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(54) Method for predicting a physical characteristic of vacuum insulation panels

(57) The invention relates to a method for predicting
a physical characteristic of vacuum insulation panels of
a certain type. The method comprises measuring (101)
a plurality of physical quantities associated with the vac-
uum insulation panels at distinct time instants, measuring
(103) values of the physical characteristic at the distinct

time instants, fitting (105) a parametric regression model
with the measured physical quantities as regression pa-
rameters to predict the measured values of the physical
characteristic at the distinct time instants using the par-
ametric regression model, and executing (107) the par-
ametric regression model to predict the physical charac-
teristic at a future time instant.
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Description

[0001] The invention relates to predicting a physical characteristic of vacuum insulation panels in the future upon the
basis of measurements.
[0002] Vacuum insulation panels are widely used for thermal insulation of home appliances and buildings. However,
the physical characteristics such as thermal conductivity of vacuum insulation panels tend to change over time. In order
to capture the changing physical characteristics, long time measurements may be performed. However, in view of a
long lifetime of typical vacuum insulation panels - 10 years and more - it is not feasible to perform measurements over
that long period of time.
[0003] It is therefore the object of the present invention to provide an efficient concept for determining a physical
characteristic such as thermal conductivity of vacuum insulation panels for a long period of time.
[0004] This object is achieved by the features of the independent claim. Further embodiments are disclosed in the
figures, in the description and in the dependent claims.
[0005] The invention is based on the finding that the above object may be solved by predicting future physical char-
acteristic of vacuum insulation panels upon the basis of a parametric regression model.
[0006] According to an aspect, the invention relates to a method for predicting a physical characteristic of vacuum
insulation panels of a certain type, the method comprising measuring a plurality of physical quantities associated with
the vacuum insulation panels at distinct time instants, measuring values of the physical characteristic at the distinct time
instants, fitting a parametric regression model with the measured physical quantities as regression parameters to predict
the measured values of the physical characteristic at the distinct time instants using the parametric regression model,
and executing the parametric regression model to predict the physical characteristic at a future time instant. The future
time instant is a time instant following the certain time instants.
[0007] According to an embodiment, the parametric regression model is executed and/or fitted by a computer.
[0008] According to an embodiment, the parametric regression model is a non-linear regression model, in particular
a mixed non-linear regression model.
[0009] According to an embodiment, the values of the physical characteristic and the plurality of physical quantities
are measured at three distinct time instants, in particular only at three distinct time instants.
[0010] According to an embodiment, the physical characteristic is a least one of: thermal conductivity, internal gas
pressure, weight.
[0011] According to an embodiment, the measured physical quantities are at least one of the following physical quan-
tities: temperature, elapsed time during which a vacuum insulation panel was exposed to a certain test condition, in
particular to a certain temperature, geometry of a vacuum insulation panel, in particular a sealing length or a surface
area or a volume of a kernel of a vacuum insulation panel or a thickness of a vacuum insulation panel, a mass of a
vacuum insulation panel, a relative mass increase of a vacuum insulation panel.
[0012] According to an embodiment, the step of fitting of the parametric regression model comprises determining
regression coefficients of the parametric regression model.
[0013] According to an embodiment, the method further comprises determining the distinct time instants for measure-
ments.
[0014] According to an embodiment, the method further comprises determining a number of vacuum insulation panels
of the same type for measurements.
[0015] According to an embodiment, the method further comprises determining a total measurement time of the
measurements.
[0016] According to an embodiment, the method further comprises determining environmental conditions, in particular
temperatures, to which to expose at least one vacuum insulation panel.
[0017] According to an embodiment, the method further comprises determining an exposure time.
[0018] According to an embodiment, the method further comprises determining a number of measurements repetitions.
[0019] According to an embodiment, the vacuum insulation panel of the same type comprises a panel core, in particular
a fiber panel core.
[0020] According to an embodiment, the parametric regression model is one of the following parametric regression
models 

or 
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with Y denoting values of the physical characteristic, β1 - β4 denoting regression coefficients, x1 - x4 denoting measured
values of the physical characteristic and ε denoting an error.
[0021] According to an embodiment, the parametric regression model is described by a nonlinear function.
[0022] According to an embodiment, the predicting the physical characteristic of the vacuum insulation panels com-
prises predicting a number of vacuum insulation panels having a certain value of the physical characteristic or having
a value of the physical characteristic below or above a threshold.
[0023] According to an embodiment, the predicting the physical characteristic of the vacuum insulation panels com-
prises predicting a change of the physical characteristic over time. Further embodiments of the invention will be described
with respect to the following figures, in which:

Fig. 1 shows a diagram of a method for protecting a physical characteristic;

Fig. 2a shows a diagram of a method for predicting a physical characteristic of more than 18 VIPs;

Fig. 2b shows a graphical user interface;

Fig. 3 shows observed versus predicted values of pressure increase;

Fig. 4 shows residuals versus predicted values of pressure increase;

Fig. 5 shows residuals versus observed values of pressure increase;.

Fig. 6 shows histograms of the residuals;

Fig. 7 shows predicted values plotted against observed values of larger panels.

Fig. 8 shows a coefficient of a prediction interval;

Fig. 9 shows an increase in precision of a prediction of pressure increase;

Fig. 10 shows a relation between the number of testing panels and a length of the prediction interval;

Fig. 11 shows a sensitivity of the coefficient of the prediction interval;

Fig. 12 shows an increase in pressure measured in mbar plotted against the elapsed time in days;

Fig. 13 shows the thermal conductivity for different core materials;

Fig. 14 shows the thermal conductivity of a kernel made of glass fibres.

Fig. 15 shows a measured heat conductivity;

Fig. 16 shows a characteristic of an estimator;

Fig. 17 shows estimates;

Fig. 18 shows estimates;

Fig. 19 shows a prediction variance;

Fig. 20 shows a prediction variance;
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Fig. 21 shows a prediction variance; and

Fig. 22 shows a prediction variance.

[0024] Fig. 1 shows a diagram of a method for protecting a physical characteristic, e.g. thermal conductivity, of vacuum
insulation panels of a certain type. The certain type is determined by the structure of the vacuum insulation panels. Thus,
vacuum insulation panels having e.g. a fiber core belong to the same certain type. Correspondingly, vacuum insulation
panels without any core belong to another certain type.
[0025] The method comprises measuring 101 a plurality of physical quantities associated with the vacuum insulation
panels at distinct time instants, measuring 103 the radius of the physical characteristic at the distinct time instants, fitting
105 a parametric regression model with the measure of physical quantities as regression parameters in order to predict
the measured values of the physical characteristic at the distinct time instants using the parametric regression model.
In other words, the parametric regression model is fitted such that its result yields at least estimates of the measured
values of the physical characteristic.
[0026] The method further comprises executing 107, e.g. on a digital computer, the parametric regression model in
order to predict the physical characteristic at a future time instant.
[0027] The physical characteristic may be a thermal conductivity, an internal gas pressure or weight. Correspondingly,
the physical quantities may be a temperature or a measured geometry of a vacuum insulation panel etc. The physical
quantities are used as regression parameters in order to fit the parametric regression model.
[0028] According to an embodiment, the physical characteristic of more than 18 vacuum insulation panels (VIP) may
be measured. Thereafter, three groups with respectively 6 VIPs are stored at temperatures of 23°C, 45°C and 70°C.
After different time instants, e.g. after 0, 25, 50, 75 or 100 days or after a minimum of 0, 50 or 100 days, the physical
characteristic of the VIP may be measured again. The measured values may be evaluated using a computer program
which is adapted to compute parameter of the parametric regression model using the measuring values in order to
provide a prediction of the physical characteristic for e.g. two or ten years at a certain operation temperature.
[0029] The parametric regression model may be a non-linear mixed regression model for predicting efficiency, e.g.
thermal conductivity of the VIPs within shorter test intervals, e.g. within 100 days. Nevertheless, the parametric regression
model may provide a prediction of a physical characteristic after 15 years within a confidence interval. Thus, the vacuum
insulation panels may be tested within 100 days or less in order to obtain a prediction for the physical characteristic or
for the change of the physical characteristic over a significantly longer period of time.
[0030] The statistical approach yields more reliable predictions and enables an efficient deployment of test VIPs.
Moreover, less VIPs may be used for measurements so that the measurement complexity is reduced.
[0031] When predicting the physical characteristic of vacuum insulation panels, the type of vacuum insulation panels
is an important factor. By way of example, vacuum insulation panels having a fiber core are subject to stronger require-
ments relating to the quality of vacuum than vacuum insulation panels having a silicic acid core. In particular, VIPs with
a fiber core are evacuated during manufacturing by a factor of 100 more than VIPs with other cores. Thus, the outer
skins of the VIPs shall be correspondingly tighter.
[0032] In order to support a low gas pressure, additional integrated dry means may be used in the vacuum insulation
panels. It has been found that VIPs with fiber core suffer from non-linear effects influencing a degradation of the physical
characteristics, such as thermal conductivity of the VIP.
[0033] According to an embodiment, the prediction of the physical characteristic of vacuum insulation panels may be
performed in order to estimate how many VIPs have after two years a thermal conductivity which is less then 0.008
W/(mK), or how many VIPs have after ten years a thermal conductivity which is less then 0.015 W/(mK). The confidence
interval may be set to 95% and 99% at standard environmental conditions, e.g. 24°C and 50% air moisture or 15° Celsius
and 50% relative air moisture. The maximum temperature may be set to 75° Celsius, the minimal temperature may be
set to -40°C, the maximum air moisture may be 98% of the relative air moisture at 5°C. A start value for the thermal
conductivity forming an embodiment of a physical characteristic may be 0.006 W/(mK).
[0034] Fig. 2a shows a diagram of a method for predicting a physical characteristic of more than 18 VIPs. In step 201,
the physical characteristic, e.g. an inner pressure, weight or thermal conductivity, is measured. Thereafter, in step 203,
groups with more than 6 VIPs are stored at different temperatures, e.g. at a first temperature at 23°C in step 205, a
second temperature at 45 to 55°C in step 207 and at a third temperature at 60 to 80°C in step 209. Thereafter, in step
211, after 25, 50, 75 or 100 days, at least with three measurement time instants by 0, 50 and 100 days, the physical
characteristics, such as the inner pressure, weight or thermal conductivity, is measured again. In step 213, the elapsed
time is determined. If the elapsed time is greater than 100 days, then the method proceeds with step 215. In step 215,
the measurements are evaluated in order to perform the fitting of a parametric regression model enabling the prediction
of the physical characteristic of the vacuum insulation panels at a future time instant, e.g. after 15 years. In step 215,
the operational temperature may be set to 20°C.
[0035] According to an embodiment, the fitting the parametric regression model and the executing the same may be
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performed using a graphical user interface as shown in Fig. 2b. The graphical user interface may implement the regression
model 217 which calculates and outputs model parameters. The graphical user interface may further comprise a section
219 for predicting a physical characteristic of a vacuum insulation panel, e.g. after two and after ten years. The physical
characteristic may be the inner pressure or thermal conductivity. The graphical user interface may further visualize
predicted values versus observed values, 221, observed values versus residuals, 223, predicted values versus residuals,
225, and residuals versus frequency, 227.
[0036] The following describes a statistical model for predicting panel lifetime. The panel lifetime is defined as the time
until panel failure. The panel fails if the value of the thermal conductivity exceeds a prescribed critical bound c. The
occurrence of an exceedance over a critical bound c is identified with the death of the panel. Relevant critical bounds
for thermal conductivity are between 0.008 W/(m·K) after 2 years and 0.015 W/(m·K) after 10 years.
[0037] However, thermal conductivity is essentially a function of panel internal gas pressure and internal water content
(mass). Hence panel failure can be alternatively defined as the exceedance of the panel interior gas pressure and/or
the panel internal water content over prescribed critical values.
[0038] The functional relationships between thermal conductivity λgas(t) at time t and gas pressure pgas(t) at time t can
be expressed by the following equations. 

[0039] The constants are λfree gas = 25.5 3 10-3 W/(m·K) and p1/2 = 650+/-100 mbar. The conversion of the critical
bound c for thermal conductivity into a critical bound c for gas pressure can be calculated using equation (27).
[0040] The empirical data base consists in two data sets from experiments. The experimental or testing objects were
specially prepared small panels with sizes of about 10 cm 3 10 cm 3 1 cm and 20 cm 3 20 cm 3 1 cm, denominated
as "test panels". Regarding the quality of experimental objects two panel brands were used that differed in the types of
laminates. The panel types, respectively the laminates, are denoted as H and W. Panel internal gas pressure and panel
mass were measured as experimental responses. The experimental factors were geometry, i.e. length of sealing, surface
area, and kernel volume, temperature, humidity, and time. The panels were stored under various experimental conditions
in six different environments resulting from the cross combinations of levels of the factors temperature and humidity.
Temperature levels were 25°C, 45°C, or 65°C. Humidity levels were either uncontrolled or 75% relative. The geometric
levels were panels with sizes of about 10 cm x 10 cm x 1 cm and 20 cm x 20 cm x 1 cm. As the number of experimental
objects two panel units of each size were observed under each of the 6 experimental conditions defined by the cross
combinations of levels of the factors temperature and humidity.
[0041] Regarding experimental period and distribution of measuring times the measurements of internal gas pressure
and mass were taken weekly in the beginning and about every second week later, over about one year. In view of the
number of measurements per experimental object the testing panels of type H were successively measured at 17 different
times, whereas the testing panels of type W were successively measured at 10 different times. The following combinations
of levels of the experimental factors temperature and humidity express stress conditions, which are significantly different
from ordinary usage conditions, namely the temperature levels "45°C", "65°C" in cross combination with the humidity
level "75% relative". Under the stress conditions described before experimental acceleration is achieved and the exper-
imental responses gas pressure and mass increase more rapidly in time than under normal usage conditions. This
acceleration effect was exploited for building a model for long-term prediction of the evolution of gas pressure and mass
from observations from a period of one year only. For model validation purposes, a second data set of measurements
on larger panels (about 48 cm x 48 cm x 2 cm) was considered.
[0042] In spite of the stress conditions, the responses gas pressure and mass never reached critical bounds corre-
sponding to critical thermal conductivity levels between 0.008 W/(m·K) and 0.015 W/(m·K).
[0043] Several statistical methods and approaches are explored for modeling panel lifetime.

