TECHNICAL FIELD
[0001] The present invention relates to a method of producing carbonaceous material-containing
metal oxide briquettes by subjecting a powdery mixture of a metal oxide material containing
a large amount of fine particles, such as steel mill dust, and a carbonaceous material,
such as pulverized coal, to a pressure forming process using a briquette machine.
BACKGROUND ART
[0002] A conventional reduced iron production process imposes restrictions, such as a need
to use costly natural gas as a reducing agent for production, and a plant location
generally limited to localities of natural gas. For this reason, great interest has
recently been shown in a reduced ion production process using, as the reducing agent,
coal which is relatively low in cost and capable of easing geographic restrictions
on selection of a plant location. As this technique using coal, there have been proposed
a large number of methods including charging a carbonaceous material-containing metal
oxide prepared by agglomerating a powdery mixture of iron ore and coal into a rotary
hearth furnace (RHF), and reducing it by heating in the rotary hearth furnace, to
produce reduced iron (see, for example, Patent Documents 1 and 2).
[0003] The agglomeration of the powdery mixture of iron ore and coal includes spherical
pelletization based on tumbling granulation using a pelletizer, cylindrical pelletization
based on mechanical extrusion, and briquetting based on pressing using a briquette
roll.
[0004] However, if a material is a type containing a large amount of fine particles, such
as steel mill dust, the pelletization based on tumbling granulation has problems,
such as 1) a granulation rate becomes lower to reduce productivity, 2) a large specific
surface area of the material requires an amount of water for the granulation, thereby
increasing an amount of heat required for drying (i.e., removing the water) in a subsequent
process to increase energy consumption, and 3) the granulation becomes unstable by
variation in a particle size of the material, which is likely to cause a fluctuation
in production output.
[0005] Furthermore, the material must contain water in an amount greater than that in the
tumbling granulation, in order to be fluidized for the pelletization based on extrusionmaterial.
This causes a further increase in consumption of energy required for drying in a subsequent
process.
[0006] For the briquetting using a briquette roll, may be used a twin roll-type briquette
machine as disclosed, for example, in Patent Document 3 (in the Patent Document 3,
a mixer and a pressure forming machine). This twin roll-type briquette machine comprises
a pressure roll adapted to be drivenly rotated by a motor, and a hopper adapted to
supply a material to the pressure roll from above, the hopper provided with a screw
feeder for feeding the material therein.
[0007] The above twin roll-type briquette machine allows a liquid binder, such as molasses
or lignin, to be used to enable a dried material to be agglomerated directly, i.e.,
without adding water thereto. This makes it possible to drastically reduce the consumption
of energy required for drying in a subsequent process.
[0008] However, the inventor has found that a process of producing briquettes based on a
material containing a large amount of fine particles, such as steel mill dust, and
by use of the twin roll-type briquette machine, involves problems as shown in the
following (1) to (3).
[0009]
- (1) Fine-particle material is hard to be reliably supplied into pockets of the pressure
roll by only a gravity force applied to the material itself, thus being required to
be forcibly fed to a pressure roll by a screw feeder. The material is therefore hardly
supplied to a vicinity of a widthwise end of the pressure roll, as compared with a
central portion thereof, which forms an undesirable distribution of compacting pressure
in the widthwise direction of the pressure roll. This reduces strength of briquettes
compacted around the widthwise end portion of the pressure roll.
- (2) In agglomeration of a slippy material, such as electric furnace dust involving
high jettability and containing oil, a feeding force of the screw feeder deviates
in a radially outward direction of the screw feeder. This obstructs supply of the
material to the pressure roll and increase in the briquette strength.
- (3) Although a strong compression force of the pressure roll is applied to an outer
surface of a briquette, the compacting pressure is hardly transmitted to a center
of the briquette. This causes difficulty in achieving desired briquette strength.
[0010] The reduce in the briquette strength due to above (1)-(3) could be suppressed by
lowering a rotational speed of the pressing roll so as to allow a material to be reliably
supplied to the pockets of the pressure roll, but this approach involves significant
deterioration in briquette production capacity of the briquette machine.
- [Patent Document 1]
- JP 2004-269978A
- [Patent Document 2]
- JP 09-192896A
- [Patent Document 2]
- JP 11-092833A (paragraph [0026], FIG. 1)
DISCLOSURE OF THE INVENTION
[0011] It is an object of the present invention to provide a production method for carbonaceous
material-containing metal oxide briquettes, capable of ensuring sufficient strength
of briquettes while using a metal oxide material containing a large amount of fine
particles, such as steel mill dust. This method comprises a mixing step of mixing
a metal oxide material containing a large amount of fine particles with a carbonaceous
material in a mixer to form a powdery mixture, a compacting step of compacting the
powdery mixture using a briquette machine to form compacts, a classifying step of
classifying the compacts into an oversize fraction and an undersize fraction, using
a sieve, and collecting the oversize fraction as carbonaceous material-containing
metal oxide briquettes that is a product, and a compacts circulating step of returning
a part of the compacts to the mixer or the briquette machine, as a recycle material.
