BACKGROUND OF THE INVENTION
Field of the Invention
[0001] The present invention relates to an optical encoder that optically reads a periodic
pattern provided on a scale to output a signal corresponding to the periodic pattern.
Description of the Related Art
[0002] Optical encoders are constituted by a scale provided with a periodic pattern and
a sensor movable relatively with the scale. The sensor as a light receiver photoelectrically
converts a detection light emitted from a light source and then passing through optical
portions that reflects or transmits the detection light to output a signal (hereinafter
referred to as "a periodic signal") having a change period corresponding to the periodic
pattern. Use of the periodic signal enables detection of a relative movement amount
(or a relative position) of the scale and the sensor and detection of an absolute
position of one of the scale and the sensor. Furthermore, interpolation of the periodic
signal enables position detection with a finer resolution than a period of the periodic
pattern. The period means a spatial period or a cycle length.
[0003] However, the periodic signal contains higher-order components that are integral multiple
periodic components of the period of the periodic pattern, which makes it impossible
to ignore errors caused by the high-order components when number of interpolation
is increased. Japanese Patent Laid-Open No.
03-048122 discloses an optical encoder that reduces higher-order components included in a periodic
signal. In this encoder, a reference pattern and another pattern having a phase shifted
from that of the reference pattern by 1/6 are provided mutually adjacently in a direction
orthogonal to a direction (hereinafter referred to as "a period direction") along
the period of the periodic pattern. The encoder removes a third-order component as
the higher-order component by causing a light receiver to collectively receive lights
transmitted through these two patterns.
[0004] However, in general optical encoders, the scale and the sensor are attached to separate
members constituting an apparatus in which the encoder is provided, and thus mechanical
backlash of these members may relatively displace the scale and the sensor in a direction
orthogonal to the period direction of the periodic pattern. In the encoder disclosed
in Japanese Patent Laid-Open No.
03-048122, a relative displacement of the scale and the light receiver in the direction orthogonal
to the period direction changes a ratio of the above-mentioned two patterns in a detection
area by the light receiver on the scale. Such change of the ratio of the two patterns
results in change of a phase of a fundamental wave of the periodic signal or decrease
of the higher-order component removal effect, which makes it impossible to position
detection with good accuracy.
SUMMARY OF THE INVENTION
[0005] The present invention provides an optical encoder capable of performing position
detection with good accuracy even if a scale and a sensor are relatively displaced
in a direction orthogonal to a period direction of a periodic pattern provided on
the scale.
[0006] The present invention in its first aspect provides an optical encoder as specified
in claims 1 to 6.
[0007] The present invention in its second aspect provides an optical apparatus as specified
in claim 7.
[0008] Further features and aspects of the present invention will become apparent from the
following description of exemplary embodiments with reference to the attached drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009] FIG. 1 is a perspective view of an optical encoder that is Embodiment 1 of the present
invention.
[0010] FIG. 2 shows a light intensity distribution characteristic of a light source in Embodiment
1.
[0011] FIG. 3 shows a periodic pattern provided on a scale in Embodiment 1.
[0012] FIG. 4 shows a structure of a light receiver in Embodiment 1.
[0013] FIG. 5 shows a relative positional relationship among the light source, the scale
and the light receiver in Embodiment 1.
[0014] FIG. 6 shows anther relative positional relationship among the light source the scale
and the light receiver in Embodiment 1.
[0015] FIG. 7 shows a periodic pattern provided on a scale of an optical encoder that is
Embodiment 2 of the present invention.
[0016] FIG. 8 is a perspective view of an optical encoder that is Embodiment 3 of the present
invention.
[0017] FIG. 9 shows a periodic pattern provided on a scale of an optical encoder that is
Embodiment 4 of the present invention.
[0018] FIG. 10 shows a periodic pattern provided on a scale of an optical encoder that is
Embodiment 4 of the present invention.
[0019] FIG. 11 shows a periodic pattern provided on a scale of an optical encoder that is
Embodiment 5 of the present invention.