~

~

~
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[0044] An analysis of the probability distribution of lifetime is a customary approach in statistical lifetime modeling.
The statistical theory of lifetime and reliability has developed a great variety of parametric classes of lifetime distribution.
Most popular is the class of Weibull- distributions. In recent years, the empirical analysis of lifetime distributions from
accelerated experiments under stress conditions has made considerable progress.
[0045] The empirical modeling of a lifetime distribution requires the empirical observation of lifetimes, such as times
until death, i.e. times until exceedance of critical bounds. In the underlying experiment the responses of the gas pressure
and mass never reached critical bounds corresponding to critical thermal conductivity levels between 0.008 W/(m · K)
and 0.015 W/(m · K).
[0046] If panel failure (panel death) is not able to be observed, the statistical analysis can be based on a model of the
evolution of gas pressure or mass as a function of time, in order to predict the long-term evolution from observations
over the short-term experimental period. This is a case for statistical regression analysis. The general form of a parametric
regression model is 

[0047] Y is the observed response, e.g. panel internal gas pressure or panel mass. The vector x contains the levels
of explicit influential factors, also called regressors, e.g. geometry, temperature, humidity, time. β is a vector of parameters
which can be fitted empirically to a specific phenomenon. The fixed function g(x, β) aggregates the effects of the factor
levels x and of the parameters β. The residual ε expresses random deviation due to non-explicit factors like measurement
uncertainty or manufacturing variation in the panels. The residual is supposed to have no effect on the average, i.e. E
[ε] = 0 is assumed. Hence E[Y] = g(x, β), and g(x, β) is called mean value function. Two regression modeling approaches
can be used, namely a multivariate linear model and a nonlinear model. Two regression modeling approaches can be
used, namely a multivariate linear model and a nonlinear model.
[0048] The multivariate linear regression model as a first model is an instance of the general scheme (4) where 

I.e. the mean value function is a linear function g(x, β) = β1x1 + ... + βkxk.
[0049] The following parameters are estimated:

1) the components of the vector β, where the estimator is denoted as β; and

2) the variance  of the residual ε. The estimator is denoted as 

[0050] For a specific data set the random effects model is Yi = βT xi + εi, i = 1,..., n, and in vector notation: 

β = (β1,.., βk’)T is the vector of the regression parameters.
[0051] The k’ 3 k’-matrix C is defined by 

the existence of the inverse provided.
[0052] The least squares estimator β is determined from the equations 

^

^
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[0053] The confidence interval for βl is: 

[0054] The variance  of the residual ε is estimated by

[0055] The parameter estimation in the linear model is provided by many software programs by statistical commercially
available packages.
[0056] The model based prediction for the value Y (x) = βT x + εx is Y (x) = βT x. The prediction interval for the true
value Y (x) = βT x + εx is 

with  being the  of Student’s t-distribution t(n-k’).

[0057] The model (5) can be applied to artificial regressors xi which are aggregations of the explicit variables geometry,
temperature, humidity, time.
[0058] The underlying explicit untransformed regressor variables are:

- geometrical regressor variables: length of seal, e.g. for the special test panels 2(lF + bF) with lF and bF the lengths
of the seal at the long the panel, surface area of the panel, e.g. for the special test panels it was 2 · lF · bF, volume
of the kernel, e.g. for the special test panels it was lK · bK · hK with lK and bK and hK the lengths of the different sides
of the kernel;

- ambient regressor variables: temperature ϑ (in °C), relative humidity F (in %);

- measuring time t in days; and

- current mass m(t), current pressure p(t).

[0059] The response variables are:

- relative mass increase Y1 = (m(t) - m(t0))/m(t0), where t0 is the starting time of measuring, m(t) is mass at time t in
grams, and m(t0) is the initial mass at to; and

- absolute pressure increase Y2 = p(t) - p(t0), where p(t) is the pressure at time t in mbar, and p(t0) is the initial pressure
at t0.

[0060] The following aggregated regressor variables are calculated:

- Explanatory variables of first order:

F1 = lK · bK ·hK (volume kernel)
F2 = 2 · (lF + bF) (length of sealing)
F3 = 2 · (lF ·bF + bF · hF + lF · hF) (surface area of the panel)1

F4 = 6.1078 · exp(17.08 · ϑ/(234.18 + ϑ)) · F/100 (partial pressure of water vapour in the environment)
F5 = m(t0) (initial mass)
F6 = t - t0 (elapsed measuring time)

^ ^
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F7 = ϑ (temperature)

- Explanatory variables of second order:

x1 = F2 · F4 · F6/F5
x2 = F2 · F4 · F6/F5 · F7
x3 = F3 · F4 · F6/F5
x4 = F3 · F4 · F6/F5 · F7

x6 = F2 · F6/F1
x7 = F2 · F6/F1 · F7
x8 = F3 · F6/F1

x9 = F3 · F6/F1 · F7 

[0061] x6 and x7 describe the permeation of dry gases through the sealing. The temperature dependency is assumed
to be linear. x8, x9 and x10 describe the permeation of dry gases through the laminate. The dependency is assumed to
be of second order in temperature. x1, .,x5 correspondingly describe the permeation of water vapor which is assumed
to be proportional to the external water vapor pressure.
[0062] By means of the above explanatory variables the response variables can be approximately described by the
following two linear models:

- Model of the relative increase in mass (Y1): 

- Model of the increase in pressure (Y2) (by dry air and water vapor): 

[0063] Both models get along without an intercept. The unknown coefficients a1, .,a5 and b0, .,b10 are estimated by
means of multi-linear regression using the totality of the given data. The goodness of fit is examined. If the goodness of
fit is satisfying, predictions about the future behavior of the response variables Y1 and Y2 can be made using the estimated
model.
[0064] The fit of the linear model with explanatory variables up to second order is good in the region of experimental
factor levels, i.e. geometry, temperature, humidity.
[0065] The nonlinear approach is a second regression modeling approaches.
[0066] This modeling approach is based on a regression model Y = g(x,β) + ε of type (4) with nonlinear mean value
functions g(x,β). Firstly the theory of the statistical analysis of such nonlinear regression models is reviewed, which is
applied below.
[0067] The following parameters are estimated:

1) the components of the vector β, where the estimator is denoted as β ; and

2) the variance  of the residual ε. The estimator is denoted as 

[0068] For a specific data set the random effects model is Yi = g(xi,β) + εi, i = 1,..., n, and in vector notation 

with 

^
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[0069] β = (β1,..., βk’)T is the vector of the regression parameters and X = (x1,..., xn)T the matrix of the regressor values.
[0070] The n 3 k’ -matrix G(X,β) is defined by 

[0071] The k’ 3 k’ -matrix C(β) is defined by 

the existence of the inverse provided.
[0072] The least squares estimator β is determined from the equations 

[0073] For a large sample size n the estimator β is approximately normally distributed with the k’-dimensional normal

distribution  If α ∈ k’ is a prescribed vector, then αTβ is approximately distributed as the univariate

normal distribution  For a large sample size n the asymptotic prediction interval for the value

αTβ is: 

with  being the  100%-quantile of Student’s t-distribution t(n-k’).

[0074] For the empirical analysis C(β) is replaced by C(β).
[0075] The confidence interval for βl is obtained by predefining the vector αl = (0,..., 0, 1, 0,...., 0)T, with αl = 1 as its
/-th component and the components αj = 0 for j ≠ l. The following interval results: 

[0076] For the empirical analysis C(β) is replaced by C(β) and cu(β) by cu(β).

[0077] The variance  of the residual ε is estimated by 

[0078] The estimation uses numerical algorithms, in particular minimization algorithms like the Gauß-Newton or Lev-
enberg-Marquard procedures. The solution requires advanced statistical or mathematical software like Statistica, Minitab,
or Mathematica.

^

^

^

^

^ ^
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[0079] The model based prediction for the value Y(x) = g(x,β) + εx is Y(x) = g(x.β). If  is the

column gradient of g with respect to β with fixed x, then for a large sample size n the asymptotic prediction interval for
the true value Y(x) = g (x,β) + εx is: 

with  being the  100%-quantile of Student’s t-distribution t(n - k’).

[0080] For the empirical analysis C(β) is replaced by C(β) and d(β) by d(β).
[0081] The confidence intervals and prediction intervals given by formulae (7) and (8) are based on linear approxima-
tions of the mean value function g(x, β), compared to equation (4). In the following the mean value function is strictly
monotonous in all parameters.

[0082] In the following the aforementioned methods are applied to the prediction of pressure and mass increase.
[0083] A nonlinear model for increase of gas pressure with dependency on mass is discussed, which is based on an
iterative data modeling process. A simplifying assumption can be used for the analysis of small test panels with kernels
made of fumed silica:

1. Permeation through edges and corners is assumed to be negligible, so that the coefficients cair,C, cair,LE, cwv,C
and cwv,LE are assumed to be zero.

2. The driving force for permeation of air is the external pressure. The variation of internal pressure is neglected.

3. The internal water vapor partial pressure is assumed to be constantly zero, consequently there are no effects
due to saturation.

4. The variation of temperature is assumed to follow an Arrhenius equation.

5. The effect of temperature on the permeation is the same for length of the sealing and surface area.

[0084] The assumptions result in the model 

with R = 8.314472 (J/(mol K)) being the gas constant, T the temperature in K, E the activation energy, cLS the coefficient

Table 1: Notation of variables and coefficients in the nonlinear regression model.
variable meaning model notation model coefficient

LS length of the sealing - -
A = AFolie surface area - -
V volume of the kernel - -

length of sealing per volume x1 cLS - β1

surface per volume x2 cA - β2

transformed temperature x3 E = β3

t - t0 time elapsed x5 -
relative mass increase x4 α = β4

^ ^

^ ^



EP 2 594 924 A1

11

5

10

15

20

25

30

35

40

45

50

55

of the sealing, cA the coefficient of the surface area and α the coefficient of the mass. The reference temperature is T0
= 296.15 K. The values E, cLS, cA, α are unknowns.
[0085] Equation (9) expresses the relation between the increase in pressure and the above mentioned parameters
on average. When the model empirically is fitted, the random deviation can be considered. If Y is the observed increase
in gas pressure, then equation (9) corresponds to the regression model 

with 

[0086] See above for a survey of the used notation. The residual ε in equation (10) expresses the random deviation
due to nonsystematic measuring effects and due to manufacturing and handling effects of the panels.
[0087] Therefore the fit of the model is performed by means of nonlinear regression analysis.

[0088] Here the gradient  of f with respect to β with fixed x can be used. It follows from equation (10): 

[0089] A nonlinear model for increase of gas pressure without dependency on mass is discussed.
[0090] Under consideration of the panels under low water vapor partial pressure the model (10) can be simplified with
in predictive power by omitting the mass term. The latter condition corresponds to the conditions in practice for freezers
and refrigerators. The following regression model is considered: 

with 

[0091] See above for a survey of the used notation used. The fit of the model is performed by means of nonlinear

regression analysis. If the gradient  of g with respect to ß with fixed x is used, it follows from equation (13):
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[0092] In an empirical fit of the nonlinear model without mass term the following parameters are estimated:

1) the components of the vector β, as explained by formula (14). The estimator is denoted as β; and

2) the variance  of the residual ε, where the estimator is denoted as 

[0093] For the estimation, commercially available tools in combination with the minimization algorithm of Leven-
berg-Marquard can be used.
[0094] Table 2 shows parameter estimates for the model (13) including confidence intervals for the estimates for both
laminate types. The quantities displayed in table 2 are explained as follows:

- Estimate is an empirical estimate of the parameter from the measurement data.
- Lower/Upper confidence limit represents two values L < U such that with a high probability, here 0.95, the true value

of the estimated parameter lies between L and U.

[0095] The R-squared-value is a measure for the goodness of fit of a model. Possible values lie between 0 and 1. The
more the R-squared-value approaches 1 the better is the fit of the model. Both the model for H and the model for W
show reasonable R-squared-values.

[0096] Fig. 3 shows observed versus predicted values of pressure increase measured in mbar and how precisely the
prediction values of the model match with the observed values. Ideally the points lie on a straight line through the origin
with a 100%-slope.

Table 2: Empirical results for small test panels.
Parameter estimates for panels with laminate H.

Estimate Lower confidence limit Upper confidence limit
β1 cLS 0.001174 0.000941 0.001407

β2 cA 0.0186 0.0157 0.0215
3677 3487 3866

β3 E 30572.3 28992.6 32143.7

0.356300 0.295745 0.437672

Parameter estimates for panels with laminate W.
Estimate Lower confidence limit Upper confidence limit

β1 cLS 0.001067 0.000845 0.001290
β2 cA 0.0216 0.0186 0.0245

3282 3107 3458

β3 E 27288.1 25833.1 28751.4
0.0870747 0.0684527 0.114527

R- and R-squared-values.
H W

R 0.97982448 0.98932815
R-squared 0.96005601 0.97877019

^
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[0097] Fig. 4 shows residuals versus predicted values of pressure increase measured in mbar and Fig. 5 shows
residuals versus observed values of pressure increase measured in mbar.
[0098] Fig. 4 and Fig. 5 plot the residual ε = observed values predicted values of H and W against the predicted values
and the observed values, respectively. For W-type and H-type panels the plots show agreement and predictive power
of the model.
[0099] Fig. 6 shows histograms of the residuals measured in mbar for both laminate H and laminate W. The histograms
are symmetric around zero and exhibit a shape close to a normal distribution, while statistical inferences based on normal
distribution are acceptable.
[0100] The model for the increase of pressure, which found by fitting the data based on small test panels (about 10
cm 3 10 cm 3 1 cm and 20 cm 3 20 cm 3 1 cm) with laminate H, is tested on the larger panels (about 48 cm 3 48 cm
3 2 cm).
[0101] Fig. 7 shows the predicted values plotted against the observed values of the larger panels. Overestimating the
observed values is consistent with the fact that the laminates of the small panels slightly differ from the laminate of the
larger panels.
[0102] For a model based prediction the nonlinear model (13) integrates three types of influential factors expressed
by the vector x:

1) geometry (sealing length, surface area, volume);
2) temperature; and
3) time.

