the fans. The lateral walls (24) are made of rigid material, such
as plastics or wood, and act as bearing frame. An aesthetic casing (25), generally
of metal material, such as galvanized sheet steel, is disposed on lateral walls (24)
in such manner to generate a substantially parallelepiped shape.
[0027] The parallelepiped structure of the aesthetic casing (25) is provided with upper
opening for the discharge conduit (22) and lower opening closed by a partition plate
(29) in horizontal position. The partition plate (29) is laterally provided with peripheral
grilles (26) for passage of air extracted by the fans.
[0028] A box (27) with the electronic components of the hood (1) is disposed above the partition
plate (29). Instead, a wedge (28) made of sound absorbent material is disposed under
the partition plate (29), in such manner to direct the flow of extracted air towards
the peripheral grilles (26) of the partition plate.
[0029] At least one inertial actuator/shaker (3) is disposed on the aesthetic casing (25)
of the box of the motor-fan assembly. The inertial actuator/shaker (3) is known from
patent application
WO2011/029768, and therefore a detailed description is omitted. The base of the inertial actuator/shaker
(3) is fixed to the sheet metal of the aesthetic casing (25) in order to cause vibration.
[0030] Preferably two inertial actuators/shakers (3) are used in diametrally opposite positions,
respectively on the front side and back side of the aesthetic casing, in such manner
that the axis joining the two shakers (3) is orthogonal to the axis of rotation of
motor (20). Preferably, said inertial actuators/shakers (3) are disposed on the external
surface of the aesthetic casing (25). In fact, it is to be considered that said inertial
actuators/shakers have very small thickness and therefore have no aesthetic impact
on the hood.
[0031] At least one accelerometer (9) is disposed on the sheet metal (25) next to said inertial
actuator / shaker (3). The accelerometer (9) detects the vibrations of sheet metal
(25). Shakers similar to the aforementioned ones can be used as accelerometers.
[0032] A muffler module (4) is fixed to the lower part of the box (2) of the motor-fan assembly.
The muffler module (4) has a parallelepiped bearing frame, substantially similar to
the one of the box (2) of the motor-fan assembly, in such manner to define an air
extraction conduit (C) with vertical axis (A).
[0033] The bearing frame of the muffler module (4) comprises two lateral walls (40), a front
wall (41) adapted to be faced towards the user and a back wall (42). Walls (40, 41,
42) are made of rigid material, such as plastics, sheet metal or wood and are externally
covered with an aesthetic casing (not shown in the drawings), similar to the sheet
casing (25) of the box of the motor-fan assembly.
[0034] Referring to Fig. 3, two underframes (43) are fixed to the lateral walls (40) of
the bearing frame, protruding inwards in such manner to define two opposite chambers
(44). Each underframe (43) comprises:
- a lower wall (45) inclined by approximately 45° with respect to the lateral wall (40),
- an intermediate wall (46) parallel to the lateral wall (40), and
- an upper wall (47) inclined by approximately 45° with respect to the lateral wall
(40),
[0035] When seen in axial sectional view, the underframe (43) is substantially shaped as
a trapezium, and defines a narrowing of the conduit (C) of the muffler module. Referring
to Fig. 3A, the conduit (C) has a tapered inlet section (C1) with decreasing dimensions,
an intermediate section (C2) with constant dimensions and a tapered outlet section
(C3) with increasing dimensions. This structure of the conduit (C) favors air extraction
without causing obstacles and turbulence to air flow. In particular, the tapered inlet
section (C1) acts as invitation to air inlet into conduit, and the tapered outlet
section (C3) acts as conveyor to convey air towards the grilles (26) of the partition
wall (29) of the box of the motor-fan assembly.
[0036] At least one electro-acoustic transducer (5) is mounted on the lower wall (45) of
each underframe, in such manner that the magnetic assembly of the electro-acoustic
transducer (5) is contained inside the chamber (44) of the underframe. The transducer
(5) has a sound emission surface (50) disposed on the lower wall (45) facing the outside
of the chamber (44).
[0037] Preferably, two electro-acoustic transducers (5) are mounted in each lower wall of
the underframes. In view of the above, two opposite linear arrays are defined, each
array being formed of two electro-acoustic transducers.