[0020] FIG. 12 shows part of the periodic pattern in Embodiment 5.
[0021] FIG. 13 shows a periodic pattern provided on a scale of an optical encoder that is
Embodiment 6 of the present invention.
[0022] FIG. 14 shows a configuration of an image pickup apparatus that is Embodiment 7 of
the present invention.
DESCRIPTION OF THE EMBODIMENTS
[0023] Exemplary embodiments of the present invention will hereinafter be described with
reference to the accompanying drawings.
[Embodiment 1]
[0024] FIG. 1 shows a configuration of an optical encoder that is a first embodiment (Embodiment
1) of the present invention. The encoder of this embodiment is a reflective optical
linear encoder that is constituted by a light source 1, a scale 2, a light receiver
3 and a signal processor 4 and that detects a relative movement amount (or a relative
position) of the scale 2 and the light receiver 3 or an absolute position of one of
the scale 2 and the light receiver 3. In this embodiment, the light source 1 and the
light receiver 3 are provided integrally in the sensor 5. Although this embodiment
describes the linear encoder, alternative embodiments of the present invention include
a rotary encoder configured similarly to the encoder of this embodiment.
[0025] The scale 2 is provided with, though described in detail later, a periodic pattern
in which an optical portion (or a reflective portion) reflecting light and a non-optical
portion (or a non-reflective portion) are alternately formed in a position detection
direction shown in FIG. 1. The position detection direction corresponds to a first
direction, and can be also said as a period direction of the periodic pattern. Of
directions along the periodic pattern, a direction orthogonal to the position detection
direction is hereinafter referred to as a Y direction that corresponds to a second
direction.
[0026] The light receiver 3 is relatively movable with the scale 2 in the position detection
direction. The light receiver 3 includes a photoelectric conversion element (or a
light receiving element), such as a photo diode, which photoelectrically converts
a detection light emitted from the light source 1 and then passing through (in other
words, reflected by the reflective portion) to output a signal having a change period
corresponding to a period of the periodic pattern. The signal output from the light
receiver 3 is hereinafter referred to as "a periodic signal"
[0027] The light source 1 is constituted by a light emitting element such as a current confinement
structure light emitting diode (LED), and has a rectangular light emitting surface.
The light source 1 (that is, the light emitting surface) is disposed such that its
long side extends in the Y direction, and has a width of w in the Y direction. The
light source 1 has a light emitting characteristic that provides an approximately
rectangular light intensity distribution in the Y direction as shown in FIG. 2. Other
light emitting elements than the current confinement structure LED may be used as
the light source 1 as long as they have a light emitting characteristic similar to
that shown in FIG. 2.
[0028] FIG. 3 shows a detailed shape of the periodic pattern provided on the scale 2. Black
portions in FIG. 3 correspond to the optical portions, and are hereinafter described
as "reflective portions". On the other hand, white portions in FIG. 3 correspond to
the non-optical part, and are hereinafter described as "non-reflective portions".
[0029] The periodic pattern periodically includes the reflective portion with a period of
λ (first period) in the position detection direction. In other words, the reflective
portions are periodically arranged with the non-reflective portion therebetween with
the period of λ in the position detection direction. Each reflective portion has,
in the Y direction with a period of t (second period), a pattern in which plural (four
in this embodiment) pattern portions mutually adjacent in the Y direction are mutually
shifted in the position detection direction. Specifically, the pattern includes, in
the period of t, one pattern portion e as a reference portion in the position detection
direction and pattern portions f, g and h as shifted portions respectively shifted
with respect to the reference portion e by 1/6, 4/15 and 1/10 of the period λ of the
reflective portion. In each reflective portion, this pattern in the period t is repeatedly
formed multiple periods in the Y direction. In other words, the pattern portions e
to h are cyclically provided such that the shifted portion h in one period t is adjacent
to the reference portion e in a next period.
