CROSS-REFERENCE TO RELATED APPLICATIONS
FIELD
[0002] Aspects described herein are related to control systems and methods for lighting.
More specifically, aspects described herein provide methods and systems for dynamically
altering ambient lighting responsive to, for example, content in a video program being
presented on a display device.
BACKGROUND
[0003] Premises viewing of media programs (e.g., television programs, movies, streaming
video, and the like) has become increasingly popular as the cost of movie-theater-like
televisions, screens, and sound systems become more affordable for mainstream consumers.
However, there remains an ever-present need to improve the viewing experience and
immersion level for viewers.
SUMMARY
[0004] The following presents a simplified summary in order to provide a basic understanding
of some aspects of the disclosure. The summary is not an extensive overview of the
disclosure. It is neither intended to identify key or critical elements of the disclosure
nor to delineate the scope of the disclosure. The following summary merely presents
some concepts of the disclosure in a simplified form as a prelude to the description
below.
[0005] Aspects of this disclosure relate to systems and methods that effect dynamic alteration
of ambient lighting in a video viewing environment (e.g., a retail, commercial or
consumer-environment) to enhance a viewing experience while watching a media program
such as a television show, on-line video game, streaming video, movie, or the like.
[0006] According to a first aspect, an apparatus (e.g., a media gateway, set top box, server,
router, or the like), includes one or more processor(s) and memory storing computer
readable instructions that, when executed by the processor, configure the apparatus
to control ambient lighting. The apparatus may be configured to receive media program
data (e.g., via cable, LAN, wireless, coaxial network, fiber optic network, hybrid
fiber/coax, satellite TV, IP network, or other content distribution network) that
includes, for example, video data and lighting data. In certain aspects, the video
data and lighting data may be time synchronized and the apparatus may be configured
to extract the video and lighting data out of the media program data. Further, the
apparatus may be configured to output ambient lighting instructions which interoperate
with ambient lighting devices so as to control the ambient lighting in a manner responsive
to the video content currently being displayed. The lighting instructions may be variously
configured. In certain aspects, they may define timed ambient lighting effects for
multiple light channels, where each light channel is associated with, for example,
a location of a light source in relation to a location of a display screen displaying
video. These light sources may be variously configured to include bulbs (e.g., halogen,
mercury vapor, incandescent), fluorescent, and/or LED technologies). LEDs in particular
are considered today very energy efficient, and may be adapted for use as described
herein particularly given the flexibility configuring light output for such items
as light frequencies, on/off frequencies, focusing via lenses, use of different colors,
and color temperatures.
[0007] According to various aspects, an ambient lighting system may have different numbers
of light channels. For example, in a first aspect, an ambient lighting system might
include 6 light channels: front right, front left, rear right, rear left, center,
and burst channels. In another aspect, 8 channels may be included: front right, front
left, middle right, middle left, rear right, rear left, center, and burst channels.
In some aspects, other light channels may be used, e.g., overhead left/right/middle,
floor left/right/middle, etc.
[0008] Each light channel may be associated with a light source such as a LED, florescent,
etc. For example, light sources in two table lamps on either side of a sofa may correspond
to rear left and rear right light channels, respectively. According to some aspects,
each light source may include multiple colored strands of light emitting diode (LED)
lights. For example, in one aspect a light source includes a red LED strand, a blue
LED strand, and a green LED strand. The light source may also include a white LED
strand to assist with brightness and/or softness of a particular color.
[0009] According to some aspects, lighting instructions may also be configured to include
lighting primitives which may themselves control such things as effects and schemes
to control the various light channels and light sources. A lighting primitive may
be variously configured but in illustrative aspects may be one or more lighting instructions
that provide one or more control values (e.g., intensity, frequencies, directions,
colors) which may be associated with one or more light source (e.g., one per color
LED strand). The light primitives may be usable by a light source to adjust various
parameters associated with the light source such as the color and intensity of light
emitted by the light source. The lighting instructions may also include lighting effects.
For example, lighting effects may refer to a predefined sequence of one or more lighting
primitives that, when executed in sequence, causes the one or more light sources in
the ambient lighting system to generate a predefined visual effect (e.g., flashing
lights on a police car, sunrise, sunset, moonlight, explosions, fire, search lights,
etc.).
[0010] In some aspects, a lighting effect is not directly usable to adjust an output of
a light source, but rather corresponds to a predefined sequence of lighting primitives
that are output to a light source which itself has a controller for directly adjusting
parameters such as color and intensity values of the light source. The lighting instructions
may also define one or more lighting schemes. A lighting scheme may be variously defined
such as a sequenced set of one or more lighting effects (or primitives) that may correspond
and/or be time-synchronized to a particular video program. In illustrative embodiments,
lighting instruction sent to a light source may include a reference to a lighting
effect, lighting scheme, and/or to a lighting primitive. The lighting instructions
may provide methods of operation and may be stored on computer readable media which
may also store other types of software instructions.
[0011] According to a further aspect, a lighting controller may be configured to, for example,
wirelessly send lighting instructions to each light source associated with a light
channel. The lighting instruction may be sent in the form of a data message having
a first data field identifying one of the light channels, and a second data field
storing a lighting instruction for the light source associated with the light channel
identified in the first data field. The lighting instruction may be variously configured
such as to define an intensity value for a different one of a plurality of colored
lights associated with the light channel identified in the first data field. Alternatively
or additionally, the lighting instruction may identify a predefined lighting effect
stored in a memory of the light source. In certain aspects, lighting instruction may
further include a third data field identifying a period of time during which the lighting
instruction is maintained by the light source associated with the light channel identified
in the first data field.
[0012] According to some aspects, a light source may include a plurality of strands of LEDs,
where each LED strand is a different color (e.g., red, blue, green; or red, blue,
green, white). The light source may further include one or more wireless receiver(s)
configured to receive lighting instruction, and one or more processors (e.g., microcontroller(s),
control logic, and/or microprocessor(s)) configured to control, for example, each
of the plurality of LED strands. By actuating one or more of the plurality of LED
strands at one or more intensity levels and frequencies, the processor can create
substantially any color of light in a visual color spectrum and/or lighting appearance.
In aspects, the processor may further be configured to receive ambient lighting instructions
from the wireless receiver, and then selectively actuate each of the plurality of
LED strands to produce a resulting color and intensity of light based on the lighting
instruction.
[0013] According to some aspects, the lighting instructions may further include a time component
instructing the microprocessor to maintain an output as a specified color, frequency,
and/or intensity for a specified period of time.
[0014] In some aspects, the light source's wireless receiver may be IEEE 802.15.4 or ZigBee
compliant receiver.