[0012] The method of the present invention may comprise a mixing step of mixing a metal
oxide material containing a large amount of fine particles with a carbonaceous material
in a mixer to form a powdery mixture, a first compacting step of compacting the powdery
mixture using a first briquette machine to form first compacts, a second compacting
step of re-compacting an entirety or a part of the first compacts using a second briquette
machine to form second compacts, and a classifying step of classifying the second
compacts into an oversize fraction and an undersize fraction, by a sieve, and collecting
the oversize fraction as carbonaceous material-containing metal oxide briquettes that
is a product.
BRIEF DESCRIPTION OF DRAWINGS
[0013]
FIG. 1 is a flow diagram showing an outline of a carbonaceous material-containing
metal oxide briquette production method according to a first embodiment of the present
invention.
FIG. 2 is a flow diagram showing an outline of a carbonaceous material-containing
metal oxide briquette production method according to a second embodiment of the present
invention.
FIG. 3 is a flow diagram showing an outline of a carbonaceous material-containing
metal oxide briquette production method according to a third embodiment of the present
invention.
FIG. 4 is a flow diagram showing an outline of a carbonaceous material-containing
metal oxide briquette production method according to a fourth embodiment of the present
invention.
FIG. 5 is a flow diagram showing an outline of a carbonaceous material-containing
metal oxide briquette production method according to a fifth embodiment of the present
invention.
FIG. 6 is a perspective view showing a roller screen for use in the carbonaceous material-containing
metal oxide briquette production method according to the fifth embodiment of the present
invention
FIG. 7 is a vertical sectional view showing a schematic structure of a briquette machine
for the first to fifth embodiments.
BEST MODE FOR CARRYING OUT THE INVENTION
[0014] An embodiment of the present invention will now be specifically described based on
the drawings.
[0015] FIG. 1 is a flow diagram showing an outline of a carbonaceous material-containing
metal oxide briquette production method according to a first embodiment of the present
invention.
[0016] Illustrated in FIG. 1 are three material bins 11a, 11b, 11c, three feeders 12a, 12b,
12c corresponding to the respective material bins, a mixer 15, and a briquette machine
17. From the material bin 11a is discharged electric furnace dust A as a metal oxide
material containing a large amount of fine particles through the feeder 12a, and from
the material bin 11b is discharged powdered coal B as a carbonaceous material through
the feeder 12b. From the material bin 11c is discharged slaked lime C which is a CaO
source as an auxiliary material through the feeder 12c. Further, molasses D as a liquid
binder is sent out from a tank 13 by a pump 14. These A, B, C and D are mixed together
by the mixer 15 to form a powdery mixture E. This powdery mixture E is input into
a hopper 5 via a surge hopper 16, as a material for use in the briquette machine 17
(i.e., briquette material).
[0017] The briquette machine 17 is a twin roll type as shown in FIG 7, which comprises a
pressure roll 1 including a stationary rotating roll 2 and a movable rotating roll
3, a motor 4 for drivingly rotating the two rotating rolls 2 and 3, a hopper 5 disposed
over and above the pressure roll 1 to supply the material thereto, a screw feeder
6 provided within the hopper 5 to force the material, a blade 8 adapted to be rotated
within the hopper 5, and a hydraulic cylinder 7 for pressing the movable rotating
roll 3 against the stationary rotating roll 2 of the pressure roll 1. There are no
special limitation upon a specific structure of the briquette machine 17.
[0018] The material charged into the hopper 5 is forced-fed to the pressure roll 1 according
to rotation of the screw feeder 6, while being prevented from attaching onto an inner
wall surface of the hopper 5 by the rotation of the blade 8, and compress-formed (i.e.,
compacted) into compacts F each having a given shape, such as an almond shape or a
pillow shape, in respective pockets formed in respective outer surfaces of the pair
of rotating rolls 2, 3 making up the pressure roll 1.
[0019] Generally, a part of the compacts F having a particle size of 5 mm or less is undesirable
as a material for use in a rotary hearth furnace, for example, due to formation of
a deposit on a hearth, and therefore powdery or small briquettes are required to be
removed therefrom. For this reason, the compacts F formed by the briquette machine
17 are classified into an oversize fraction G and an undersize fraction H by a sieve
18 having an opening of a given size (e.g., 5 mm), and the oversize fraction G are
collected as product briquettes.
[0020] The undersize fraction H is distributed to two recycle material bins 19a, 19b and
temporarily stored therein, as a recycle material J. From each of the recycle material
bins 19a, 19b, an entirety or a part J1 of the recycle material J is returned to the
surge hopper 16 and the remainder J2 to the mixer 15, respectively, and they are added
to new materials (A + B + C). In cases where the entirety of the recycle material
J is returned to the surge hopper 16, it is understood that no recycle material is
returned to the mixer 15.