[0030] Such a pattern in the Y direction is provided for a purpose of mainly reducing higher-order
components included in the periodic signal output from the light receiver 3. The pattern
shown in FIG. 3 has a shift amount of 1/6 of the period λ between the shifted portions
e and f, and also has the same shift amount of 1/6 of the period λ between the shifted
portions g and h, which enables reduction of a third-order (higher-order) component.
Moreover, the pattern shown in FIG. 3 has a shift amount of 1/10 of the period λ between
the reference portion e and the shifted portion h, and has the same shift amount of
1/10 of the period h between the shifted portions f and g, which enables reduction
of a fifth order (higher-order) component.
[0031] The light receiver 3 has a configuration in which, as shown in FIG. 4, four photo
diodes (PDs) are arranged in the position detection direction: each PD has a rectangular
shape with a width of v in the Y direction and a width of λ/2 in the position detection
direction. Each PD converts a sum total amount of the detection light entering thereto
to an electric signal. In this embodiment, a ratio a:b of a distance from the light
source 1 to the periodic pattern on the scale 2 and a distance from the periodic pattern
to the light receiver 3 is as follows:

[0032] Therefore, an optical image of the periodic pattern projected on the light receiver
3 has a size twice the periodic pattern on the scale 2.
[0033] Accordingly, four electric signals provided from the four PDs when the scale 2 and
the light receiver 3 are relatively moved in the position detection direction are
a quasi sine wave signal with a reference phase (reference phase signal) and three
quasi sine wave signals (phase shifted signals) respectively having phase shifts of
π/2, π and 3n/2 with respect to the reference phase signal. Taking difference between
the reference phase signal and the phase shifted signal whose phase is shifted by
n with respect to the reference phase and difference between the two phase shifted
signals whose phases are shifted by n/2 and 3n/2 with respect to the reference phase
enables production of two phase quasi sine wave signals whose phases are shifted with
respect to each other by n/2.
[0034] The light receiver 3 outputs, as the periodic signal, the two phase quasi sine wave
signals (hereinafter referred to as "two phase signals") thus produced. The light
receiver 3 outputs one period signal with a relative movement of the scale 2 and the
light receiver 3 by a distance of λ in the position detection direction.
[0035] The signal processor 4 counts periods of the two phase signals output from the light
receiver 3, and performs arc tangent calculation on the two phase signals to calculate
a phase of the two phase signals in one period in a range from 0 to 2n. Then, the
signal processor 4 calculates, from the counted number of periods and the phase in
one period, the relative movement amount.
[0036] The relative movement amount d is shown by the following expression (1) where c represents
the counted number of periods, p represents the phase in one period, and λ represents
the period of the reflective portions of the periodic pattern:

[0037] This embodiment has a configuration in which an optical path of the detection light
reaching any one point on the light receiver 3 from the light source 1 has a width
of nt (n represents a natural number) on the periodic pattern in the Y direction.
This configuration keeps a component to be integrated constant even if the light source
1 (and the light receiver 3) and the scale 2 are relatively displaced in the Y direction,
which makes it possible to suppress phase change of a fundamental wave of the two
phase signals and reduction of a higher-order component removal effect. In this embodiment
having such a configuration, the width w of the light source 1 in the Y direction
satisfies a condition shown by the following expression (2):

(w=2nt when a:b=1:1)
[0038] This condition shown by the expression (2) is also satisfied in other embodiment
described later.
[0039] Description will be made of the condition shown by the expression (2) with reference
to FIG. 5. FIG. 5 shows a relative positional relationship among the light source
1, the periodic pattern on the scale 2 and the light receiver 3. A vertical direction
in FIG. 5 corresponds to the Y direction. A triangle in FIG. 5 shows an optical path
of the detection light that reaches a certain point on the light receiver 3 from the
entire light source 1 (width w) in the Y direction. The ratio of the distance from
the light source 1 to the periodic pattern and the distance from the periodic pattern
to the light receiver 3 is a:b (for example, 1:1) as mentioned above. The triangle
whose base extending in the Y direction has a length of w corresponding to the width
of the light source 1 is similar to a triangle whose base has a length of nt corresponding
to the width of the periodic pattern, which provides the expression (2).