[0103] Experiments are performed under specific factor levels, like small test panels, accelerated temperature, rela-
tively short time. Under these conditions, the model aforementioned parameters are estimated.
[0104] The response "pressure increase" Y = g(x,β) + ε is predicted under usage conditions, i.e. under the following
values of the factors, i.e. of the components of x: geometry of usage panels, usually larger than test panels; ambient
temperature under usage conditions; and extended time.
[0105] The prediction is based on two components, namely point prediction and interval prediction.
[0106] The point prediction is a prediction of the expected value Y = g(x, β), ignoring random deviation effects expressed
by the residual ε.
[0107] The interval prediction accounts for the effect of the residual ε. The structure of the interval prediction is 

By suitable choice of  a prescribed forecasting confidence level γ, e.g. 95%, can be achieved, i.e.

 can be chosen so as to provide 

 I.e. the probability that the real pressure increase value Y lies in the interval Bx is γ. Technical issues and the theoretical
background is explained above.
[0108] Fig. 8 shows the coefficient o(β) of the prediction interval (16) as a function of time (measured in years) for
panel types H and W. The prediction is for a temperature of 20 °C and panel size 100 cm 3 50 cm 3 2 cm. Since

multiplying this coefficient by the variance σε of the residual ε and  the  of

Student’s t-distribution t(n-k’) leads to a half-length of the prediction interval and it is shown that the length of the prediction
interval increases in time.
[0109] Experimental design under the nonlinear approach is discussed under consideration of the nonlinear model (13).
[0110] For selection of measuring points the panels are denominated as "testing panels". Each testing panel is meas-
ured at three different time points t1 < t2 < t3, i.e. the regressor variable X5 in model (13) takes three different values.
[0111] In this case it is possible to reveal occasional problems and disturbances in the measuring process. A reasonable
distribution of measuring points is to measure at the beginning of the experiment and after two equally sized time intervals.
Accordingly t1 is the starting time of the experiment and t2 = 0.5 (t1 + t3). The time length of the experiment is determined

^ ^

^

^
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by the comparison of the following calculations:

1) The increase of pressure in a panel is predicted by the value g(x,β) of the nonlinear regression function (13),
where x is the prediction point with respect to the regression factors and where β is estimated from all available
observations.

2) The increase of pressure in a panel is predicted by the value of the nonlinear regression function (13), where x
is the prediction point with respect to the regression factors, and where β is estimated from the observations at three
selected time points more or less equidistant in time. Additionally the time period is varied.

[0112] Fig. 9 shows the increase in precision of the prediction of pressure increase Δp as a function of the duration
(measured in days) of the experiment. The vertical axis represents the difference in absolute values of two predictions
measured in mbar. One is based on all available observations, whereas the other is based on a shorter measuring period
with only three measurements. In general the the precision raises the longer the testing panels are kept in the experiment.
The prediction is for 10 years and 20 °C and panels of size 100 cm 3 50 cm 3 2 cm. To achieve an accuracy of about
2 mbar in the predicted pressure increase of 10 years and 20 °C, panel size 100 cm 3 50 cm 3 2 cm, a minimum
measuring time of about 100 days is used.
[0113] Fig. 9 further shows the difference in absolute values between the predicted pressure increase Δp measured
in mbar based on an estimation of β from all available observations, measured over the total period of 250 days and
respectively 170 days, and predicted values based on an estimation of β over a shorter period and with only three
measurements in time. The x-axis depicts the length of this period varied (measured in days). The prediction is for 10
years and 20°C, panels of size 100 cm 3 50 cm 3 2 cm.
[0114] The choice and number of testing panels and the statistical sample size is calculated from the following com-
ponents:

- The number of independently varying factors is three, namely temperature, geometry, time. The humidity remains
uncontrolled at ambient levels. The numbers of levels of these factors are: 3 levels of temperature, 2 geometric
levels, 3 time levels, as compared to above.

- Each of the 3 3 2 = 6 combinations of temperature and geometry requires 1 testing panel. Observations at the 3
time levels are taken for each panel. Hence each experimental unit should use 3x2 = 6 panels.

- In order to guarantee the validity of the experiment in case of unexpected events like improper or destroyed material,
the minimum number of experimental units should be 2, i.e. 2x6 = 12 panels.

- The number of experimental units can be successively increased starting from 2. If q is the total number of experi-
mental units, then q = 2, 3, 4

- The number of panels for q experimental units is qx6. Each new experimental unit can use 6 additional testing panels.

- The total statistical sample size n counts all measurements. Under q experimental units, each of the qx6 panels is
measured at 3 time points. Hence the statistical sample size is n = qx6x3 = q318. Each new experimental unit uses
6x3 = 18 additional measurements.

- Under a statistical sample size n, the required number of testing panels is k=n/3. In order to decide how many testing
panels should be included in the experiment, the length of the prediction interval for the increase of pressure under
certain conditions can be considered.

[0115] Fig. 10 shows the relation between the number k of testing panels and the length of the prediction interval (16)
for each laminate type in a prediction for temperature 20 °C and 10 years and panels of size 100 cm350 cm32 cm,
measured at the beginning and about 50 and 110 days after the first measuring at forecasting confidence levels of 99%

and 95%. The calculations are based on the parameter estimates β and variance estimate  from the nonlinear

regression using all available observations. The lengths of the prediction intervals are plotted that result when the

estimated variance  and its lower  and upper confidence limit  at the 95%-level are used for the calculation,

i.e. with a probability of 0.95 the true value of  lies in the interval  The plots indicate that the length of the

^

^

^

^

^

^
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prediction interval (16) decreases if the number k of testing panels is increased. Furthermore there is only a minor
decrease in the length of the prediction interval observed for the number k of testing panels ≥ 120.
[0116] Fig. 11 shows the sensitivity of the coefficient o(β) of the prediction interval (16) to the estimation of the param-

eters β1 = cLS (coefficient of the sealing), β2 = cA (coefficient of the surface area) and  (activation energy) of

model (13) (R = 8.314472 (J/(mol K))) for both laminate types. For the calculation the number of testing panels is set to
60, i.e. the number of experimental units is 10. The prediction is for 10 years and 20°C and panels of size 100 cm 3 50
cm 3 2 cm. Only one parameter βi, i = 1, 2, 3 is varied at the same time in the range of its confidence interval, whereas

the other two parameters βj, j = 1, 2, 3, j ≠ i are kept constant. The coefficient of the prediction interval changes is constant

when varying the parameter estimates. Therefore the assumption the performed experiment with the small test panels
of types H and W is a representative for experiments of that kind, since the coefficient o(β) of the prediction interval (16)
and thus also the length of the prediction interval, are hardly sensitive to slight changes of the parameter estimates.
[0117] The fit of the nonlinear model (13) with only three parameters is satisfactory and implausible effects are not
observed. In particular the nonlinear model can be used for extrapolating to lower temperatures. From this point of view
the nonlinear model can be used for predictions of the development of pressure along the time axis.
[0118] Linearity testing under a univariate linear regression model without intercept is discussed. The univariate linear
regression model without intercept is a special case of model (5) with k = 1, i.e. with only one regressor variable 3 and
only one coefficient β. The model equation for the response Y is 

[0119] In the analysis of the panel internal gas pressure Y , the univariate regression model(18) arises as an instance

of the nonlinear model (13)  without dependency on the mass term, if the

geometric factors and the temperature are fixed. Then the variables x1, x2, x3 are fixed. If 

model (13) collapses into the model according to (18).
[0120] The univariate model is used below in the context of model validation as a basis of the linearity test by Fisher.
The procedure of the Fisher-test is explained in general. Having a phenomenon with random response Y , the hypothesis 

of the validity of model (18) is to be tested. The empirical data base consists of N = m1 + ... + mh observations Y assembled
in the h groups Yij, i = 1,..., h, j = 1,..., mi. For each group i, the data Yi,1,...,Yi,mi

 are observed under a fixed lexel xi of
the regressor variable x. One requirement for Fisher’s test of linearity is the assumption, that mi≥2 for at least one i=1, .,
h, i.e. for at least one level x¡ of the regressor variable we have more than one observation.
[0121] Fisher’s test proceeds in the following steps:

1) Determine the customary least squares estimate β for β .This estimate is implemented as "univariate regression
analysis without intercept" in every reasonable statistical package and even in EXCEL.
2) Determine the interpolations Yi = βxi

 for i = 1,..., h.

3) For i = 1, ..., h determined the arithmetical mean  of the observations under fixed regressor

level xi.

4) Calculate the residual sum of squares 

^

^

^

^ ^
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5) Calculate the replication sum of squares 

6) Calculate the lack of fit sum of squares 

7) The hypothesis H: Y = βx + ε of the validity of model (18) can be rejected at a confidence level of γ · 100% if the
test statistic 

is greater than or equals zF(h-1,N-h) (γ), which is the γ-quantile of the F-distribution F(h - 1, N - h) with h-1 and N-h
degrees of freedom. γ usually is chosen as γ=0.95 or γ=0.99. If the test statistic (23) does not exceed or equals
zF(h-1,N-h) (γ), then the hypothesis H: Y = βx + ε cannot be rejected.

[0122] An analysis of originally sized mass production panels is discussed
[0123] For the analysis of originally sized mass production panels geometric effects are irrelevant. Hence the mean
value function g(x,β) of the model (13) can be linearized by considering the logarithm of g(x,β) :

[0124] This leads to considering the linear model 

with 

[0125] The data of the larger panels (about 48 cm 3 48 cm 3 2 cm) is analyzed using the model (25). The analysis
is the univariate special case of the aforementioned method for the multivariate linear model. Table 3 shows the estimates

of the parameters θ0 and θ1 and the residual variance  or the model (25) including confidence intervals at a reliability

level of 95%.
[0126] The R- and R-squared-values are as follows:
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[0127] Operating instructions for small test panels are discussed.
[0128] Regarding choice of the experimental factors and their levels ambient temperature is considered to be room
temperature at about 20°C.Humidity is considered to be an uncontrolled experimental factor. Water vapor partial pressure
is kept at typical values at ambient temperature. At 20°C, water vapor pressure is about 15 mbar.
[0129] The controlled experimental factors are temperature, geometry, and time elapsed. The levels of the controlled
factors are as follows:

- Temperature, two level model: The lower temperature level is close to usage conditions. Hence, for practical reasons
tolerable lower levels are close to ambient temperature, e. g. 20°C.

[0130] The upper temperature level should be tolerably high. At excessively high temperatures phase transitions with
additional destructive effects can occur. Concluding from the experience from various measuring experiments, 70°C is
appropriate. Water vapor pressure should not exceed values resulting automatically from ambient conditions.

- Temperature, three level model: Upper and lower levels are chosen as in the two level model. An intermediate
temperature is chosen as the Arrhenius mean of the lower and upper level. For instance, the Arrhenius mean of the
lower level 20°C and the upper level 70 °C is about 55 °C.

- Geometry: Two levels are achieved by varying the sealing length. The surface varies implicitly in the sealing length.
The levels should be clearly distinct in the sense that the ratios of sealing length versus surface area differ substantially
between the two levels. The experimental vacuum chamber restricts the linear extension of the test panels, typically
at a maximum of 30 cm. For instance, the above analysed experiments ar perforemd with test panels of kernel
extensions 10 cm 3 10 cm (level one) and 20 cm 3 20 cm (level two).

- Time elapsed: Each panel should me measured at three different time points t1<t2 <t3. A reasonable distribution of
measuring points is to measure at the beginning of the experiment and after two equally sized time intervals. For
example t1 is the starting time of the experiment, and t2 = 0.5(t1 + t3).

[0131] In general the increase of pressure can be predicted more precisely the longer the panels are kept in the
experiment. To achieve an accuracy of about 2 mbar in the predicted pressure increase in a prediction for 10 years and
20° C and panel size 100 cm 3 50 cm 3 2 cm, t3≥100 days can be chosen.
[0132] The choice of the number of testing panels is discussed.
[0133] In order to cover all combinations of independently varying controlled factors like temperature, geometry and
time, when the temperature has 3 and the geometry 2 levels, at least 3x2 = 6 testing panels (= 1 experimental unit) are
used. Each testing panel is measured at 3 time levels. A minimum number of experimental units can be 2, i.e. 23 6 =
12 panels. The number of experimental units can be increased starting from 2, where each new experimental unit uses
6 additional testing panels and 18 additional measurements. The total number of measurements is summarized in the
statistical sample size n and the statistical sample size is n = q3633 = q318.
[0134] The length of the prediction interval for the increase of pressure under certain conditions can be considered,
to decide how many testing panels should be included in the experiment. Naturally, the length of the prediction interval
decreases if the number k of testing panels increses. There might be only a minor decrease in the length of the prediction
interval observed for the number k of testing panels ≥ 120.

Table 3: Empirical results for larger panels.
Estimate Lower confidence limit Upper confidence limit

θ0 -6.33 -6.45 -6.22
θ1 -3780 -4148 -3412
β3 31428.7 34488.4 28369

0.0618179 0.0386411 0.11453

R- and R-squared-values.

R 0.96312004

R-squared 0.92760021
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[0135] A test of linearity is discussed.
[0136] Measurements can be checked for plausibility. Model (13) assumes the pressure to increase linearly in time
when all of the other conditions, namely geometry and temperature, are kept constant.
[0137] Fig. 12 shows an increase in pressure measured in mbar plotted against the elapsed time in days. Each plot
shows the three measurements of one testing panel kept under constant conditions depcting a nonlinear relation between
pressure increase and elapsed time.
[0138] The three measurements of each testing panel should are visually checked for nonlinearities. When plotting
the pressure increase against the elapsed time, measuring points can be identified that are not consistent with the
assumption of linearity. In this case the panel can be excluded from the experiment and not considered in further
examinations.
[0139] Fig. 12 shows two situations for assesing linearity. The first plot reveals a higher slope of pressure increase in
the beginning than between the second and third measuring. The second plot shows a comparibly high third measuring
point, which can be an example for the destruction of a testing panel during the experiment due to unsatisfying handling
of the panel.
[0140] A formal test of linearity is discussed.

[0141] When considering the nonlinear model (13) given by  with-

out dependency on the mass term under fixed panel size and fixed temperature, the nonlinear model collapses into the

linear model (18) Y - βx + ε with 

[0142] Hence a test for the validity of the univariate model H : Y = βx + ε under fixed panel size and fixed temperature
can also provide a test for the validity of the nonlinear model (13). At least 2 equally sized panels are observed under
a fixed temperature. Hence the requirements for Fisher’s formal test of linearity described are satisfied. An application
of the test is illustrated by the following example.

Example:

[0143] The pressure increase Y of two panels is measured at three different time points x, namely at the beginning of
the experiment, after 57 and after 105 days. The following table contains the data:

[0144] The hypothesis is H: Y = βx. There are h = 3 time points and N = 6 observations mi=2 for i = 1, 2, 3, because
at each time point there are 2 measurements (1 for each panel). The replication sum of squares is 

[0145] Performing a linear regression on the data results in an estimation of β = 0.0331547. In the following table the
replication averages yi as well as the predicted values yi and the residuals cij are given.

i xi yij

1 0 0
1 0 0
2 57 2.6
2 57 2.4
3 105 3.3

3 105 3

i xi yij yi yi εij

1 0 0 0 = (0+0)/2 0 0
1 0 0 0 = (0+0)/2 0 0

2 57 2.6 2.5 = (2.6+2.4)/2 1.88982 0.510183
2 57 2.4 2.5=(2.6+2.4)/2 1.88982 0.710183
3 105 3.3 3.15=(3.3+3)/2 3.48124 -0.481242
3 105 3 3.15=(3.3+3)/2 3.48124 -0.181242

^ ^

^ ^
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[0146] The residual sum of squares is 

[0147] Thus the sum of squares due to lack of fit is 

[0148] Therefore the test statistic takes the value 

[0149] Further the value of the 95%-quantile of the F(2,3)-distribution is 5.78614. Since 22.2482 > 5.78614, the hy-
pothesis that there is a linear relation of the form Y = βx between Y and x can be rejected at a condidence level of 0.95.
[0150] Prediction of the proportion of nonconforming items is discussed.
[0151] To predict the proportion of nonconforming items, the point prediction Y(x) for the pressure increase as well as
the prediction interval 

can be examined. The interval prediction accounts for the effect of the residual ε which is not visible in the point estimation.