[0021] Thus, in this method, the entire undersize fraction H is circulatingly used in the
above system, as the recycle material, thereby ensuring a high material yield, as
with the method disclosed in the Patent Document 3.
[0022] While the remainder J2 of the recycle material J returned to the mixer 15 is fairly
crushed to restore to powder form when mixed with the new materials (A + B + C) in
the mixer 15, the part J1 of the recycle material J returned to the mixer 16 is never
crushed by the mixer 15 because it is simply charged into the surge hopper 16 together
with the powdery mixture E from the mixer 15. Thus, the agglomerated compacts remain
in the briquette material to be supplied to the briquette machine 17.
[0023] Such an addition of the entirety or the part J1 of the recycle material J to the
powdery mixture E enables the agglomerated compacts residing in the recycle material
in a highly-densified state while smaller than the product briquettes G to make the
following effects (a) to (c) during a compacting process using the briquette machine
17, thereby increasing strength of the product briquettes G
- (a) The addition of the highly-densified compacts increases a mean density of the
entire material to facilitate supply based on its own weight, and increase an exclusion
speed in the screw feeder.
- (b) Even in a compacting process using a slippy material, such as electric furnace
dust having high jettability and containing oil, a feeding force of the screw feeder
will be more effectively transmitted to the entire material.
- (c) The compacts can effectively transmit a compacting pressure applied from the pressure
roll to a center of the briquette.
[0024] Although the product-briquette strength generally fluctuates according to variation
in properties and particle size of the material, etc., adjusting a distribution ratio
of the recycle material J between the surge hopper 16 and the mixer 15 makes it possible
to easily ensure the strength of the product-briquette.
(Modification of First Embodiment)
[0025] The recycle material J1 to be returned to the briquette machine 17 is not limited
to an entirety or a part of the undersize fraction H, but a part of the oversize fraction
(product briquettes) G may be added to the entirety or the part of the undersize fraction
H. This addition, while lowering a production speed of the product briquettes, increases
an rate of agglomerated compacts to be supplied to the briquette machine 17 to enhance
the product briquette strength.
[0026] The surge hopper 16 between the mixer 15 and the briquette machine 17 may be omitted.
Specifically, the powdery mixture E from the mixer 15 and the entirety or the part
J1 of the recycle material J from the recycle material bin 19 may be directly supplied
to the briquette machine 17.
[0027] The recycle material J1 and the recycle material J2, to be distributed to the surge
hopper 16 and the mixer 15 respectively, are not necessarily prepared to have the
same particle size distribution. For example, the recycle material J may be further
classified by an additional sieve having an opening smaller than that of the sieve
18, so that a large group containing a larger amount of agglomerated compacts is distributed
to the surge hopper 16, as the J1, and a small group containing a larger amount of
powdery compacts is distributed to the mixer 15, as the J2. This distribution makes
it possible to reduce a rate of agglomerated compacts to be crushed through the mixer
15, in the recycle material J, so as to supply a larger amount of sound agglomerated
compacts to the briquette machine, thus ensuring enhancement in the product briquette
strength.
[0028] Alternatively, after the classification into the oversize fraction G and the undersize
fraction H by the sieve 18, the oversize fraction G may be classified into an oversize
fraction and an undersize fraction by an additional sieve to let the oversize fraction
be served as product briquettes. In this case, the secondary screening just before
charging into an RHF can reduce a supply of a material having a small particle size
and low reducing ability to the RHF In addition, the use of the material having a
small particle size as a briquette material ensures enhancement in the product briquette
strength.
[0029] As a CaO source to be added to the briquette material (powdery mixture) E, limestone
(CaCO
3) or quicklime (CaO) may be used in place of slaked lime (Ca (OH)
2) used in the first embodiment. The amount of the addition of the CaO source is recommended
to be set in the range of 1 to 10 mass% in CaO equivalent, with respect to the briquette
material (powdery mixture) E.
[0030] Generally, in cases where molasses (blackstrap molasses) is used as a liquid binder
for producing briquettes, the CaO source such as slaked lime is often added in combination
with the molasses (wherein, quicklime is often used in place of the slaked lime for
the material containing a large amount of water,). The purpose of the combined use
of the molasses and the CaO source is however to enhance the briquette strength, and
therefore the rate of the addition of the CaO source to the briquette material is
typically less than 1 mass% in CaO equivalent.
[0031] However, the addition of the CaO source has also an effect of reducing a content
of SO
X in exhaust gas from a rotary hearth furnace based on a desulfurization action thereof.