[0040] In addition, in this embodiment, it is desirable that an optical path of the detection
light reaching the light receiver 3 from a certain point on the light source 1 may
have a width of mt (m is a natural number) on the periodic pattern of the scale 2.
Such a configuration projects a periodic pattern image (optical image) corresponding
to just m periods onto the light receiver 3 in the y direction. Therefore, even if
the scale 2 and the light receiver 3 are relatively displaced, the component to be
integrated is kept constant, which makes it possible to suppress the phase change
of the fundamental wave and the reduction of the higher-order component removal effect.
The width v of the light receiver 3 in the Y direction is expressed by the following
expression where m represents a natural number:

(v=2mt when a:b=1:1)
[0041] It is desirable that the width v satisfy the condition shown by the expression (3)
in this embodiment and other embodiment described later.
[0042] Description will be made of the condition of the expression (3) with reference to
FIG .6. FIG. 6 shows a relative positional relationship among the light source 1,
the periodic pattern on the scale 2 and the light receiver 3. A vertical direction
in FIG. 6 corresponds to the Y direction. A triangle in FIG. 6 shows an optical path
of the detection light that reaches the entire light receiver 3 (width v) in the Y
direction from a certain point on the light source 1. The ratio of the distance from
the light source 1 to the periodic pattern and the distance from the periodic pattern
to the light receiver 3 is a:b (for example, 1:1) as mentioned above. The triangle
whose base extending in the Y direction has a length of v corresponding to the width
of the light receiver 3 is similar to a triangle whose base has a length of mt corresponding
to the width of the periodic pattern, which provides the expression (3).
[0043] In the configuration of this embodiment, if the light source 1 has an uneven light
intensity distribution in the Y direction, decrease of the period t or increase of
the natural number n can suppress errors.
[0044] Although this embodiment described the case where the periodic pattern includes,
in one period t in the Y direction, the four pattern portions e to h mutually shifted
in the position detection direction, the number of pattern portions mutually shifted
in one period t is not limited to four, and any other plural number may be employed.
[0045] Moreover, although this embodiment described the case where the light receiver 3
is constituted by the four PDs, the number of PDs constituting the light receiver
3 is not limited to four. For example, the light receiver 3 may be constituted by
two PDs respectively output the reference phase signal and a phase shifted signal
whose phase is shifted by n/2 with respect to that of the reference phase signal,
or may be constituted by three PDs respectively output the reference phase signal
and phase shifted signals whose phases are shifted by 2n/3 and 4n/3 with respect to
that of the reference phase signal.
[0046] In addition, the light receiver 3 may be configured by arranging plural groups of
two to four PDs. Using such plural PD groups enables reduction of influence of noise
as compared with the case of using only one PD group, and enables suppression of errors
due to a period error of the periodic pattern or due to scarring or dirt of the scale
3.
Furthermore, the optical portion on the scale 2 is not limited to the reflective portion,
and a transmissive portion transmitting light may be used as the optical portion as
described later in Embodiment 3. The also applies to other embodiment (Embodiments
2, 4, 5 and 6) described later.
[Embodiment 2]
[0047] FIG. 7 shows a periodic pattern provided on a scale of an optical encoder that is
a second embodiment (Embodiment 2) of the present invention. Although Embodiment 1
described the shape of the periodic pattern particularly corresponding to the purpose
of reducing the higher-order components, this embodiment will describe a shape of
the periodic pattern corresponding to a different purpose from that of Embodiment
1. A configuration of the encoder of this embodiment is same as that of the encoder
of Embodiment 1 shown in FIG. 1 except for the periodic pattern described later.
