[0001] The present invention relates to an automatic method for measuring and processing
blood pressure that allows in a reliable, versatile, effective, simple, and inexpensive
way, to correctly measure blood pressure, dynamically adapting to variability of the
latter, eliminating the artefacts introduced by the conventional systems.
[0002] The present invention further relates to the related detecting apparatus, as well
as to the tools allowing the method to be executed.
[0003] It is known that measurement of the blood pressure, also called arterial pressure,
may occur either invasively or non-invasively.
[0004] The invasive measurement is generally performed through a filling pressure line,
connected to an invasive catheter, provided at the end with a transduction system
transforming detected pressure into a potential difference. Differently from the non-invasive
measuring systems, such as for instance the Riva-Rocci cuff, the invasive measurement
emphasises not only the maximum and the minimum of the measured pressure, but also
the morphology of detected signal.
[0005] Consequently, the invasive measurement, besides being more reliable than the non-invasive
measurement, is capable to emphasise the characteristics of heart-arterial circle
coupling which directly affect the detected result. In fact, the systolic and diastolic
pressure values and the whole morphology of the heart beat are strictly related to
the contractility of the heart and to the circulatory system, identified in the so-called
dynamic impedance Z
d(t), linked to the pressure-volume (P-V) curve and given by the ratio between a pressure
value and a time range.
[0006] However, evaluation techniques based on the invasive measurement of the blood pressure
often suffer from problems of significant inaccuracy in measurements of maximum and
minimum pressure and, consequently, also in its morphology. In fact, many authors
have shown the existence of an inadequate underdamping of the pressure signal that
may lead to considerable measurement errors, also of several tens of mmHg.
[0007] In order to solve such problems, some solutions have been proposed which are based
on the application of low-pass filters to the pressure signal (i.e. on a frequency
processing of the pressure signal that imposes from outside a fixed value of the cutoff
frequency) and/or on the use of mechanical systems capable to damp the frequency components
of the detected pressure wave.
[0008] US 2006/064021 discloses to adjust the cutoff frequency of a low-pass filter according to the pulse
frequency in order to improve the processing of a blood pressure signal
[0009] In particular, the mechanical systems currently used for determining whether the
detected signal has a correct underdamping or not employ the mechanical method of
the square wave test described by
R.M. Gardner in "Direct Blood Pressure Measurement - Dynamic Response Requirements",
Anesthesiology, March 1981, Volume 54, Issue 3, ppg 227-236, that requires a visual observation of the detected pressure signal by a physician.
This is the case, for instance, of the R.O.S.E.
™ (Resonance Over Shoot Eliminator, available from the US company Becton Dickinson
Critical Care System Ltd.) systems and in the Accudynamic® systems (available from
the HOSPIRA - ICU Medical). These systems mechanically act by imposing a mechanical
damping: in the Accudynamic® system such mechanical damping is adjustable in a small
damping range through a small knob advancing a pin that penetrates in different depths
in the pressure line; instead, in the ROSE system, the mechanical damping is fixed
by a micro-bubble and elastic membrane device, thus acting in a fixed way for any
pressure signal (well defined fixed damping).
[0010] However, all these systems operate in a pre-determined (static) manner on a dynamic
problem, because only the frequency spectrum of the signal analysed from the pressure
line is considered. This implies that characteristic frequency spectra equal in certain
conditions of the patient are adequate, while in other physiopathological conditions
they are clearly inadequate, generating high over-evaluation of the arterial pressure.
[0011] In fact, correctness of underdamping is a dynamic problem associated (besides the
specific cardiocirculatory system of the patient under consideration) with the specific
heart beat under consideration, that may thus change from beat to beat, whereby the
pressure line responses in a different manner depending on the situation in which
it is used.
[0012] By way of example, Figure 1 shows a typical blood pressure signal, wherein the beats
change both in their morphology and in measurement of the systolic and diastolic pressure
(see Fig. 1a), and the different result that a conventional system for measuring the
arterial pressure obtains on a specific beat, in particular in the neighbourhood of
the systolic pressure, by applying none or three different cutoff frequencies (no
filter, 15Hz, 10Hz, 6Hz) (see Fig. 1b). Figure 2 shows the differences of the systolic
pressure values, on two consecutive beats in a same blood pressure signal (see Fig.s
2a and 2b), obtained by applying none or three different cutoff frequencies (no filter,
15Hz, 10Hz, 6Hz). Figure 3 shows as a conventional measuring system behaves, in particular
in the neighbourhood of the systolic pressure, in detecting a beat by applying none
or three different cutoff frequencies (no filter, 15Hz, 6Hz) (see Fig. 3a) and by
applying none or three different cutoff frequencies (no filter, 10Hz) (see Fig. 3b);
in particular, it is evident that the 6Hz cutoff frequency causes an overdamping (see
Fig. 3a), while the filter with 10Hz cutoff frequency is the most adequate (see Fig.
3b). Figure 4 shows two blood pressure signals wherein the same filters act in a different
manner: in Figure 4a the filter with 10 Hz cutoff frequency seems almost ineffective,
while in Figure 4b the same filter with 10 Hz cutoff frequency acts in a significant
manner; in particular, for the beats shown in Figure 4 the filter with 6Hz cutoff
frequency is the most adequate.
[0013] Moreover, the response of the pressure transducer depends, along with on the characteristics
of length, diameter, type of material and liquid filling the pressure line, also on
its coupling to the catheter diameter, on the arterial tone, on the pulse frequency
and on the rigidity of the vessel of the subject under examination.
[0014] In this regard, in the last years great efforts have been made for optimising the
characteristics of length, diameter, filling liquid, type of material and catheter,
in order to limit the artefacts. In particular, optical fibre pressure lines have
been also made which may reduce the artefacts.
[0015] However, all the conventional systems does not manage to completely solve the aforementioned
problems of wrong measurement of the arterial pressure, and this is very frequent
especially in cases where the detection is most necessary, such as for instance for
patients who are elderly, very young, septic, tachycardic and extremely instable both
in the arterial tone and in pace (e.g. due to atrial fibrillation).
[0016] It is therefore an object of the present invention to allow in a reliable, versatile,
effective, simple, and inexpensive way, to correctly measure blood pressure, dynamically
adapting to variability of the latter, eliminating the artefacts introduced by the
conventional systems.
[0017] It is specific subject matter of this invention an automatic method for measuring
and processing blood pressure comprising the following steps:
- A. having a sampled detected pressure signal P(t) for one or more heart beats, each
heart beat starting at an initial instant coinciding with the one of the initial diastolic
pressure point and ending at a final instant coinciding with the one of the subsequent
diastolic pressure point and comprising a dicrotic point, each beat having a systolic
phase going from the initial diastolic point to the dicrotic point; and
- B. automatically analysing and discriminating morphology of the pressure signal P(t)
sampled for each heart beat, determining instant and pressure value of one or more
characteristic points of the pressure signal P(t) selected from the group comprising
- an initial diastolic pressure point,
- a systolic pressure point,
- a dicrotic point, and
- one or more resonance points, each one of which occurs in an instant wherein a second
derivative d2P/dt2 of the pressure signal P(t) has a local maximum,
at least one characteristic point of the pressure signal P(t) belonging to the systolic
phase of the heart beat under consideration and being different from the initial diastolic
pressure point;
the method being characterised in that it further comprises the following steps:
- C. for each heart beat, determining an energy efficiency RES through the following
sub-steps:
C.1 determining a direct dynamic impedanceZd_D(t) for each one of said one or more characteristic points belonging to the systolic
phase of the heart beat under consideration and different from the initial diastolic
pressure point, said direct dynamic impedance Zd_D(t) being equal to the ratio between a value of the pressure signal P(t) at the characteristic
point and the distance of the respective time instant from the initial instant of
the heart beat under consideration, and determining an impedance ZD of a direct wave of pressure by summing with alternate signs the values of the direct
dynamic impedances Zd_D(t) ordered according to a direct time order starting from the initial instant of
the heart beat under consideration up to the dicrotic point instant, beginning to
apply a positive sign to the direct dynamic impedance Zd_D(t) that is the first one in the direct time order;
C.2 determining a reflected dynamic impedance Zd_R(t) for each one of said one or more characteristic points, said reflected dynamic
impedance Zd_R(t) being equal to the ratio between a value of the pressure signal P(t) at the characteristic
point and the distance of the respective time instant from the final instant of the
heart beat under consideration, and determining an impedance ZR of reflected waves of pressure by summing with alternate signs the values of the
reflected dynamic impedances Zd_R(t) ordered according to a reverse time order starting from the final instant down
to the initial instant of the heart beat under consideration, beginning to apply a
positive sign to the reflected dynamic impedance Zd_R(t) that is the first one in the reverse time order;
C.3 determining said energy efficiency RES as ratio between the impedance ZD of the direct wave and the impedance ZR of the reflected waves:

- D. for said energy efficiency RES determined in step C, checking whether a first derivative
dP/dt of the pressure signal P(t) is lower than a first value Td of maximum threshold in the whole heart beat under consideration and whether the
second derivative d2P/dt2 of the pressure signal P(t) is lower than a second value Td2 of maximum threshold in the whole heart beat under consideration, and in the case
where the check has negative outcome making step E, otherwise, in the case where the
check has positive outcome, making step F;
- E. selecting a cutoff frequency of a low-pass filter on the basis of said energy efficiency
RES determined in step C, of the first derivative dP/dt and of the second derivative
d2P/dt2 of the pressure signal P(t), and applying said low-pass filter to the pressure signal
P(t), thus obtaining a new sampled pressure signal, and returning to execute the preceding
steps starting from step B;
- F. outputting the pressure signal P(t) on which step B has been made for the last
time.