For the desulfurization action, the rate of the addition of the CaO source to the
briquette material should be preferably 1 % or more in CaO equivalent. On the other
hand, since both slaked lime and quicklime, each used as the CaO source, are extremely-fine
powder material, the addition of a large amount of the slaked lime and/or quicklime
deteriorates compactability and strength of the briquette. Further, since each of
slaked lime and limestone requires decomposition heat during a reduction treatment
for briquettes in a rotary hearth furnace, the addition of a large amount of the slaked
lime and/or limestone increases heat load of the rotary hearth furnace to cause an
increase in energy consumption and deterioration in productivity rate of a reduced
metal. For this reason, the CaO source is preferably added in an amount of 10 mass%
or less in CaO equivalent, with respect to the briquette material. More preferable
rate of the addition of the CaO source is in an amount of 2 to 5 mass% in CaO equivalent,
with respect to the briquette material.
[0032] If the desulfurization is not required, it permits omission of the addition of the
CaO source.
[0033] FIG 2 shows an outline of a carbonaceous material-containing metal oxide briquette
production method according to a second embodiment of the present invention. Concerning
the second embodiment, a process of forming compacts F from a material (A+ B + C)
is the same as that in the first embodiment, and hence the description of the process
will be omitted, while only a difference from the first embodiment will be specifically
described below.
[0034] Compacts F formed by the briquette machine 17 are split into first and second groups
(F1, F2) by a splitter 20, respectively. The first compacts F1 are classified into
an oversize fraction G and an undersize fraction H by the sieve 18, and the oversize
fraction G are collected as product briquettes. The second compacts F2 are directly
mixed with the oversize fraction G without being classified, to form a recycle material
J. The recycle material J is returned to the mixer 15 via the recycle material bin
9 to be added to new materials (A + B + C). The entire recycle material J is thus
used in the above system circulatingly, which makes it possible to ensure a high material
yield, as with the first embodiment.
[0035] The recycle material J, which is returned to the mixer 15 and subjected to a crushing
action when mixed with new materials (A + B + C) in the mixer 15, contains agglomerated
compacts having a particle size and high strength substantially equal to those of
the product briquettes (oversize fraction) G, because the recycle material J contains
the compacts F2 obtained by forming the compacts F by the briquette machine 17 and
then simply splitting the compacts F by the splitter 20. Accordingly, the recycle
material J is not fully powdered even by the crushing action, and thus supplied to
the briquette machine 17, allowing agglomerated compacts having a certain level of
particle size to remain in the powdery mixture E.
[0036] The briquette strength is therefore enhanced based on the same functions/effects
as those described in connection with the first embodiment,.
(Modification of Second Embodiment)
[0037] While the entire recycle material J is returned to the mixer 15 in the second embodiment,
there may be provided a surge hopper between the mixer 15 and the briquette machine
17, wherein an entirety or a part of the recycle material J is returned to the surge
hopper, and the remainder is returned to the mixer 15, in the same manner as that
in the first embodiment. Further, as described in connection with the modification
of the first embodiment, an entirety or a part of the recycle material J may be directly
returned to the briquette machine 17 without installation of the above surge hopper.
[0038] FIG. 3 shows a schematic flow of the production of carbonaceous material-containing
metal oxide briquettes, according to a third embodiment of the present invention,
wherein two briquette machines, a first briquette machine 117 and a second briquette
machine 127, are installed in series relation to each other.
[0039] New materials (A + B + C) are mixed together by a mixer 115 to form a powdery mixture
E, in the same manner as that in the first embodiment. The powdery mixture E is compacted
in the first briquette machine 117 to form first compacts F1, and the first compacts
F1 are re-compacted in the second briquette machine 127 to form second compacts F2,
which are classified into an oversize fraction G and an undersize fraction H by a
sieve 128. The oversize fraction G are collected as product briquettes, while the
undersize fraction H are returned to the second briquette machine 127.
[0040] In the third embodiment, since agglomerated compacts are formed in the compacts F1
by the first briquette machine 117 to be supplied to the second briquette machine
127, high-strength product briquettes G can be obtained based on the same functions/effects
as those in the first and second embodiments.
[0041] There may be provided an additional sieve 118 having a sieve opening larger than
that of the sieve 128 between the first briquette machine 117 and the second briquette
machine 127, wherein a part or an entirety of undersize fraction classified by the
sieve 118 are returned to the mixer 115. This allows agglomerated compacts to easily
survive despite a crushing action of the mixer 115 and be supplied to the first briquette
machine 117. Thus, it can be expected that the strength of the compacts F1 becomes
higher and thereby the strength of the product briquettes G also becomes higher.
(Modification of Third Embodiment)
[0042] The undersize fraction H classified by the sieve 128 may be returned to the mixer
115. Further, the additional sieve 118 installed between the first briquette machine
117 and the second briquette machine 127 may be omitted.
[0043] FIG. 4 shows a schematic flow of the production of carbonaceous material-containing
metal oxide briquettes, according to a fourth embodiment of the present invention.
