BACKGROUND OF THE INVENTION
[0001] The present invention relates to a motor-driven compressor including a compression
portion, an electric motor, and a motor drive circuit, which are accommodated in a
housing.
[0002] Conventionally, motor-driven compressors including a compression portion, an electric
motor, and a motor drive circuit, which are accommodated in a housing, have been known.
The compression portion is driven through rotation of a rotary shaft, which is rotated
by the electric motor. The electric motor is driven by the motor drive circuit. For
example, refer to Japanese Laid-Open Patent Publication No.
2009-74517. The motor drive circuit is driven by receiving electricity from an external power
source. A tubular connector-receiving portion, which protrudes outward from the outer
surface of the housing, is formed on the housing. A wiring connection portion is accommodated
in the connector-receiving portion to supply electricity from the external power source
to the motor drive circuit. A substrate on which electric parts such as a switching
element are mounted is located in the motor drive circuit. A conductive member extending
into the connector-receiving portion and connecting the substrate with the wiring
connection portion is mounted on the substrate.
[0003] As shown in Fig. 5, a conventional wiring connection portion 80 is located in a connector-receiving
portion 92, which is formed on an external surface of a housing (not shown). The wiring
connection portion 80 is configured by a wire 81, a first terminal 82, which is provided
at a first end of the wire 81 and electrically connected to an external power source
90, and a second terminal 83, which is provided at a second end of the wire 81 and
electrically connected to the motor drive circuit (not shown). The wire 81 is formed
by covering a lead portion 81a, which is formed by binding up a plurality of leads
with an insulating coating 81b.
[0004] A swage portion 82a (first end-connection portion) is formed at a first end of the
first terminal 82, while a connection portion 82b (second end-connection portion),
which is electrically connected to the external power source 90, is formed at a second
end of the first terminal 82. A swage portion 83a (first end-connection portion) is
formed at a first end of the second terminal 83, while a connection portion 83b (second
end-connection portion), which is electrically connected to a conductive member 91,
is formed at a second end of the second terminal 83.
[0005] At the opposite ends of the wire 81, the lead portion 81a is exposed from the insulating
coating 81b. The first end of the wire 81 and the first terminal 82 are connected
by swaging the lead portion 81a exposed from the insulating coating 81b at the first
end of the wire 81 by the swage portion 82a of the first terminal 82. Also, the second
end of the wire 81 and the second terminal 83 are connected to each other by swaging
the lead portion 81a exposed from the insulating coating 81b at the second end of
the wire 81 by the swage portion 83a of the second terminal 83.
[0006] There is a need for the length in the direction in which the connector-receiving
portion 92 extends to be shortened as required in accordance with the position and
size of a space in the vehicle allotted for the motor-driven compressor. Therefore,
it is also necessary to shorten the length of the wire 81 of the wiring connection
portion 80 in accordance with the length of the connector-receiving portion 92.
[0007] If the swaging of the lead portion 81a by the swage portion 82a of the first terminal
82 and the swaging of the lead portion 81a by the swage portion 83a of the second
terminal 83 are performed using, for example, a swage tool while a machine such as
a robot arm grasps the wire 81, the position of the swaging (connecting position)
is shifted due to the flexibility of the wire 81, resulting in poor connecting operability.
Therefore, generally, the swaging of the lead portion 81a by the swage portion 82a
of the first terminal 82 and the swaging of the lead portion 81a by the swage portion
83a of the second terminal 83 are performed using the swage tool while an operator
holds the wire 81 by hand. Accordingly, such manual operation by the operator allows
the swage position to be adjusted finely, and the operability of the swaging is improved.
[0008] The shorter the length of the wire 81 becomes, however, the shorter the distance
between the operator's hand and the swage tool becomes. Accordingly, such a connecting
operation cannot be easily performed, and thus it becomes difficult to shorten the
length of the entire wiring connection portion 80. As a result, the length in the
direction in which the connector-receiving portion 92 extends cannot be shortened
as necessary in accordance with the position and size of an allotted space in the
vehicle.