[0018] Always according to the invention, said one or more resonance points may be determined
in step B through the following sub-steps:
B.2 determining a total number NdP_max of local maximum points of the first derivative dP/dt of the pressure signal P(t)
in the heart beat under consideration;
B.3 determining local maximum points of the second derivative d2P/dt2 of the pressure signal P(t) in the heart beat under consideration; and
B.4 selecting a number NdP_max of local maximum points of the second derivative d2P/dt2 having largest values, determining NdP_max time instants td2P_max(i) wherein said NdP_max selected local maximum points of the second derivative d2P/dt2, occur, and assuming the points of the pressure signal P(t) in such NdP_max instants td2P_max(i) as resonance points.
[0019] Still according to the invention, in step B, the following characteristic points
of the pressure signal P(t) may be determined:
- the initial diastolic pressure point,
- the systolic pressure point,
- the dicrotic point, and
- one or more resonance points.
[0020] Furthermore according to the invention, the first value T
d of maximum threshold and the second value T
d2 of maximum threshold may be functions of said energy efficiency RES determined in
step C.
[0021] Always according to the invention, in step D, it may be checked whether said energy
efficiency RES determined in step C belongs to one of three or more, preferably four,
adjacent ranges of variability, the first value T
d of maximum threshold and the second value T
d2 of maximum threshold being preferably functions of the range to which said energy
efficiency RES determined in step C belongs.
[0022] Still according to the invention, in step E, said cutoff frequency may be selected
by
- discriminating the belonging of said energy efficiency RES determined in step C to
one of three or more, preferably four, adjacent ranges of variability,
- for each one of said three or more adjacent ranges of variability of said energy efficiency
RES determined in step C, discriminating the belonging of the first derivative dP/dt
of the pressure signal P(t) in the whole heart beat under consideration to one of
three or more, preferably six, adjacent ranges of variability, and
- for each one of said three or more adjacent ranges of variability of the first derivative
dP/dt of the pressure signal P(t) in the whole heart beat under consideration, discriminating
the belonging of the second derivative d2P/dt2 of the pressure signal P(t) to one of three or more, preferably four, non overlapping
ranges of variability, to which a respective value of said cutoff frequency corresponds.
[0023] Furthermore according to the invention, said cutoff frequency may have a value decreasing
upon increasing the first derivative dP/dt of the pressure signal P(t), under identical
values of said energy efficiency RES and of the second derivative d
2P/dt
2 of the pressure signal P(t).
[0024] Always according to the invention, said cutoff frequency may have a value decreasing
upon increasing the second derivative d
2P/dt
2 of the pressure signal P(t), under identical values of said energy efficiency RES
and of the first derivative dP/dt of the pressure signal P(t).
[0025] Still according to the invention, said cutoff frequency may range from 0,5 Hz to
100 Hz, preferably from 2 Hz to 80 Hz, more preferably from 3 Hz to 60 Hz.
[0026] Furthermore according to the invention, in step F the pressure signal P(t) may be
displayed on a display.
[0027] It is always specific subject matter of this invention an automatic apparatus for
measuring and processing blood pressure characterised in that it comprises processing
means capable to perform the steps of the previously described automatic method for
measuring and processing blood pressure.
[0028] It is still specific subject matter of this invention a computer program, comprising
code means adapted to perform, when operating on processing means of an apparatus,
the steps of the previously described automatic method for measuring and processing
blood pressure.
[0029] It is still specific subject matter of this invention a computer-readable memory
medium, having a program stored therein, characterised in that the program is the
computer program just described.
[0030] The method according to the invention uses and processes the signal of blood pressure
of a patient for determining the set of the characteristics of the patient's physiopathological
system and of the characteristics of the external detecting system so as to evaluate
the right interaction between such two systems, thus determining the right underdamping.
[0031] More in particular, the method according to the invention is substantially based
on a dynamic low-pass filter applied on a detected pressure signal (e.g. from radial,
femoral, aorta, or pulmonary artery), wherein the filter, directly working in the
time domain, also takes account of the coupling between pressure line and characteristic
dynamic impedance, obtained instant by instant from the analysis of the pressure signal
(or curve) so as to determine the most adequate operating frequency for the used pressure
line. In other words, the method according to the invention is based on a characteristic
set of conditions on the values of several parameters of the pressure signal, linked
to the result of the coupling of the characteristic dynamic impedance of the cardiocirculatory
system to the pressure detecting system, instead of a characteristic frequency spectrum.
In this regard, the detected pressure signal to which the method according to the
invention is applied may be also a recorded signal that is subsequently analysed by
subjecting the same to the method according to the invention, the scope of protection
of which does not hence comprise any invasive surgical step on the patient's body.
[0032] The method according to the invention allows to determine the adequate impedance
related to the heart-circle energy for correcting and determining the true pressure
and hence, from the relationship P-V (Pressure-Volume), for determining the correct
blood flow linked to the recorrected pressure waveform and/or for determining the
cardiac contractility due to the resulting correct pressure wave. Such corrections
for obtaining the adequate pressure are valid for both filling and optical fibre detecting
systems, as well as for non-invasive piezo-oscillometric detectors (all always working
on the coupling between the impedance of the detecting system and the impedance of
the cardiocirculatory system). Also, such corrections for pressure signals detected
in both central and peripheral arterial system, such as for instance in pulmonary
artery, in aorta, in femoral artery, and in radial artery.
[0033] The advantages offered by the method according to the invention are numerous.
[0034] First of all, by measuring the coupling between measuring line and patient's cardiocirculatory
system, it allows to solve the problems of coupling of the arterial pressure lines
to the dynamic characteristics of the patient of whom the arterial pressure, often
variable from beat to beat, is measured.
[0035] Moreover, by applying a correct dynamic damping, the method according to the invention
allows the elimination of any artefact from the detected pressure signal, obtaining
a correct measurement of the arterial pressure and dynamic impedance, making possible
to go back from the peripheral pressure to the estimation of the maximum derivative
of the pressure within the left ventricle ([dP/dt]
max) that has generated the pulse detected at the periphery. In fact, also in the basis
of the maximum derivative of the peripheral pressure the method according to the invention
determines a correction factor (i.e. a low-pass filter) that is applied to such peripheral
pressure for estimating pressure at the ventricle, taking account of the coupling
between measurement line and patient's cardiocirculatory system (whereby, for instance,
in case of rigid peripheral vessel, it is necessary to apply a high correction). This
entails that, through the filtering dynamically applied by the method according to
the invention, the contribution related to arterial vessel rigidity is removed, leaving
the basic component related to the characteristics of the ventricle that has generated
the pressure pulse.
[0036] In other words, besides the measurement of the arterial pressure, the method according
to the invention allows to determine a correction factor that estimates the maximum
derivative dP/dt
max of the ventricle pressure, estimating an energy efficiency of the whole cardiocirculatory
system, providing an estimate of the entropy of the biological system; in fact, through
the concept of efficiency it is possible to take account of the "irrecoverable" mechanical
energy present during a cardiac cycle. Such efficiency describes how much is consumed
from the "reserves" of the biological system of the body under consideration, since
reserve consumption means consuming "the components" of the physiological system (e.g.:
organs, glands (bio-chemical reactions), cardiac electrical system, etc.).