[0044] In the fourth embodiment is used a combination of two first briquette machines 117
and a single second briquette machine 127. When a number of the first briquette machine
117 is greater than a number of the second briquette machines 127, a larger amount
of agglomerated compacts will be supplied to the second briquette machine 127. This
ensures the effect of enhancing the strength of product briquettes G In this embodiment,
a mixer 115 and a sieve 118 are provided for each of the first briquette machines
117.
(Modification of Fourth Embodiment)
[0045] Each of the numbers of the first and second briquette machines 117, 127 is not limited
to a specific value, as long as the number of the first briquette machine 117 is greater
than the number of the second briquette machines 127. This value may be appropriately
adjusted depending, for example, on a production capacity per briquette machine and/or
a required strength of product briquettes G
[0046] Minus-sieve compacts H classified by a sieve 128 may be returned to the mixer 115,
and an additional sieve 118 installed between the first briquette machine 117 and
the second briquette machine 127 may be omitted, as with the third embodiment.
[0047] FIG. 5 shows a schematic flow of the production of carbonaceous material-containing
metal oxide briquettes, according to a fifth embodiment of the present invention.
[0048] In the fifth embodiment is used a combination of a shaking screen 21 and a roller
screen 22 as a sieve 18 for a classifying step. This combination achieves a desirable
classification of compacts formed in a compacting process by a briquette machine,
in a space-saving structure.
[0049] The shaking screen 21 comprises a mesh net for screening which has a flat plate shape
for example, and an actuator adapted to shake the mesh net at a high speed, having
a function of primarily classifying compacts placed on the mesh net and removing burrs
from the compacts by the shaking. As the shaking screen 21A may be used a conventional
commonly-known type. Left as an oversize fraction on the shaking screen 21 are compacts
of large particle size, while dropped down as an undersize fraction are compacts of
small particle size and the removed burrs.
[0050] The oversize fraction on the shaking screen 21 are carried into the roller screen
22, including the compacts and further powder attached on the respective compacts
and/or generated from the compacts during the carrying. The roller screen 22 in this
embodiment is designed to perform a secondary classification for solely removing the
powder.
[0051] As the roller screen 22A may also be used a conventional commonly-known type. FIG.
6 shows one example of a structure thereof. The roller screen 22 illustrated in FIG
6 comprises a plurality of rollers 23, which are arranged in a direction orthogonal
to an axial direction thereof with appropriate gaps therebetween to allow the carry-in
objects (i.e., a mixture of the compacts 24 and the powder 26) to roll on the rollers
23. The gap between adjacent ones of the rollers 23 has a size less than a particle
size of the compacts 24 enough to leave on the shaking screen 21 as the oversize fraction
and greater than a particle size of the powder 26 to be removed.
[0052] The compacts 24 leaving on the shaking screen 21 as the oversize fraction are carried
out as a product through a duct 27, after rolling on the rollers 23. The powder 26
dropped through the gap between the adjacent rollers 23 as the undersize fraction
is collected as a recycle material through a duct 28, and then returned to the briquette
machine 17 or the mixer 15 in the same manner as that in each of the aforementioned
embodiments. This achieves both providing high-quality briquettes from which the powder
is removed and recycling the powder.
[0053] The size of the gap between the adjacent rollers 23 can be significantly easily set.
That is because only large compacts are carried in the roller screen 22 after small
compacts are screened out by the shaking screen 21 and therefore the roller screen
22 is simply required to classify between the large compacts and the powder 26 of
an extremely small particle size. Further, Setting the gap at a small value can achieve
reduction in size of the entire roller screen 22.
[0054] The roller screen 22 is effective as a means to remove powder attached on an outer
surface of each compact, as compared with the shaking screen 21. Specifically, in
the shaking screen 21, since compacts are simply placed on a surface of the sieve
having a flat plate shape for example, the compact hardly makes contact with the sieve
except at a bottom face of the compact, and hardly rolls on the sieve. Moreover, even
if powder is detached from the compact, the powder might leave on a portion of the
mesh net except its opening so as not to be dropped down from the sieve. In contrast,
in the roller screen 22, powder on an outer surface of each compact is more likely
to be detached while the compact rolls on the plurality of rollers 23. In addition,
the detached powder cannot clear the gap between the adjacent rollers 23, thus reliably
dropped down from the sieve.
[0055] Furthermore, differently from the shaking screen 21, the roller screen 22 is less
likely to produce a shock against the compacts, which reduces a risk of causing crack
in compacts as a product.
[0056] Accordingly, it is preferable also in view of improvement in quality that the roller
screen 22 is provided on a downstream side of the shaking screen 21.
[0057] On the other hand, the shaking screen 21 provided on an upstream side of the roller
screen 22 can contribute to improvement in quality by removing burrs of compacts carried
therein, and further can contribute to facilitation of designing the roller screen
22 and reduction in size of the roller screen 22 by a primary classification on the
upstream side of the roller screen 22 as above described.