[0048] The periodic pattern in this embodiment also includes an optical portion (or a reflective
portion) reflecting light and a non-optical portion (or a non-reflective portion)
that are alternately formed in a position detection direction (first direction) shown
in FIG. 7. The optical portion is formed in a bar shape (thin rectangular shape) extending
in a Y direction (second direction). In this embodiment, a proportion of the optical
portion and the non-optical portion in the Y direction is changed in the position
detection direction. In other words, lengths of the optical portion and non-optical
portion in the Y direction are changed in the position detection direction. Moreover,
at any position in the position detection direction, a pattern constituted by the
optical portion and the non-optical portion has a period of t in the Y direction.
Projecting a detection light from a light source 1 onto this periodic pattern to cause
a light receiver 3 to receive the detection light reflected by the optical portions
changes amplitude of signals from the light receiver 3, which enables detection of
a relative movement amount of the scale 2 and the light receiver 3 by using the amplitude.
[0049] This embodiment can keep a total received light amount constant at any position in
the position detection direction, and therefore can suppress change of the amplitude
of the signal output from the light receiver 3 even if the scale 2 and the light receiver
3 (light source 1) are relatively displaced. Thus, regardless of the purpose, the
periodic pattern including the periodically formed pattern in the Y direction can
be used.
[Embodiment 3]
[0050] FIG. 8 shows a configuration of an optical encoder that is a third embodiment (Embodiment
3) of the present invention. The encoder of this embodiment is a transmissive optical
linear encoder that is constituted by a light source 1, a scale 2, a light receiver
3 and a signal processor 4 and that detects a relative movement amount (or a relative
position) of the scale 2 and the light receiver 3 or an absolute position of one of
the scale 2 and the light receiver 3. Although this embodiment describes the linear
encoder, alternative embodiments of the present invention include a rotary encoder
configured similarly to the encoder of this embodiment.
[0051] In this embodiment, the scale 2 is provided with a periodic pattern in which an optical
portion (or a transmissive portion) transmitting light and a non-optical portion (or
a non-transmissive portion) are alternately formed in a position detection direction
(first direction) shown in FIG. 8. Of directions along the periodic pattern, a direction
orthogonal to the position detection direction is referred to as a Y direction (second
direction), as well as in Embodiment 1. The periodic pattern in this embodiment has
a same shape as that shown in FIG. 3 in Embodiment 1.
[0052] The light receiver 3 is relatively movable with the scale 2 in the position detection
direction. The light receiver 3 photoelectrically converts a detection light emitted
from the light source 1 disposed on a side opposite to the light receiver 3 with respect
to the scale 2 and then passing through the optical portion (in other words, transmitted
through the transmissive portion) to output a periodic signal having a change period
corresponding to a period of the periodic pattern.
[0053] As mentioned in Embodiment 1, this embodiment also satisfies the condition of the
expression (2) described in Embodiment 1. Moreover, it is desirable that this embodiment
satisfy the condition of the expression (3) described in Embodiment 1.
[0054] Also in this embodiment, as well as in Embodiment 1, even if the light source 1,
the scale 2 and the light receiver 3 are relatively displaced in the Y direction,
the relative positional relationships shown in FIGS. 5 and 6 are maintained. Therefore,
this embodiment provides same effects as those of Embodiment 1.
[Embodiment 4]
[0055] FIG. 9 shows a periodic pattern provided on a scale of an optical encoder that is
a fourth embodiment (Embodiment 4) of the present invention. This embodiment has,
as well as Embodiment 1, a shape of the periodic pattern corresponding to the purpose
of reducing the higher-order components. A configuration of the encoder of this embodiment
is same as that of the encoder of Embodiment 1 shown in FIG. 1 except for the periodic
pattern described later.
[0056] The periodic pattern in this embodiment also includes an optical portion (or a reflective
portion) reflecting light and a non-optical portion (or a non-reflective portion)
that are alternately formed in a position detection direction (first direction) shown
in FIG. 9. In this embodiment, a proportion (duty ratio) of the optical portion and
the non-optical portion in the position detection direction is changed in a Y direction
(second direction). The proportion can be arbitrarily decided according to a target
higher-order component to be reduced. For example, in order to reduce the third- and
fifth-order components, as well as in Embodiment 1, it is desirable that the proportion
of the optical portion to the non-optical portion in the position detection direction
be changed to 7λ/30, 13λ/30, 17λ/30 and 23λ/30 as shown in FIG. 10.