[0037] The present invention will be now described, by way of illustration and not by way
of limitation, according to its preferred embodiments, by particularly referring to
the Figures of the enclosed drawings, in which:
Figure 1 shows a blood pressure signal (Fig. 1a) and the different result that a conventional
system for measuring arterial pressure obtains on a specific beat by applying none
or three different cutoff frequencies (see Fig. 1b);
Figure 2 shows two consecutive beats in the same blood pressure signal obtained by
applying with a conventional system none or three different cutoff frequencies;
Figure 3 shows a beat obtained by applying with a conventional system none or two
different first cutoff frequencies (Fig. 3a) and by applying with a conventional system
none or a second cutoff frequency (Fig. 3b);
Figure 4 shows two blood pressure signals obtained by applying with a conventional
system none or two identical filters;
Figure 5 shows a block diagram of a preferred embodiment of the automatic method according
to the invention;
Figure 6 shows a pressure signal of an individual heart beat to which the method of
Figure 5 is applied;
Figure 7 schematically shows a preferred embodiment of an automatic apparatus according
to the invention.
[0038] The inventor has developed a method for measuring the blood pressure, starting from
a detected pressure signal, that operates in the time domain for discriminating whether
the detected signal is an adequate measurement or not and, where it is not, the analysis
in the time domain automatically selects a low-pass filter to apply for having correct
blood pressure values and wave form. In this regard, the inventor has verified that
the method according to the invention provides a pressure signal having an adequate
underdamping through tests made with the square wave test before and after application
of the filter by the method according to the invention.
[0039] Preferably, the detected pressure signal is made available through invasive detecting
technique, e.g. a filling pressure line or optical fibres technique in femoral, radial,
brachial, aorta, or pulmonary artery, or through non invasive detecting technique,
e.g. both piezoelectric and oscillometric plethysmography. However, the detected pressure
signal to which the method according to the invention is applied may be also a recorded
signal subsequently analysed by subjecting it to the method according to the invention,
the scope of protection of which hence does not comprise any invasive surgical step
on the patient's body.
[0040] More in particular, the method according to the invention is based on the pulsatile
frequency (i.e. it uses the whole time range of the heart beat and the relative distances
of the individual pressure points within the same beat), some characteristic points
of the heart beat determined through the first derivative of the detected arterial
pressure (dP/dt) and the second derivative of the detected pressure (d
2P/dt
2), and some values of dynamic impedance Z
d(t) in specific instants of the direct wave of pressure (propagating from heart to
periphery) and of the reflected waves of pressure (propagating from periphery to heart).
[0041] Starting from the thus obtained values of dynamic impedance, the method checks whether
the pressure signal constitutes an adequate measurement, and where it does not the
method selects the cutoff frequency, preferably ranging from 0,5 Hz to 100 Hz, more
preferably from 2 Hz to 80 Hz, still more preferably from 3Hz to 60 Hz, of the low-pass
filter to apply to the detected pressure signal, so that it is the most adequate one
to the detection instant conditions, so that the method dynamically adapts to the
detection variations which may also occur from beat to beat and from instant to instant.
[0042] In other words, the method according to the invention exploits the peculiar characteristics
of the pulsatile beat under consideration, and through them it determines a low-pass
filter with variable cutoff frequency in order to apply an adequate underdamping.
[0043] With reference to Figure 5, it may be observed that the preferred embodiment of the
method according to the invention comprises the following steps:
- A. having a pressure signal detected through pressure transducer (preferably through
invasive arterial pressure line or through non invasive technique, e.g. through plethysmographic
oscillometric method), that is sampled, preferably with sampling frequency equal to
1000 Hz;
- B. automatically analysing and discriminating the morphology of the sampled pressure
wave (i.e. the signal) for each heart beat (going from an initial diastolic pressure
point to the subsequent diastolic pressure point, considering as point of diastolic
pressure of the beat the initial point of the beat, i.e. the initial diastolic pressure
point);
- C. for each heart beat, determining some evaluation values consisting in (or comprising)
an impedance of the direct wave of pressure and an impedance of the reflected waves
of pressure and a consequent energy efficiency of the whole cardiocirculatory system;
- D. checking whether it is necessary to apply a low-pass filter and, in the case where
the check has positive outcome, making step E, otherwise making step F assuming that
the measured pressure signal is identical to the sampled pressure signal;
- E. selecting the cutoff frequency of the low-pass filter, on the basis of the analysis
of step B and of the determination of step C, and applying the low-pass filter to
the sampled pressure signal, obtaining a new sampled pressure signal, and returning
to step B;
- F. outputting the measured pressure signal, preferably displaying the same on a display.
[0044] Step B of automatic analysis of the morphology of the pressure wave (i.e. the signal)
detected during a heart beat analyses and discriminates the form of an heart beat
by detecting both pressure characteristics and time characteristics (which, as it
will be shown below, are considered as ranges starting from the instant of beginning
of the beat - i.e. the instant of the initial diastolic pressure - or, backward, from
the instant of end of the beat) related to specific points starting from the instant
of beginning of the beat, in particular the characteristic points of diastolic pressure
(that is initial in the beat), of systolic pressure, of dicrotic point, and of resonance
in the individual heart beat.
[0045] In greater detail, step B comprises the following sub-steps:
B.1 determining the pressure and instant of the diastolic pressure point (corresponding
to the "initial" absolute minimum of the pressure signal in the individual heart beat),
of the systolic pressure point (corresponding to the absolute maximum of the pressure
signal in the individual heart beat), and of the dicrotic point (corresponding to
the point in which the heart aortic valve closes and that mathematically corresponds
to a point of local maximum of the second derivative or of local minimum of the pressure
curve occurring immediately after the systolic pressure point),
B.2 determining the total number NdP_max of local maximum points (including the absolute maximum) of the first derivative
dP/dt of the (sampled) pressure signal in the range of the individual heart beat;
B.3 determining the local maximum points (including the absolute maximum) of the second
derivative d2P/dt2 of the (sampled) pressure signal in the range of the individual heart beat; and
B.4 selecting the NdP_max local maximum points of the second derivative d2P/dt2 having largest values (i.e. selecting a number of local maximum points of the second
derivative d2P/dt2 equal to the total number NdP_max of local maximum points of the first derivative dP/dt as previously determined) and
determining the related NdP_max time instants td2P_max(i) (with i ranging from 1 to NdP_max) in which they occur, assuming the pressure signal points in such NdP_max instants td2P_max(i) as resonance points.
[0046] In particular, the link between number of local maxima of the second derivative d
2P/dt
2 and total number N
dP_max of local maximum points of the first derivative dP/dt in the range of the individual
heart beat allows to eliminate the local maximum points of the second derivative d
2P/dt
2 due to noise. In this regard, the diastolic peak point (i.e. the point of highest
local maximum after the dicrotic point and after the possible hump after the dicrotic
point) is always selected in step B.4 among the resonance points.
[0047] By way of example and not by way of limitation, the heart beat and the related characteristic
pressure points may be discriminated and determined through an automatic method for
discriminating the heart beat similar to that described in Application
WO 2004/084088.
[0048] By way of example and not by way of limitation, Figure 6 shows the pressure signal
of an individual heart beat wherein:
- p0 is the value of diastolic pressure (that is initial in the beat), at the instant
t0 of beginning of the beat (i.e. instant of the initial diastolic pressure point
of the beat);
- p2 is the systolic pressure value, at the instant t2 of the systolic pressure point;
- p4 is the pressure value at the dicrotic point, occurring at the instant t4;
- p1, p3, p5, p6, and pf are the values of pressure at the resonance points occurring
at the instants t1, t3, t5, t6 and tf (determined on the basis of the total number
NdP_max of local maximum points of the first derivative dP/dt, equal to 5, and of the selection
of corresponding 5 points - having largest values - of local maxima of the second
derivative d2P/dt2).
[0049] In Figure 6, point p5 is the hump following the dicrotic point, while the point p6
is the diastolic peak (i.e. the local maximum following the dicrotic point and the
possible hump immediately subsequent to the latter).
[0050] Step C determines an evaluation value of an energy efficiency of the whole cardiocirculatory
system, providing an estimate of the entropy of the biological system. In particular,
such energy efficiency is determined as a quantity that in the following is defined
as Result of the Energy ratio of the System, or RES, of the cardiocirculatory system
obtained on the basis of the impedance of the direct wave of pressure and of the reflected
waves of pressure obtained from the morphology of the pressure signal in a heart beat.