By suitable choice of  which is the  100%-quantile of Student’s t-distribution t(n-k’), a pre-

scribed forecasting confidence level γ can be achieved, i.e.  can be chosen so as to provide 

I.e. the probability that the real pressure increase value Y lies in the interval Bx is γ. The prediction interval for the widely
used forecasting confidence levels γ =0.95 and γ = 0.99 is considered.

[0152] If the upper bound  of the prediction interval for γ = 0.99 does not exceed

a critical value c for the pressure increase, not more than 1% of the panels exceed c in pressure increase.
[0153] If the upper bound of the prediction interval for γ = 0.99 is higher than the critical value c, then the prediction
interval for γ = 0.95 can be calculated. If the upper bound of the prediction interval is below c, in the long run less than
5% of the panels exceed the critical value c.
[0154] To predict the proportion of nonconforming items, consider the following two cases:

1) Y(x) < c, i.e. the point prediction Y(x) lies below the critical value c. In this case the upper bound

 of the prediction interval is considered. γ is determined in a way, that 

with  Then a proportion of less than (1-γ) · 100% items exceeds the critical value c.

^

^ ^
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2) Y(x) > c ,i.e. the point prediction Y(x) lies above the critical value c. In this case the lower bound

 of the prediction interval is considered. γ is determined in a way that:

with  Then a proportion of at least than γ • 100% items exceeds the critical value c.

[0155] The unknown vector β is replaced by the estimator β obtained from the actual experiment. The estimator is
determined by the above described method.
[0156] In industrial applications, bounds c for the absolute value of the thermal conductivity are prescribed, e.g. c =
0.008 W/(m·K) after 2 years and c = 0.015 W/(m · K) after 10 years. The bound c for the thermal conductivity can be
converted into a critical value c for the pressure increase using the following equation, as compared to equations (1) - (3). 

[0157] The constants are λfree gas = 25.5 3 10-3 W/(m·K) and p1/2 = 650+/-100 mbar. An initial value λgas(t0) of the
thermal conductivity is either given by the manufacturer of the panels or can be measured at the beginning of the
experiment.
[0158] The estimation of parameters in the nonlinear model can be performed with a statistical package. In particular,
the prediction of the proportion nonconforming requires a programming environment.
For the description of the physical basics on heat transfer in vacuum insulation panels, as well as on degradation effects
due to penetrating gases see Report ZAE 2 - 1108 - 12 (2008). Different to kernels made of fumed silica a significant
increase in the thermal conductivity with increasing gas pressure not only occurs in the pressure range above 10 mbar,
but already in the range of a few tenths of a mbar (see figure 1).
[0159] Accordingly, for low degradation rates in the insulation capability vacuum tight envelopes with penetration rates
of a factor of 10 to 100 smaller can be used.
[0160] Fig. 13 shows the thermal conductivity for different core materials that are optimized for the application in VIP
depending on (nitrogen) gas pressure.
[0161] A coupling effect considerably at kernels made of glass fibres is taken into account. In the evacuated state
dot-like contacts between single glass fibres yield high thermal resistances. In the non-evacuated state this contact
resistance is bypassed by the gas. Consequently a total thermal conductivity results that is larger than expected for the
sum of the thermal conductivity of the evacuated specimen and the thermal conductivity of the free, non-convecting gas: 

with
λtot being the total thermal conductivity;
λevac being the thermal conductivity of the evacuated material;
λgas being the contribution of the gas according Knudsen formula (see below);
and
λcoupl an additional coupling term.
[0162] According to considerations done by Knudsen the contribution of the gas to the total thermal conductivity
depending on the gas pressure pgas can be described by: 

^

~ ~

~ ~

^

^
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λfree gas and p1/2 are constant properties of the gas and the porous matrix.
[0163] The additional coupling effect especially is pronounced at higher gas pressures, as shown in Fig. 13 by the
values between 100 and 1000 mbar. The contribution of the coupling effect is taken into account in a modified empirical
equation: 

[0164] The two additional constants a and b can be determined experimentally.
[0165] In Fig. 14 the measured thermal conductivity depending on the gas pressure is depicted (circles) for a presumably
similar kernel made of glass fibres. The X-axis in Fig. 14 is a linear scale, with the pressure range delimitated from 0 to
10 mbar. Fig. 2 additionally comprises an analytical description according to the Knudsen formula - dashed line - as well
as an empirical description including coupling effects - long dashed line. The difference of the two formula descriptions
related to the thermal conductivity according Knudsen, i.e. a ’relative deviation’ - solid line, is related to the right Y-axis.
[0166] Fig. 14 further shows the thermal conductivity of a kernel made of glass fibres depending on the gas pressure:
measured values - circles, analytical description according Knudsen formula - dashed line and an empirical description
including coupling phenomena - long dashed line. The difference between the two formula descriptions related to the
thermal conductivity according Knudsen that are referred to as ’relative deviation’, is related to the right Y-axis - solid line.
[0167] The increase of the internal gas pressure that causes the degradation of the thermal performance of the vacuum
insulated panel - VIP - is linearly in time. In contrast to kernels made of fumed silica at accelerated tests of VIP with
glass fibre kernels the internal gas pressure increases up to a pressure region, at which the increase of the thermal
conductivity can be no longer considered as linearly with gas pressure. Thus the nonlinearity due to ’saturation’ according
Knudsen formula can be taken into account. Experimental tests as well as analyses can be limited to the pressure range
below 10 mbar. Within this region the thermal conductivity increases up to a value of approximately 0.020 W/(m·K),
which is a value that cannot be reached in practical application even at longer service time. Within this region the influence
of the coupling effect remains below 4%. Thus in the following considerations the coupling effect can be neglected.
[0168] The permeating water vapor can be assumed to be adsorbed by dryers or getters on a sufficiently low pressure
level so that there is no significant effect on the thermal conductivity.
[0169] Regarding the used physical regression model the increase of the thermal conductivity is related to penetrating
(dry) gases. The sensitivity on the gas pressure depends on a characteristic parameter of the filler material p1/2, the
pressure, at which gas contribution is the half of thermal conductivity of free, non-convecting gas. This parameter is
affected by the mean effective pore size.
[0170] Whether a larger increase is caused by a higher permeability of the envelope or whether it is caused by a higher
sensitivity of the filler material due to larger effective pores, cannot precisely determined. In the regression model rates
of increase of gas pressure and initial gas pressure are given in multiples of p1/2.
[0171] From the measurements it can also not determined precisely, whether higher or different values of the thermal
conductivity measured at the beginning of the tests are related to different thermal conductivity of the evacuated kernels
or whether they are related to different internal gas pressures significantly affecting the total thermal conductivity.
[0172] Fig. 15 shows a time curve of a measured heat conductivity coefficient.
[0173] In the following, the empirical basis of the measurements will be described.
[0174] The empirical data base consisted in two data sets from experiments. In a first experiment, the measurings
showed very small increases in the thermal conductivity in the panel. The experiment had the following characteristics:

• Experimental objects: The experimental or testing objects were specially prepared small panels of one brand with
sizes of about 35 cm x 35 cm x 1 cm

• Measured experimental responses: heat transfer coefficient
• Experimental factors: temperature, time
• Experimental conditions: The panels were stored under two different temperature levels: 20°C (non-accelerated

condition), 70°C (accelerated condition)
• Number of experimental objects: 8 test panels
• Experimental setting: 4 test panels under constant 20°C (non-accelerated condition). Four test panels temporarily

under 70°C (accelerated condition), temporarily under 20°C (non-accelerated condition).
• Experimental period: 01.10.2008 until 23.04.2009
• Measurement method: 6 among the 8 panels were subject to measurements twice over the experimental period
• Distribution of measuring times: Each measurement of the heat transfer coefficient was extended over a time period
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between 3 and 31 days. During each period the heat transfer coefficient in a panel is measured every 5 minutes,
so that all in all for each measuring period between about 800 and 9000 observations are available

• Stress conditions: The storage temperature of 70°C is considered as a stress condition that is not expected to occur
in practice

• Experimental acceleration: The stress conditions described before allow the estimation of the activation energy
which can be used for the prediction of the heat transfer coefficient when storing the panels under arbitrary temper-
atures

[0175] One measuring run (panel 46 = measuring run number 13, see table 5) of a panel showed results considerably
different from all other measuring results. It was concluded that the panel was delivered with defects, for which reason
it was not measured a second time and is not considered in further analysis. Furthermore the second panel which was
not measured twice is excluded from the analysis (panel 51 = measuring run number 19). So in the sequel only a total
of six panels, each with 2 measuring runs, is considered.
[0176] In addition, further measurements have been performed. For control purposes, the absolute values of the heat
transfer coefficient were measured twice for each test panel during the experimental period. The specifications of this
second measurement experiment are as follows:

• Experimental objects: The experimental or testing objects were specially prepared small panels of one brand with
sizes of about 35 cm x 35 cm x 1 cm.

• Measured experimental responses: heat transfer coefficient

• Experimental factors: temperature, time.

• Experimental conditions: The panels were stored under two different temperature levels: 20°C (non-accelerated
condition), 70°C (accelerated condition).

• Number of experimental objects: 10 test panels

• Experimental setting: 5 test panels under constant 20°C (non-accelerated condition). 5 test panels temporarily under
70°C (accelerated condition), temporarily under 20°C (non-accelerated condition).

• Experimental period: 01.10.2008 until 23.04.2009

• Measurement method: Each of the 10 panels was measured three times during the experimental period. Each
measurement took about half a day.

• Distribution of measuring times: Each of the panels was measured in the beginning, after a period of 50 to 70 days
and at the end of the experimental period.

[0177] The panels that had initially been stored under 70°C were transferred to a 20°C environment after their second
measurement.

• Stress conditions: The storage temperature of 70°C is considered as a stress condition that is not expected to occur
in practice.

• Experimental acceleration: The stress conditions described before allow the estimation of the activation energy
which can be used for the prediction of the heat transfer coefficient when storing the panels under arbitrary temper-
atures.

[0178] The panel which in the measurements showed considerably different results from the other panels (panel 46,
see table 5) also showed high degradation rates in the measurements. It is excluded from the further analysis based on
the measurements.
[0179] According to an embodiment, an analysis of panel lifetimes, in particular, building a statistical model to enable
forecasts of panel lifetime may be performed. The panel lifetime is defined as the time until panel failure. The panel fails
if the value of the thermal conductivity exceeds a prescribed critical bound e c. The occurrence of an exceedance over
a critical bound is identified with the death of the panel. Relevant critical bounds for thermal conductivity are between
0.008 W/(m· K) after 2 years and 0.015 W/(m· K) after 10 years.
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[0180] In the present context, the thermal conductivity was measured directly as described. However, the thermal
conductivity is essentially a function of panel internal gas pressure.
[0181] The functional relationships between thermal conductivity λgas(t) at time t and gas pressure pgas(t) at time t are
expressed by the following equation. 

[0182] The constants are λfree gas = 26 x 10-3W/(m· K) and p1/2 gas pressure where the (unknown) thermal conductivity
equals one half of λfree gas millibar.
[0183] The total thermal conductivity λgesamt = Y = λgas + βevac due to the influence of the gas pressure therefore
results in the regression model 

With
βevac = thermal conductivity of the completely evacuated panel; β-1 = initial gas pressure; β0 = p1/2, β1 = c, β2 = E

(activation energy);  for temperature level N1 (TN,i,t as described below); 

t = time in days;
T, = temperature in K;
R = gas constant; R = 8:314472(J/(mol K));
T0 = reference temperature; T0 = 296:15 K:
[0184] There are basically 2 levels of temperatures: 20°C and 70°C. For each panel i, each point of time t let TN,i,t be
the exact temperature, the panel j ist stored in temperature level N between t and t + 1.
[0185] For each panel i, each time point t and each temperature level N let d(i; t;N) be the storage period of panel i
until t in the temperature level N and 

the average temperature in the temperature level N.
[0186] In the following, regression models will be described.
[0187] The statistical analysis is based on a model of the heat transfer coefficient, in order to predict the long-term
thermal conductivity from observations over the short-term experimental period. This is a case for statistical regression
analysis. The statistical analysis of experiments on VIPs has to account for two levels of variation:

1) Measurement-to measurement variation in runs of repeated measurements,
2) panel-to-panel variation resulting from manufacturing instability.

[0188] Because of the immaturity of the VIP manufacturing sector, panel-to-panel variation is particularly strong and
serious. The subsequent study accounts for the above requirements by analysing experiments on VIPs by a nonlinear
mixed regression model. Such models are often referred to as hierarchical nonlinear regression models.
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[0189] With respect to mixed models, he basic modeling problem is to distinguish between variation resulting from
panels and variation resulting from measurement. For a better understanding of this distinction, a sampling model is
much more instructive than a structural model.
[0190] As to the distinction of groups, one has to distinguish groups of measurement taken under similar conditions.
Two factors are relevant: the panels and the measurement periods. The factor "measurement period" is more distinctive.
In general, each panel is subject to measurement in two periods, see table 5.
[0191] Groups defined by measurement periods. If groups are identified with measurement periods, the sampling
model uses the following indices and counting variables:
• Group index i of measurement periods, i ∈ M = {12,...,25}\{23}.
• The sample size ni in group i is the number ni of measurements during measurement period i.
• Index j of measurements. In measurement period i, j ranges over j = 1; :::; ni.