[0009] Further, for example, dimensional tolerance exists between the connection portion
82b of the first terminal 82 and the external power source 90 or between the connection
portion 83b of the second terminal 83 and the conductive member 91 when connecting
the connection portion 82b of the first terminal 82 with the external power source
90 or the connection portion 83b of the second terminal 83 with the conductive member
91. Accordingly, there is a need for the dimensional tolerance to be absorbed between
the connection portion 82b of the first terminal 82 and the external power source
90 or between the connection portion 83b of the second terminal 83 and the conductive
member 91 when connecting the connection portion 82b of the first terminal 82 with
the external power source 90 or the connection portion 83b of the second terminal
83 with the conductive member 91.
[0010] An object of the present invention is to provide a motor-driven compressor that can
shorten the entire length of a wiring connection portion compared with a wiring connection
portion using no wires and absorb dimensional tolerance between a first terminal and
an external power source or between a second terminal and a conductive member.
SUMMARY OF THE INVENTION
[0011] To achieve the foregoing objective and in accordance with one aspect of the present
invention, a motor-driven compressor is provided that includes a housing, a compression
portion, an electric motor, a motor drive circuit, a connector-receiving portion,
a wiring connection portion, and a conductive member. The compression portion, the
electric motor, and the motor drive circuit are accommodated in the housing. The connector-receiving
portion is provided on an outer surface of the housing. The wiring connection portion
is provided in the connector-receiving portion and is adapted for supplying electricity
from an external power source to the motor drive circuit. The conductive member is
provided on the motor drive circuit and extends toward a space in the connector-receiving
portion. The conductive member electrically connects the motor drive circuit and the
wiring connection portion with each other. The wiring connection portion includes
a first terminal, a second terminal and a coupling member for coupling the first terminal
with the second terminal. The first terminal has a first end-connection portion at
an end thereof and a second end-connection portion at the other end thereof. The second
end-connection portion is electrically connected to the external power source. The
second terminal has a first end-connection portion at an end thereof and a second
end-connection portion at the other end thereof. The second end-connection portion
is electrically connected to the conductive member. The coupling member has a first
metal plate connected to the first end-connection portion of the first terminal, a
second metal plate connected to the first end-connection portion of the second terminal,
and a wire mesh coupling the first metal plate and the second metal plate with each
other.
[0012] Other aspects and advantages of the present invention will become apparent from the
following description, taken in conjunction with the accompanying drawings, illustrating
by way of example the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] The invention, together with objects and advantages thereof, may best be understood
by reference to the following description of the presently preferred embodiments together
with the accompanying drawings in which:
Fig. 1A is a longitudinal cross-sectional view illustrating a motor-driven compressor
according to one embodiment of the present invention;
Fig. 1B is a partially enlarged longitudinal cross-sectional view illustrating the
connector-receiving portion and its surrounding in the motor-driven compressor shown
in Fig. 1A;
Fig. 2 is a cross-sectional view taken along line A-A of Fig. 1B;
Fig. 3 is a view schematically showing the state where a first metal plate and a wire
mesh are joined by resistance welding;
Fig. 4 is a partially enlarged longitudinal cross-sectional view illustrating a connector-receiving
portion and its surrounding according to another embodiment of the present invention;
and
Fig. 5 is a partially enlarged lateral cross-sectional view illustrating the connector-receiving
portion of a conventional motor-driven compressor and its surroundings.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0014] A motor-driven compressor according to one embodiment of the present invention will
now be described with reference to Figs. 1-3. The motor-driven compressor of the present
embodiment is mounted on vehicle, which is a hybrid automobile, and employed for a
vehicle air conditioner.
[0015] As shown in Fig. 1A, a motor-driven compressor 10 includes a housing 11, which is
made of metal (aluminum in the present embodiment). The housing 11 is formed by an
intermediate housing member 12, a discharge housing member 13, and an inverter housing
member 14. The intermediate housing member 12 constitutes an intermediate part of
the housing 11 and is formed to be cylindrical with a closed end. The discharge housing
member 13 is joined to the open end of the intermediate housing member 12. The inverter
housing member 14 is joined to the closed end of the intermediate housing member 12.