Such impedances are determined by considering pressures and related time instants
of the characteristic points of the heart beat, which comprise not only the points
of diastolic pressure (that is initial in the beat), of systolic pressure, and of
dicrotic point (which are placed in the time range comprising the diastole-systole
and systole-dictotic point subranges - i.e. in the systolic phase of the individual
heart beat), but also the resonance points determined during a heart beat in step
B (namely in substep B.4) described above, among which resonance points the point
of diastolic peak (i.e. peak after the dicrotic point in the diastolic phase of the
individual heart beat) is always present.
[0051] In greater detail step C comprises the following sub-steps:
C.1 determining the impedance ZD of the direct wave of pressure on the basis of a sum of dynamic impedances of a first
series of points of the heart beat (series_1) comprising those points among the aforementioned
characteristic ones which belong to the systolic phase of the individual heart beat
(i.e. in the range from the initial diastolic pressure point up to the dicrotic point),
except the initial diastolic point;
C.2 the impedance ZR of the reflected waves of pressure is determined on the basis of a sum of dynamic
impedances of a second series of points of the heart beat (series_2) comprising all
the aforementioned characteristic points (which belongs to the whole heart beat);
C.3 determining the RES value as ratio between the impedance ZD of the direct wave and the impedance ZR of the reflected waves.
[0052] In particular, in relation to the impedance Z
D of the direct wave of pressure, for each point of the first series a respective direct
dynamic impedance Z
d_D(t) is determined, given by the ratio between the pressure value at that point and
the distance of the respective time instant from the initial instant of the beat,
i.e. from the instant of the initial diastolic point (this is the reason why in the
first series the initial diastolic point is not considered, since its dynamic impedance
would have value 0 at denominator). The value of the impedance Z
D of the direct wave of pressure is obtained by summing with alternate signs the thus
determined dynamic impedances of the points of the first series, ordered according
to their time order starting from the instant of the initial diastolic pressure up
to the dicrotic point instant, starting to consider with a positive sign the dynamic
impedance of the first point of the first series.
[0053] Similarly, in relation to the impedance Z
R of the reflected waves of pressure, for each point of the second series a respective
reflected dynamic impedance Z
d_R(t) is also determined, given by the ratio between the pressure value at that point
and the distance of the respective time instant from the final instant of the beat.
The value of the impedance Z
R of the reflected waves of pressure is obtained by summing with alternate signs the
thus determined dynamic impedances of the points of the second series, ordered according
to their reverse time order starting from the final instant of the beat down to the
instant of the initial diastolic pressure, starting to consider with a positive sign
the dynamic impedance of the first point of the second series.
[0054] In other words, the impedances Z
D of the direct wave and Z
R of the reflected waves of pressure are each given by a respective series of terms
(i.e. the respective direct and reflected dynamic impedances Z
d_D(t) and Z
d_R(t)) which are oscillating (since they are considered with alternate signs) the value
of which progressively becomes smaller and smaller (since the value at denominator
of the dynamic impedances progressively increases).
[0055] As said, the RES value is determined as ratio between the impedance Z
D of the direct wave of pressure (determined on the basis of the first series of points)
and the impedance Z
R of the reflected waves of pressure (determined on the basis of the second series
of points):

Such value of RES represents an energy efficiency for obtaining a given homeostasis
of the whole cycle of the cardiocirculatory-respiratory system.
[0056] In the example (and not limiting) graph of Figure 6, the points belonging to the
first series (series_1) are indicated with continuous vertical lines (from the time
axis up to the pressure value at the related point) and the points belonging to the
second series (series_2) are indicated with dotted vertical lines, whereby the points
belonging to both the first and the second series are indicated with a pair of vertical
lines (one continuous and the other dotted). As shown, the first series comprises
(in the time order starting from the instant of the initial diastolic pressure up
to the dicrotic point instant) the points indicated with p1, p2, p3, and p4, while
the second series comprises (in the reverse time order starting from the final instant
of the beat down to the instant of the initial diastolic pressure) the points indicated
with pf, p6, p5, p4, p3, p2, p1, p0.
[0057] The value of the impedance Z
D of the direct wave of pressure, for the beat shown in Figure 6, is equal to

while the value of the impedance Z
R of the reflected waves of pressure is equal, by assuming that the period of the individual
heart beat shown in Figure is T, to

[0058] Checking step D uses, as said, a characteristic set of conditions on the quantities
obtained in steps B and C for determining whether the individual heart beat is affected
by underdamping, i.e. whether the systolic pressure is over-estimated and the diastolic
pressure is under-estimated or whether, on the contrary, the morphology of the heart
beat is correct. If such evaluation detects that the heart beat is within the limits
imposed by such characteristic set of conditions, then the method does not apply any
frequency filter and gives (in step F) a measured pressure signal equal to the sampled
pressure signal that is unchanged in its frequencies and amplitudes. Instead, if the
characteristics of the heart beat under examination are within ranges defined by such
characteristic set of conditions, step E corrects the sampled pressure signal by changing
its spectrum by applying a low-pass filter of which it determines the cutoff frequency,
and step B for analysing the sampled pressure signal thus obtained from filtering
and step C for determining evaluation values are executed again, checking in a new
step D whether the values of the obtained quantities are within the limits imposed
by such characteristic set of conditions or not. In other words, the sampled pressure
signal of the heart beat that is filtered once is analysed again: if the values of
the obtained quantities are in accordance with the ranges defined by such characteristic
set of conditions, then the method gives (in step F) a measured pressure signal equal
to the sampled pressure signal obtained from the last filtering (without applying
any further filtering); instead, if the values of the obtained quantities are not
within the limits imposes by such characteristic set of conditions, then filtering
is repeated, with a suitably selected cutoff frequency, and the method is iteratively
executed again from step B until a signal is obtained the obtained quantities of which
are in accordance with the ranges defined by such characteristic set of conditions.
[0059] In greater detail, step D checks whether, for the RES value determined in step C,
the values of the first derivative dP/dt of the pressure signal and the values of
the second derivative d
2P/dt
2 of the pressure signal in the whole beat under consideration are lower than respective
values T
d and T
d2 of maximum threshold (functions of the RES value), and in such case it is not necessary
to apply any filter to the pressure signal and the method passes to directly execute
step F, otherwise the method passes to directly execute step E, by applying a low-pass
filter to the pressure signal of which it determines the cutoff frequency, and returns
to execute the steps starting from step B.
[0060] In particular, the possible values of RES are subdivided into three or more, preferably
four, adjacent ranges of variability, and the values T
d and T
d2 depend on the range to which the RES value determined in step C belongs. Preferably:
- if the value of RES is not lower (or even larger) than a minimum threshold TRES_min not lower than 0,3, preferably not lower than 0,4, more preferably not lower than
0,5,
- the value Td of maximum threshold of the first derivative dP/dt of the pressure signal is not
larger than 1,2 mmH/ms, preferably not larger than 1,1 mmH/ms, more preferably not
larger than 1,0 mmH/ms, and
- the value Td2 of maximum threshold of the second derivative d2P/dt2 of the pressure signal is not larger than 0,2 mmH/ms2, preferably not larger than 0,17 mmH/ms2, more preferably not larger than 0,15 mmH/ms2,
- if the value of RES is variable within a first (mathematically open or closed) range
the lower endpoint of which is larger than 0 and the upper endpoint of which is not
larger than the minimum threshold TRES_min, the first range preferably varying from 0,3 a 0,5,
- the value Td of maximum threshold of the first derivative dP/dt of the pressure signal is not
larger than 1,6 mmH/ms, preferably not larger than 1,4 mmH/ms, more preferably not
larger than 1,2 mmH/ms, and
- the value Td2 of maximum threshold of the second derivative d2P/dt2 of the pressure signal is not larger than 0,25 mmH/ms2, preferably not larger than 0,22 mmH/ms2, more preferably not larger than 0,20 mmH/ms2,
- if the value of RES is variable within a second range (mathematically open or closed)
contiguous to and preceding the first range (in the sense that the lower endpoint
of the first range coincides with the upper endpoint of the second range), the lower
endpoint of which is not lower than 0, preferably equal to 0,
- the value Td of maximum threshold of the first derivative dP/dt of the pressure signal is not
larger than 1,6 mmH/ms, preferably not larger than 1,4 mmH/ms, more preferably not
larger than 1,2 mmH/ms, and
- the value Td2 of maximum threshold of the second derivative d2P/dt2 of the pressure signal is not larger than 0,35 mmH/ms2, preferably not larger than 0,30 mmH/ms2, more preferably not larger than 0,27 mmH/ms2, still more preferably not larger than 0,25 mmH/ms2,
- if the value of RES is lower (or even not larger) than a maximum threshold TRES_max coinciding with the lower endpoint of the second range,
- the value Td of maximum threshold of the first derivative dP/dt of the pressure signal is not
larger than 2,0 mmH/ms, preferably not larger than 1,8 mmH/ms, more preferably not
larger than 1,6 mmH/ms, and
- the value Td2 of maximum threshold of the second derivative d2P/dt2 of the pressure signal is not larger than 0,45 mmH/ms2, preferably not larger than 0,40 mmH/ms2, more preferably not larger than 0,37 mmH/ms2, still more preferably not larger than 0,35 mmH/ms2.