[0058] Thus, a combination of the upstream shaking screen 21 and the downstream roller screen
22 can provide high-quality briquettes in a space-saving structure.
(Modification common to First to Fifth Embodiments)
[0059] The metal oxide material containing a large amount of fine-particles, for use in
the present invention, may include, in addition to the above-mentioned aforementioned
electric furnace dust, the other steel making dust such as blast furnace dust, converter
dust, mill scale; pulverized iron ore such as pellet feed; and pulverized ore containing
non-ferrous metal oxides such as nickel oxide, chromium oxide, manganese oxide and
titanium oxide.
[0060] Further, the carbonaceous material for use in the present invention may include,
in addition to the aforementioned coal (pulverized coal) , coke, oil coke, charcoal,
wood chip, waste plastic and waste tire.
[0061] The liquid binder for use in the present invention may include lignin in addition
to the aforementioned molasses.
[EXAMPLE]
1) Production of Compound Material of Briquettes
[0062] Firstly, a compound material of briquettes is produced. As new materials, there are
used a carbonaceous material (coal) and a metal oxide material (iron ore, electric
furnace dust) each having an average particle size and a chemical composition as shown
in the following Table 1. An undersize fraction of briquettes produced by use of only
the new materials is collected separately as a recycle material. These materials are
mixed together under a mixing condition as shown in the following Table 2, and then
blackstrap molasses as the liquid binder is added thereto, in an amount of 4 mass%
with respect to 100 mass% of the new materials except the recycle material, and mixed
by a mixer to form a compound material of briquettes.
[0063] For the material No. 5 in Table 2, only the recycle material is used without new
addition of blackstrap molasses. As the recycle material mixed with each of the material
Nos. 2, 4, 5 and 6 in Table 2 is used an undersize fraction of briquettes (5 mm or
less) pre-produced by use of a mixture of only new materials for each of the material
Nos. 2, 4, 5 and 6.
[0064] In this example, coal and iron ore are pre-dried by a drier so as to have an amount
of contained water less than 0.1 mass%, while the electric furnace dusts A, B are
not subjected to drying because they are originally in a dried state. The blackstrap
molasses contains a large amount of water which varies significantly varies, thus
causing a variation of a water content in produced briquettes ranging from about 1
to 2 mass% based on dry measure.
[0065]
TABLE 1
(a)CARBONACEOUS MATERIAL |
ITEM |
UNIT |
COAL |
|
AVERAGE PARTICLE SIZE * |
µm |
45 |
|
INDUSTRIAL ANALYSIS VALUE |
|
|
|
|
VOLATILE COMPOSITION |
MASS% |
17.8 |
|
|
ASH |
MASS% |
9.3 |
|
|
FIXED GARBON |
MASS% |
72.9 |
|
ELEMENTAL ANALYSIS VALUE |
|
|
|
|
C |
MASS% |
83.3 |
|
|
H |
MASS% |
4.1 |
|
|
N |
MASS% |
1.0 |
|
|
S |
MASS% |
0.3 |
|
|
O |
MASS% |
1.9 |
|
(b)METAL OXIDE MATERIAL |
ITEM |
UNIT |
IRON ORE |
ELECTRIC FURNACE DUST A |
ELECTRIC FURNACE DUST B |
AVERAGE PARTICLE SIZE * |
µm |
40∼50 |
1.38 |
7:39 |
COMPOSITION |
|
|
|
|
|
T.Fe |
MASS% |
67.5 |
19∼28 |
19∼31 |
|
Zn |
MASS% |
0 |
24∼31 |
20∼32 |
|
Pb |
MASS% |
0 |
2∼3 |
2∼3 |
|
C |
MASS% |
0 |
3.1 |
3.6 |
|
OIL |
MASS% |
0 |
0.9 |
2.2 |
|
S |
MASS% |
0.01 |
0.5 |
0.6 |
|
SiO2 |
MASS% |
1.6 |
3.6 |
3.6 |
|
CaO |
MASS% |
0.03 |
3.2: |
3.3 |
(NOTE) AVERAGE PARTICLE SIZE IS MEASURED BASED ON THE MICROTRAC METHOD. IT IS A PARTICLE
SIZE AT A POINT OF 50 % IN A CUMULATIVE CURVE OBTAINED ON AN ASSUMPTION THAT THE ENTIRE
VOLUME OF A POWDER HAVING A PARTICLE SIZE DISTRIBUTION IS 100 % |
[0066]
TABLE 2
ITEM |
UNIT |
|
1 |
2 |
3 |
4 |
5 |
6 |
MIXING RATE *1 MASS% |
MASS% |
|
|
|
|
|
|
|
IRON ORE |
MASS% |
74.0 |
- |
- |
- |
|
- |
ELECTRIC FURNACE DUST A |
MASS% |
|
88.3 |
- |
- |
- |
- |
ELECTRIC FURNACE DUST B |
MASS% |
- |
- |
88.3 |
88.3 |
88.3 |
84.8 |
PULVERIZING COAL |
MASS% |
26.0 |
11.7 |
11.7 |
11.7 |
11.7 |
11.2 |
SLAKED LIME |
MASS% |
- |
- |
- |
- |
- |
4.0 |
|
RECYCLE MATERIAL RATE *2 |
MASS% |
NONE |
16 |
NONE |
16 |
100 |
16 |
(NOTE 1): A MIXING RATIO IN NEW MATERIALS EXCEPT A RECYCLE MATERIAL
(NOT 2): RECYCLE MATERIAL RATE = RECYCLE MATERIAL /(RECYCLE MATERIAL + NEW MATERIALS) |
2) Briquette Production Test
[0067] A test of producing briquettes by use of each of the above mixed materials is performed.