The intermediate housing member 12 and the discharge housing member 13 are fastened
to each other by blots B1 with a gasket G in between. Also, the intermediate housing
member 12 and the inverter housing member 14 are fastened to each other by bolts B2.
An accommodation space 17 is defined between the intermediate housing member 12 and
the inverter housing member 14.
[0016] A discharge chamber 15 is defined between the intermediate housing member 12 and
the discharge housing member 13. A discharge port 16 is formed in an end face of the
discharge housing member 13. The discharge chamber 15 is connected to an external
refrigerant circuit (not shown) via the discharge port 16. A suction port (not shown)
is formed at a position near the inverter housing 14 in the intermediate housing member
12. The space in the intermediate housing member 12 is connected to the external refrigerant
circuit (not shown) via the suction port.
[0017] A rotary shaft 23 is rotationally supported in the intermediate housing member 12.
The intermediate housing member 12 accommodates a compression portion 18 for compressing
refrigerant and an electric motor 19 for driving the compression portion 18. The accommodation
space 17 accommodates a motor drive circuit 30, which controls operation of the electric
motor 19. Therefore, the compression portion 18, the electric motor 19, and the motor
drive circuit 30 are accommodated in the housing 11 to be arranged in that order in
the axial direction of the rotary shaft 23.
[0018] The compression portion 18 will now be described.
[0019] The compression portion 18 includes a fixed scroll 20, which is fixed to the intermediate
housing member 12, and an orbiting scroll 21, which is arranged to face the fixed
scroll 20. Compression chambers 22, the volume of which is variable, are defined between
the fixed scroll 20 and the orbiting scroll 21. A discharge passage 28, which connects
the compression chambers 22 and the discharge chamber 15 to each other, is formed
in the fixed scroll 20.
A discharge valve 29 is located at an end face of the fixed scroll 20.
[0020] Next, the electric motor 19 will be described.
[0021] The electric motor 19 includes a rotor 24, which rotates integrally with the rotary
shaft 23, and a stator 25, which is fixed to the inner circumferential surface of
the intermediate housing member 12 to surround the rotor 24. The rotor 24 includes
a rotor core 24a, which is fixed to and rotates integrally with the rotary shaft 23,
and permanent magnets 24b, which are provided on the circumferential surface of the
rotor core 24a. The stator 25 is substantially annular. A stator core 25a is fixed
to the inner circumferential surface of the intermediate housing member 12. A coil
25b is wound about each of teeth (not shown) of the stator core 25a.
[0022] The motor drive circuit 30 will now be described.
[0023] The motor drive circuit 30 includes a flat plate-like circuit board 31 and electrical
components 32a to 32d mounted on the circuit board 31. The circuit board 31 is located
in the accommodation space 17 and fixed to the inner surface of the inverter housing
member 14. The circuit board 31 is arranged in the inverter housing member 14 to extend
in a radial direction of the rotary shaft 23. The motor drive circuit 30 supplies
electricity to the stator 25 of the electric motor 19 based on commands from an ECU
for controlling the air conditioner (not shown). The circuit board 31 has a conductive
member 33, which protrudes from the outer circumferential surface of the inverter
housing member 14 and extends toward a connector-receiving portion 42.
[0024] As shown in Fig. 1B, the connector-receiving portion 42 is made of metal (aluminum
in the present embodiment). The connector-receiving portion 42 includes a tubular
first extended portion 42a and a tubular second extended portion 42b. The first extended
portion 42a extends outward from the outer circumferential surface of the inverter
housing member 14 in a radial direction of the rotary shaft 23. The second extended
portion 42b is continuous with the first extended portion 42a and extends in the axial
direction of the rotary shaft 23 and toward the electric motor 19. The first extended
portion 42a has a connection portion 421 a, which is connected to a connection hole
141 formed in the inverter housing member 14. The connector-receiving portion 42 is
connected to the inverter housing member 14 by joining the connection hole 141 and
connection portion 421a to each other.