[0061] In the preferred embodiment of the method according to the invention, checking step
D ascertains that it is not necessary to apply any filter to the pressure signal when
any one of the following four sets of conditions is met:
- RES ≥ 0,5, the first derivative dP/dt is lower than 1,0 mmH/ms in the whole heart
beat, and the second derivative d2P/dt2 is lower than 0,15 mmH/ms2 in the whole heart beat;
- 0,3 ≤ RES < 0,5, the first derivative dP/dt is lower than 1,2 mmH/ms in the whole
heart beat, and the second derivative d2P/dt2 is lower than 0,2 mmH/ms2 in the whole heart beat;
- 0,0 ≤ RES < 0,3, the first derivative dP/dt is lower than 1,2 mmH/ms in the whole
heart beat, and the second derivative d2P/dt2 is lower than 0,25 mmH/ms2 in the whole heart beat;
- RES < 0,0, the first derivative dP/dt is lower than 1,6 mmH/ms in the whole heart
beat, and the second derivative d2P/dt2 is lower than 0,35 mmH/ms2 in the whole heart beat.
[0062] As said, step E selects the cutoff frequency of the low-pass filter, on the basis
of the analysis of step B and of the determination of step C, and applies the low-pass
filter to the sampled pressure signal. In particular, step E selects the cutoff frequency
of the low-pass filter on the basis of the value of RES and of the values of the first
derivative and of the values of the second derivative of the pressure signal in the
whole heart beat, as follows: the values of RES are discriminated in three or more,
preferably four, adjacent ranges of variability (preferably corresponding to those
used in the check in step D), for each one of them the values of the first derivative
dP/dt of the pressure signal are discriminated in three or more, preferably six, adjacent
ranges of variability, and for at least one of the ranges of the values of the first
derivative dP/dt the values of the second derivative d
2P/dt
2 of the pressure signal are discriminated in three or more, preferably four, non overlapping
ranges of variability (adjacent to each other and, where applicable, adjacent to the
range of values of the second derivative d
2P/dt
2 for which the method does not applies any low-pass filter), thus selecting a corresponding
cutoff frequency of the low-pass filter to apply.
[0063] In the preferred embodiment of the method according to the invention, step E discriminates
the values of RES in four adjacent ranges of variability (corresponding to those used
in the check in step D), for each one of them discriminates the values of the first
derivative dP/dt of the pressure signal in six adjacent ranges of variability, and
for the first one of the ranges of the values of the first derivative dP/dt discriminates
the values of the second derivative d
2P/dt
2 of the pressure signal in four adjacent ranges (subsequent to the range corresponding
to the set of conditions for which no low-pass filter is applied). In greater detail,
the preferred embodiment determines the cutoff frequency of the filter as follows:
- 1. if the value of RES meets the condition RES ≥ 0,5
1.1 if the values of the first derivative in the whole heart beat meet the condition

1.1.1 if the values of the second derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 15 Hz is applied;
1.1.2 if the values of the second derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 12 Hz is applied;
1.1.3 if the values of the second derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 8 Hz is applied;
1.1.4 if the values of the second derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 7 Hz is applied;
1.2 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 12 Hz is applied;
1.3 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 8 Hz is applied;
1.4 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 7 Hz is applied;
1.5 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 6 Hz is applied;
1.6 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 3 Hz is applied;
- 2. if the value of RES meets the condition 0,3 ≤ RES < 0,5
2.1 if the values of the first derivative in the whole heart beat meet the condition

2.1.1 if the values of the second derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 15 Hz is applied;
2.1.2 if the values of the second derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 12 Hz is applied;
2.1.3 if the values of the second derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 8 Hz is applied;
2.1.4 if the values of the second derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 7 Hz is applied;
2.2 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 13 Hz is applied;
2.3 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 10 Hz is applied;
2.4 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 8 Hz is applied;
2.5 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 6 Hz is applied;
2.6 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 3 Hz is applied;
- 3. if the value of RES meets the condition 0,0 ≤ RES < 0,3
3.1 if the values of the first derivative in the whole heart beat meet the condition

3.1.1 if the values of the second derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 15 Hz is applied;
3.1.2 if the values of the second derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 12 Hz is applied;
3.1:3 if the values of the second derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 8 Hz is applied;
3.1.4 if the values of the second derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 5 Hz is applied;
3.2 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 13 Hz is applied;
3.3 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 10 Hz is applied;
3.4 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 8 Hz is applied;
3.5 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 6 Hz is applied;
3.6 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 3 Hz is applied;
- 4. if the value of RES meets the condition RES < 0,0
4.1 if the values of the first derivative in the whole heart beat meet the condition

4.1.1 if the values of the second derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 15 Hz is applied;
4.1.2 if the values of the second derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 12 Hz is applied;
4.1.3 if the values of the second derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 11 Hz is applied;
4.1.4 if the values of the second derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 10 Hz is applied;
4.2 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 13 Hz is applied;
4.3 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 10 Hz is applied;
4.4 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 8 Hz is applied;
4.5 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 6 Hz is applied;
4.6 if the values of the first derivative in the whole heart beat meet the condition

a low-pass filter with cutoff frequency equal to 3 Hz is applied.
[0064] The values indicated for the lower and/or upper limits of the various adjacent ranges
for the RES, of the various ranges of the first derivative dP/dt and of the various
ranges of the second derivative d
2P/dt
2, as well as the values indicated for the selected cutoff frequencies, are only indicative
and not restrictive, since they can be increased or decreased by an extent preferably
not larger than 25%, more preferably not larger than 20%, still more preferably not
larger than 15%, even more preferably not larger than 10%.
[0065] The inventor has verified through an frequency domain analysis of the frequency spectra
of the sampled pressure signal of the heart beat and of its first and second derivates
in the frequency domain the effectiveness of the application of the low-pass filter
through the method according to the invention.
[0066] Finally, step F displays the sampled pressure signal, possibly obtained from the
last filtering, on a display, so as to point out the measurement and morphology of
the thus obtained pressure signal.
[0067] Figure 7 schematically shows a circuit implementation, that is immediately comprehensible
to the skilled in the art, of a preferred embodiment of an automatic apparatus, that
executes the method for measuring and processing blood pressure according to the invention.
In particular, the circuit stage of Figure 7 uses one of three possible cutoff frequencies,
respectively indicated with F1, F2 and F3; however, it is immediate for those skilled
in the art to extend the circuit stage of Figure 7 to any number of cutoff frequencies.
The microprocessor of the stage of Figure 7 analyses an input pressure signal, present
at terminal IN, and determines which one of the three possible cutoff frequencies
to apply through an electronic switch controlled by the same microprocessor so as
to output, at terminal OUT, the filtered signal; moreover, it is immediate to provide
the possibility that the microprocessor can apply again, if necessary, the analysing
and selectively filtering steps also to the output signal at the terminal OUT (e.g.
through a further electronic switch). It must be understood that the above could be
also implemented via software also, through a computer program executing the automatic
method for measuring and processing blood pressure according to the invention, without
any need for any hardware.
[0068] The preferred embodiments have been above described and some modifications of this
invention have been suggested, but it should be understood that those skilled in the
art can make variations and changes, without so departing from the related scope of
protection, as defined by the following claims.