[0057] Although FIG. 10 shows a pattern whose proportion (duty ratio) of the optical portion
and the non-optical portion is 1:1, changing this ratio makes it possible to arbitrarily
change the proportion.
[0058] Also in this embodiment, as well as in Embodiments 1 to 3, the pattern constituted
by the optical portion and the non-optical portion is formed with a period of t in
the Y direction. Thus, even if the light source 1, the scale 2 and the light receiver
3 are relatively displaced in the Y direction, this embodiment provides same effects
as those in Embodiment 1.
[Embodiment 5]
[0059] FIG. 11 shows a periodic pattern provided on a scale of an optical encoder that is
a fifth embodiment of the present invention. This embodiment has, as well as Embodiments
1 and 4, a shape of the periodic pattern corresponding to the purpose of reducing
the higher-order components. A configuration of the encoder of this embodiment is
same as that of the encoder of Embodiment 1 shown in FIG. 1 except for the periodic
pattern described later.
[0060] The periodic pattern in this embodiment also includes an optical portion (or a reflective
portion) reflecting light and a non-optical portion (or a non-reflective portion)
that are alternately formed in a position detection direction (first direction) shown
in FIG. 11. Furthermore, also in a Y direction (second direction), a pattern constituted
by the optical portion and the non-optical portion is periodically changed.
[0061] The higher-order components included in signals produced by photoelectric conversion
in a light receiver 3 are changed according to combination of a light intensity distribution
of a light source 1, a shape of the periodic pattern of the scale 2, a shape of the
light receiver 3, arrangement and characteristics of light receiving elements constituting
the light receiver 3, and a distance relationship among the light source 1, the scale
2 and the light receiver 3. Thus, this embodiment periodically provides a pattern
shown in FIG. 12 to reduce second-, third-, fifth- and seventh-order components when
a distance from the light source 1 to the scale 2 and a distance from the scale 2
to the light receiver 3 are about 1mm.
[0062] Also in this embodiment, as well as in Embodiments 1 to 4, the pattern constituted
by the optical portion and the non-optical portion is formed with a period of t in
the Y direction. Thus, even if the light source 1, the scale 2 and the light receiver
3 are relatively displaced in the Y direction, this embodiment provides same effects
as those in Embodiment 1.
[Embodiment 6]
[0063] FIG. 13 shows a periodic pattern provided on a scale of an optical encoder that is
a sixth embodiment of the present invention. This embodiment has a multiple periodic
pattern in which plural patterns having mutually different periods and respectively
having shapes corresponding to a purpose of reducing higher-order components are multiply
formed in a Y direction (second direction). A configuration of the encoder of this
embodiment is same as that of the encoder of Embodiment 1 shown in FIG. 1 except for
the periodic pattern described later.
[0064] Each pattern constituting the multiple periodic pattern in this embodiment also includes
an optical portion (or a reflective portion) reflecting light and a non-optical portion
(or a non-reflective portion) that are alternately formed in a position detection
direction (first direction) shown in FIG. 13. In this embodiment, a signal processor
4 can detect a signal having a change period corresponding to a period of a specific
one (in other words, arbitrarily selected one) of the plural patterns constituting
the multiple periodic pattern.
[0065] Also in this embodiment, as well as in Embodiments 1 to 5, the pattern constituted
by the optical portion and the non-optical portion is formed with a period of t in
the Y direction. Thus, even if the light source 1, the scale 2 and the light receiver
3 are relatively displaced in the Y direction, this embodiment provides same effects
as those in Embodiment 1.
[Embodiment 7]
[0066] FIG. 14 shows, as an example of apparatus including the optical encoder described
in Embodiment 1, an image pickup apparatus (optical apparatus) such as a digital still
camera or a video camera. This image pickup apparatus uses the optical encoder for
detecting position of a movable lens in a lens barrel of the image pickup apparatus.