[0025] The length of the second extended portion 42b in a longitudinal direction is adjusted
in accordance with the position and size of a space in a hybrid car allotted for the
motor-driven compressor 10 according to the present embodiment. A connector housing
44, which is made of plastic, is attached to an opening 421b of the second extended
portion 42b. The connector housing 44 is tubular and includes a fitting portion 44a,
a contact portion 44b, and a main body 44c. The fitting portion 44a is fitted in the
opening 421b. The contact portion 44b is continuous with the fitting portion 44a and
contacts an open end 422b of the second extended portion 42b. The main body 44c is
continuous with the contact portion 44b and is connected to an external power source
40.
[0026] Wiring connection portions 50 are accommodated in the second extended portion 42b
and the connector housing 44 to supply electricity from the external power source
40 to the motor drive circuit 30. Each of the wiring connection portions 50 includes
a first terminal 51 electrically connected to the external power source 40, a second
terminal 52 electrically connected to the motor drive circuit 30 and a coupling member
56 coupling the first terminal 51 with the second terminal 52. The coupling member
56 includes a first metal plate 53, a second metal plate 54, and a wire mesh 55. The
wire mesh 55 is configured by a woven metallic braid.
[0027] A first end-connection portion 51a is formed at a first end of the first terminal
51, while a second end-connection portion 51b, which is electrically connected to
the external power source 40, is formed at a second end of the first terminal 51.
Also, a first end-connection portion 52a is formed at a first end of the second terminal
52, while a second end-connection portion 52b, which is electrically connected to
the conductive member 33, is formed at a second end of the second terminal 52. The
first metal plate 53 and the second metal plate 54 are elongated boards. The first
end of the first metal plate 53 and the first end-connection portion 51a of the first
terminal 51 are joined to each other; that is, connected to each other by welding
(in the present embodiment, resistance welding). The second end of the first metal
plate 53 and the first end of the wire mesh 55 are joined to each other; that is connected
to each other by welding (in the present embodiment, resistance welding). Also, the
first end of the second metal plate 54 and the first end-connection portion 52a of
the second terminal 52 are joined to each other by welding (in the present embodiment,
resistance welding). The second end of the second metal plate 54 and the second end
of the wire mesh 55 are joined to each other by welding (in the present embodiment,
resistance welding). Accordingly, the wire mesh 55 couples the first metal plate 53
and the second metal plate 54 with each other. The first metal plate 53, the second
metal plate 54 and the wire mesh 55 connect the first terminal 51 and the second terminal
52 with each other. The total length of the first metal plate 53, the second metal
plate 54 and the wire mesh 55 added together is less than the length of the second
extended portion 42b in the direction in which the second extended portion 42b extends.
[0028] As shown in Fig. 2, the motor-driven compressor 10 according to the present embodiment
is provided with two wiring connection portions 50, which are arranged side by side.
The second terminal 52, the second metal plate 54 and the wire mesh 55 of each wiring
connection portion 50 are located in a plastic cluster block 45 having shape of a
rectangular box accommodated in the second extended portion 42b. The inside of the
cluster block 45 is sectioned into a first accommodation section 45a and a second
accommodation section 45b. The first accommodation section 45a accommodates the second
terminal 52, the second metal plate 54 and the wire mesh 55 of one of the wiring connection
portions 50. The second accommodation section 45b accommodates the second terminal
52, the second metal plate 54 and the wire mesh 55 of the other one of the wiring
connection portions 50. The cluster block 45 ensures insulation between i) the second
terminal 52, the second metal plate 54 and the wire mesh 55 of one of the wiring connection
portions 50 and ii) the second terminal 52, the second metal plate 54 and the wire
mesh 55 of the other wiring connection portion 50. Further, the cluster block 45 ensures
insulation between each of the wiring connection portions 50 and the connector-receiving
portion 42. Therefore, in the present embodiment, the cluster block 45 functions as
an insulating member.