1. Automatic method for measuring and processing blood pressure comprising the following
steps:
A. having a sampled detected pressure signal P(t) for one or more heart beats, each
heart beat starting at an initial instant coinciding with the one of the initial diastolic
pressure point and ending at a final instant coinciding with the one of the subsequent
diastolic pressure point and comprising a dicrotic point, each beat having a systolic
phase going from the initial diastolic point to the dicrotic point; and
B. automatically analysing and discriminating morphology of the pressure signal P(t)
sampled for each heart beat, determining instant and pressure value of one or more
characteristic points of the pressure signal P(t) selected from the group comprising
- an initial diastolic pressure point,
- a systolic pressure point,
- a dicrotic point, and
- one or more resonance points, each one of which occurs in an instant wherein a second
derivative d2P/dt2 of the pressure signal P(t) has a local maximum,
at least one characteristic point of the pressure signal P(t) belonging to the systolic
phase of the heart beat under consideration and being different from the initial diastolic
pressure point;
the method being
characterised in that it further comprises the following steps:
C. for each heart beat, determining an energy efficiency RES through the following
sub-steps:
C.1 determining a direct dynamic impedance Zd_D(t) for each one of said one or more characteristic points belonging to the systolic
phase of the heart beat under consideration and different from the initial diastolic
pressure point, said direct dynamic impedance Zd_D(t) being equal to the ratio between a value of the pressure signal P(t) at the characteristic
point and the distance of the respective time instant from the initial instant of
the heart beat under consideration, and determining an impedance ZD of a direct wave of pressure by summing with alternate signs the values of the direct
dynamic impedances Zd_D(t) ordered according to a direct time order starting from the initial instant of
the heart beat under consideration up to the dicrotic point instant, beginning to
apply a positive sign to the direct dynamic impedance Zd_D(t) that is the first one in the direct time order;
C.2 determining a reflected dynamic impedance Zd_R(t) for each one of said one or more characteristic points, said reflected dynamic
impedance Zd_R(t) being equal to the ratio between a value of the pressure signal P(t) at the characteristic
point and the distance of the respective time instant from the final instant of the
heart beat under consideration, and determining an impedance ZR of reflected waves of pressure by summing with alternate signs the values of the
reflected dynamic impedances Zd_R(t) ordered according to a reverse time order starting from the final instant down
to the initial instant of the heart beat under consideration, beginning to apply a
positive sign to the reflected dynamic impedance Zd_R(t) that is the first one in the reverse time order;
C.3 determining said energy efficiency RES as ratio between the impedance ZD of the direct wave and the impedance ZR of the reflected waves:

D. for said energy efficiency RES determined in step C, checking whether a first derivative
dP/dt of the pressure signal P(t) is lower than a first value Td of maximum threshold in the whole heart beat under consideration and whether the
second derivative d2P/dt2 of the pressure signal P(t) is lower than a second value Td2 of maximum threshold in the whole heart beat under consideration, and in the case
where the check has negative outcome making step E, otherwise, in the case where the
check has positive outcome, making step F;
E. selecting a cutoff frequency of a low-pass filter on the basis of said energy efficiency
RES determined in step C, of the first derivative dP/dt and of the second derivative
d2P/dt2 of the pressure signal P(t), and applying said low-pass filter to the pressure signal
P(t), thus obtaining a new sampled pressure signal, and returning to execute the preceding
steps starting from step B;
F. outputting the pressure signal P(t) on which step B has been made for the last
time.
2. Method according to claim 1,
characterised in that said one or more resonance points are determined in step B through the following
sub-steps:
B.2 determining a total number NdP_max of local maximum points of the first derivative dP/dt of the pressure signal P(t)
in the heart beat under consideration;
B.3 determining local maximum points of the second derivative d2P/dt2 of the pressure signal P(t) in the heart beat under consideration; and
B.4 selecting a number NdP_max of local maximum points of the second derivative d2P/dt2 having largest values, determining NdP_max time instants td2P_max(i) wherein said NdP_max selected local maximum points of the second derivative d2P/dt2, occur, and assuming the points of the pressure signal P(t) in such NdP_max instants td2P_max(i) as resonance points.
3. Method according to claim 1 or 2,
characterised in that, in step B, the following characteristic points of the pressure signal P(t) are determined:
- the initial diastolic pressure point,
- the systolic pressure point,
- the dicrotic point, and
- one or more resonance points.
4. Method according to any one of the preceding claims, characterised in that the first value Td of maximum threshold and the second value Td2 of maximum threshold are functions of said energy efficiency RES determined in step
C.
5. Method according to any one of the preceding claims, characterised in that, in step D, it is checked whether said energy efficiency RES determined in step C
belongs to one of three or more, preferably four, adjacent ranges of variability,
the first value Td of maximum threshold and the second value Td2 of maximum threshold being preferably functions of the range to which said energy
efficiency RES determined in step C belongs.
6. Method according to claim 5,
characterised in that, in step E, said cutoff frequency is selected by
- discriminating the belonging of said energy efficiency RES determined in step C
to one of three or more, preferably four, adjacent ranges of variability,
- for each one of said three or more adjacent ranges of variability of said energy
efficiency RES determined in step C, discriminating the belonging of the first derivative
dP/dt of the pressure signal P(t) in the whole heart beat under consideration to one
of three or more, preferably six, adjacent ranges of variability, and
- for each one of said three or more adjacent ranges of variability of the first derivative
dP/dt of the pressure signal P(t) in the whole heart beat under consideration, discriminating
the belonging of the second derivative d2P/dt2 of the pressure signal P(t) to one of three or more, preferably four, non overlapping
ranges of variability, to which a respective value of said cutoff frequency corresponds.
7. Method according to any one of the preceding claims, characterised in that said cutoff frequency has a value decreasing upon increasing the first derivative
dP/dt of the pressure signal P(t), under identical values of said energy efficiency
RES and of the second derivative d2P/dt2 of the pressure signal P(t).
8. Method according to any one of the preceding claims, characterised in that said cutoff frequency has a value decreasing upon increasing the second derivative
d2P/dt2 of the pressure signal P(t), under identical values of said energy efficiency RES
and of the first derivative dP/dt of the pressure signal P(t).
9. Method according to any one of the preceding claims, characterised in that said cutoff frequency ranges from 0,5 Hz to 100 Hz, preferably from 2 Hz to 80 Hz,
more preferably from 3 Hz to 60 Hz.
10. Method according to any one of the preceding claims, characterised in that in step F the pressure signal P(t) is displayed on a display.
11. Automatic apparatus for measuring and processing blood pressure characterised in that it comprises processing means adapted to perform the steps of the automatic method
for measuring and processing blood pressure according to any one of claims 1-10.
12. Computer program, comprising code means adapted to perform, when operating on processing
means of an apparatus, the steps of the automatic method for measuring and processing
blood pressure according to any one of claims 1-10.
13. Computer-readable memory medium, having a program stored therein, characterised in that the program is the computer program according to claim 12.