[0068] In this test, the briquette machine illustrated FIG. 7 is used. This briquette machine
comprises a rotating roll which has a roll diameter of 520 mm, a roll width of 200
mm, and a pocket size of 30 mm length x 25 mm width x 7 mm depth. The briquette machine
produces briquettes in a volume of about 10 cm
3.
[0069] The crushing strength of the briquettes is measured in conformity to ISO 4700. Specifically,
with respect to ten briquettes, a compression load is applied to each of the briquettes
in a thicknesswise direction thereof under a condition that it is laid down, to measure
a minimum load at a time when each of the briquettes is broken. Then, an average of
the ten minimum loads is calculated as the crushing strength. The "kgf", a unit of
the compression strength, is equivalent to 9.80665 N.
[0070] The dropping strength of the briquettes is an average value of repeat counts of ten
briquettes obtained by repeatedly dropping each of the briquettes from a height of
45 cm on an iron plate until it is cracked.
[0071] A result of the above measurements is shown in the following Table 3.
[0072]
TABLE 3
|
UNIT |
MATERIAL |
MATERIAL 2 |
MATERIAL 3 |
MATERIAL 4 |
MATERIAL 5 |
MATERIAL 6 |
DROPPING STRENGTH |
times |
21.6 |
11.0 |
3.9 |
8.9 |
10.5 |
7.9 |
CRUSHING STRENGTH |
kgf per briquette |
45.8 |
11.1 |
7.0 |
12.7 |
34.8 |
15.9 |
PRODUCTION SPEED |
t/h |
4.6 |
2.5 |
1.3 |
1.6 |
2.5 |
1.6 |
[0073] As seen in Table 3, the mixed material No. 1 produced by use of iron ore as the metal
oxide material provides not only a high briquette strength (both the dropping strength
and the crushing strength) but also a high production speed. That would be because
the iron ore has such a large average particle size that a problem with the use of
a fine-particle material is not occurred.
[0074] In the mixed material Nos. 2 to 5 using electric furnace dust as the metal oxide
material, an average particle size of the electric furnace dust is fairly less than
that of the iron ore, and therefore, both the briquette strength and the production
speed are lower than those of the mixed material No. 1. In a comparison the results
of the mixed material Nos. 2 with Nos. 4, although they have similar average particle
sizes and the same rate of the added recycle material, the mixed material No. 4 has
a lower production speed. Specifically, as to the mixed material No. 4, the production
speed is reduced to 1.6 t/h, because the production speed of the mixed material No.
4 increased up to 2.5 t/h which is equal to that of the mixed material No. 2 would
reduce briquette strength so as to make a production of briquettes impossible. The
reason is probably that, although they have similar particle sizes and chemical compositions,
an oil content of the mixed material No. 4 is greater than that of the mixed material
No. 2, and therefore a feeding force of the screw feeder in the hopper above the briquette
machine is lowered, to cause the problem that briquettes having a certain level of
strength cannot be produced without lowering the briquette production speed.
[0075] The mixed material Nos. 3 to 5 are samples where the rate of the added recycle material
is changed. They show that the increase in the rate of the added recycle material
raises both the briquette strength (both the dropping strength and the crushing strength)
and the production rate.
[0076] The mixed material No. 6 is a sample for verifying an effect of adding slaked lime
to the mixed material No. 4. It shows that, although slaked lime as a fine-particle
material is added in a larger amount (4 mass%) than a typical amount (less than 1
mass%) when it is used as a binder, the concomitant use of the recycle material can
prevent deterioration in briquette strength (both the dropping strength and the crushing
strength).
[0077] The above results show that the addition of the recycle material, in which agglomerated
compacts in the recycle are fairly crushed, apt to enhance the briquette strength
because the recycle material is mixed with the new materials by the mixer due to structural
restrictions of a testing facility. This proves that the use of the present invention
makes it possible to enhance the product briquette strength without deterioration
in productivity while using a material containing fine particles.