Table 3: Parameters of the models (7.1), (7.3), (7.4), (7.6), (7.7) and (7.9).
β0 thermal conductivity in the evacuated and dry state of the panel

β-1 β-1 = p0.’p: 2 average initial relative gas pressure in a panel art time 0

β1 β, = c, p, 2 average increase of relative gas pressure per day

β2 activation energy
β vector of 3-regression coefficients

b0i random deviation of the initial thermal conductivity of panel i from the population average

b-.i random deviation of the initial relative gas pressure of panel i from the population average
biz random deviation of the increase of relative gas pressure of panel i from the population average 

per day

b2 vector of random deviations of panel i from the population average

xtime.20 it total non-accelerated exposure timeof panel i until measurement j in days
TNit average temperature of panel i at the time point t in temperature group N in K

T0 T0 = 296.13 K reference temperature

atemp 70 i

transformed accelerated temperature applied to panel i

xtemp 20 i

transformed non-accelerated temperature applied to panel i

aco,20,i

applied to panel i in non-accelerated temperature group

atime,70 i total accelerated exposure time of panel i

adi thickness of the panel i

ai ai = (ai, atimp 70.i, atime 70 i) vector of the levels of the observable factors varying only with the 
groups i and not with measurement time j

Table 4: Parameters of the models (7.1), (7.3), (7.4), (7.6), (7.7) and (7.9).

xi, j xi,j = (xtemp 20 i.j · xtime 20 i,j)- vector of the levels of the observable factors varying 
with the groups i and with measurement time j in days

εi,j measurement errors or measurement residuals

εi εi = (εi,1, ..., εi,nι)
- collection of measurement errors εi......εi νι

Yi Yi = (Yi,1;.....Yi,n,
T vector of the ni measurements obtained in group i

R universal gas constant R = 8.314472 J x mol-1 3 K-1

λfree γασ thermal conductivity λfree γασ = 26 · 10-3 W 3 m-1 3 K-1 of the free and still gas
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[0192] Furthermore, groups may be defined by panels. If groups are identified with panels, the sampling model uses
the following indices and counting variables:

• Group index i of panels, i ∈ M = {43..... 51} \ {47}.

• The sample size ni, in group i is the number n1 of measurements taken on panel i.

• Index j of measurements taken on the panel. With respect to panel i, j ranges over

j = 1, .... ni.
[0193] In the following, a mixed model with random shift in location will be described.
[0194] The mixed nonlinear regression model with a random location shift b0i for each group i ∈ {12....25}\{23} or i ∈
{43.....51}\{47} is based in the following equations:

[0195] For i ∈ {12,...,25}\ {23} or i ∈ {43,..., 51}\{47}, j = 1,..., ni.
[0196] In the following, a fixed model with random shifts in location and slope will be described.
[0197] The mixed nonlinear regression model with a random location shift b0i and a random shift b1i in the slope for
each group i ∈ {12,...,25}\{23} or i ∈ {43,..., 51}\{47} is based on the following equations: 
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[0198] For i ∈{12,...,25}\{23} or i ∈ {43,...,51}\{47}, j = 1,...,ni.
[0199] In the following, a second mixed model with random shifts in location and slope will be described.
[0200] The location shift can also be allocated to the parameter β-1’. The mixed nonlinear regression model with a
random location shift b-1i and a random shift b1i in the slope for each group i ∈ {12,...,25}\{23} or i ∈ {43,..., 51} \ {47} is
based in the following equations: 

[0201] For i ∈ {12,..., 25}\{23} or i ∈ {43,..., 51}\{47}, j = 1,..., ni.
[0202] In the following, the parameters in the mixed models (7.1), (7.3) and (7.4), (7.6) will be described.
[0203] The parameters in the models (7.1), (7.3), (7.4), (7.6), (7.7) and (7.9) can be derived from the tables 3 and 4.
[0204] Further comments on the parameters:

• Approximately, T20,i,j = 293.0, hence 

Obviously, the variation of xtemp,20,i,j is too small to allow the estimation of the activation energy β2 from panels stored
under non-accelerated temperature only. From prior physical knowledge, values 4·104 ≤ β2 ≤ 5·104 are to be expected.
The gas constant R is R = 8.314472 (J/(mol K)). Hence 

• The random parameters are collected in the vector bi = (b0i)T for model (7.3), bi = (b0i,b1i)T, for model (7.6) and bi
= (b-1i,b1i)

T, for model (7.6), respectively. If groups are defined by measurement periods, the vectors bi, i ∈ {12,...,
25} \{23} express variation due to different panels and different measurement set-ups. If groups are defined by
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panels, the vectors bi, i ∈ {43, ..., 51} \ {47} express variation due to different panels.

[0205] In the following, stochastic assumptions on the mixed models (7.1), (7.3) and (7.4), (7.6) will be described.
[0206] For each measurement period i, the residual vector εi and the vector of measurement set-up deviations are
considered to be independent. In particular, εi has the parameters 

[0207] Stochastic variables corresponding to different measuring periods are considered to be independent. In par-
ticular, the family of residual vectors εz, i ∈ {12,...25} \{23} or
i ∈ {43. ....51} · {47} and the family of measurement set-up variation vectors
b1i ∈ {12, ... 25}\{23} or i ∈ {43.....51}\{47}, are independent families.
[0208] The measurement set-up variation vectors b2, i ∈ {12.....25}\{23}, are considered to be i.i.d. with parameters 

[0209] From equations (7.11) and (7.12) we have 

[0210] In the following, linear expansion of model equations will be described.
[0211] When all other parameters and variables are kept fixed, the regression function f(xij ; ai; β; bi) of model (7.4)
grows nearly linearly in xtime 20 i j’. To simplify the investigation, we approximate f(xi,.u2.β.b1) by its linear expansion
around xtime 20 i j = 0. The derivative is

Table. 5: Panels and measurement periods
panel number number 1 st measuring period number 2nd measuring period

storing 43 16 24
at 20°C 44 17 25

45 18 26
46 13 -
47 - -

after first 48 14 20

measuring 49 12 21
storing at 50 15 22
70°C 51 19 -

52 - -
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[0212] In particular 

[0213] The approximation by linear expansion around xtime,20,i,j = 0 provides 

[0214] In the following, an application of the approximation (7.14) for panels stored under non-accelerated conditions
will be described.
[0215] For the panels stored under non-accelerated conditions (approximately 20 °C), we have atime,70,i = 0, hence
the approximation 
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[0216] In the following, an application of the approximation (7.14) for panels stored under accelerated conditions will
be described.
[0217] For a simple application of the approximation (7.14) for panels stored under accelerated conditions (approxi-
mately 70 °C), we need a further approximation. Let τ,s > 0 and consider the function 

for y > -τ/s.
[0218] Then 

[0219] In particular 

[0220] Hence we obtain the approximations 

for small |y|. |β1 + b1i| is expected to be small. With 

we obtain from (7.16)

[0221] Inserting these approxiomations into (7.14), we obtain the approximation 
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for i ∈ M70’. for i ∈ M20 we have atime,70.i = 0. Hence (7.17) can also be used to express the approximation (7.15) for i ∈ M20.
[0222] In the following, shift estimations based on the approximation (7.17) of the model equation will be described.
[0223] In the subsequent approach, the parameters β-1 and β2 in model (7.4) are considered as prescribed. We fit
univariate linear models 

to the data from groups i to obtain the OLS estimates α0i, α1i. Using the approximations (7.15) and (7.17), we can develop
estimators for β0, β1, and for the shift quantitities b0i, b1i. Motivated by E[b0i] = 0 = E[b1i], estimators b0i, i ∈ M, and b1i,
i ∈ M, are required to satisfy

[0224] In the following, an estimation of β1 and b1i will be described. (7.15), (7.17), and (7.18) suggest the estimator 

for β1 + b1i. Application of the summation rule (7.19) provides the estimator 

[0225] For β1. Hence 

[0226] Estimates b1i,
[0227] In the following, estimation of β0 and b0i, will be described. (7.15), (7.17), and (7.18) suggest the estimator 

for β0 + b0i. Application of the summation rule (7.19) provides the estimator

^

~ ~

^
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[0228] For β0. Hence 

estimates b0i.
[0229] In the following, shift estimations based on the approximation (7.14) of the model equation will be described.
[0230] In the subsequent approach, the parameters β-1 and β2 are considered as prescribed. We fit univariate linear
models 

to the data from groups i to obtain the OLS estimates α0i, α1i. Using the approximation (7.14), we can develop estimators
for β0, β1, and for the shift quantitities b0i, b1i, Motivated by E[b0i] = 0 = E[b1i], estimators b0i, i ∈ M, and |b1i, i ∈ M, are
required to satisfy 

[0231] In the following, a basic equation will be discussed.
[0232] We consider the function

[0233] In case of s = 0, the function hr,a,t has the unique zero yr,a,t = r2t. In case of s > 0, the zeroes of the function

hr,a,t are the zeroes of the quadratic function ts2y2+(2rst-1)y+r2t The discriminant of the quadratic equation ts2y2+(2rst-

1)y+r2t = !0 is  In case of rst > 0:25, the quadratic equation ts2y2+(2rst-1)y+r2t = !0 has no solution.

In case rst = 0:25, the quadratic equation ts2y2+(2rst-1)y+r2t = !0 has the unique solution yr,a,t = 1/(4ts2) In case rst < 0:

25, the quadratic equation ts2y2+(2rst-1)y+r2t =! 0 has two solutions 

[0234] Where  We have 

^ ^

^ ^
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[0235] Hence the unique zero yr,a,t = r2t from the case s = 0 is approximated by  To achieve compatibility

of the solutions for the case s > 0 and for the case s = 0, one may to focus on the solution 

[0236] In the following, estimation of β1 and b1i will be described.
[0237] Estimators β1 and b1i are obtained by equating the coefficient of x in (7.14) with α1i in the fitted linear model
(7.26). The resulting equation is 

[0238] or equivalently 

[0239] The estimators are obtained by applying the previous results.
In case of atemp,70,i = 0, we obtain 

[0240] In case of 

[0241] We obtain 

[0242] In the following, a transformation to linear model will be described.
[0243] The regression functions of the mixed models as defined can be transformed to conditionally linear model
functions.
[0244] In the following, a transformation of the mixed model (7.4) will be described.
[0245] Consider the regression function f(xij,ai, β, bi) of the mixed model (7.4) with random shifts in location and slope.
Then

^
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[0246] Conditionally under β0i = β0 + b0i, and for given value of β2, the model 

is a linear regression model in xtime,20,i,j’, where the coefficients α0i, α1i are linear functions of the parameters β-1 and
β1i = β1 + b1i
[0247] In the following, a transformation of the second mixed model (7.7) will be described.
[0248] Consider the regression function f(xij,αi,β,bi) of the second mixed model (7.7) with random shifts in location and
slope. Then 

[0249] For given values of β0 and of β2, the model 
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is a linear regression model in xtime,20,i,j, where the coefficients α0i, α1i are linear functions of the parameters β-1 + b-1i
and β1i = β1 + b1i.
[0250] In the following, a stochastic assumptions on the mixed model (7.33), (7.34) will be described.
[0251] For each measurement period i, the residual vector εi and the vector of measurement set-up deviations are
considered to be independent. In particular, the vector εZi = (εZi1,..., εZini

)T has the parameters 

[0252] Stochastic variables corresponding to different measuring periods are considered to be independent. In par-
ticular, the family of residual vectors εZi, i ∈ {12,..., 25} \ {23} or i ∈ {43, ..., 51} \ {47}, and the family of measurement
set-up variation vectors bi, i ∈ {12,..., 25} \ {23} or i ∈ {43, ...,51} \ {47}, are independent families.
[0253] The measurement set-up variation vectors bi, i ∈ {12, ..., 25} \ {23}, are considered to be i.i.d. with parameters 

[0254] From equations (7.33) and (7.35) we have 

[0255] In the following, estimations based on the transformed model equation will be described.
[0256] We consider the transformed mixed models (7.33), (7.34). In the subsequent approach, he parameters β0 nd
β2 re considered as prescribed. We fit the linear model described y (7.33), (7.34) to the data from groups i to obtain the
OLS estimates α0i, α1i. Estimators of β-1i and β1i are obtained by equating the respective expressions in formula (7.34)
to he estimates α0i, α1i. Motivated by E[b-1i] = 0 = E[b1i], estimators b-1i, i ∈ M, and b1i, i ∈ M are required to satisfy 

[0257] In the following, an estimation of β1 and b1i will be described.
[0258] The estimator for β1i is 

[0259] Application of the summation rule (7.39) provides the estimator 

^ ^

^ ^ ^ ^
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for β1. The estimators for the b1i are 

[0260] From the structure of the mixed model (7.33), (7.34), and from the theory of univariate egression, we have
E[α1i|b1i](β1 + b1i)α∞,20,i, hence E[α1i] = β1α∞,20,i, hence 

[0261] Hence ! b1i is a linear unbiased predictor of b1i in the sense of definition 12.2.1 by [1]. From he theory of mixed
models it follows that b1i is the best linear unbiased predictor of b1i. From E[α1i] = β1α∞,20,i and from (7.42) we obtain 

[0262] In the following, an estimation of β-1 and b-1i will be described.
[0263] The estimator for β-1i is 

[0264] Application of the summation rule (7.39) provides the estimator 

for β-1. The estimators for the b-1i are 

[0265] From the structure of the mixed model (7.33), (7.34), and from the theory of univariate regression, we have 

^ ^

^

^ ^
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[0266] From the theory of univariate linear regression we have 

[0267] Hence 

[0268] Table 6 shows the estimates b β-1i by equation (7.46) and β1i by equation (7.40), arranged or measurement
periods associated to the same panel number, see table 7. Strong ariation comes from the panels, the measurement
periods have minor influence only.
[0269] In the following, a dependence of the estimators on prescribed values β0 and β2 will be described.
[0270] The estimators previously developed depend on prescribed values of he arameters β0 and β2. Fig. 16 shows
that the estimator β-1 is particularly sensitive to the choice of β2. The problem of estimating β0 and β2 will be considered later.

[0271] In the following, a variance estimation will be described.