[0029] The connector housing 44 accommodates the first terminals 51 and the first metal
plates 53 of the wiring connection portions 50. A space in the connector housing 44
is sectioned into a first accommodation section 441 and a second accommodation section
442. The first accommodation section 441 accommodates the first terminal 51 and the
first metal plate 53 of one of the wiring connection portions 50. The second accommodation
section 442 accommodates the first terminal 51 and the first metal plate 53 of the
other wiring connection portion 50. The connector housing 44 ensures insulation between
i) the first terminal 51 and the first metal plate 53 of one of the wiring connection
portions 50 and ii) the first terminal 51 and the first metal plate 53 of the other
one of the wiring connection portions 50. Further, the connector housing 44 ensures
insulation between each wiring connection portion 50 and the connector-receiving portion
42. Therefore, in the present embodiment, the connector housing 44 functions as an
insulating member.
[0030] The second end-connection portions 52b of the second terminals 52 and the conductive
members 33 are electrically connected to each other, and the second end-connection
portions 51b of the first terminals 51 and the external power source 40 are electrically
connected to each other, so that the external power source 40 and the motor drive
circuit 30 are electrically connected to each other via the wiring connection portions
50 and the conductive members 33.
[0031] According to the above described motor-driven compressor 10, electricity from the
external power source 40 is supplied to the motor drive circuit 30 via the wiring
connection portions 50 and the conductive members 33. When the electricity is supplied
to the electric motor 19 from the motor drive circuit 30, the rotor 24 is rotated.
Accordingly, the rotary shaft 23 rotates. As the rotary shaft 23 rotates, the volume
of each compression chamber 22 between the orbiting scroll 21 and the fixed scroll
20 is reduced in the compression portion 18. Then, refrigerant is drawn into the intermediate
housing member 12 from the external refrigerant circuit via the suction port. The
refrigerant taken into the intermediate housing member 12 is drawn into the compression
chambers 22 in the intermediate housing member 12 via a suction passage 27 provided
in the intermediate housing member 12 to be compressed. The refrigerant that has been
compressed in the compression chambers 22 is discharged to the discharge chamber 15
via the discharge passage 28, while flexing the discharge valve 29. The refrigerant
discharged to the discharge chamber 15 is conducted to the external refrigerant circuit
via the discharge port 16 and then returned to the intermediate housing member 12.
[0032] Operation of the present embodiment will now be described.
[0033] For example, a case is considered where a machine such as a robot arm grasps the
first metal plate 53 or the second metal plate 54 to connect the first end of the
first metal plate 53 to the first end-connection portion 51a of the first terminal
51 or the first end of the second metal plate 54 is connected to the first end-connection
portion 52a of the second terminal 52. In this case, since the first metal plate 53
and the second metal plate are more rigid than a wire used in a conventional motor-driven
compressor, the likelihood of shifting of the connecting position of the first metal
plate 53 and the second metal plate 54 with respect to the first end-connection portion
51a of the first terminal 51 or to the first end-connection portion 52a of the second
terminal 52 is reduced. As a result, it is not necessary for an operator to perform
connecting operation while holding the first metal plate 53 or the second metal plate
54 by hand. Even if the entire length of the first metal plate 53 and the second metal
plate 54 is shortened, the operation of connecting the first end of the first metal
plate 53 with the first end-connection portion 51a of the first terminal 51 or the
first end of the second metal plate 54 with the first end-connection portion 52a of
the second terminal 52 is facilitated.
[0034] According to the above described motor-driven compressor 10, the total length of
the first metal plate 53, the second metal plate 54, and the wire mesh 55 is less
than the length of the second extended portion 42b in the direction in which the second
extended portion 42b extends. As a result, the length of the second extended portion
42b is shortened in accordance with the position and size of a space in a hybrid car
allotted for the motor-driven compressor 10 according to the present embodiment. This
facilitates mounting of the motor-driven compressor 10 on a hybrid car.