[0015] According to different aspects, the light source is associated with one of the light
channels in an lighting system, and executes lighting instructions intended for the
light channel with which that light source is associated. In one example, each light
source is manufactured as being associated with a particular light channel. In another
example, memory controls, dip switches, and/or other indication may be used to identify
a light channel with which the light source is associated. In yet another example,
the light source may include a button or toggle that, when actuated, places the light
source in a pairing mode to pair the light source with a particular light channel.
[0016] In one aspect, the light source may be adapted or configured, when receiving a first
type of lighting instruction, to actuate each of the plurality of LED strands based
on intensity data received for each of the plurality of LED strands in the first type
of ambient lighting instruction, and when receiving a second type of ambient lighting
instruction, to actuate each of the plurality of LED strands based on one of a plurality
of predefined lighting effects stored in a memory of the light source and identified
in the second type of lighting instruction.
[0017] According to various aspects, lighting effects may define various visual patterns
or appearances created by the combination of light channels (via their respective
light sources) in an ambient lighting system. Lighting effects may also define transitions
without identifying raw lighting values. For example, a lighting effect may instruct
a light source to transition to a default state or other lighting state that the light
source was in prior to receiving the lighting instruction (e.g., return to a lighting
color/level that a viewer set the light source at prior to watching the video program).
[0018] These and other aspects will be readily apparent upon reviewing the detailed description
below.
BRIEF DESCRIPTION OF THE DRAWINGS
[0019] The present disclosure is illustrated by way of example and not limited in the accompanying
figures in which like reference numerals indicate similar elements and in which:
FIG. 1 shows an illustrative embodiment of a portion of a content distribution network
according to one or more aspects described herein.
FIG. 2 shows an illustrative hardware platform on which the various elements described
herein may be implemented according to one or more aspects described herein.
FIG. 3 shows an illustrative diagram of a four-strand LED light source according to
one or more aspects described herein.
FIG. 4 shows an illustrative room diagram for a multi channel ambient lighting system
according to one or more aspects described herein.
FIG. 5 shows an illustrative data structure for a lighting primitive according to
one or more aspects described herein.
FIG. 6 shows an illustrative data structure for a police car lighting effect according
to one or more aspects described herein.
FIG. 7 shows an illustrative data structure for a sunrise lighting effect according
to one or more aspects described herein.
FIG. 8 shows an illustrative data structure for a lighting scheme according to one
or more aspects described herein.
FIG. 9 shows an illustrative method for performing dynamic ambient lighting based
on a video image according to one or more aspects described herein.
FIG. 10 shows an illustrative method for performing dynamic ambient lighting based
on a predetermined lighting scheme according to one or more aspects described herein.
FIG. 11 shows an illustrative data structure for a lighting primitive according to
one or more alternative aspects described herein.
DETAILED DESCRIPTION
[0020] In the following description of various illustrative embodiments, reference is made
to the accompanying drawings, which form a part hereof, and in which is shown, by
way of illustration, various embodiments in which aspects of the disclosure may be
practiced. It is to be understood that other embodiments may be utilized, and structural
and functional modifications may be made, without departing from the scope of the
present disclosure.
[0021] Illustrative embodiments provide methods and system for dynamically altering lighting
in a room when a media program is playing, based on the content in the media program.
Stated differently, aspects described herein define how to alter ambient lighting
based on the content in a television show, movie, or other video program. For example,
during a sunrise, ambient lighting might get stronger to enhance the viewer's sensory
perception of the sun rising; during a sunset the ambient lighting might be reduced
to enhance the viewer's sensory perception of the sun going down; during a scene in
which a police car is shown with flashing lights, ambient lighting might increase
and decrease in alternating cycles between left and right portions of the room to
enhance the viewer's sensory perception of a police car with flashing lights. A large
number of embodiments exist based on the content being shown in a media program. Aspects
described herein define methods and systems defining lighting schemes, associating
lighting schemes with a video program, communicating the lighting information to a
viewer's terminal equipment, and controlling lighting within a room based on the received
lighting information.
[0022] FIG. 1 illustrates an example of an information distribution network 100 in which
many of the various features described herein may be implemented. Information distribution
network 100 may be any type of information distribution network, such as fiber, coax,
hybrid fiber/coax, wired, LAN, WAN, satellite, telephone, cellular, wireless, etc.
Illustrative information distribution networks 100 may use one or more (e.g., a series
of) communication channels 101 (e.g., lines, coaxial cables, LAN, WAN, optical fibers,
wireless, etc.) to connect multiple premises 102 (e.g., businesses, offices, apartment
buildings, homes, consumer dwellings, etc.) to a central location 103 (e.g., a local
service office, telephone central office, server room, video headend, etc.). The central
location 103 may transmit downstream information signals onto the channels 101, and
each premises 102 may have a receiver used to receive and/or process those signals.
[0023] There may be one or more communication channels 101 originating from the central
location 103, and the communication channels may traverse one or more different paths
(e.g., lines, routers, nodes, hubs) to distribute the signal to various premises 102
which may be, for example, many miles distant from the central location 103. The communication
channels 101 may include components not illustrated, such as splitters, filters, amplifiers,
etc. Portions of the communication channels 101 may also be implemented with fiber-optic
cable, while other portions may be implemented with coaxial cable, other lines, or
wireless communication paths.
[0024] The central location 103 may or may not include an interface 104 (such as a termination
system (TS), router, modem, cable modem termination system, fiber termination system,
etc.) which may include one or more processors configured to manage communications
between devices on the communication channels 101 and/or backend devices such as servers
105-107 (to be discussed further below). Interface 104 may be as specified in a suitable
communication standard, such as the Data Over Cable Service Interface Specification
(DOCSIS) standard, published by Cable Television Laboratories, Inc. (a.k.a. Cable
Labs), 802.11, FDDI, MPLS. Interface 104 may also use a custom standard such as a
similar or modified interface device to a standard interface. Interface 104 may be
variously configured to include time division, frequency division, time/frequency
division, wave division, etc. In one illustrative embodiment, the interface 104 may
be configured to place data on one or more downstream frequencies to be received by
modems at the various premises 102, and to receive upstream communications from those
modems on one or more upstream frequencies. The central location 103 may also include
one or more network interfaces 108, which can permit the central location 103 to communicate
with various other external networks 109. These external networks 109 may include,
for example, networks of Internet devices, telephone networks, cellular telephone
networks (3G, 4G, etc.), fiber optic networks, local wireless networks (e.g., WiMAX),
satellite networks, PSTN networks, internets, intranets, the Internet, and/or any
other desired network. The interface 108 may include the corresponding circuitry needed
to communicate on the external network 109, and/or to other devices on the external.