[0272] Consider the homoskedastic situation, where all groups have the same residual variance  Let

 be the total sample size in all groups. In group i, the empirical residuals are 

Table 6 Estimates β-1i by aquation (7.46), β1i by equation (7.40) in different measurement periods. Prescribed values 
β1i = 0 00, β2 = 50000.

panel period β-1i β1i

43 16 0.181113 0.000362595
43 24 0.205757 0.000433143

44 17 0.168277 0.000918908
44 25 0.163997 0.000810314

45 18 0.211783 0.000987398
45 26 0.227202 0.001139390

48 14 0.194823 0.000402698
48 20 0.205890 0.000771891

49 12 0.224012 0.000900400
49 21 -0.168143 0.001047360

50 15 -0.133373 0.001867880
50 22 -1.422040 0.002771310

^

^ ^

^ ^
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[0273] In each group i, the unbiased variance estimator is 

 has the χ2 distribution χ2(n2 - 2) with degrees of freedom n1 - 2. The pooled variance estimator is 

 has the χ2 distribution χ2(N - 2 M) with degree of freedom N - 2 M.
[0274] In the following, a linear mixed model scheme and related empirical inferences will be described.
[0275] For technical reasons, the notation in this paragraph differs from the notation of previous sections.
[0276] In the following, a linear mixed model scheme will be described.
[0277] We consider a group structured sampling model. Let 1; :::;m be independent groups with ni observations Zi1,...,
Zin in group i. The sampling vector Zi = (Zi1, ..., Zini)

T in group i follows the model 

[0278] εi is a vector of residuals with E[εi] = 0, Cov[εi] = Vi. Xi is a ni 3 qi design matrix of known regressor values. The
qi

- -dimensional random parameter αi follows the equation 

where Λi is a qi 3 q matrix, and di is a fixed and known vector in qi. The q-dimensional random parameter βi follows
the equation. 

where β is an unknown vector in , and bi is a q-dimensional random vector with the properties 

[0279] The random parameter vector bi and the residual vector εi are independent among each other.
[0280] In the following, a response variance will be described.
[0281] The assumptions immediately imply 
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[0282] Because of the independence between the random parameter vector bi and the residual vector εi, the uncon-
ditional covariance matrix of Zi is 

[0283] In the following, a parameter estimation in the linear mixed model scheme will be described.
[0284] In the subsequent paragraphs, we consider invertible quadratic matrices Λ1,..., Λm, in particular qi = q, and
design matrices Xi of full rank q = qi for i = 1,..., m. Let b αi be the
OLS estimator 

[0285] Motivated by the property E[bi] = 0, we consider estimators b1, ...,bm which satisfy 

[0286] Motivated by (7.57) and (7.58), the estimators β and bi should satisfy 

[0287] From (7.63) and (7.64) we obtain

[0288] From (7.64) and (7.65) we obtain 

[0289] In the conditional situation with bi prescribed, the equation (7.56) describes an ordinary linear model, hence 

[0290] Since E[bi] = 0, we obtain 

[0291] Inserting (7.68) into (7.65) provides 

^

^ ^

^ ^
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[0292] Inserting (7.68) and (7.69) into (7.64) provides 

[0293] In the following, a variance estimation in the linear mixed model scheme will be described.
[0294] In each group i, the residual vector εi is estimated by 

where PC(Xi) is the orthogonal projection onto the range space C(Xi) of Xi. As an additional assumption, we consider the
totally homoskedastic model where 

[0295] From linear model theory it is known that the empirical variance

is an unbiased estimator for σ2 from group i. Let N = n1 + ...+ nm be the total sample size. Then an appropriate unbiased
pooled variance estimator is 

[0296] In the following, the covariance matrices of αi and of βi, will be described.
[0297] As described, we consider the totally homoskedastic model described by equation (7.72). In the conditional

situation with bi prescribed, the equation (7.56) describes an ordinary linear model, where 

Using (7.67), we obtain 

[0298] We have  hence 

[0299] Hence 

^ ^
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[0300] Using (7.68), we obtain 

[0301] From (7.65) and (7.77), we obtain 

[0302] Using  see equation (7.64), we obtain 

[0303] In the following, the covariance matrix of bi will be described.
[0304] As described, we consider the totally homoskedastic model described by equation (7.72). By the independence
of different groups and by equation (7.65) we obtain 

And 

[0305] From (7.80) we obtain 

With (7.66) 

^
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[0306] And thus, with E[bi] = 0 according to (7.70), 

[0307] Summation of the right-hand side of (7.83) provides 

[0308] Exploiting the independence of the estimatorsαi, αj from different groups i≠j we obtain 

And thus 

^

^ ^
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[0309] From (7.83) and (7.85) we obtain 

[0310] Hence 

[0311] In the following, an estimation of the covariance matrix B = Cov[bi] will be described.

[0312] Because of  the sample covariance of the sample b1,..., bm is 

[0313] From (7.84) we obtain 

[0314] The quantity  defined by equation (7.74) is unbiased for σ2. Hence 

is unbiased for the covariance matrix B, and 

^ ^
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is unbiased for Cov[β]. With equation (7.66) we obtain 

[0315] Inserting  see Equation (7.65), we obtain 

[0316] In the following, an analysis of distributions will be described.
[0317] We consider the following distribution assumptions: 1) bi has a q-dimensional normal distribution N(0;B). 2)
The residual vector εi has a normal distribution N(0,σ2I) i.e. Vi=σ2I.
[0318] From linear regression analysis it is known that, given bi, αi has the conditional q-variate-normal distribution

 The unconditional mean and covariance matrix are given by equations (7.68)

and (7.77). From the above normality assumptions 1) and 2) it follows that b ai has the q-variate normal distribution

 Hence  see equation (7.64), has the q-variate

normal distribution  As a linear function of the β1, ..., βm, bi has the q-variate

normal distribution with E[bi]=0 and with Cov[bi] given by euation (7.83). The vector b = (b1, ...,bm)T has the mxq-variate

normal distribution with E[b]=0 and with Cov[bi, bj] given by equation (7.85).

[0319] From linear model theory it is known that under assumptions 1) and 2) αi and the residual variance estimator

 defined by equation (7.73) are conditionally independent under bi. Equation (7.71) shows that the sample residual

^

^

^ ^ ^

^ ^ ^ ^

^ ^ ^

^
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εi is independent of bi. Hence αi and  are independent, and the pooled variance estimator  defined by equation

(7.74) is independent of α1,..., αm. From equation (7.65) it follows that  is independent

of  From equation (7.66) it follows that the estimators b1,...,bm are independent of  Hence  and

 are independent.  has the χ2 distribution χ2(N-mq).

[0320] The estimator β given by equation (7.65) is the customary arithmetic mean estimator  of the

common mean β of the m independent random variables β1,...,βm. β has the q-variate normal distribution

[0321] Consider the sample covariance 

[0322] Since  see equation (7.66), the sample covariance  of bl,...,bm equals

the sample covariance of the independent normally distributed random vectors βl,...,βm with identical means E[βi] = β, i.e., 

[0323] Consider very small residual variance such that  is negligible in comparison with

B. Under this approximative view, βl, ...,βm is an i.i.d. sample, and the sample mean β and the sample covariance Sb1,...bm

are independent.
[0324] In the following, a prediction in the linear mixed model scheme will be described.

[0325] Let Λ be a q 3 q matrix, and let x be a vector in . Consider the response
Z(x) = (Λ(β+b)+d)Tx+ε under the regressor x where the random effect b and the residuals ε are independent of all
variables used for parameter estimation. The appropriate predictor for the response is 

[0326] Since E[β] = β, see equation (7.69)t’, we have E[Z(x)]=(Aβ+d)Tx = E[Z(x)] and 

the prediction variance is

and the prediction error variance is 

^ ^

^ ^

^ ^

^

^ ^ ^

^ ^

^ ^ ^

^ ^ ^
^ ^

^ ^



EP 2 594 924 A1

45

5

10

15

20

25

30

35

40

45

50

55

[0327] Replacing σ2 by  B by the unbiased estimator B according to equation (7.89), and Cov[β] by the unbiased

estimator  according to equation (7.90), we obtain the unbiased estimator 

of the prediction error variance 

[0328] In the following, a distributional analysis of the estimator of the prediction error variance will be described.
[0329] For the subsequent inferences we consider the assumptions: 1) b1 has a q-dimensional normal distribution N
(0, B). 2) The residual vector εi has a normal distribution N(0, σ2I), i.e., Vi = σ2I. Then the vector b = (b1,...,bm)T has the
m3q-variate normal distribution with E[b] = 0, Cov[bi] given by equation (7.83), and with Cov[bi,bj] given by equation (7.85).

[0330] By the above results,  has the χ2 distribution χ2(N-mq), and the two components

And 

are independent.
[0331] From the properties of the χ2 distribution we infer 

[0332] Under assumptions 1) and 2), we investigate properties of the scalar variable Wi=x which appears in the second
component of the prediction variance considered above where 

^ ^

^ ^ ^

^ ^ ^ ^
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[0333] W1,...,Wm have anm-variate joint normal distribution. By (7.70), we have mwi = E[xT Λbi]=0. The variance

 can be inferred from equation (7.83) by using 

[0334] The covariances σwi,wj = E[WiWj] can be inferred from equation (7.85) by using 

[0335] By (7.84), we have 

[0336] From the theory of multivariate normal distribution we obtain

[0337] Obviously, the second part of equation (7.104) contains the first part as the special case i = j. 

[0338] Obviously, equation (7.106) contains equation (7.105) as the special case i = j. From equations (7.105) and
(7.106) we obtain 

^
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[0339] From (7.98), (7.99), (7.100), (7.107) we obtain 

[0340] In the following, an approximate distribution of the estimator of the prediction error variance will be described.
[0341] An approximation of the distribution of the estimator (7.98) of the prediction error variance can be constructed
following the known approximation scheme. The distribution of 

is approximated by the χ2(v) distribution with the same variance as Uv. Hence v is determined from

Hence 

[0342] In the following, an approximate prediction interval will be described.
[0343] As described, we consider the assumptions 1) and 2). Additionally, we assume very small residual variance

σ2 such that  is negligible in comparison with B.

[0344] By the above results, the prediction error Z(x)-Z(x)=(Λ(β-β-b))Tx and the estimator  of the prediction

error variance are approximately independent. The prediction error has a univariate normal distribution with mean 0 and

variance  given by equation (7.97). Hence (Z(x)-Z(x))/σZ(x)-Z(x) has the standard normal distribution N(0; 1).

[0345] Using the previous result of the previous paragraph with v defined by equation (7.110), the ratio 

^ ^

^
^
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is approximately distributed by the central t-distribution t(v). Hence approximate bounds for prediction interval for Z(x)
are of the form 

where z is an appropriate quantile of the central t-distribution t(v). To apply (7.112) in data analysis, the unknown terms

in the definition (7.110) of v have to be replaced by estimators:  defined in equation (7.98),

σ2 by  by replacing in equation (7.85) B by B and σ2 by 

[0346] In the following, a confidence interval for the forecasting variance will be described.
[0347] Let 0 < γ < 1, let v = v0 be defined by equation (7.110) and let z = zχ2

(v)(γ) be the 100y% quantile of the χ2

distribution χ2(v). We have 

[0348] From the above result we have 

Hence 

is an approximate level γ confidence interval for the forecasting error variance  To apply (7.114) in data

analysis, the unknown parameter terms in the coefficient of z have to be replaced by estimators. I. e., replace σ4 by

 and replace Cov[bi, bj] by  which results from inverting B for B and  for σ2 in equation (7.85).

[0349] In the following, an application of the general mixed model scheme for the analysis of panel life times will be
described.
[0350] As to the transformed model as a special case of the general linear mixed model scheme, the previous results
can be applied to the analysis of the transformed model equations considered above. The parameters previously intro-
duced may be chosen as follows:

^

^ ^ ^
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Then 

With  where atemp,20,l = 0.0000363021 approximately we obtain 

[0351] bi,q, q ∈{-1,1}, depends on the parameter β2 in the form 

[0352] Where hi,q(β2) is obvious from equation (7.120), or (7.121), respectively.
[0353] In the following, a nonlinear parametrisation will be described.
[0354] Simultaneous parametrisation of hi,-1 and hi,1 



EP 2 594 924 A1

50

5

10

15

20

25

30

35

40

45

50

55

[0355] Where

[0356] Let 

[0357] Then by (7.121) 

[0358] We write 

[0359] The estimator of β2 which minimises (7.127) is the OLS estimator of β2 in the nonlinear regression sampling model 

[0360] The model (7.128) is the centered version of the model 

In the following, a first expansion in β2, with aco,20,l not considered as a function of β2 will be described.
[0361] We have 
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[0362] Hence the linear expansion of hi,-1(β2) around a point  is

[0363] In the following, a first expansion in β2 with aco,20,l considered as a function of β2 will be described.
[0364] We have 

[0365] Hence the linear expansion of hi,-1(β2) around a point  is 

[0366] In the following, an estimation of β2 will be described.
[0367] The estimator β2 should minimise ∑i∈Mbi,-1(β2)2. From equation (7.122) we obtain 

^ ^
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[0368] Hence

[0369] With hi(β2) ≈ ri+siβ2, we obtain approximately 

[0370] Hence ∑i∈Mbi,-1(β2)2 is approximately minimised by 

[0371] The result (7.138) can also be obtained in the following manner. With the approximation hi(β2) ≈ ri + siβ2, we
obtain approximately 

[0372] Hence the value which minimises ∑i∈Mbi,-1(β2)2 is approximately the OLS estimator of β2 in the model 

[0373] The OLS estimator is provided by equation (7.138). The approximate validity of the model (7.140) follows from
E[bi,-1(β2)] We consider the model in the conditional situation given αi, i ∈ M. The design matrix of the model (7.140) is 

hence 

[0374] Let  be the usual estimator of the residual variance  Then the variance of β2 is estimated by 

^

^

^ ^

^
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[0375] In the conditional situation, confidence intervals for β2 can be calculated in the way familiar from linear regression
analysis.
[0376] Forecasts refer to panels stored some time x under non-accelerated conditions at an average temperature c
°C, i. e., at T = c + 273:15 K. The corresponding transformation is 

[0377] Hence the matrix /\ has to be chosen as 

corresponding to whether β0 is assumed to be known or estimated by the method above described, where R = 8:314471
is the gas constant. The forecasting vector x is 

[0378] Estimates β2 as a of expansion points  and prescribed values β0 are shown in Fig. 17, wherein groups

13 and 19 are excluded.
[0379] The response predictor (7.94) amounts to 

[0380] Or 

respectively. The forecast in the untransformed model is 

[0381] Where ad is the panel thickness.
[0382] In the following, an estimation of βi0 based on linearised response will be described.
[0383] The subsequent approach is described for general information of the reader. The estimation procedure provided
no intuitively reasonable results.
[0384] Consider the transformed model (7.31). For abbreviation, let λfg = λfree gas. Consider the left-hand side of (7.31)
as a function of βi0. We have 

^

^
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[0385] Hence the linear expansion of  aground a point  is 

[0386] On the left-hand side of (7.31), replace  by the linear expansion (7.146). Let 

[0387] Then we obtain the regression equation 

[0388] The previous results can be applied to the analysis of the regression model (7.149). The parameters previously
introduced have to be chosen as follows:
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[0389] In the following, an estimation of β0 based on maximising forecasts will be described.
[0390] Consider the second mixed model (7.7) with β0 constant over all groups. A least favourable forecast estimator
β0 can be defined in the following sense: Choose β0 which maximises the forecast Y(x) defined by equation (7.145).
[0391] In the following, parameter estimates and prediction will be described.
[0392] As to parameter estimates, we consider the empirical evaluation of the linear mixed model as described. Basis
for the evaluation is the data set containing the values of the measurements.
[0393] The following parameters have to be estimated in the order displayed, see also tables 3 and 4:

1. The random parameters  for each panel i = 1,..., m.

2. The global parameter β2 representing the activation energy.

3. The parameter β0 as a least favourable forecast estimator.

4. The components β-1 and β1 of the vector β representing the average initial gas pressure in the panel in units of
p1/2 and the average relative increase in the gas pressure in units of p1/2, respectively.