[0078] As mentioned above, the present invention provides a method for producing carbonaceous
material-containing metal oxide briquettes. The method comprises a mixing step of
mixing a metal oxide material containing a large amount of fine particles with a carbonaceous
material in a mixer to form a powdery mixture, a compacting step of compacting the
powdery mixture, using a briquette machine to form compacts, a classifying step of
classifying the compacts into an oversize fraction and an undersize fraction, using
a sieve, and collecting the oversize fraction as carbonaceous material-containing
metal oxide briquettes as a product, and a compacts circulating step of returning
a part of the compacts to the mixer or the briquette machine, as a recycle material.
[0079] In this method, an entirety or a part of the compacts pre-compacted by the briquette
machine are added as a recycle material to new materials, and the obtained mixture
is re-compacted by the briquette machine. This provides the following functions/effects.
[0080]
- (1) The addition of the highly-densified compacts increases a mean density of the
entire materials to facilitate supply of them based on their own weight.
- (2) Even in cases where a slippy material such as electric furnace dust having high
jettability and containing oil is used, a feeding force in a screw feeder or the like
will be more effectively transmitted to the entire material, and further a feeding
speed will be raised.
- (3) A compacting pressure applied from the pressure roll will be more effectively
transmitted to a center of the briquette through the compacts therein.
[0081] These functions/effects makes the briquette strength higher.
[0082] In this method, the compact circulating step may include returning an entirety or
a part of the undersize fraction to the briquette machine, as the recycle material,
or may include returning a part of the oversize fraction to the mixer or the briquette
machine, as the recycle material. Alternatively, the compact circulating step may
include returning a sum of an entirety or a part of the undersize fraction and a part
of the oversize fraction to the mixer or the briquette machine, as the recycle material,
or may include returning a sum of a part of the compact before classified and an entirety
or a part of the undersize fraction to the mixer or the briquette machine, as the
recycle material.
[0083] The present invention also provides a method of producing carbonaceous material-containing
metal oxide briquettes, which comprises a mixing step of mixing a metal oxide material
containing a large amount of fine particles with a carbonaceous material in a mixer
to form a powdery mixture, a first compacting step of compacting the powdery mixture
using a first briquette machine to form first compacts, a second compacting step of
re-compacting an entirety or a part of the first compacts using a second briquette
machine to form second compacts, and a classifying step of classifying the second
compacts into an oversize fraction and an undersize fraction, using a sieve, and collecting
the oversize fraction as carbonaceous material-containing metal oxide briquettes as
a product.
[0084] In this method, the first briquette machine may be made up of a plural number of
briquette machines installed in parallel relation to each other, wherein the number
is greater than a number of briquette machines which make up as the second briquette
machine. In this case, agglomerated compacts is supplied to the second briquette machine
in a larger amount to ensure the effect of increasing the strength of the product
briquettes
[0085] Further, the present invention provides a method for producing carbonaceous material-containing
metal oxide briquettes, which comprises a mixing step of mixing a metal oxide material
containing a large amount of fine particles with a carbonaceous material in a mixer
to form a powdery mixture, a compacting step of compacting the powdery mixture using
a briquette machine to form compacts, a classifying step of classifying the compacts
into a first oversize fraction and a first undersize fraction using a shaking screen,
then secondarily classifying the first oversize fraction into a second oversize fraction
and a second undersize fraction, using a roller screen including a plurality of rollers,
and collecting the second oversize fraction classified by the roller screen, as carbonaceous
material-containing metal oxide briquettes as a product, and a compacts circulating
step of returning the second undersize fraction classified by the roller screen to
the mixer or the briquette machine, as a recycle material.
[0086] In this method, a combination of the shaking screen disposed on an upstream side
and the roller screen disposed on a downstream side makes it possible to desirably
classify compacts formed through the compacting step by use of the briquette machine,
in a space-saving structure.
[0087] Specifically, the shaking screen is designed to classify the compacts while shaking
them, thereby removing burrs formed on the compacts therefrom and screen out the burrs
together with small compacts as the first undersize fraction, while leaving large-sized
compacts together with powder attached on respective outer surfaces thereof as the
first oversize fraction. Then, the first oversize fraction and the powder attached
thereon are screened by the roller screen to provide high-quality compacts after removal
of the powder as a product. The screening based on the rollers can suppress powdering
the compacts, as compared with the screening based on shaking
[0088] The above roller screen is preferable to have such a gap dimension between the adjacent
ones of the rollers as to classify the powder existing together with the compacts
supplied from the shaking screen as the second undersize fraction and the compacts
as the second oversize fraction, respectively.
[0089] In each of the above methods, the mixing step preferably includes further adding
a CaO source to the powdery mixture, in an amount of 1 to 10 mass% in CaO equivalent.