[0025] As noted above, the central location 103 may include a variety of servers 105-107
that may be configured to perform various functions. For example, the central location
103 may include a push notification server 105. The push notification server 105 may
generate push notifications to deliver data and/or commands to the various premises
102 in the network (or more specifically, to the devices in the premises 102 that
are configured to detect such notifications, e.g., ambient lighting devices). The
central location 103 may also include a content server 106. The content server 106
may be one or more processors/computing devices that are configured to provide content
to users in the premises. This content may be, for example, video on demand movies,
television programs, songs, text listings, etc. The content may include associated
lighting instructions. The content server 106 may include software to validate user
identities and entitlements, locate and retrieve requested content, encrypt the content,
and initiate delivery (e.g., streaming) of the content to the requesting user and/or
device. The content server 106 may also include segmented video where lighting instructions
are inserted into the video and associated with particular segments of video.
[0026] The central location 103 may also include one or more application servers 107. An
application server 107 may be a computing device configured to offer any desired service,
and may run various languages and operating systems (e.g., servlets and JSP pages
running on Tomcat/MySQL, OSX, BSD, Ubuntu, Redhat, HTML5, JavaScript, AJAX and COMET).
For example, an application server may be responsible for collecting television program
listings information and generating a data download for electronic program guide listings.
The program guide may be variously configured. In one embodiment, the program guide
will display an indication (e.g., an icon) indicating that the program is ambient
lighting enabled. For example, the program guide may include an icon of a static or
dynamically changing light bulb indicating that the particular program is ambient
lighting enabled. Another application server may be responsible for monitoring user
viewing habits and collecting that information for use in selecting advertisements.
Additionally, the lighting instructions may be included in advertisements. In one
illustrative embodiment, the room brightens markedly when an advertisement appears
on the program. Another application server may be responsible for formatting and inserting
advertisements in a video stream being transmitted to the premises 102. Another application
server may be configured to operate ambient lighting devices manually via controls
input by the user from a remote device such as a remote control, IPHONE, IPAD, tablet,
laptop computer, and/or similar device. Still referring to Fig. 1, an illustrative
premises device 102a, such as a gateway device or set top box, may include an interface
120. The interface 120 may comprise a modem 110, which may include one or more transmitters,
receivers etc., used to communicate on the communication channels 101 and with the
central location 103. The modem 110 may be, for example, a coaxial cable modem (for
coaxial cable communication channels 101), a fiber interface node (for fiber optic
communication channels 101), a wireless modem (for wireless communication channels
101), and/or any other desired modulation/demodulation device. The modem 110 may be
connected to, or be a part of, a gateway interface device 111. The gateway interface
device 111 may be a computing device that communicates with the modem 110 to allow
one or more other devices in the premises 102 to communicate with the central location
103 and other devices beyond the central location. The gateway 111 may be a set-top
box (STB), digital video recorder (DVR), computer server, fiber interface device,
media gateway, router, wireless router, and/or other desired computing device. The
gateway 111 may also include (not shown) local network interfaces to provide communication
signals to devices in the premises, such as televisions 112, additional STBs 113,
personal computers 114, laptop computers 115, wireless devices 116 (wireless laptops
and netbooks, mobile phones, mobile televisions, personal digital assistants (PDA),
etc.), and any other desired devices. Examples of the local network interfaces include
Multimedia Over Coax Alliance (MoCA) interfaces, Ethernet interfaces, universal serial
bus (USB) interfaces, wireless interfaces (e.g., IEEE 802.11), Bluetooth interfaces,
etc.
[0027] FIG. 2 illustrates general hardware elements that can be used to implement any of
the various devices discussed above. In illustrative embodiments, the computing device
200 may include one or more processors 201, which may execute instructions of a computer
program to perform any of the features described herein. The instructions may be stored
in any type of computer-readable medium or memory, to configure the operation of the
processor 201. For example, instructions may be stored in a read-only memory (ROM)
202, random access memory (RAM) 203, removable media 204, such as a Universal Serial
Bus (USB) drive, compact disk (CD) or digital versatile disk (DVD), floppy disk drive,
or any other desired electronic storage medium. Instructions may also be stored in
an attached (or internal) hard drive 205. The computing device 200 may include one
or more output devices, such as a display 206 (or an external television), and may
include one or more output device controllers 207, such as a video processor. There
may also be one or more user input devices 208, such as a remote control, keyboard,
smart phone, tablet, mouse, touch screen, microphone, etc. The computing device 200
may also include one or more network interfaces, such as input/output circuits 209
(such as a network card) to communicate with an external network 210. The network
interface may be a wired interface, wireless interface, and/or fiber interface, etc.
In some embodiments, the interface 209 may include a modem (e.g., a cable modem).
In embodiments, network 210 may include communication channels 101 discussed above,
the external network 109, an in-premises network, a provider's wireless, coaxial,
fiber, or hybrid fiber/coaxial distribution system (e.g., a DOCSIS network), or any
other desired network.
[0028] Lighting controller 211 may dynamically control one or more light sources 300 (e.g.,
a light fixture and/or the bulb therein), as further described herein, via one or
more networks, e.g., wireless, wired, powerline, Wi-Fi, Bluetooth, and/or Zigbee-compliant
networks. Presently there exist approximately 1 billion incandescent light sources
in residential premises in the US. Aspects of this disclosure makes these light sources
much more versatile, controllable, and adaptable to the users.
[0029] With reference to FIG. 3, an illustrative light source 300 is shown. In this embodiment,
the light source 300 may be configured as a 4-color LED. The 4-color LED bulb may
be variously configured to contain strands of light emitting diodes (LEDs). These
LEDs can be manufactured in any color. Light source 300 may be variously configured
to include clear, red, blue, and green LED strands, giving light source 300 the ability
to create any color and light intensity possible with any frequency based on changing
the intensity levels of various strands.
[0030] Light source 300 may also include a housing 301 in which any number of LEDs may be
included (e.g., four light emitting diode strands 303-309). Housing 301 may include
a standard base so that the light source 300 can be screwed into any conventional
lamp or fixture. The LEDs within the light source 300 may be variously configured.
For example, LED 303 may include a red LED; LED 305 may be blue LED; LED 307 may be
a green LED; LED 309 may be a high intensity white LED. LEDs 303-309 may be connected
to, for example, one or more processors 311 using any suitable means such as control
logic and/or via control wires 313, 315, 317, 319, respectively. Processor 311 may
be variously configured. In one illustrative embodiment, processor 311 is manufactured
by Marvell Technology Group Ltd. of Bermuda and Santa Clara, California, and is configured
to control the LED strands within the light source, e.g., turning up or down the intensity,
or "volume", of one or more of the LED strands.