5. The random parameters  for each panel i = 1,...,m.

6. The variance σ2 representing the measurement uncertainty.

7. The covariance matrix B of β representing the uncertainty due to quality differences in the panels.

[0394] For the evaluation the following items have to be taken into account:
1. Groups are identified with panels.
2. Panel 46 is excluded from the analysis due to implausible measurements. Hence a total of 9 panels is included in the
analysis.
3. For each panel, only 3 measurings may be available. For the estimation of the parameters βi,-1, βi,1 it is necessary
that the measuring points used for the evaluation are equal concerning atime,70,i, the total accelerated exposure time of
panel i. The total non-accelerated exposure time xtime,20,i,j of panel i until measurement j is the only variable factor. The
panels stored in the 20°C-environment are not stored in a 70°C-environment at all such that atime,70,i = 0. These panels
do not differ in respect of atime,70,i,, so all the available measuring points can be used for the evaluation, more precisely
3 measuring points for each panel. For the panels which are partly stored in the accelerated 70°C-environment, the
accelerated exposure times atime,70,i differ from measuring point to measuring point. The panels are measured in the
beginning, then stored in the 70°C-environment and then measured again twice after some time, in which they undergo
a 20°C-environment only. Therefore only the measuring points 2 and 3 do not differ in respect of atime,70,i, so that only
these two points can be included in the analysis of each panel. There are 5 panels which are partially stored in a 70°C-
environment, hence 4 panels which are stored in a 20°C-environment for the whole measuring process. So the overall
sample size is 4 3 3 + 5 3 2 = 22.

Table 7: Parameter estimates

Estimate
Lower confidence 

limit
Upper confidence Unit

β-1 0.000403441 - - -

β1 0.000604925 - - 1/day

β2 42879.7 38320.3 47439.1 J/(mol3K)

β0 3.45 - - 10-3W/(m3K)]

σ2 0.0000143776 - - -

B = Cov[bi] - - -

^ ^ ^
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4. Since for some of the panels only two measuring points are available, see remark 3, it is impossible to estimate a
variance in the measuring of these panels. Therefore the variance is estimated only by the use of the panels stored in
the 20°C-environment.
5. Due to expert knowledge the parameter β0 is expected to be in the interval [1; 4].
[0395] Therefore the least favourable case for the parameter β0 is searched for in the interval [1; 4]. Furthermore the
two location parameters β0 and β-1 are connected in a negative way: The greater the parameter β0 (location parameter
with reference to the activation energy), the lower the estimated value for β-1 (location parameter with reference to the
gas pressure). Since a negative value for the parameter β-1 is considered implausible, the parameter β0 is regarded
plausible only as long as β-1 is positive.
[0396] Table 5 shows the parameter estimates for the nonlinear mixed model as above described based on the data
set containing the values of the measurements. For the estimation, commercially available tools may be used.
[0397] For the validation of the model the parameter estimates based on the measurements are compared with the
parameter estimates based on the measurements taken from further measurements.
[0398] For the evaluation the following items have to be taken into account:

1. For each panel measuring runs have taken place. Each measuring run is separately analysed, i. e. groups are
identified with measurement periods. Particularly, the random parameters βi,1 and βi--1 are estimated for each test
run. As a consequence the group index i does not represent different panels as described, but different test runs.

2. Test run 13 (= panel 46) is excluded from the analysis due to implausible measurements. No second test run
took place for this panel.

3. The test run 19 is excluded from the analysis since no second test run took place for the corresponding panel.

4. Implausible observations and observations which show unusual behaviour in the beginning of the measuring
process are excluded from the analysis.

5. To mitigate the potential autocorrelation of measurements taken every five minutes over a period of several days
per panel, only each 12th data point is included in the analysis, i. e., the response "thermal conductivity" is regarded
once per hour.

[0399] As to prediction we consider the mixed nonlinear model as described. The objective is to predict the response
"thermal conductivity", ad,1Y with ad,1 the thickness of panel i, under usage conditions, i. e., for special values of the
following two influential factors:
1) Time. This factor is contained in the vector x.
2) Temperature. This factor is contained in the matrix Λ.

(continued)

Estimate
Lower confidence 

limit
Upper confidence Unit

Cov[β] - - -

Table 8: Parameter estimates

Estimate
Lower 

confidence limit
Upper confidence 

limit
Unit

β-1 0.182909 - -

βi 0.000873323 - - 1/day

β2 39682.8 36450.9 42914.6 J/(mol3K)

β0 1.0 - - 10-3W/(m3K)

σ2 1 21806·10-6 - - -

^

^
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[0400] The prediction is based on two components:

i) point prediction,
ii) interval prediction.

[0401] The point prediction of the transformed response Z, see equation (7.33), is a prediction of the expected value
Z(x)=(Λβ+d)Tx. Since the model as described uses the transformation 

the prediction ad,iY for the response "thermal conductivity" can be calculated by retransforming the response Z using
the following equation: 

[0402] The prediction Y for the response "heat transfer coefficient" can be derived using the following equation, re-
spectively: 

[0403] An approximate prediction interval for a future response Z is 

where 

and z is an appropriate quantile of the central t-distribution. To receive a prediction interval (ad,iYL, ad,iYU) for the response
ad,iY or a prediction interval (YL, YU) for the response Y, again one can use the retransforming equation (7.154).
[0404] The prediction variance, see equation (7.157), is basically formed by

a) the residual variance σ2 due to measurement uncertainty, estimated by 

(continued)

Estimate
Lower 

confidence limit
Upper confidence 

limit
Unit

B = Cov b1. - - -

Cov β. - - -

^ ^

^ ^

^

^
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b) the variance due the quality differences in the panels, which can be read out of the covariance matrix B, estimated
by B.

c) the variance that can partially be controlled by the measurement setup, i. e., the time the panels are stored in the
accelerated environment, the overall duration of the experiment, the number of measuring points for each panel,
the temperature levels. These experimental factors influence the matrices Λ1 and X1.

[0405] We calculate the prediction for the following values of the influential factors which represent usage conditions:

1) Time: 2 years.

2) Temperature: 20°C.

[0406] On grounds of the linearised model, the prediction Z(x) by (7.94) and the two-sided prediction limits ZL(x) < ZU
(x) by (7.156) at a confidence level of 0.95 are 

[0407] Both the point prediction Z(x) and the limits of the prediction interval have to be retransformed by applying
equation (7.154). The predicted thermal conductivity and the corresponding prediction limits given in W/(mK) at a con-
fidence level of y = 0:95 are 

[0408] To illustrate the influence of the different components of the prediction variance, the prediction variance and
its components are calculated. Using the above conditions for the prediction and the estimated parameter values from
table 7, the following values are obtained:

[0409] These results show that the variance 0.0168818, which is basically due to quality differences in the panels,

dominates the variance  of the prediction. The experimental setup, which influences the matrices Λ1 and

X1 and contributes to the value 0.0000424975, has negligibly small influence.

[0410] As to the experimental design of experiments for life time prediction, the analysis is based on the mixed model
as described. The objective is to ensure a prediction of future values which is as exact as possible without neglecting
certain external restrictions. The empirical basis for the design study is the data set containing the values of the meas-
urements.
[0411] The following questions are considered in this context:

^

^

^
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1. How many different panels m have to be included in the experiment?

2. How should the panels be divided into two groups of sizes m1, m2, with m1 panels being stored in the low-tem-
perature-environment and m2 panels being stored in the accelerated-temperature-environment?

3. How much time should at least be scheduled for the whole experimental process?

4. How should the storing environments be chosen, more precisely, which two temperature levels should be chosen
for the panels to be stored in?

5. How long should the panels of the accelerated temperature group be stored in the accelerated environment before
being stored in the lower temperature environment and be measured a few times during that period?

6. How often should each panel be measured in the course of the whole measuring period?

[0412] The precision in the prediction is reflected in the length of the prediction interval (7.156). The lower the length
of the prediction interval, the more exact a future observation can be predicted. The crucial component of the prediction
interval is the variance of the prediction, see formula (7.98). The objective of an ideal construction of an experimental
design is therefore minimising the length of the prediction interval, see formula (7.112).
[0413] However, due to the nature of the mixed model, the prediction interval (7.98) cannot be used to answer each
of the questions mentioned above in the same way.
[0414] The experimental design aims at minimising one of the following functions of the prediction variance keeping
in mind the above remarks. The prediction is calculated for panels stored for 2 years in a 20°C-environment at a confidence
level of 95%:

• Length of the prediction interval: 

• Squared length of the prediction interval: 

This term is mainly influenced by the differences in panel quality and can basically be reduced by increasing the
number m of testing panels.

• The part of the variance of the prediction which is basically influenced by the measurement setup. We consider the
following terms: 

[0415] In the above cases z is an appropriate quantile of the t-distribution. For the construction of the experimental
design the following estimated values derived from the original data set have to be used, see table 7:

• The estimated variance,  due to measurement uncertainty.

• The estimated value β2 for the parameter β2.
^
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• The estimated worst case value for the parameter β0, β0.

• The estimated components β-1 and β1 of the vector β.

• The covariance matrix β of b.

[0416] The parameter β2 depends on the random parameters αi0 and αi1, i = l,..., m, and can only be estimated after
the estimation of these parameters. Therefore, and since the estimation of β2 differs with the experimental design used,
the following conservative approach is taken: The prediction interval is calculated with the value for β2 taken from its
confidence interval which maximises the length of the two-sided prediction interval.
[0417] Regarding the construction of the experimental design the following approach is taken:

1. For each measurement setup with a prescribed number of testing panels, temperatures and storing time of the
panels in the available environments, at least 10 000 sets of random values αi0, αi1 are simulated using the information
about their distribution, E[α0], E[α1] and Cov[αi]. see equations (7.68) and (7.77).

2. For each simulated set, an estimation and confidence interval for the parameter β2 is calculated. The level of the
confidence interval is chosen in a way, so that the uncertainty that comes with the estimation of β2 and the uncertainty
in the calculation of the prediction interval in total is maximally the prescribed maximum error 1 - γ. A prescribed
level γ in the final prediction interval is obtained via the Bonferroni inequality by choosing partial levels γi = 0.5(1+γ)
for the confidence level for β2 and for the prediction interval depending on β2.

3. For each value of β2 in its confidence interval the future prediction along with its prediction interval is calculated.

4. From all possible prediction intervals the one selected for the analysed measurement setup is the one which
maximises the length of the prediction interval.

5. The results achieved by simulating 10 000 sets of random values for αi0, αi1 are averaged. These mean values
are used to compare different measurement setups.

[0418] As to selection of measuring points, the mixed model analysis estimates some parameters for each panel
separately, in particular the residual variance (measurement variance). At least three measuring points are necessary
to secure the possibility of estimating the measuring variance for each panel. To exceed the unreliable minimum, it is
advised to measure each panel at least four times in the course of the measuring period. Since the measuring variance
is regarded rather small in general, four measuring points are assumed to be enough. It is advised that the measuring
points are arranged in equal distances making use of the whole available measurement period.
[0419] As to the choice of the number of testing panels, since in the case at hand the uncertainty in the prediction is
mainly influenced by the differences in quality of the panels, the accuracy of the prediction can be improved most by
increasing the number of testing panels.
[0420] Fig. 18 shows the length LU - LL of the prediction interval for the transformed values, the contribution Φ of the
measurement setup to the prediction variance of the transformed values and the length of the prediction interval for the
thermal conductivity (unit: W/(mK)) as a function of the number of testing panels. The calculation is based on the following
measurement setup:

• Temperature levels: 25°C, 70°C.

• Storage time in the 70°C-environment: 60 days.

• Length of the overall measuring period: 120 days.

• Times of measuring for panels stored in a 25°C-environment in days from the beginning: 0, 40, 80, 120 days.

• Times of measuring for panels stored in a 70°C-environment in days from the end of the storage time in the 70°C-en-
vironment: 0, 20, 40, 60 days.

[0421] The length of the prediction interval is calculated for the following divisions of the panels into the two temperature
groups:

^

^ ^

^

^ ^ ^
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a)  The same number m1 of panels is stored in a 25°C-environment as is stored in a 70°C-envi-

ronment, m2.

b) m1 = 2m2: Only half as many panels, m2, are stored in a 70°C-environment as are stored in a 25°C-environment, m1.

[0422] Fig. 19 shows that a huge improvement in prediction accuracy can be achieved by increasing the number of
testing panels involved in the experiment up to a number of about 24. Only a minor improvement can be observed when
including more than about 24 testing panels in the experiment. To assess the influence of the temperatures the panels
are stored in, we compare the term Φ for the two cases m1 = m2 and m1 = 2m2. Φ reveals an advantage for the case
m1 = m2 compared to the case m1 = 2m2, i. e., it seems to be better to store as many panels in the 25°C-environment
as in the 70°C-environment than twice as many.
[0423] Fig. 20 shows the squared length (LU - LL)2 of the prediction interval and the term Φ, see equation (8.4), with
the intention of comparing the two quantities. It is obvious that Φ, which contains the influences of the experimental
design, is comparably small in comparison to (LU - LL)2.
[0424] As to the choice of the length of the measuring period the length of the overall measuring period mainly influences
the matrices XI, and indirectly the matrices A and Λ1, l = 1,..., m, in the prediction variance (7.157). Therefore, the decision
on the total length of the measuring period should be based on the minimisation of the term Φ, see equation (8.3). Note
that Φ is comparably small in the case at hand. Compared to the number of testing panels it does not influence the
accuracy of the prediction a lot. Fig. 21 shows the component Φ of the prediction variance as a function of the length of
the overall experimental time. The calculation is based on the following measurement setup:

• Temperature levels: 25°C, 70°C.

• Number of panels in each temperature group: 6, i. e. a total of 12 panels.

• Storage time in the 70°C-environment: 60 days.

[0425] Varying the length of the overall experimental time means the following times of measuring:

• Times of measuring for panels stored in a 25°C-environment: Four equally distanced measuring points over the
entire measuring period.

• Times of measuring for panels stored in a 70°C-environment: Four equally distanced measuring points over the
measuring period beginning after 60 days of storing the panels in the 70°C-environment.

[0426] Figure 19 shows that strong improvement in Φ can be achieved when choosing at least 150 days for the total
length of the measuring period. The length of the prediction interval in units W/(mK) decreases only little if the measuring
period is extended beyond 150 days.
[0427] As to the choice of the storing environments, the choice of the storing environments for the panels, i. e., the
two temperature levels the panels are faced with during the whole experimental process, influences the matrices X1 Λ
and Λ1, l = 1,..., m, in the prediction variance (7.157). Therefore the decision on the temperature levels for the storing
environments for the panels during the experimental process should be based on the minimisation of the term Φ, see
equation (8.3). For reasons of simplicity, the lower of the two temperature levels should be approximately room temper-
ature, i. e., between about 10 and 25°C. Since applications have shown that a storage temperature of more than about
70°C might cause a destruction of the panels in a short time, storage temperatures of more than about 80°C are not
considered in the analysis. For the analysis, the non-accelerated temperature is prescribed at 25°C, which is considered
to be an upper bound for temperature stress in domestic applications.
[0428] Figure 20 shows the component Φ, see equation (8.3), of the prediction variance as a function of the accelerated
temperature level in °C for the three following cases:

a) Storage time in the 70°C-environment: 60 days. Length of the measuring period: 120 days.

b) Storage time in the 70°C-environment: 40 days. Length of the measuring period: 120 days.

c) Storage time in the 70°C-environment: 40 days. Length of the measuring period: 100 days.