In this embodiment, any one of the encoders described in Embodiments 2 to 6 may be
used in place of the optical encoder of Embodiment 1.
[0067] In FIG. 14, reference numeral 2 denotes a scale, 5 a sensor (a light source 1 and
a light receiver 3), and 4 a signal processor. The scale 2, the sensor 5 and the signal
processor 4 constitute the optical encoder. The scale 2 is attached to an inner surface
of a cam ring 50 as a movable cylindrical member rotatable about an optical axis of
an image capturing optical system (described later) housed in the lens barrel. The
cam ring 50 is driven to be rotated by an actuator (not shown).
[0068] The lens barrel houses thereinside the image capturing optical system 51. The image
capturing optical system 51 includes the above-mentioned movable lens, such as a magnification-varying
lens or a focus lens, movable in a direction in which the optical axis extends. The
movable lens is moved by a cam formed in the cam ring 50 when the cam ring 50 is rotated.
[0069] Reference numeral 55 denotes a CPU that controls an entire system of the image pickup
apparatus. Reference numeral 56 denotes an image sensor (image pickup element) that
photoelectrically converts an object image formed by the image capturing optical system
51. The image sensor 56 is constituted by a photoelectric conversion element such
as a CCD sensor or a CMOS sensor.
[0070] When the cam ring 50 is rotated for moving the movable lens 52, the encoder detects
rotation position of the cam ring 50 (that is, position of the movable lens in the
optical axis direction) to output position information on the rotation position to
the CPU 24.
[0071] The CPU 24 drives the actuator to rotate the cam ring 50 on a basis of the position
information to move the movable lens 52 to its target position.
[0072] The encoders described in Embodiments 1 to 6 can be used not only in the above-described
image pickup apparatus for the detection of the movable lens, but also for position
detection of a print head or a paper feed roller provided in a printer (optical apparatus),
rotational position detection of a photosensitive drum of a copier (optical apparatus),
position detection of a robot arm and position detection in other various apparatuses.
[0073] Each embodiment described above is merely a typical example, and it various transforms
and it can change for each embodiment before the execution of the present invention.
[0074] While the present invention has been described with reference to exemplary embodiments,
it is to be understood that the invention is not limited to the disclosed exemplary
embodiments. The scope of the following claims is to be accorded the broadest interpretation
so as to encompass all such modifications and equivalent structures and functions.
The optical encoder includes a scale (2) provided with a periodic pattern in which
an optical portion is periodically formed with a first period in a first direction,
and a light receiver (3) movable relatively with the scale in the first direction
and photoelectrically converts a detection light from a light source (1) and then
passing through the optical portions. The optical portion periodically has a pattern,
which is formed by pattern portions mutually adjacent in a second direction orthogonal
to the first direction and mutually shifted in the first direction, in the second
direction with a second period of t. A width w of the light source in the second direction
satisfies w=(a+b)/b·nt where n represents a natural number, and a:b represents a ratio
of a distance from the light source to the periodic pattern and a distance from the
periodic pattern to the light receiver.
1. An optical encoder comprising:
a scale (2) provided with a periodic pattern in which an optical portion reflecting
or transmitting light is periodically formed with a first period in a first direction;
and
a light receiver (3) movable relatively with the scale in the first direction and
configured to photoelectrically convert a detection light emitted from a light source
(1) and then passing through the optical portions to output a signal having a change
period corresponding to the first period,
characterized in that, when a direction orthogonal to the first direction in the periodic pattern is defined
as a second direction, the optical portion periodically has a pattern, which is formed
pattern portions mutually adjacent in the second direction and mutually shifted in
the first direction, in the second direction with a second period of t, and
a width w of the light source in the second direction satisfies the following condition:

where n represents a natural number, and a:b represents a ratio of a distance from
the light source (1) to the periodic pattern and a distance from the periodic pattern
to the light receiver (3).