[0031] In illustrative embodiments, the light source 300 may be configured to include a
media access control address (e.g., MAC address). The Mac address may register with
the computing device 200 and/or with devices located proximate to the central location
103. In illustrative embodiments, the processor 311 (or light source 300) is initially
manufactured having a unique media access control (MAC) address. The processor 311
may control the LEDs based on communication signals (e.g., lighting instructions)
received via transceiver 321, when those communication signals are addressed to the
MAC address associated with that light source. Transceiver 321 may be variously configured
to include, for example, a Wi-Fi, Bluetooth, IEEE 802.15.4, or ZigBee-compliant transceiver.
Light source 300 may further include one or more dip switches 323 to set various parameters
associated with the light source 300, and may further include an input button 325
which may be used to place light source 300 in a designated mode, e.g., a pairing
mode, as further described herein.
[0032] According to some embodiments, transceiver 321 may instead consist only of a receiver,
and not include the ability to output send data. According to other embodiments, light
300 might include only 3 LEDs, omitting the high-intensity white LED. Light source
may be variously configured such that processor 311 and/or transceiver 321 may be
mounted in the base of the housing 301. In illustrative embodiments, an application
downloadable to a remote control device (e.g., an i-Pad/i-Phone) may be utilized to
set and/or control the light source either alone and/or in conjunction with the lighting
instructions. The remote control may override the lighting instructions and/or enable
the lighting instructions. Further, the remote control may set parameters for the
lighting instructions such as minimum lighting levels.
[0033] With reference to FIG. 4, a room 400 may include multiple light sources (e.g., lamps
401-405). In this example, each of the light sources 300 use the illustrative light
source 300 as shown in FIG. 3. In this example, each lamp 401-405 may be a common
household lamp (floor lamp, table lamp, light fixture, recessed light, etc.) using
a light source 300 as described herein. Lamp 406 may include a special high-intensity
bulb that, when lit to a high intensity, significantly lights up the entire room.
Lamp 406 may be referred to as a burst lamp, akin to a subwoofer of light, whereby
an intense brightness is generated to provide a sudden sensation of light. Lamp 401
may be placed in a rear right position with respect to a viewing angle of television
407; lamp 402 may be placed in a rear left position; lamp 403 may be placed in a front
right position; lamp 404 may be placed in front left position; and lamp 405 may be
placed behind TV 407 in a center position. Lamp 406 may be placed in a discreet position,
e.g., behind a plant or other obstacle, so as to prevent a viewer from looking directly
at lamp 406 when lamp 406 is fully engaged. The remote control device may associate
the light sources 300 with a planar view of the area such as that shown on Fig. 4.
Using ranging or other suitable mechanism, the light sources may detect the distance
from for example, the television and/or set top device, and then display the relative
location on a control device (e.g., an IPAD or other tablet device).
[0034] Each light source 300 may be controlled by its respective internal processor 311.
Each processor, in turn, may control the LEDs in that light source based on instructions
received via wireless transceiver 321. These instructions may be manual instructions
from remote and/or lighting instructions as discussed above. According to one illustrative
aspect, with reference to FIG. 5, the instructions received via transceiver 321 may
be received as a sequence of primitives 500, where each primitive identifies a MAC
address 501, a sequence of raw intensity values 503, 505, 507, 509, followed by duration
511. MAC address 501 may be configured to identify a lamp 401-406 within room 400.
Intensity values 503-509 may be variously configured and in illustrative embodiments
use an 8-bit relative intensity value for each of LEDs 303, 305, 307, 309, respectively,
where 0 is off, and 11111111 indicates full intensity. Duration 511 may also be variously
configured and in one illustrative embodiment includes 16 bits to indicate, in milliseconds,
how long the microprocessor should maintain that state before either reverting to
a previous state or implementing a subsequently received primitive. In this example,
16 bits provides for up to 65,536 milliseconds (a little over a minute). According
to one embodiment, a duration of 0 (represented as 16 zeros) might have special meaning,
indicating that the state defined by that primitive shall be maintained indefinitely
until a next primitive is received.
[0035] With reference to FIG. 6, an illustrative set of primitives may be predefined as
a lighting effect. For example, a first set of primitives (illustrated in FIG. 6)
that, when executed by light sources associated with lamps 401-406 result in various
actions. For example, left and right light channels alternately flashing red and blue
lights, thereby simulating flashing lights of a police car, may be designated as lighting
effect 1. A second set of primitives that cause light sources in lamps 401-406 to
gradually increase in soft yellow light, thereby simulating a rising sun, may be designated
as lighting effect 2 (or 10 in binary) in this example. Yet another set of primitives
that cause light sources in lamps 401-406 to gradually decrease in light, thereby
simulating a setting sun, may be designated as effect 3. In illustrative embodiments,
any number of lighting effects may be predefined with corresponding effect IDs known
to all relevant devices. For example, lighting effects may be created to simulate
a single searchlight circling overhead, multiple searchlights circling in opposite
directions, a lighthouse light, headlights, stadium lights, strobe lighting, discotheque
lights, dance club lights, stage lighting, light-sabers, explosions, rockets, etc.
A virtually infinite number of lighting effects are possible, and are limited only
by the lighting designer's creativity using the tools described herein.
[0036] Lighting effects may be defined by creatively determining sequences of lighting primitives
for each of a plurality of light channels. Each light channel may be associated with
a particular location of a light source corresponding to that channel. For example,
in one aspect, 6 light channels may be used: front right, front left, rear right,
rear left, center front, and burst channels. Each of the left, right, and center channels
may be associated with a single and/or multicolor bulb as described herein, whereas
the burst channel may be associated with a single bright white light source that can
be used to present bright light bursts (e.g., during explosions, search lights, etc.).
In another aspect, 2 additional channels may be used as well: middle left, middle
right, where each middle channel is located between its respective front and rear
channels, and each associated with a multicolor bulb. In other aspects, different
or additional channels may be used, e.g., floor channels, ceiling channels, dim channels,
strobe channels, or other special purpose channels. Special purpose channels may be
associated with a special purpose light source, e.g., burst channel, strobe channel,
etc. For illustrative purposes only, the remainder of this description assumes that
6 channels are being used, as illustrated in Table 1 below, where channels 401-405
use a multicolor LED bulb, and burst channel 406 uses a single color high lumen white
bulb.
[0037] In additions, additional primitives may be defined for video games. For example,
in car chase scenes in grand theft auto, police lights may be shown as the police
are closing in on the player's vehicle. Further, headlights may appear when another
car is being passed. The video games video sequences may also include lighting instructions
as herein defined. These lighting instructions may appear in on-line versions of the
games as well as local versions.
[0038] FIG. 6 shows an illustrative embodiment of effect 1, representative of flashing lights
on a police car. The channel field may be variously configured such as being 6 bits
long indicating, for each lamp 401-406, whether that primitive applies to that lamp.