[0035] Further, the wire mesh 55 is flexible. Accordingly, the wire mesh 55 flexes when
connecting the second end-connection portion 51b of the first terminal 51 with the
external power source 40 or the second end-connection portion 52b of the second terminal
52 with the conductive member 33. The flexing of the wire mesh 55 absorbs the dimensional
tolerance between the second end-connection portion 51b of the first terminal 51 and
the external power source 40 or between the second end-connection portion 52b of the
second terminal 52 and the conductive member 33.
[0036] Next, a method for welding the first metal plate 53 with the wire mesh 55 will be
described.
[0037] As shown in Fig. 3, first, a part of the wire mesh 55 is brought into contact with
a plane part 53a of the first metal plate 53, and then the first metal plate 53 and
the wire mesh 55 are sandwiched by a pair of welding electrodes T1 and T2. Specifically,
the welding electrode T1 is arranged at a part opposite to a part in contact with
the first metal plate 53 in the wire mesh 55, and the welding electrode T2 is arranged
on a surface opposite to the plane part 53a in the first metal plate 53. Then, current
is supplied to flow between the welding electrodes T1 and T2.
[0038] The current from the welding electrode T1 flows into the welding electrode T2 through
the wire mesh 55 and the first metal plate 53. Thereby, resistance heat is generated
in the contacting part between the wire mesh 55 and the first metal plate 53. With
this resistance heat, the part of the wire mesh 55 in contact with the first metal
plate 53 and the part of the first metal plate 53 in contact with the wire mesh 55
are respectively heated to be melted. As the melted parts are cooled, the first metal
plate 53 and the wire mesh 55 are joined with each other. Since the method for welding
the second metal plate 54 with the wire mesh 55 is the same as the method for welding
the first metal plate 53 with the wire mesh 55, the detailed explanation thereof is
omitted.
[0039] The above described embodiment has the following advantages.
- (1) Each of the wiring connection portions 50 is formed by the first terminal 51,
the second terminal 52 the first metal plate 53, the second metal plate 54, and the
wire mesh 55. Accordingly, the first metal plate 53 and the second metal plate 54
are more rigid than the wire used in the conventional motor-driven compressor. Therefore,
the likelihood of shifting of the connecting positions of the first metal plate 53
and the second metal plate 54 with respect to the first end-connection portion 51a
of the first terminal 51 or to the first end-connection portion 52a of the second
terminal 52 can be reduced. Accordingly, even if the lengths of the first metal plate
53 and the second metal plate 54 are shortened, the first end-connection portion 51a
of the first terminal 51 can be easily connected to the first metal plate 53 and the
first end-connection portion 52a of the second terminal 52 can be easily connected
to the second metal plate 54. As a result, the lengths of the first metal plate 53
and the second metal plate 54 can be shortened as much as possible; that is, the length
of the entire wiring connection portion 50 can be easily shortened in comparison to
a wiring connection portion in which a wire is used.
Further, the wire mesh 55 is flexible. Accordingly, the wire mesh 55 flexes when connecting
the second end-connection portion 51b of the first terminal 51 with the external power
source 40 or the second end-connection portion 52b of the second terminal 52 with
the conductive member 33. Thereby, the dimensional tolerance between the second end-connection
portion 51b of the first terminal 51 and the external power source 40 or between the
second end-connection portion 52b of the second terminal 52 and the conductive member
33 can be absorbed. As a result, the second end-connection portion 51b of the first
terminal 51 can be easily connected with the external power source 40 or the second
end-connection portion 52b of the second terminal 52 can be easily connected with
the conductive member 33.
- (2) The connector-receiving portion 42 is made of metal, and the cluster block 45
and the connector housing 44 are located between the wiring connection portions 50
and the connector-receiving portion 42. In order to ensure the strength of the connector-receiving
portion 42, it is preferred to form the connector-receiving portion 42 with metal.
