(11) **EP 2 623 628 A8**

(12) CORRECTED EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(15) Correction information:

Corrected version no 1 (W1 A1) Corrections, see Bibliography INID code(s) 54

- (48) Corrigendum issued on: **30.10.2013 Bulletin 2013/44**
- (43) Date of publication: **07.08.2013 Bulletin 2013/32**
- (21) Application number: 11829668.0
- (22) Date of filing: 23.09.2011

- (51) Int Cl.: C22F 1/18^(2006.01)
- (86) International application number: PCT/RU2011/000730
- (87) International publication number: WO 2012/044204 (05.04.2012 Gazette 2012/14)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

- (30) Priority: 27.09.2010 RU 2010139738
- (71) Applicant: Public Stock Company "VSMPO-AVISMA Corporation" Sverdlovskaya obl. 624760 (RU)
- (72) Inventors:
 - TETYUKHIN, Vladislav Valentinovich Moscow 125284 (RU)
 - LEVIN, Igor Vasilievich Sverdlovskaya obl. 624760 (RU)
- (74) Representative: Letzelter, Felix Phillip Meissner, Bolte & Partner GbR Widenmayerstrasse 48 80538 München (DE)

(54) METHOD FOR MANUFACTURING DEFORMED ARTICLES FROM PSEUDO- BETA-TITANIUM ALLOYS

(57) This invention relates to nonferrous metallurgy, namely to thermomechanical processing of titanium alloys and can be used for manufacturing structural parts and assemblies of high-strength pseudo-β-titanium alloys in aerospace engineering, mainly for landing gear and airframe application.

The method for thermomechanical processing of titanium alloy items consisting of, in weight percentages, 4.0 - 6.0 aluminum, 4.5 - 6.0 vanadium, 4.5 - 6.0 molybdenum, 2.0 - 3.6 chromium, 0.2 - 0.5 iron, 2.0 max. zirconium, 0.2 max. oxygen and 0.05 max. nitrogen is proposed. The method consists of multiple heating operations to a temperature that is above or below beta transus

temperature (BTT), hot working with the specified strain and cooling.

A technical result of this method is manufacture of near-net shape forgings with stable properties having sections with thickness 100 mm and over and length over 6 m with the guaranteed level of the following mechanical properties:

- 1. Ultimate tensile strength over 1200 MPa with fracture toughness, K_{1C} , not less than $35 MPa \sqrt{m}$.
- 2. Fracture toughness, K_{1C} , over 70 MPa \sqrt{m} with ultimate tensile strength not less than 1100 MPa.

EP 2 623 628 A8