[0038] The electro-acoustic transducer (5) is preferably a traditional loudspeaker provided
with vibrating membrane with sound emission. However, the electro-acoustic transducer
(5) can be a shaker that puts into vibration the lower wall (45) of the underframe
in order to generate sound.
[0039] Referring to Fig. 3A, the loudspeaker (5) has a sound emission surface (50) that
generates a sound beam with axis (S) orthogonal to the sound emission surface (50).
The speaker (5) is arranged in such way that the sound emission surface (50) is inclined
by an angle (θ) with respect to the axis (A) of conduit of the muffler module and
axis (S) of sound beam is inclined by an angle (α) with respect to axis (A) of conduit
of the muffler module.
[0040] Angle (θ) can vary from 0° to 90°.
[0041] By increasing the angle (θ), the possibility to change the directivity of the sound
beam emitted by the loudspeakers (5) is improved, but a higher obstacle to extracted
air flow is generated. By decreasing the angle (θ), the possibility to change the
directivity of the sound beam decreases until limit case of θ = 0°, wherein axis (S)
of the sound beam of all loudspeakers is orthogonal to axis (A) of conduit. In such
a case it is therefore impossible to generate a sound beam with directivity towards
the outside of the conduit.
[0042] It is to be considered that loudspeakers have a specific directivity of the sound
pressure level (SPL). The SPL is higher along axis (S) of the loudspeaker with respect
to the one obtained when moving away from the axis (S) of the loudspeaker. For this
reason, after experimental tests, the range of angle (θ) from 0 to 40° was excluded
because with such an inclination of the loudspeaker, the sound pressure did not come
out properly from the conduit of the hood and noise suppression did not effectively
cover the acoustic field of users.
[0043] Moreover, it must be considered that the sound emission surface (50) of the loudspeaker
is flush with the lower wall (45) of the frame that generates the tapered section
(C1) for air inlet in the conduit of the hood. After some experimental tests, the
applicant discovered that in the range of angle (θ) from 65° to 90° air impacted on
the lower part (45) and on the sound emission surface (50) of loudspeakers, generating
excessive capacity losses and a turbulent flow of localized air that is a source of
additional noise. Consequently, also the range of angle (θ) from 65° to 90° was excluded.
According to the above considerations, the sound emission surface (50) of loudspeaker
must be advantageously inclined with respect to axis (A) of the conduit by an angle
(θ) comprised in the range from 40° to 65°.
[0044] An angle of approximately 45° (θ) was advantageously chosen because it is the ideal
compromise between changing the directivity of the sound beam emitted by loudspeakers
and avoiding obstacles for the extracted air flow.
[0045] Although the attached figures illustrate an embodiment of the present invention with
two underframes (43) fixed to the lateral walls (40) of the bearing frame of the muffler
module, two additional underframes can be provided and fixed to the front wall (41)
and back wall (42) of the bearing frame of the muffler module, in such manner to mount
additional loudspeakers in the lower walls of other underframes.
[0046] Moreover, although the attached figures illustrate a muffler module with a parallelepiped
frame and rectangular cross-section, the frame can have any shape, such as for example,
a pentagonal, hexagonal, circular, elliptical, etc. cross-section.
[0047] In particular, if the bearing frame has a cylindrical shape, one underframe (43)
can be provided with truncated-conical lower wall (45) with decreasing diameter, cylindrical
central wall (46) and truncated-conical upper wall (47) with increasing diameter.
In such a case, as shown in Fig. 9, the lower wall (45) can be provided with a plurality
of loudspeakers (5) disposed in circular arrangement with regular spacing angularly.
Such a solution is the ideal solution to direct the sound beam in the desired direction.
[0048] Referring to Fig. 4, the back wall (42) is provided with a box (48) facing inwards
in order to contain the electronic components of the active noise suppression system.
However, the box (48) can be omitted and the electronic components of the active noise
suppression system can be integrated in the box (27) together with the electronic
components for operation of hood.
[0049] Referring to Fig. 3, at least one picking up microphone (6) is disposed in at least
one underframe (43) above the loudspeakers (5). The picking up microphone (6) is adapted
to detect the noise generated by the hood. Preferably, two picking up microphones
(6) are provided in diametrally opposite positions, at the upper end of the central
wall (46) of the underframes.