[0429] The other quantities are kept constant for the calculation on the following values:
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• Temperature level of the low temperature: 25°C.

• Number of panels in each temperature group: 6, i.e., a total of 12 panels.

• Times of measuring for panels stored in a 25°C-environment in days from the beginning: 0, 40, 80, 120 days.

• Times of measuring for panels stored in a 70°C-environment in days from the end of the storage time in the 70°C-en-
vironment: Four equally distanced measuring points over the measuring period beginning after the storing time in
the 70°C-environment.

[0430] The first plot in Fig. 20 which represents the results for a storage time in the 70°C-environment of 60 days
reveals a minimum in Φ at an accelerated temperature of about 70°C. The second plot representing the results for a
storage time in the 70°C-environment of 40 days reveals a minimum in Φ at an accelerated temperature of about 80°C.
Both plots are based on a measuring period of 120 days. The third plot shows the results for a storage time in the 70°C-
environment of 40 days with a measuring period of only 100 days. The minimum in Φ can be observed at an accelerated
temperature of 80°C as well.
[0431] Both the time the panels are stored in the accelerated environment as well as the accelerated temperature
itself are acceleration factors in the experiments. Hence from Fig. 20 it can be concluded that if panels are stored less
time in the accelerated environment, the lower acceleration effect can be compensated if in return the accelerated
temperature level is increased. Nevertheless to choose the accelerated temperature above a certain level can be dis-
advantageous. Furthermore reducing the length of the whole measuring period causes worse results in the precision of
the prediction.
[0432] As to the choice of the storing time in the accelerated environment, the choice of the storing time of panels in
the accelerated environment influences on the matrices X1, Λ and Λ1,l = 1,...., m1, in the prediction variance (7.157).
Therefore the decision on the length of the accelerated storing period should be based on the minimisation of the term
Φ, see equation (8.3).
[0433] Fig. 20 shows the component Φ, see equation (8.3), of the prediction variance as a function of the time the
panels are stored in the accelerated environment in days. The calculation is based on the following measurement setup:

• Temperature levels: 25°C, 70°C.

• Number of panels in each temperature group: 6, i. e., a total of 12 panels.

• Length of the overall measuring period: 120 days.

• Times of measuring for panels stored in a 25°C-environment in days from the beginning: 0, 40, 80, 120 days.

• Times of measuring for panels stored in a 70°C-environment in days: Four equally distanced measuring points over
the measuring period beginning after the storing time in the 70°C-environment.

[0434] Fig. 20 shows a minimum in Φ at a storing time in the 70°C-environment of about 55 days. Hence under the
above measurement setup. Fig. 20 suggests that optimally panels should be stored in a 70°C-environment for almost
two months before being measured 4 times under room temperature.
[0435] Fig. 21 shows Φ as a function of the accelerated temperature level.
[0436] Fig. 22 shows Φ as a function of the storage time of the panels in the accelerated environment in days.
[0437] As to the operating instructions, the choice of the experimental design depends on the amount of the variation
due to differences in the panel quality. Therefore first of all examinations should be taken on how much the panel-to-
panel variation influences the accuracy in the prediction in comparison to the other factors determining the experimental
design.
[0438] In the following, the choice of the experimental factors and their levels will be described.
[0439] As to the choice of the length of the measuring period, the accuracy in the prediction can be improved by
extending the measuring period. A measuring period of at least 150 days should bring reasonable results in the prediction.
The measurements on panels which are stored under approximately room temperature should begin with the start of
the experiment. Panels which are stored in an accelerated environment should first remain in that environment for a
prescribed time, and should afterwards being measured. If the panel-to-panel variation is comparably high, a shortening
of the measuring period might be justifiable if in return the number of panels is increased.
[0440] On the contrary, if in future experiments the panel-to-panel variation is comparably small, extending the length
of the measuring period might have greater influence on the accuracy of the prediction and might be worth considering.



EP 2 594 924 A1

63

5

10

15

20

25

30

35

40

45

50

55

[0441] As to the selection of measuring points, each panel may be measured 4 times. The measuring points should
be equally distributed over the entire measuring period. I. e., for panels stored at room temperature, the first measuring
point is the starting time of the experiment, and for panels stored under in an accelerated environment, the first measuring
point is the time point right after the end of the accelerated storing period. For both groups of panels, the last measuring
point is at the end of the experimental period.
[0442] As to the choice of the storing time in the accelerated environment panels subject to accelerated exposure may
remain in the accelerated environment over almost two months before starting the measurement period.
[0443] As to the choice of the storing environments, two temperature levels should be chosen in which the panels are
stored during the experiment. Partly the panels are recommended to be stored in an environment of about 25°C which
is approximately room temperature. The remaining panels should be stored in an environment of about 70°C if the storing
time in the accelerated environment is chosen to be 60 days. If this period is shortened, the acceleration effect can
nevertheless be achieved by increasing the accelerated temperature.
[0444] As to the choice of the number of testing panels, a number of at least 24 testing panels are recommended to
be included in the experiment.
[0445] The panels can be divided into to equally sized groups: one group being stored in a 25°C-environment, and
the other in a 70°C-environment. Whether to increase the number of testing panels or rather to increase the length of
the measuring period depends on what is the decisive factor for the prediction variance: panel-to-panel variation or the
measurement-to-measurement variation.
[0446] As to the prediction of the proportion of nonconforming items, to predict the proportion of nonconforming items,
the point prediction Z(x) as well as the two-sided prediction interval 

have to be examined. By a suitable choice of the quantile  a prescribed forecasting confidence level γ

can be achieved, i. e.,  can be chosen so as to provide 

I. e., the probability that the real value for the response Z(x) lies in the interval Bx is γ.
[0447] To be able to make conclusions in units of thermal conductivity, it is necessary to retransform the values Z(x),
ZL(x), and ZU(x). A prediction ad,iY(x) for the thermal conductivity as well as a prediction interval (ad,iYL(x), ad,iYU(x))
can be derived by using the transforming equation 

[0448] The unknown parameter β0 has to be replaced by the estimator β0 from the actual experiment. The estimator
is determined as described above.
[0449] As to the prediction based on prescribed confidence levels 0.99 and 0.95 for the prediction is prescribed, we
consider the prescribed confidence levels 0.99 and 0.95 in the following.
[0450] Consider the prediction interval (ad,iYL(x), ad,iYU(x)) for a prescribed confidence level of 0:99. If the upper bound
ad,iYU(x) does not exceed a critical value c for the thermal conductivity, it can be argued, that in the long run not more
than (1 - 0:99) · 100% = 1 % of the panels are expected to exceed c in the thermal conductivity.
[0451] If the upper bound of the prediction interval for the given confidence level 0:99 is higher than the critical value
c, the prediction interval should be calculated for a confidence level of 0:95. If the upper bound of the prediction interval
for a confidence level of 0:95 lies below c, one can conclude that in the long run less than (1-0:95) · 100% = 5% of the
panels are expected to exceed the critical value c.
[0452] As to the prediction based on random confidence level, the approach to predict the proportion of nonconforming
items where the confidence level is not prescribed but random may be deployed.
[0453] The following two cases have to be distinguished:

^

^

^

^
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1. ad,iY(x) < c, i.e.., the point prediction ad,iY(x) lies below the critical value c. In this case, consider the upper bound
ad,iYU(x) of the prediction interval. Determine γ in a way, that 

which requires a suitable choice of  in formula (9.3). Then a proportion of less than (1 - γ) · 100% is

predicted to exceed the critical value c.
2. ad,iYL(x) > c, i.e.,., the point prediction ad,iY(x) lies above the critical value c. In this case, consider the lower
bound ad,iYL(x) of the prediction interval. Determine γ in a way, that 

which requires a suitable choice of  in formula (9.3). Then a proportion of at least (1 - γ) · 100% is

predicted to exceed the critical value c.

[0454] As to the prediction based on one-sided prediction intervals, the preceding analysis is based on two-sided
prediction intervals for the thermal conductivity. A different approach to decide on how many panels exceed the critical
values 0.008 W/(m· K) for 2 years and 0.015 W/(m· K) for 10 years in the thermal conductivity, would be to consider the
one-sided prediction interval with an upper bound: 

and the retransformed interval 

respectively. If the quantile z is chosen as z = z (γ), a prescribed forecasting confidence level γ can be achieved. If the
upper bound ad,iYU(x) is below the critical value c for the thermal conductivity it can be concluded that in the long run
not more than (1 - γ) · 100% of the panels are expected to exceed c. Otherwise no conclusion is possible, i. e. the
percentage of the panels exceeding the critical values cannot be estimated below 100%.
This approach allows to decide what percentage of the panels exceed the critical value at the utmost while ensuring a
higher confidence level for the prediction than in the case of a two-sided prediction interval. Nevertheless, to ensure the
possibility of drawing a conclusion, this method is only recommended if the predicted response is far below the critical
value c.
[0455] In the case at hand, the basis for the investigations were measurements taken on highly degrading panels with
high panel-to-panel variation that are not suitable and cannot be used for the intended purpose. Since the critical values
for the thermal conductivity are not far from the point prediction, no conclusion would be possible in many cases if one-
sided prediction intervals were used. Therefore, the investigations concentrated on two-sided prediction intervals which
allow to estimate an interval with upper and lower bound in which the future observations lie with a high probability. Also,
the two-sided interval allows to compare the accuracy of the prediction by means of the length of the prediction interval,
and is suitable especially for the construction of an experimental design.
[0456] For future investigations, other panels with lower degradation rates and lower panel-to-panel variation are
expected. In this case, one-sided prediction intervals with an upper bound will probably be the appropriate method to
find an upper bound for the percentage of nonconforming panels.
[0457] According to some embodiments, the following steps were basically taken:

1. A standard fixed effects nonlinear regression model was built using the relation between the gas pressure and
the thermal conductivity. The problem was that panel-to-panel variation could not be taken account of by the fixed
effects model.

^ ^

^ ^
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2. A mixed nonlinear regression model was constructed including random parameters that model panel-to-panel
variation.

3. The mixed nonlinear regression model was transformed to a linear model.

4. Regression parameters were estimated based on the transformed mixed model.

5. The statistical inference theory for a linear mixed model was derived.

6. The general mixed model scheme was applied to the analysis of panel life times.

7. An experimental design on the basis of a mixed regression model was developed.

[0458] The initial data basis were measurings. By this means increases in the thermal conductivity could be expected
to be measured accurately. At the same time, further measurings were taken for control purposes. In the course of the
project, while deriving an optimal experimental design, it was realised that it would be necessary to include a high number
of testing panels in future experiments to make precise predictions for the thermal conductivity.

Reference Numerals

[0459]

101 measuring
103 measuring
107 executing
201-215 method steps
217 fitting the regression model
219 executing the regression model

Claims

1. Method for predicting a physical characteristic of vacuum insulation panels of a certain type, the method comprising:

measuring (101) a plurality of physical quantities associated with the vacuum insulation panels at distinct time
instants;
measuring (103) values of the physical characteristic at the distinct time instants;
fitting (105) a parametric regression model with the measured physical quantities as regression parameters to
predict the measured values of the physical characteristic at the distinct time instants using the parametric
regression model;
and
executing (107) the parametric regression model to predict the physical characteristic at a future time instant.

2. The method of claim 1, wherein the parametric regression model is executed and/or fitted by a computer.

3. The method of claim 1 or 2, wherein the parametric regression model is a non-linear regression model, in particular
a mixed non-linear regression model.

4. The method of anyone of the preceding claims, wherein the values of the physical characteristic and the plurality
of physical quantities are measured at three distinct time instants, in particular only at three distinct time instants.

5. The method of anyone of the preceding claims, wherein the physical characteristic is a least one of: thermal con-
ductivity, internal gas pressure, weight.

6. The method of anyone of the preceding claims, wherein the measured physical quantities are at least one of the
following physical quantities: temperature, elapsed time during which a vacuum insulation panel was exposed to a
certain test condition, in particular to a certain temperature, geometry of a vacuum insulation panel, in particular a
sealing length or a surface area or a volume of a kernel of a vacuum insulation panel or a thickness of a vacuum
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insulation panel, a mass of a vacuum insulation panel, a relative mass increase of a vacuum insulation panel.

7. The method of anyone of the preceding claims, wherein the step of fitting (105) of the parametric regression model
comprises determining regression coefficients of the parametric regression model.

8. The method of anyone of the preceding claims, further comprising determining the distinct time instants for meas-
urements.

9. The method of anyone of the preceding claims, further comprising determining a number of vacuum insulation panels
of the same type for measurements.

10. The method of anyone of the preceding claims, further comprising determining a total measurement time of the
measurements.

11. The method of anyone of the preceding claims, further comprising determining environmental conditions, in particular
temperatures, to which to expose at least one vacuum insulation panel.

12. The method of claim 11, further comprising determining an exposure time.

13. The method of anyone of the preceding claims, further comprising determining a number of measurements repeti-
tions.

14. The method of anyone of the preceding claims, wherein the vacuum insulation panel of the same type comprise a
panel core, in particular a fiber panel core.

15. The method of anyone of the preceding claims, wherein the parametric regression model is one of the following
parametric regression models 

or

with Y denoting values of the physical characteristic, β1 - β4 denoting regression coefficients, x1 - x4 denoting
measured values of the physical characteristic and ε denoting an error.

16. The method of anyone of the preceding claims 1 to 14, wherein the parametric regression model is described by a
nonlinear function 

with i denoting an group index of vacuum insulation panels, j denoting a measurement index, Yij denoting a measured
value of the physical characteristic at i, j, xij denoting measured values of the physical characteristic, ai denoting a
level of a measured physical characteristic, β denoting a regression coefficient, bi denoting a random deviation of
a vacuum insulation panel, and εi,j denoting an error.

17. The method of anyone of the preceding claims, wherein the predicting the physical characteristic of the vacuum
insulation panels comprises predicting a number of vacuum insulation panels having a certain value of the physical
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characteristic or having a value of the physical characteristic below or above a threshold.

18. The method of anyone of the preceding claims, wherein the predicting the physical characteristic of the vacuum
insulation panels comprises predicting a change of the physical characteristic over time.
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