1. Automatisches Verfahren zur Messung und Verarbeitung des Blutdrucks, das die folgenden
Schritte umfasst:
A. Heranziehen eines erfassten Drucksignals P(t) für einen oder mehrere Herzschläge,
wobei jeder Herzschlag zu einem anfänglichen Zeitpunkt beginnt, der mit dem des anfänglichen
diastolischen Druckpunkts übereinstimmt, und mit einem abschließenden Zeitpunkt endet,
der mit dem des nachfolgenden diastolischen Druckpunkts übereinstimmt, und der einen
dikroten Punkt umfasst, wobei jeder Herzschlag eine systolische Phase umfasst, die
von dem anfänglichen diastolischen Punkt zu dem dikroten Punkt reicht; und
B. Automatisches Analysieren und Unterscheiden der Morphologie des Drucksignals P(t),
das für jeden Herzschlag abgetastet wurde, Ermitteln des Zeitpunktes und des Druckwertes
eines oder mehrerer charakteristischer Punkte des Drucksignals P(t), die aus der Menge
ausgewählt sind, die Folgendes umfasst:
- einen anfänglichen diastolischen Druckpunkt,
- einen systolischen Druckpunkt,
- einen dikroten Punkt, und
- einen oder mehrere Resonanzpunkte, von denen jeder zu einem Zeitpunkt auftritt,
an dem die zweite Ableitung d2P/dt2 des Drucksignals P(t) ein lokales Maximum hat,
wobei mindestens ein charakteristischer Punkt des Drucksignals P(t) zu der systolischen
Phase des untersuchten Herzschlags gehört und sich von dem anfänglichen diastolischen
Druckpunkt unterscheidet;
wobei das Verfahren
dadurch gekennzeichnet ist, dass es weiter die folgenden Schritte umfasst:
C. Ermitteln einer Energieeffizienz RES ("Result of the Energy ratio of the System",
Energieverbrauchsrate) durch die folgenden Unterschritte:
C.1 Ermitteln einer direkten dynamischen Impedanz Zd_D(t) für jeden des einen oder der mehreren charakteristischen Punkte, die zu der systolischen
Phase des untersuchten Herzschlags gehören und sich von dem anfänglichen diastolischen
Druckpunkt unterscheiden, wobei die direkte dynamische Impedanz Zd_D(t) gleich dem Verhältnis zwischen dem Wert des Drucksignals P(t) an dem charakteristischen
Punkt und dem Abstand des entsprechenden Zeitpunkts von dem anfänglichen Zeitpunkt
des untersuchten Herzschlags ist, und Ermitteln einer Impedanz ZD einer direkten Welle des Drucks, indem mit alternierenden Vorzeichen die Werte der
direkten dynamischen Impedanz Zd_D(t) summiert werden, sortiert gemäß einer direkten zeitlichen Reihenfolge, beginnend
mit dem anfänglichen Zeitpunkt des untersuchten Herzschlags bis zu dem Zeitpunkt des
dikroten Punkts, wobei der direkten dynamischen Impedanz Zd_D(t) anfänglich ein positives Vorzeichen zugeordnet wird, die die erste in der direkten
Reihenfolge der Zeitpunkte ist;
C.2Ermitteln einer reflektierten dynamischen Impedanz Zd_R(t) für jeden des einen oder der mehreren charakteristischen Punkte, wobei die reflektierte
dynamische Impedanz Zd_R(t) gleich dem Verhältnis zwischen dem Wert des Drucksignals P(t) an dem charakteristischen
Punkt und dem Abstand des entsprechenden Zeitpunkts von dem abschließenden Zeitpunkt
des untersuchten Herzschlags ist, und Ermitteln einer Impedanz ZR von reflektierten Wellen bzw. Kurven des Drucks, indem die Werte der reflektierten
dynamischen Impedanzen Zd_R(t) mit alternierenden Vorzeichen summiert werden, sortiert gemäß einer umgekehrten
zeitlichen Reihenfolge, beginnend von dem abschließenden Zeitpunkt bis zu dem anfänglichen
Zeitpunkt des untersuchten Herzschlags, wobei der reflektierten dynamischen Impedanz
Zd_R(t) anfänglich ein positives Vorzeichen zugeordnet wird, die die erste in der umgekehrten
zeitlichen Reihenfolge ist;
C.3 Ermitteln der Energieeffizienz RES als Verhältnis zwischen der Impedanz ZD der direkten Welle und der Impedanz ZR der reflektierten Wellen:

D. Prüfen, für die Energieeffizienz RES, die in Schritt C ermittelt wurde, ob eine
erste Ableitung dP/dt des Drucksignals P(t) niedriger als ein erster Wert Td eines maximalen Schwellenwerts in dem gesamten untersuchten Herzschlag ist und ob
die zweite Ableitung d2P/dt2 des Drucksignals P(t) niedriger als ein zweiter Wert Td2 eines maximalen Schwellenwerts in dem gesamten untersuchten Herzschlags ist, und
in dem Fall, in dem die Prüfung ein negatives Ergebnis hat, Ausführen des Schrittes
E, andernfalls, in dem Fall, in dem die Prüfung ein positives Ergebnis hat, Ausführen
des Schrittes F;
E. Auswählen einer Grenzfrequenz eines Tiefpass-Filters auf der Basis der Energieeffizienz
RES, die in Schritt C ermittelt wurde, der ersten Ableitung dP/dt und der zweiten
Ableitung d2P/dt2 des Drucksignals P(t) und Anwenden des Tiefpass-Filters auf das Drucksignal P(t),
wodurch ein neues abgetastetes Drucksignal erhalten wird, und Zurückkehren, um die
vorangegangenen Schritte auszuführen, beginnend bei Schritt B;
F. Ausgeben des Drucksignals P(t), auf das Schritt B ein letztes Mal angewendet wurde.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass der eine oder die mehreren Resonanzpunkte in Schritt B durch die folgenden Unterschritte
ermittelt werden:
B.2Ermitteln einer Gesamtzahl NdP_max von lokalen Maximalstellen der ersten Ableitung dP/dt des Drucksignals P(t) des untersuchten
Herzschlags;
B.3 Ermitteln der lokalen Maximalstellen der zweiten Ableitung d2P/dt2 des Drucksignals P(t) des untersuchten Herzschlags; und
B.4Auswählen einer Anzahl NdP_max von lokalen Maximalstellen der zweiten Ableitung d2P/dt2, die die größten Werte haben, Ermitteln von NdP_max Zeitpunkten td2P_max(i), an denen die NdP_max ausgewählten lokalen Maximalstellen der zweiten Ableitung d2P/dt2 auftreten, und Bestimmen der Punkte des Drucksignals P(t) zu den NdP_max Zeitpunkten td2P_max(i) als Resonanzpunkte.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass in Schritt B die folgenden charakteristischen Punkte des Drucksignals P(t) ermittelt
werden:
- der anfängliche diastolische Druckpunkt,
- der systolische Druckpunkt,
- der dikrote Punkt, und
- ein oder mehrere Resonanzpunkte.
4. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass der erste Wert Td eines maximalen Schwellenwerts und der zweite Wert Td2 eines maximalen Schwellenwerts von der Energieeffizienz RES abhängen, die in Schritt
C ermittelt wurde.
5. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass in Schritt D überprüft wird, ob die Energieeffizienz RES, die in Schritt C ermittelt
wurde, zu drei oder mehr, vorzugsweise vier, benachbarten Bereichen der Variabilität
gehören, wobei der erste Wert Td eines maximalen Schwellenwerts und der zweite Wert Td2 eines maximalen Schwellenwerts vorzugsweise von dem Bereich abhängen, zu dem die
Energieeffizienz RES gehört, die in Schritt C ermittelt wurde.
6. Verfahren nach Anspruch 5,
dadurch gekennzeichnet, dass in Schritt E die Grenzfrequenz durch Folgendes ausgewählt wird:
- Ermitteln, ob die Energieeffizienz RES, die in Schritt C ermittelt wurde, zu drei
oder mehr, vorzugsweise vier, benachbarten Bereichen der Variabilität gehört,
- für jede der drei oder mehr benachbarten Bereichen der Variabilität der Energieeffizienz
RES, die in Schritt C ermittelt wurde, Ermitteln, ob die erste Ableitung dP/dt des
Drucksignals P(t) in dem gesamten untersuchten Herzschlag zu einem von drei, vorzugsweise
sechs, benachbarten Bereichen der Variabilität gehört, und
- für jeden der drei oder mehr benachbarten Bereiche der Variabilität der ersten Ableitung
dP/dt des Drucksignals P(t) in dem gesamten untersuchten Herzschlag, Ermitteln, ob
die zweite Ableitung d2P/dt2 des Drucksignals P(t) zu einem von drei oder mehr, vorzugsweise vier, nicht überlappenden
Bereichen der Variabilität gehört, zu denen ein entsprechender Wert der Grenzfrequenz
gehört.
7. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Grenzfrequenz einen Wert hat, der abnimmt, wenn die erste Ableitung dP/dt des
Drucksignals P(t) unter identischen Werten der Energieeffizienz RES und der zweiten
Ableitung d2P/dt2 des Drucksignals P(t) erhöht wird.
8. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Grenzfrequenz einen Wert hat, der abnimmt, wenn die zweite Ableitung d2P/dt2 des Drucksignals P(t) unter identischen Werten der Energieeffizienz RES und der ersten
Ableitung dP/dt des Drucksignals P(t) erhöht wird.
9. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Grenzfrequenz in einem Bereich von 0,5 Hz bis 100 Hz, vorzugsweise von 2 Hz bis
80Hz, am besten von 3 Hz bis 60 Hz liegt.
10. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass in Schritt F das Drucksignal P(t) auf einer Anzeige angezeigt wird.
11. Automatische Einrichtung zum Messen und Verarbeiten des Blutdrucks, dadurch gekennzeichnet, dass sie Verarbeitungsmittel umfasst, die geeignet sind, die Schritte des automatischen
Verfahrens zur Messung und Verarbeitung des Blutdrucks gemäß einem der Ansprüche 1-10
auszuführen.
12. Computerprogramm, das Programmcode-Mittel umfasst, die geeignet sind, um, wenn sie
auf Verarbeitungsmitteln einer Einrichtung ausgeführt werden, die Schritte des automatischen
Verfahrens zur Messung und Verarbeitung des Blutdrucks gemäß einem der Ansprüche 1-10
auszuführen.
13. Computerlesbares Speichermedium, das ein Programm aufweist, das darin gespeichert
ist, das dadurch charakterisiert ist, dass das Programm das Computerprogramm gemäß
Anspruch 12 ist.