[0050] At least one error microphone (7) is disposed under the loudspeakers (5). The error
microphone is adapted to detect a noise cancellation error, in such manner to send
an error signal in retraction to correct the noise cancellation made by the loudspeakers
(5).
[0051] As shown in Figs. 3 - 5, four error microphones (7) are preferably provided and disposed
at the lower ends of the four walls (40, 41, 42) of the bearing frame of the muffler
module, in diametrally opposite positions and regularly spaced. However, only one
error microphone (7) can be provided and disposed in correspondence of the axis (A)
of conduit of the noise suppression module supported by thin brackets in order not
to interfere with the extracted air flow.
[0052] Sound absorbent material (49) is disposed on the internal side of the walls (40,
41, 42) of the frame of the muffler module, in such manner to cover the underframes
(43) and eventually the electronics box (48). In this way, the channel (C) is surrounded
by sound absorbent material (49). In particular, it is important that the sound absorbent
material (49) is situated between picking up microphones (6) and error microphones
(7).
[0053] Figs. 7 and 8 show an operating diagram of the low-noise extractor hood of the invention.
[0054] The picking up microphones (6) detect the noise generated in the conduit (C) of the
muffler module (4). Such noise is caused by air extraction in conduit (C), by noise
of fan and motor and by vibrations of walls (25) of box with motor-fan assembly. The
picking up microphones (6) send an indicative signal of the noise to a control unit
(8) composed of a DSP digital signal processor.
[0055] The DSP (8) provides for an algorithm for active cancellation of the ANC noise (80)
in order to control the loudspeakers (5) that emit anti-noise sound that cancels the
noise generated in the hood. The DSP (8) also controls shakers (3) in such manner
to make the wall (25) of the box of motor-fan assembly vibrate with vibration opposed
to vibration imposed by the motor-fan assembly. Shakers (3) do not emit a sound, but
attenuate vibrations on the wall (25) of the box of the motor-fan assembly.
[0056] Accelerometers (9) are connected to the DSP (8), therefore the DSP (8) controls shakers
(3) in such manner to minimize acceleration of sheet metal (25) detected by accelerometers
(9).
[0057] Error microphones (7) detect the noise coming out from the muffler module (4), that
is the noise that was not suppressed by loudspeakers (5). Therefore, error microphones
(7) send an error signal to the DSP (8), which is indicative of the noise that was
not suppressed by loudspeakers. According to the ANC algorithm (80), the DSP uses
said error signal to correct the anti-noise sound emitted by the loudspeakers (5)
and the attenuation of vibration of sheet metal (25) generated by shakers (3). If
accelerometers (9) are provided, the ANC algorithm (80) also processes the signal
received from the accelerometers (9) to control the attenuation of vibrations by shakers
(3) more accurately.
[0058] The fact that the hood of the invention provides at least for two loudspeakers (5)
with noise emission surface inclined by an angle (θ) lower than 90° with respect to
axis (A) of conduit of the muffler module, allows for implementing a beam forming
algorithm to direct the sound beam of the loudspeakers (5) towards a desired direction
where noise must be suppressed. In fact, it must be considered that two sound beams
generated by two loudspeakers in opposite inclined position, are combined together
into a single sound beam that can be directed towards the desired direction, according
to the different sound intensity of the two loudspeakers.
[0059] In such a case, as shown in Fig. 8, signals coming from picking up microphones (6)
and error microphones (7) undergo beam forming algorithms (81, 82) to detect the direction
of the sound beam obtained from the combination of beams coming out of the four loudspeakers
(5). Therefore, according to information obtained with the beam forming algorithms
(81, 82) of picking up microphones and error microphones, the ANC noise suppression
algorithm (80) generates a beam forming outlet (83) to direct amplifiers of loudspeakers
(5) that will emit beams with different sound intensity, in such manner to generate
a resulting beam directed towards the desired direction.
[0060] Fig. 8 shows the solution wherein the electronics for active noise cancellation is
integrated in the same box (24) with electronics (100) for operation of the hood,
viz. for operation of fan, motor and control panel of hood.
[0061] Numerous variations and modifications can be made to the present embodiments of the
invention, within the reach of an expert of the field, while still falling into the
scope of the invention described in the enclosed claims.