Further, the cluster block 45 and the connector housing 44 can ensure insulation between
the wiring connection portions 50 and the connector-receiving portion 42. Since the
positions of the wiring connection portions 50 are determined by the cluster block
45 and the connector housing 44 in the connector-receiving portion 42, movement of
the wiring connection portions 50 in the connector-receiving portion 42 due to vibration
of the running hybrid car is reduced.
- (3) The cluster block 45 and the connector housing 44 ensure insulation between one
of the wiring connection portions 50 and the other one of the wiring connection portions
50. Accordingly, for example, the wiring connection portions 50 are prevented from
contacting each other to be conductive with each other due to vibration of the running
hybrid car.
- (4) The first metal plate 53 is provided between the wire mesh 55 and the first end-connection
portion 51a of the first terminal 51 and the plane part 53a of the first metal plate
53 and a part of the wire mesh 55 are joined with each other according to resistance
welding. Thereby, a current path (shown by an arrow E in Fig. 3) is formed by the
welding electrode T1, the wire mesh 55, the first metal plate 53 and the welding electrode
T2 in this order. Accordingly, the wire mesh 55 can be easily welded to the first
metal plate 53. The same may be applied to the relationship between the second metal
plate 54 and the wire mesh 55. Accordingly, the flexible wire mesh 55 can be easily
provided at a part of each wiring connection portion 50.
[0040] The above described embodiment may be modified as follows.
[0041] The second extended portion 42b of the connector-receiving portion 42 is arranged
to extend in the axial direction of the rotary shaft 23. The invention is not limited
to this, and as shown in Fig. 4, for example, the second extended portion 42b of the
connector-receiving portion 42 may be arranged to extend in the radial direction of
the rotary shaft 23. That is, the direction in which the connector-receiving portion
extends may be changed as necessary in accordance with the configurations such as
the position and size of a space in the vehicle allotted for the motor-driven compressor.
[0042] The connector-receiving portion 42 may be simultaneously formed when the inverter
housing member 14 is formed.
[0043] The connector-receiving portion 42 may be made of plastic, for example. In this case,
the insulating member for ensuring the insulation between the wiring connection portions
50 and the connector-receiving portion may be omitted.
[0044] The first metal plate 53 and the first end-connection portion 51a of the first terminal
51 may be connected to each other by swaging, and the second metal plate 54 and the
first end-connection portion 52a of the second terminal 52 may be connected to each
other by swaging. Even in this case, when the first metal plate 53 is swaged to the
first end-connection portion 51a of the first terminal 51 and the second metal plate
54 is swaged to the first end-connection portion 52a of the second terminal 52, the
likelihood of shifting the swaging position, as in the case where a wire is used,
can be reduced. Accordingly, it is possible to perform a swaging operation by the
swage tool while a machine such as a robot arm grasps the first metal plate 53 or
the second metal plate 54, for example. As a result, even if the lengths of the first
metal plate 53 and the second metal plate 54 are shortened as much as possible, the
swaging operation is not difficult. Accordingly, the length of the entire wiring connection
portion 50 can be easily shortened in comparison to a wiring connection portion in
which a wire is used.
[0045] The wiring connection portions 50 may be entirely accommodated in the cluster block
45 to ensure insulation between the wiring connection portions 50 and the connector-receiving
portion 42. Alternatively, the connector housing 44 may accommodate the wiring connection
portions 50 entirely to ensure insulation between the wiring connection portions 50
and the connector-receiving portion 42.
[0046] Although the wire mesh 55 is located in the cluster block 45, the wire mesh 55 may
be located in the connector housing 44.
[0047] The two wiring connection portions 50 are provided side by side. However, for example,
three wiring connection portions 50 may be arranged side by side. That is, the number
of the wiring connection portions 50, which are arranged side by side, is not particularly
limited.
[0048] The compression portion 18, the electric motor 19, and the motor drive circuit 30
are accommodated in the housing 11 to be arranged in that order in the axial direction
of the rotary shaft 23. The present invention is not limited to this. For example,
the electric motor 19, the compression portion 18, and the motor drive circuit 30
may be accommodated in the housing 11 to be arranged in that order in the axial direction
of the rotary shaft 23.