1. Procédé automatique pour mesurer et traiter la pression artérielle, comprenant les
étapes suivantes :
A. l'obtention d'un signal de pression P(t) détecté échantillonné pour un ou plusieurs
battements de coeur, chaque battement de coeur commençant à un instant initial coïncidant
avec le point de pression diastolique initial et se terminant à un instant final coïncidant
avec le point de pression diastolique suivant et comprenant un point dicrote, chaque
battement ayant une phase systolique allant du point diastolique initial au point
dicrote ; et
B. l'analyse automatique et la discrimination de la morphologie du signal de pression
P(t) échantillonné pour chaque battement de coeur, en déterminant l'instant et la
valeur de pression d'un ou plusieurs points caractéristiques du signal de pression
(Pt) sélectionné dans le groupe comprenant
- un point de pression diastolique initial,
- un point de pression systolique,
- un point dicrote, et
- un ou plusieurs points de résonance, chacun survenant à un instant auquel une dérivée
seconde d2P/dt2 du signal de pression P(t) a un maximum local,
au moins un point caractéristique du signal de pression P(t) appartenant à la phase
systolique du battement de coeur et étant différent du point de pression diastolique
initial ;
le procédé étant caractérisé en ce qu'il comprend en outre les étapes suivantes :
C. pour chaque battement de coeur, la détermination d'une efficacité énergétique RES
par le biais des sous-étapes suivantes :
C.1 la détermination d'une impédance dynamique directe Zd_D(t) pour ledit/lesdits point(s) caractéristique(s) appartenant à la phase systolique
du battement de coeur en considération et différent du point de pression diastolique
initial, ladite impédance dynamique directe Zd_D(t) étant égale au rapport entre une valeur du signal de pression P(t) au point caractéristique
et la distance de l'instant respectif par rapport à l'instant initial du battement
de coeur en considération, et la détermination d'une impédance ZD d'une onde directe de pression en additionnant avec des signes alternés les valeurs
des impédances dynamiques directes Zd_D(t) ordonnées selon un ordre temporel direct en partant de l'instant initial du battement
de coeur jusqu'à l'instant du point dicrote, en commençant à appliquer un signe positif
à l'impédance dynamique directe Zd_D(t) qui est la première dans l'ordre temporel direct ;
C.2 la détermination d'une impédance dynamique réfléchie Zd_R(t) pour ledit/lesdits point(s) caractéristique(s), ladite impédance dynamique réfléchie
Zd_R(t) étant égale au rapport entre une valeur du signal de pression P(t) au point caractéristique
et la distance de l'instant respectif par rapport à l'instant initial du battement
de coeur en considération, et la détermination d'une impédance ZR d'ondes réfléchies de pression en additionnant avec des signes alternés les valeurs
des impédances dynamiques réfléchies Zd_R(t) ordonnées selon un ordre temporel inverse, en partant de l'instant final et en
allant jusqu'à l'instant initial du battement de coeur en considération, en commençant
à appliquer un signe positif à l'impédance dynamique réfléchie Zd_R(t) qui est la première dans l'ordre temporel inverse ;
C.3 la détermination de ladite efficacité énergétique RES en tant que rapport entre
l'impédance ZD de l'onde directe et l'impédance ZR des ondes réfléchies :

D. pour ladite efficacité énergétique RES déterminée à l'étape C, la vérification
du fait qu'une dérivée première dP/dt du signal de pression P(t) est ou non inférieure
à une première valeur Td de seuil maximum dans l'ensemble du battement de coeur en considération et que la
dérivée seconde d2P/dt2 du signal de pression P(t) est ou non inférieure à une seconde valeur Td2 de seuil maximum dans l'ensemble du battement de coeur en considération, et dans
le cas où la vérification a un résultat négatif, réaliser l'étape E, sinon, dans le
cas où la vérification a un résultat positif, réaliser l'étape F ;
E. la sélection d'une fréquence de coupure d'un filtre passe-bas sur la base de ladite
efficacité énergétique RES déterminée à l'étape C, de la dérivée première dP/dt et
de la dérivée seconde d2P/dt2 du signal de pression P(t) et l'application dudit filtre passe-bas au signal de pression
P(t), afin d'obtenir un nouveau signal de pression échantillonné, et le retour à l'exécution
des étapes précédentes en partant de l'étape B ;
F. la production en sortie du signal de pression P(t) sur lequel l'étape B a été réalisée
pour la dernière fois.
2. Procédé selon la revendication 1,
caractérisé en ce que ledit/lesdits point(s) de résonance sont déterminés à l'étape B par le biais des
sous-étapes suivantes :
B.2 la détermination d'un nombre total NdP_max de points de maximum local de la dérivée première dP/dt du signal de pression P(t)
dans le battement de coeur en considération ;
B.3 la détermination de points de maximum local de la dérivée seconde d2P/dt2 du signal de pression P(t) dans le battement de coeur en considération ; et
B.4 la sélection d'un nombre total NdP_max de points de maximum local de la dérivée seconde d2P/dt2 ayant les valeurs les plus élevées, la détermination de NdP_max instants td2P_max(i) où lesdits NdP_max points de maximum local sélectionnés de la dérivée seconde d2P/dt2 sont présents, et en supposant que les points du signal de pression P(t) dans lesdits
NdP_max instants td2P_max(i) sont des points de résonance.
3. Procédé selon la revendication 1 ou 2,
caractérisé en ce que, à l'étape B, les points caractéristiques suivants du signal de pression P(t) sont
déterminés :
- le point de pression diastolique initial,
- le point de pression systolique,
- le point dicrote, et
- un ou plusieurs points de résonance.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la première valeur Td de seuil maximum et la seconde valeur Td2 de seuil maximum dépendent de ladite efficacité énergétique RES déterminée à l'étape
C.
5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, à l'étape D, on vérifie si ladite efficacité énergétique RES déterminée à l'étape
C appartient à l'une de trois ou plus, de préférence quatre, plages de variabilité
adjacentes, la première valeur Td de seuil maximum et la seconde valeur Td2 de seuil maximum dépendant de préférence de la plage à laquelle appartient ladite
efficacité énergétique RES, déterminée à l'étape C.
6. Procédé selon la revendication 5,
caractérisé en ce que, à l'étape E, ladite fréquence de coupure est sélectionnée par
- discrimination de l'appartenance de ladite efficacité énergétique RES déterminée
à l'étape C à l'une de trois ou plus, de préférence quatre, plages de variabilité
adjacentes,
- pour chacune desdites trois ou plus plages de variabilité adjacentes de ladite efficacité
énergétique RES déterminée à l'étape C, discrimination de l'appartenance de la dérivée
première dP/dt du signal de pression P(t) dans l'ensemble du battement de coeur en
considération à l'une de trois ou plus, de préférence six, plages de variabilité adjacentes,
et
- pour chacune desdites trois ou plus plages de variabilité adjacentes de la dérivée
première dP/dt du signal de pression P(t) dans l'ensemble du battement de coeur, discrimination
de l'appartenance de la dérivée seconde d2P/dt2 du signal de pression P(t) à l'une de trois ou plus, de préférence quatre, plages
de variabilité non chevauchantes, à laquelle correspond une valeur respective de ladite
fréquence de coupure.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite fréquence de coupure a une valeur décroissante lors de l'accroissement de
la dérivée première dP/dt du signal de pression P(t), en présence de valeurs identiques
de ladite efficacité énergétique RES et de la dérivée seconde d2P/dt2 du signal de pression P(t).
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite fréquence de coupure a une valeur décroissante lors de l'accroissement de
la dérivée seconde d2P/dt2 du signal de pression P(t), en présence de valeurs identiques de ladite efficacité
énergétique RES et de la dérivée première dP/dt du signal de pression P(t).
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite fréquence de coupure va de 0,5 Hz à 100 Hz, de préférence, de 2 Hz à 80 Hz,
de manière davantage préférée, de 3 Hz à 60 Hz.
10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que, à l'étape F, le signal de pression P(t) est affiché sur un affichage.
11. Appareil automatique pour mesurer et traiter la pression artérielle, caractérisé en ce qu'il comprend des moyens de traitement conçus pour réaliser les étapes du procédé automatique
de mesure et de traitement de la pression artérielle selon l'une quelconque des revendications
1 à 10.
12. Programme informatique, comprenant des moyens formant code conçus pour réaliser, lorsqu'ils
sont exécutés sur les moyens de traitement d'un appareil, les étapes du procédé automatique
de mesure et de traitement de la pression artérielle selon l'une quelconque des revendications
1 à 10.
13. Support de mémoire lisible par ordinateur, ayant un programme stocké à l'intérieur,
caractérisé en ce que le programme est le programme informatique selon la revendication 12.