1. A fume extractor hood (1) comprising:
- a box (2) containing a motor-fan assembly comprising a motor (20) that actuates
at least one fan (21), and
- a muffler module (4) disposed under said box (2) of the motor-fan assembly, said
muffler module (4) comprising:
- a bearing frame (40, 41, 42) defining an air extractor conduit (C) with axis (A),
- an active noise suppression system comprising at least two electro-acoustic transducers
(5) and at least two microphones (6, 7) connected to a control unit (8),
- a passive noise suppression system comprising sound absorbent material (49) disposed
between said microphones (6, 7),
characterized in that
said two electro-acoustic transducers (5) are connected to the walls (40) of said
bearing frame, in opposite positions with respect the axis (A) of the conduit, in
such manner to leave the central part of said conduit (C) free;
each electro-acoustic transducer (5) having a sound emission surface (50) inclined
by an angle (θ) higher than 0°with respect to the axis (A) of the conduit to generate
a sound beam with axis (S) inclined by an angle (α) lower than 90° with respect to
the axis (A) of the conduit, in such manner that the sound beams coming from said
two electro-acoustic transducers can be mutually combined, obtaining a resulting sound
beam that can be directed in a preferred direction, by means of beam forming algorithms.
2. The hood (1) of claim 1, characterized in that said inclination angle (θ) between sound emission surface (50) and axis (A) of conduit
is comprised in range from 40°to 65°.
3. The hood (1) according to claim 1 or 2, characterized by the fact that it comprises at least one underframe (43) connected to said bearing
frame of the muffler module in such manner to define at least one chamber (44) where
said electro-acoustic transducers (5) are mounted.
4. The hood (1) according to claim 3, characterized by the fact that said underframe (43) has a lower wall (45) inclined by said angle (θ)
higher than 0° with respect of the axis (A) of the conduit and said electro-acoustic
transducers (5) are mounted with the sound emission surface (50) disposed on said
lower wall (45) of the underframe.
5. The hood (1) according to claim 4, characterized by the fact that said underframe (43) also comprises a central wall (45) parallel to
the axis (A) of the conduit and an upper wall (47) inclined with respect to the axis
of the conduit, in such manner to generate a tapered inlet section (C1) with decreasing
dimensions, a central section (C2) with constant dimensions and a tapered outlet section
(C3) with increasing dimensions.
6. The hood (1) according to claim 4 or 5, characterized by the fact that said electro-acoustic transducers (5) are shaker speakers and said
lower wall (45) of the underframe is a rigid plate put in vibration by the shaker
speaker to emit a noise suppression sound.
7. The hood (1) according to any one of the preceding claims, characterized by the fact that said electro-acoustic transducers (5) are disposed according to linear
arrays.
8. The hood (1) according to any one of claims 1 to 6, characterized by the fact that said electro-acoustic transducers (5) are disposed according to a circular
route, equally spaced angularly.
9. The hood (1) according to any one of the preceding claims,
characterized in that it comprises:
- at last one inertial actuator/shaker (3) connected to said control unit (8) and
arranged on one lateral wall (25) of said box (2) of the motor-fan assembly to attenuate
the vibration of said lateral wall caused by the operation of motor and fan,
- at least one accelerometer (9) connected to said control unit (8) and disposed on
a lateral wall (25) of said box (2) of the motor-fan assembly next to said inertial/shaker
(3) to detect the acceleration of vibrations of said lateral wall (25) of the box
(2) of the motor-fan assembly and control said inertial actuator/shaker (3) according
to the acceleration detected.
10. The hood (1) according to any one of claims 3 to 9, characterized by the fact that it comprises at least two picking up microphones (6) disposed in diametrally
opposite positions on said underframes (43) above said electro-acoustic transducers
(5).
11. The hood (1) according to any one of the preceding claims, characterized by the fact that it comprises at least four error microphones (6) disposed on the walls
of said bearing frame of the muffler module, under said electro-acoustic transducers
(5), in diametrally opposite regularly spaced positions.
12. The hood (1) according to any one of the preceding claims, characterized by the fact that said sound absorbent material (49) entirely covers the internal surface
of said conduit (C).