[0049] The compression portion 18 is not limited to a type that is configured by the fixed
scroll 20 and the orbiting scroll 21, but may be a piston type or a vane type.
[0050] Instead of a vehicle air conditioner, the present invention may be applied to other
types of air conditioners.
[0051] The present invention is applied to the motor-driven compressor 10, which is mounted
on a hybrid automobile and used in a vehicle air conditioner. However, instead of
a hybrid automobile, the present invention may be applied to a motor-driven compressor
that is used in a vehicle air conditioner mounted on an automobile driven only by
gasoline or on an electric car.
[0052] Therefore, the present examples and embodiments are to be considered as illustrative
and not restrictive and the invention is not to be limited to the details given herein,
but may be modified within the scope and equivalence of the appended claims.
[0053] A motor-driven compressor includes a wiring connection portion provided in a connector-receiving
portion and adapted for supplying electricity from an external power source to a motor
drive circuit. The wiring connection portion includes first and second terminals,
each of which has a first end-connection portion at an end and a second end-connection
portion at another end. The second end-connection portion of the first terminal is
electrically connected to the external power source, while the second end-connection
portion of the second terminal is electrically connected to a conductive member. The
wiring connection portion further includes a coupling member coupling the first and
second terminals. The coupling member includes a first metal plate connected to the
first end-connection portion of the first terminal, a second metal plate connected
to the first end-connection portion of the second terminal, and a wire mesh coupling
the first and second metal plates.
1. A motor-driven compressor, comprising:
a housing (11);
a compression portion (18), an electric motor (19), and a motor drive circuit (30),
which are accommodated in the housing (11);
a connector-receiving portion (42) provided on an outer surface of the housing (11);
and
a wiring connection portion (50) provided in the connector-receiving portion (42),
the wiring connection portion (50) being adapted for supplying electricity from an
external power source (40) to the motor drive circuit (30); and
a conductive member (33) provided in the motor drive circuit (30), the conductive
member (33) extending into a space in the connector-receiving portion (42) and electrically
connecting the motor drive circuit (30) and the wiring connection portion (50) with
each other,
the motor-driven compressor being characterized in that
the wiring connection portion (50) includes
a first terminal (51) having a first end-connection portion (51 a) at an end thereof
and a second end-connection portion (51 b) at another end thereof, the second end-connection
portion (51 b) being electrically connected to the external power source (40),
a second terminal (52) having a first end-connection portion (52a) at an end thereof
and a second end-connection portion (52b) at another end thereof, the second end-connection
portion (52b) being electrically connected to the conductive member (33), and
a coupling member (56), which couples the first terminal (51) with the second terminal
(52), and
wherein the coupling member (56) includes
a first metal plate (53) connected to the first end-connection portion (51 a) of the
first terminal (51),
a second metal plate (54) connected to the first end-connection portion (51 a) of
the second terminal (52), and
a wire mesh (55) connecting the first metal plate (53) and the second metal plate
(54) with each other.
2. The motor-driven compressor according to claim 1, wherein
the connector-receiving portion (42) is formed of metal, and
the motor-driven compressor further comprises an insulating member (44, 45) located
between the wiring connection portion (50) and the connector-receiving portion (42),
which insulating member (44, 45) determines a position of the wiring connection portion
(50) in the connector-receiving portion (42).
3. The motor-driven compressor according to claim 1 or 2, wherein the housing (11) accommodates
a rotary shaft (23) having an axial direction, and wherein the connector-receiving
portion (42) extends in the axial direction of the rotary shaft (23) and toward the
electric motor (19).
4. The motor-driven compressor according to claim 3, wherein the compression portion
(18), the electric motor (19), and the motor drive circuit (30) are accommodated in
the housing (11) to be arranged in that order in the axial direction of the rotary
shaft (23).