According to an aspect, each bit may correspond to one lamp as shown in Table 1. Each
lamp position in Table 1 may be individually referred to as a light channel.
Table 1
Bit |
Lamp |
|
|
1 |
Front Left 404 |
2 |
Rear Left 402 |
3 |
Front Right 403 |
4 |
Rear Right 401 |
5 |
Center 405 |
6 |
Burst 406 |
[0039] As shown in FIG. 6, the first primitive indicates that the left channel (front and
rear left lamps) are set to full blue for 1/2 second. The second primitive indicates
that the right channel (front and rear right lamps) are set to full red for 1/2 second.
The third primitive indicates that the center and burst lamps are turned off until
further instructions for those lamps are received. The fourth and fifth primitives
indicate that the right and left channels swap red for blue, respectively.
[0040] FIG. 7 illustrates examples of primitives that may be used to define effect 2, i.e.,
a sunrise. The specific primitives in FIG. 7 are illustrative only, and indeed many
different sets of primitives may be used to define a sunrise. In addition, multiple
different sunrise effects may be predefined and be assigned different effect IDs.
Each effect's design may vary depending on the desired ambiance.
[0041] In the sunrise effect example illustrated in FIG. 7, red and green light is used
in combination with white light to provide an increasing soft yellow glow. A first
primitive indicates that the burst channel (000001) shall remain off until further
instructions for the burst channel are received. This results from a duration of 0
which, by agreement, is understood to mean that the primitive shall be maintained
on that channel until an overriding primitive or instruction is received.
[0042] The remainder of the primitives examples, excepting the last primitive shown in FIG.
7, illustrate that, every 0.1 sec., the white channel is gradually increased from
0 (off) to almost full brightness (245 out of 255 intensity levels) in increments
of 5. The primitive examples also illustrate that, every 0.2 sec., the red and green
channels are simultaneously increased from 0 (off) to mid-range (125) in increments
of 5, thereby adding a soft yellow glow to the sunrise effect. The final primitive
example in FIG. 7 illustrates a final state of the sunset, where red and green lights
are at intensity level 125, and white light is at intensity level 250, and duration
is set to 0, thereby indicating that the lamps 401-405 should maintain the final setting
until a primitive or other instruction is received that overrides the final light
settings.
[0043] FIG. 7 illustrates an example sunrise effect. Other lighting designers may define
other different sunrise effects, e.g., using more or less yellow light, a lower ending
intensity, or using only the burst channel 406 to progress from no light to very bright
light, etc. The specific set of primitives used to define each effect is secondary
to the ability to define predetermined sets of primitives as effect, and then subsequently
be able to execute that sequence of primitives by reference to the effect ID.
[0044] In still further examples, some effects may be defined to reference actions to be
performed based on the previous effect. For example, Effect ID 2000 might indicate
that the light should gradually return to a default state (e.g., whatever state the
light was in prior to the start of the video program, i.e., what the viewer had set
the lighting to prior to watching the video program) over some predefined or specified
period of time. For example, the duration for lighting effect 2001 might indicate
the amount of time over which the light should gradually return to the default state.
Effect ID 2002 might be used to indicate that the final state of the previous effect
should be held for the period of time specified in the duration field. Effect ID 2003
might be used to indicate a blackout, i.e., all lights off, for the period of time
specified in the duration, or indefinitely if the duration is zero. Additional or
different transition effects may also be defined.
[0045] With reference to FIG. 8, an illustrative a lighting scheme 801 may be defined as
a sequence of lighting effects. The scheme in this example may identify specific effects
tied to particular times in a video program, may be defined as a continuous sequence
of effects, or a combination of the two. FIG. 8 defines an example lighting scheme
that, at 16 minutes and 34.2 seconds into a program, executes lighting Effect ID 1
(police car's flashing lights) for 10 seconds. The repeat flag is set, so Effect ID
1 will loop after completion until the 10 seconds have lapsed. Upon completion, because
no transition effect is specified, each light may immediately return to its default
state.
[0046] Continuing with this example, lighting scheme 801 next indicates that, at 23 minutes
and 12.5 seconds, sunrise effect (Effect ID 2) is executed. The duration is set to
0, indicating that the effect is to be executed as defined by the primitives in Effect
ID 2. Scheme 801 next indicates that Effect ID 2001 is executed, which by agreement
refers to a gradual return to the default state of each light over the time period
specified in the duration for that effect, i.e., in this example over a period of
30 seconds. The Time=0 indicates that Effect ID 2001 is to be executed immediately
after the preceding effect (sunrise) is completed.
[0047] Referring to the same example, lighting scheme 801 next indicates that, at 36 minutes
and 8.8 seconds, sunset effect (Effect ID 3) is executed. The duration is set to 0,
indicating that the effect is to be executed as defined by the primitives defined
in Effect ID 3. Scheme 801 next indicates that blackout Effect ID 2003 is immediately
executed upon completion of the sunset effect, thereby causing all lights to be completely
off (regardless of how the sunset effect ended) for 5 seconds. Scheme 801 next indicates
that Effect ID 2001 is again executed to gradually return the lights to their default
state over the time period specified in the duration for that effect, i.e., in this
example over a period of 45 seconds. The Time=0 indicates that Effect ID 2001 is also
to be executed immediately after the preceding effect (blackout) is completed.
[0048] Using the hardware components (lights, wireless networks, media distribution networks,
etc.), primitives, effects, and schemes described above, aspects described herein
provide the architecture for dynamic lighting schemes to be performed in conjunction
with a media program, which will dynamically change the hue and intensity of light
sources within the proximate viewing area surrounding a video in order to enhance
the viewing experience.
[0049] In order to effect dynamic lighting based on the lighting primitives, effects, and
schemes, in illustrative embodiments lighting controller 211 (FIG. 2) may use a ZigBee-compliant
communications protocol to broadcast lighting control information for each respective
light channel. Each bulb's ZigBee transceiver listens to communications received via
one or more ZigBee protocols, e.g., via RF4CE over the IEEE 802.15.4 standard, as
made available by the ZigBee Alliance located in San Ramon, California, and executes
lighting instructions intended for that light source.
[0050] In some examples, before lighting primitives, effects and schemes can be effected,
lighting controller 211 (FIG. 2) first executes an initialization routine to learn
which light sources are located in or associated with each light channel. Many different
initialization processes are possible. Regardless of which method is used, once light
sources are inserted into the appropriate lamps 401-406, in illustrative embodiments
lighting controller 211 learns the addresses of the light source being used for each
light channel.