2. An optical encoder comprising:
a scale (2) provided with a periodic pattern in which an optical portion reflecting
or transmitting light is periodically formed with a first period in a first direction;
and
a light receiver (3) movable relatively with the scale in the first direction and
configured to photoelectrically convert a detection light emitted from a light source
(1) and then passing through the optical portions to output a signal having a change
period corresponding to the first period,
characterized in that, when a direction orthogonal to the first direction in the periodic pattern is defined
as a second direction, a proportion of the optical portion and a non-optical portion
of the periodic pattern in the second direction is changed in the first direction,
and the periodic pattern periodically includes a pattern, which is formed by the optical
portion and the non-optical portion, in the second direction with a second period
of t, and
a width w of the light source in the second direction satisfies the following condition:

where n represents a natural number, and a:b represents a ratio of a distance from
the light source (1) to the periodic pattern and a distance from the periodic pattern
to the light receiver (3).
3. An optical encoder comprising:
a scale (2) provided with a periodic pattern in which an optical portion reflecting
or transmitting light is periodically formed with a first period in a first direction;
and
a light receiver (3) movable relatively with the scale in the first direction and
configured to photoelectrically convert a detection light emitted from a light source
(1) and then passing through the optical portions to output a signal having a change
period corresponding to the first period,
characterized in that, when a direction orthogonal to the first direction in the periodic pattern is defined
as a second direction, a proportion of the optical portion and a non-optical portion
of the periodic pattern in the first direction is changed in the second direction,
and the periodic pattern periodically includes a pattern, which is formed by the optical
portion and the non-optical portion, in the second direction with a second period
of t, and
a width w of the light source in the second direction satisfies the following condition:

where n represents a natural number, and a:b represents a ratio of a distance from
the light source (1) to the periodic pattern and a distance from the periodic pattern
to the light receiver (3).
4. An optical encoder comprising:
a scale (2) provided with a periodic pattern in which an optical portion reflecting
or transmitting light is periodically formed with a first period in a first direction;
and
a light receiver (3) movable relatively with the scale in the first direction and
configured to photoelectrically convert a detection light emitted from a light source
(1) and then passing through the optical portions to output a signal having a change
period corresponding to the first period,
characterized in that, when a direction orthogonal to the first direction in the periodic pattern is defined
as a second direction, the periodic pattern periodically includes a pattern, which
is formed by the optical portion and a non-optical portion, in the second direction
with a second period of t, and
a width w of the light source in the second direction satisfies the following condition:

where n represents a natural number, and a:b represents a ratio of a distance from
the light source (1) to the periodic pattern and a distance from the periodic pattern
to the light receiver (3).
5. An optical encoder comprising:
a scale (2) provided with a multiple periodic pattern including a plurality of patterns
in which (a) in each pattern an optical portions reflecting or transmitting light
is periodically formed with a first period in a first direction, (b) the first periods
in the respective patterns are mutually different, and (c) the patterns are multiply
formed in a second direction orthogonal to the first direction; and
a light receiver (3) movable relatively with the scale in the first direction and
configured to photoelectrically convert a detection light emitted from a light source
and then passing through the optical portions to output a signal having a change period
corresponding to the first period of a specific pattern among the patterns of the
multiple periodic pattern,
characterized in that the multiple periodic pattern periodically includes a pattern, which is formed by
the optical portion and a non-optical portion, in the second direction with a second
period of t, and
a width w of the light source in the second direction satisfies the following condition:

where n represents a natural number, and a:b represents a ratio of a distance from
the light source to the multiple periodic pattern and a distance from the multiple
periodic pattern to the light receiver.
6. An optical encoder according to any one of claims 1 to 5, wherein a width v of the
light receiver (3) in the second direction satisfies the following condition:

where m represents a natural number.
7. An optical apparatus comprising:
an optical encoder according to any one of claims 1 to 6; and
a movable member (52) whose position is detected by the optical encoder.