[0051] According to a first aspect, when each light source is manufactured it may be hardcoded
to be a bulb for a specific light channel. In still further embodiments, 5.1 ("five
point one") is the common name a multi-channel surround sound (e.g., six channel)
system. 5.1 surround sound is the layout used in many cinemas and in home theaters.
The standard employs five full bandwidth channels and one "point one" enhancement
channel. 5.1 is used in digital broadcasts. Similarly, aspects of the present invention
propose extending 5.1 to ambient lighting to enhance the overall cinematic experience.
[0052] In an illustrative 5.1 ambient lighting channel system (e.g., two front, two rear,
one center, and one burst), light sources may be sold in kits of 6 lights bulbs, labeled
appropriately for each channel, or may be sold in kits of 5 bulbs (one for each multicolor
channel), and the burst channel may be sold separately. Other combinations of bulbs
may be packaged together (for example, a kit of the four front and rear bulbs only),
and each bulb may also be sold individually, e.g., so a consumer can replace an individual
bulb that is no longer working In this example, where a light sources' respective
channels are set at manufacturing, e.g., by hardcoding the light channel in the light
source, no further setup is required beyond the user ensuring that the correct bulb
is inserted into its correspondingly located lamp 401-406. Subsequently, when lighting
controller 211 sends commands to a bulb designated as "front right", any light source
designated as a front right bulb may respond to those commands (regardless of where
that light source is actually located). For example, the light source itself on the
outer housing 301 may be labeled front left, front right, rear left, rear right, center,
and/or burst. The user simply needs to place the correctly labeled light source in
a lamp in the correct location. Alternately, the light sources can be dynamically
programmed based on an interactive remote control. For example, a tablet device could
activate each device detected in sequence and the user could simply drag an icon indicative
of the active light source to a location on the tablet such as front left, front right,
rear left, rear right, center, and/or burst.
[0053] According to a another example, each light source 300 may include a plurality of
interactive control elements such as dip switches 323 through which a user can set
each bulb to be on a designated channel. In the example shown in FIG. 3, three dip
switches are provided, allowing each bulb to be designated for one of eight different
channels (e.g., for use in up to a 7.1 system that provides two front, two middle,
two rear, one center, and one burst light channel). More dip switches may be supplied
in systems that support more than 8 channels. In this example, processor 311 may be
configured to detect instructions based on the channel corresponding to the dip switch
settings. This embodiment allows light source to be manufactured for universal use
within a dynamic lighting system as described herein. However, more user input involvement
is required during setup, e.g., confirming dip switch settings. In this aspect, light
sources may still be sold in pre-configured kits. For example, in a kit of 5 light
sources, while the bulbs might otherwise be identical for use in the five multi-color
channels, each bulb might have its dip switches set at the factory to correspond to
a different one of the five channels.
[0054] In yet another aspect, light source 300 may include a pairing button 325. Microprocessor
may be configured, upon detecting that pairing button 325 has been pressed, to enter
a pairing mode. While in the pairing mode, the processor may utilize a remote control
and/or display screen to allow a user to input a code to assign a light source with
a particular location such as front left, front right, rear left, rear right, center,
and/or burst. For example, lighting controller may include instructions that execute
a configuration wizard program. The configuration wizard program may cause device
200 to display various commands on display 206. For example, the wizard may cause
one of the detected light sources to blink along with a display of message stating
"Press the appropriate pairing button front left "1", front right "2", rear left "3",
rear right "4", center "5", and/or burst "6"." The wizard then listens for an identification
message received from user to complete the location pairing with the activated light
source. In this example, when the user subsequently presses the pairing button input
on the remote control, the processor thereafter associates the light source with the
location selected during the pairing. In this manner, the bulb's MAC address (or other
ID) is paired with location in the lighting controller 211. Lighting controller 211
records the ID as being associated with, for example, the front right channel. Similar
steps may be performed for each of the other channels in use.
[0055] In yet another aspect, an RF4CE ZigBee protocol may be used to pair the lighting
controller with the individual bulb devices to be controlled.
[0056] In illustrative embodiments, after lighting controller 211 has been configured (as
necessary) to communicate with the appropriate light source for each light channel
in use, lighting controller 211 may then dynamically alter room lighting based on
the video program being displayed on TV 206. According to a first aspect, lighting
controller 211 may dynamically alter the lighting in real-time based on a color analysis
of the video program being performed or displayed. According to a second aspect, lighting
controller 211 may dynamically alter the lighting based on a predefined lighting scheme
corresponding to the program being performed or displayed. Each example is described
in turn below.
[0057] With reference to FIG. 9, an illustrative method for dynamically altering lighting
based on a real-time analysis of a video program is described. According to this example,
device 200 may be configured with color analysis software stored on nonvolatile memory
205. Alternatively, color analysis software may reside in a lighting control adapter
between device 200 and display 206. In other embodiments, the lighting control is
performed remotely such as at the central location and downloaded along with the video
content (e.g., on-line video games and/or VOD) as lighting instructions. In embodiments
where color analysis software is in computing device 200, the color analysis software,
when executed, in step 901 analyzes the picture being transmitted from device 200
to the TV, e.g., at a rate of 15 times per second, 30 times per second, or some other
desired frequency. By examining the TV picture at a high rate (e.g., 10-60 times per
second), the software in step 903 determines a background color for the lighting in
the viewing area. The background color may correspond to a prominent color of the
video image, a color at a periphery of the video image, or some other color selected
based on the content of the video image. The color analysis software in step 905 may
then send instructions to the light sources in the viewing area, e.g., via ZigBee,
to adjust each light channel to specific colors and intensities as determined in step
903. In step 907, if the video program is not over, the method returns to step 901
to continue analyzing the video picture. If the video program is over, then the method
ends.
[0058] According to an alternative aspect, the lighting analysis may continue until user
input is received indicating user desire to end dynamic ambient lighting, rather than
based on the end of a video program. In yet another alternative, device 200 may query
a user at the end of a video program to determine whether to continue dynamic ambient
lighting or not. Other ways of determining when the device should end ambient lighting
may also or alternatively be used.
[0059] With reference to FIG. 10, an illustrative method for dynamically altering lighting
based on a lighting scheme corresponding to a video program is described. According
to an aspect, a video program may have a predetermining lighting scheme with which
it is associated, e.g., created by an individual, created automatically by video analysis
software such as video segmenting software, and/or a mixture of the two. According
to one aspect, producers of content can insert and send lighting instructions having
one or more predetermined lighting scheme in a video stream (e.g., and MPEG-2 video
stream) which can control the ambient lighting as the video is being viewed, by leveraging
the capabilities described above.
[0060] In this example, in step 1001, a lighting designer generates a lighting scheme based
on a particular video program. The lighting designer may include a human user, using
a studio application or other software, manually selecting effects to be applied within
a video program, and associating those effects with specified times, durations, and/or
transitions. Alternatively, the lighting designer may include automated video analysis
software that automatically segments the video into various segments, detects certain
events within those segments, e.g., flashing police lights, explosions, plays in a
football game, touch downs, etc., and automatically applies applicable effects at
corresponding times and durations in the video program, and optionally also setting
a transition after the lighting effect is completed. The set of lighting effects,
durations, and transitions associated with a particular video program is then saved
as a lighting scheme that can be associated with that particular video program. These
may be associated with the video program as lighting instructions that may be synchronized
with the video either within a digital stream (e.g., MPEG stream) and/or as separate
file time coded with the digital stream.
[0061] In certain examples, because multiple video schemes might be based on the same particular
video program, e.g., created by two different lighting designers, in step 1003 a single
lighting scheme may be selected for transmission with the particular video program.
Next, in illustrative step 1005, the selected lighting scheme may be packaged for
transmission with the particular video program. According to one aspect, packaging
may include saving the video program and lighting scheme as a single file or set of
associated files in a predetermined format for sending over a desired delivery platform.
For example, in one aspect the selected lighting scheme may be intended to be sent
in a synchronized MPEG-2 and/or MPEG-4 stream, e.g., using enhanced binary interchange
format (EBIF), to transmit the ambient lighting scheme in a time-synchronized manner
with the video program. In such an environment, the video program and lighting scheme
may be saved in a format for immediate or near immediate transmissions, with little
or no conversion required before transmission. In other embodiments, the files are
sent as separate files and then time coded to particular segments of the MPEG stream.
[0062] In illustrative step 1007 the packaged file is transmitted to a media consumer device.
Transmission may occur at or initiate from a headend 103 or other media distribution
location. In step 1009 the transmission is received by a media device, e.g., device
200, a set-top box (STB), digital video recorder (DVR), computer server, or any other
desired computing device capable of receiving and decoding the transmission.
[0063] In illustrative step 1011, the media device decodes the transmission into a video
program and a lighting scheme, and forwards each portion to applicable hardware for
further handling. In illustrative step 1013 the media device outputs the video program
portion of the transmission for display on a video display screen, e.g., display 206.
In this illustrative method, the media device outputs the lighting scheme to lighting
controller 211 for control of an ambient lighting system as described herein. Based
on the time-based information in each of the video program and the lighting scheme,
the video and illustrative ambient lighting information may be performed in synchronicity
with each other, thereby rendering the lighting scheme in conjunction with the video
program as intended by the lighting designer.
[0064] The above aspects and information describe only one possible implementation of the
dynamic ambient lighting system and methods thus far described. Many variations and
alternatives are possible that allow a system to remotely control multiple light sources,
using a synchronized transport stream (e.g., an MPEG-2 transport stream) or an asynchronous
transmission as its communications path. A system remote from individual light sources
themselves can thereby control lighting in predefined ways. For example, a movie might
have encoded within its MPEG-2 transport stream, instructions for lighting in the
room where the movie is being viewed. A scene in the movie might have police lights
flashing. A remote command might be sent to specific bulbs in the viewing room to
flash red and blue. The result is an intelligent expansion of the viewing platform.
[0065] In another illustrative embodiment, a lighting controller might query a lighting
scheme database (e.g., over network 109, 210, the Internet, etc.) based on a program
ID of received video content. If a lighting scheme is identified as a result of the
query, the lighting controller (or other applicable component) might download the
lighting scheme from the lighting scheme database for use during playback of the video
content, as described herein. If more than one lighting scheme is identified as a
result of the query, the lighting controller (or another applicable component) might
query the user to determine which lighting scheme should be used, or may pick a lighting
scheme automatically, e.g., based on an author of the lighting scheme, popularity,
user feedback or reviews, or based on other information known about the lighting scheme.
Once selected and downloaded, the lighting controller uses the selected lighting scheme
to control ambient lighting during playback of the video content, as described herein.
[0066] According to one example, instead of the format shown in FIG. 5, a primitive may
have the type definition illustrated in FIG. 11. Based on the structure shown in FIG.
11 for the primitive defined as
lightControl, the
command element may have as its most significant bit a flag enabling/disabling raw mode.
When set to 0, then the following 4 bytes are composed of white, red, blue, and greed,
each having 8 bits (32 bits in total) in which to convey the "raw mode" intensity
value for each LED strand. When set to 1, then the following 4 bytes are used to identify
a specific, agreed upon, lighting effect (or combination of lighting effects, as a
sort of lighting macro). The range of integer values which can be stored in 32 bits,
is 4,294,967,295. Thus there are over 4 billion possible lighting effect commands
which could be predefined, optionally for each light source. The
bulbNbr attribute provides 4 bits (maximum of 16 possibilities) to define the light source
for which the command is intended. Thus any ambient lighting system could be used
with up to 16 individual light channels. The
msDuration attribute defines the number of milliseconds to apply the command, with a maximum
of 65,536 milliseconds (just over 1 minute, 5 seconds) based on the 16 bit value of
that field.
[0067] According to another example, the synchronized lighting scheme data, upon encapsulation
within the MPEG transport stream, may be encapsulated into descriptor elements as
"proprietary data" as that term is utilized in the MPEG standards. In one embodiment,
the lighting instructions may be packaged as proprietary data and identified within
a Program Map Table of the client device or gateway. This meta data can be utilized
by the computing device 200 to control lighting and also by the program guide to show
programs which are ambient lighting enabled. The computer device 200 may be configured
to check the descriptor elements including the proprietary data in order recognizes
that the type of proprietary data is a type which includes lighting instructions.
For example, a type from within the PMT may be used, and the binary stream, synchronized
to the concurrently received video and audio stream. Upon reading the lighting instructions,
the computing device may be configured to broadcast data associated with the lighting
instructions to 802.15.4 radio receivers embedded within each light channel's light
source. According to this aspect, each light source may be configured with a specific
identification. Using the field within the
lightControl packet structure to determine whether the lighting control message is meant for it,
a light source's processor determines whether that light source should implement the
lighting instruction it has received. As discussed above, a lighting instruction might
be a simple set of intensity values for each LED strand, e.g., a primitive, or alternatively
the lighting instruction could be a more complex lighting effect, perhaps lasting
many seconds.
[0068] According to other aspects, ambient lighting may be used to signify external events
in or around the viewing area. For example, when a loud video program is playing,
it may be difficult for a viewer to hear the telephone ring. Currently, media distribution
systems tie in to the telephone line and may display caller ID information on a television
or other display apparatus. According to an inventive aspect herein, the lighting
controller may be configured to perform a specific lighting effect or scheme when
a telephone rings or upon the occurrence of other predefined events not associated
with the video program being watched. For example, when the phone rings, the lighting
controller may cause the ambient lights to perform a strobe effect. In another example,
when a doorbell is rung the lighting controller may cause the ambient lights to repeatedly
transition from dim to bright and vice versa, or some other predefined effect. The
processor 200 may also be configured to act as an alarm clock and have the lighting
activated responsive to an alarm event such as a predetermine wakeup hour. Further,
the lighting may be responsive to other events such as the laundry ending, the stove
timer, the dish washer, etc. Predetermined effects may include any desired light channel(s),
colors, strobes, durations, patterns, etc. The auxiliary devices such as laundry may
be tied in via network 210.
[0069] According to some aspects described herein, a set-top-box or other media device may
be configured to output the lighting scheme portion of the transport stream via USB
or HDMI (e.g., over the consumer electronics control (CEC) data path) to an external
device that includes the lighting controller and/or associated wireless transmitter.
This configuration allows for set top boxes or other devices currently available,
which do not have the requisite hardware installed for use in the described ambient
lighting control system(s) to be retrofitted for such use. In another variation, a
Digital to Analog (DTA) adapter may be used to receive streamed (e.g., via MPEG-2)
lighting instructions. The latest generation of these devices includes RF4CE transmitter
capability, thus there would be no need for an external adapter. The DTA adapter,
in such an embodiment, may also transmit the lighting instructions to the light sources
using the RF4CE transmitter.
[0070] It will thus be appreciated and understood that modifications may be made without
departing from the true spirit and scope of the present disclosure. The description
is thus to be regarded as illustrative instead of restrictive on the present disclosure.
1. A light source, comprising:
a plurality of strands of light emitting diodes (LEDs), each LED strand being a different
color;
a wireless receiver configured to receive an ambient lighting instruction; and
a microprocessor configured to control each of the plurality of strands, wherein by
actuating one or more of the plurality of LED strands at one or more intensity levels
the microcontroller can create substantially any color of light in a visual color
spectrum, wherein the microprocessor is configured to receive the ambient lighting
instruction from the wireless receiver, and wherein the microprocessor is configured
to selectively actuate each of the plurality of LED strands to produce a resulting
color and intensity of light based on the ambient lighting instruction.
2. The light source of claim 1, wherein the plurality of LED strands comprise a red strand,
a blue strand, a green strand, and a white strand.
3. The light source of claims 1 or 2, further comprising a predetermined identifier identifying
the light source as being associated with one of a plurality of light channels in
an ambient lighting system, wherein the microprocessor is configured to execute only
received ambient lighting instructions that are associated with the one of the plurality
of light channels identified by the predetermined identifier.
4. The light source of claim 3, wherein the plurality of light channels comprise a center
channel, a front left channel, a front right channel, a rear left channel, a rear
right channel, and a burst channel.
5. The light source of any of claims 1-4, further comprising a memory readable by the
microprocessor,
wherein the microprocessor is configured, when receiving a first type of ambient lighting
instruction, to actuate each of the plurality of LED strands based on intensity data
received for each of the plurality of LED strands in the first type of ambient lighting
instruction, and
wherein the microprocessor is configured, when receiving a second type of ambient
lighting instruction, to actuate each of the plurality of LED strands based on one
of a plurality of predefined lighting effects stored in the memory and identified
in the second type of lighting instruction.
6. The light source of claim 5, wherein the predefined lighting effect comprises a sequential
set of raw intensity values for each of the plurality of LED strands.
7. A method comprising:
receiving media program data at a media gateway device, said media program data including
time-synchronized video data and lighting data;
outputting, based on the video data, video content for display on a display screen
operatively connected to the media gateway device;
outputting, based on the lighting data, ambient lighting instructions time-synchronized
with the video content, said lighting instructions defining sequenced ambient lighting
effects for a plurality of light channels, wherein each light channel is associated
with a light source in a predefined location relative to a location of the display
screen.
8. The method of claim 7, wherein the lighting data identifies a timed sequence of lighting
effects, and the ambient lighting instructions define light intensity values for each
light source based on the lighting effects.
9. The method of claims 7 or 8, wherein one or more of the light channels comprises a
multi-color light source, wherein each ambient lighting instruction corresponding
to a same channel as the multi-color light source defines a light intensity value
for each of a red, blue and green light emitting diode (LED) strand in the multi-color
light source.
10. The method of claim 8 or 9, wherein each lighting effect defines a corresponding set
of sequenced lighting instructions that, when executed by the plurality of light sources,
creates a visual light pattern among the plurality of light sources, said method further
comprising:
retrieving from a lighting effect database a set of lighting instructions corresponding
to each identified lighting effect received in the media program data; and
outputting the corresponding set of lighting instructions for transmission to the
plurality of light sources.
11. The method of any of claims 7-10, wherein the lighting data identifies a timed sequence
of lighting effects, and the ambient lighting instructions each include identifying
information for one or more of the time sequenced lighting effects.
12. The method of any of claims 7-11, wherein the plurality of light channels comprise
a front right channel, a front left channel, a rear right channel, a rear left channel,
a center channel and a light burst channel.
13. An apparatus, comprising:
a processor;
a wireless transmitter; and
computer readable instructions that, when executed by the processor, configure the
apparatus to control ambient lighting by:
determining a lighting instruction for a light source associated with one of a plurality
of light channels, wherein each light channel is associated with a location,
generating a lighting control message, said lighting control message having a first
data field identifying the one of the plurality of light channels, and having a second
data field storing the lighting instruction, and
transmitting the lighting control message via the wireless transmitter to the light
source associated with the one of the plurality of light channels.
14. The apparatus of claim 13, wherein the second data field comprises a plurality of
discrete sub-fields, wherein each of the plurality of discrete sub-fields stores an
intensity value for a different one of a plurality of colored lights associated with
the light channel identified in the first data field, wherein the plurality of discrete
sub-fields comprises four sub-fields corresponding one each to a red light emitting
diode (LED) strand, a blue LED strand, a green LED strand, and a white LED strand
housed within the light source associated with the light channel identified in the
first data field, and
wherein the lighting control message comprises a third data field identifying a period
of time during which lighting instruction is maintained by the light source associated
with the light channel identified in the first data field.
15. The apparatus of claim 13 or 14, wherein the second data field stores a lighting effect
identifier,
wherein said lighting effect identifier is not directly usable to adjust an output
of the light source associated with the light channel identified by the first data
field,
wherein said lighting effect identifier identifies one of a plurality of lighting
effects stored in a memory of the light source associated with the light channel identified
in the first data field, and
wherein each of the plurality of lighting effects defines a plurality of time-sequenced
lighting instructions directly usable to adjust an output of the light source associated
with the light channel identified by the first data field.