[0001] This invention relates to validating signals used in the operation of an electrical
drive, for example a drive including an electrical machine controlled by an electronic
controller. In particular, it relates to the validation of the feedback signals used
to control the excitation applied to the machine.
[0002] For some considerable time, the availability of easily controlled semiconductor switches
has enabled electronic control of many types of electrical machine and hence has provided
drive systems whose speed is controlled by the user, rather than by the frequency
of the electrical supply. All of these controllers rely, to a greater or lesser extent,
on feedback signals of some sort. The parameters chosen for feedback are more likely
to relate to the type of electrical machine being controlled, rather than to the application
to which the machine is put, since different types of machines require different control
methods.
[0003] The characteristics and operation of switched reluctance systems are well known in
the art and are described in, for example, "
The characteristics, design and application of switched reluctance motors and drives"
by Stephenson and Blake, PCIM'93, Nürnberg, 21-24 June 1993. A general treatment of the drives can be found in various textbooks, e.g. "
Electronic Control of Switched Reluctance Machines" by TJE Miller, Newnes, 2001. The machines are characterised by a singly excited, doubly salient magnetic structure
which is typically free from hard magnetic material.
[0004] Figure 1 of the drawings shows a typical switched reluctance drive in schematic form,
where the switched reluctance motor 12 drives a load 19. The input DC power supply
11 can be either a battery or rectified and filtered AC mains. The DC voltage provided
by the power supply 11 is switched across the phase windings 16 of the motor 12 by
a power converter 13 under the control of the electronic control unit 14. The switching
must be correctly synchronised to the angle of rotation of the rotor for proper operation
of the drive, and a rotor position detector 15 is typically employed to supply signals
corresponding to the angular position of the rotor. The importance of accurate knowledge
of the rotor position has encouraged the development of techniques for validation
of the position feedback signals, e.g., as described in
US 5723858, where sequences of digital information are monitored to validate the integrity of
the signal.
[0005] Many different power converter topologies are known, several of which are discussed
in the Stephenson paper cited above. One of the most common configurations is shown
in Figure 2 for a single phase of a polyphase system. The phase winding 16 of the
machine is connected in series with two switching devices 21 and 22 across the busbars
26 and 27. Busbars 26 and 27 are collectively described as the "DC link" of the converter.
Energy recovery diodes 23 and 24 are connected to the winding to allow the winding
current to flow back to the DC link when the switches 21 and 22 are opened. A capacitor
25, known as the "DC link capacitor", is connected across the DC link to source or
sink any alternating component of the DC link current (i.e. the so-called "ripple
current") which cannot be drawn from or returned to the supply. In practical terms,
the capacitor 25 may comprise several capacitors connected in series and/or parallel
and, where parallel connection is used, some of the elements may be distributed throughout
the converter.
[0006] Current feedback from the machine to the converter is generally considered essential
for safe operation of the controller, and a number of techniques are known in the
art. In Figure 2, a resistor 28 is connected in series with the lower switch 22 to
provide a signal. Similar arrangements place the resistor in other parts of the circuit
to give measurements of slightly different currents, but all of these provide a signal
which is not electrically isolated from the main converter circuit. Alternatively,
an isolated form of current transducer, as shown at 18 in Figure 1, can be used to
provide a signal which is generally easier to use in the control system.
[0007] A polyphase system typically uses several of the "phase legs" of Figure 2, each consisting
of switch and diode pairs around each phase winding, connected in parallel to energise
the phases of the electrical machine. The phase inductance cycle of a switched reluctance
machine is the period of the variation of inductance for the, or each, phase, for
example between maxima when the rotor poles and the relevant respective stator poles
are fully aligned. The voltage is applied for the duration of the conduction angle
θ
c when the switches 21 and 22 are closed. The flux, which is the time integral of the
applied voltage, rises almost linearly while the voltage is applied. The current in
the phase winding 16 rises to a peak and then, depending on the operating point, falls.
At the end of the conduction period, the switches are opened and the current transfers
to the diodes, placing the inverted link voltage across the winding and hence forcing
down the flux and the current to zero. At zero current, the diodes cease to conduct
and the circuit is inactive until the start of a subsequent conduction period of that
phase.
[0010] EP-A-1655831 discloses a method of sensorless position estimation. Before the algorithm estimates
position, it checks the value of the parameter to ensure that the phase is healthy.
In the event of the parameter indicating that the phase is faulty, the algorithm does
not attempt to estimate position from that phase, thereby avoiding the generation
of faulty position data. Operation of the machine may be continued using only the
healthy phases.
[0011] Whatever method is used, it is essential that the current and flux signals are accurate
and reliable. A fault in a current transducer or a broken wire in the feedback path
can have serious consequences for the controller. To attempt to provide protection
against this, a failure detection method has been proposed as shown in Figures 3 and
4. Figure 3 shows the expected current trajectory after the voltage is applied to
the phase and a current threshold I
t, which is a small fraction of the expected peak current, e.g. 2-3%. Figure 4 shows
a logic circuit consisting of an AND gate 50 and a timer 52. The x and y inputs to
the AND gate are driven by the gate signals of the switch(es) for the phase winding,
e.g. the switches 21 and 22 of Figure 2. When the controller decides to close both
of these switches, the output of the AND gate enables the timer 52 which is being
driven by a clock signal. The timer will therefore count up on output line Q. The
RESET line of the timer is driven by the threshold current I
t, so that when the current passes the threshold, the timer output Q is held at zero.
The controller therefore expects to see the counter output rising for an initial period,
but thereafter being held at zero. If this does not happen, then it is likely that
a fault has occurred, e.g. the current feedback signal has been lost, a switch has
failed to close, etc.
[0012] This method has proved beneficial in many applications. However, one difficulty is
that the value of the output Q which denotes a fault varies widely with the particular
machine being controlled: a value corresponding to 50µsec may be suitable for a small,
high-speed machine, whereas a larger, slower machine may require a value of 30msec.
In addition, the current may be slow to rise for some legitimate reason, e.g. if the
system voltage has fallen significantly, or if the rotor is in a position where the
phase inductance is at a maximum. It is therefore difficult to choose a timer output
value which reliably represents a fault condition.
[0013] The present invention is defined in the accompanying independent claims. Some preferred
features are recited in the dependent claims.
[0014] According to one embodiment, there is provided a method of validating signals used
in the operation of a switched reluctance drive, comprising: monitoring a first signal
indicative of flux in a phase of a switched reluctance machine of the drive; monitoring
a second signal indicative of the flux in the phase of the machine of the drive; and
validating the signals if a predetermined condition of the first and second signals
is met, wherein one of the first and second signals is derived from a DC-link, supply
or phase voltage signal and the other one of the first and second signals is derived
from a phase current signal.
[0015] In certain situations, the validation of the signals may only be legitimately carried
out within a specific part of the cycle of the electrical machine. Thus, in some embodiments
the validation is limited to within a predetermined time or rotor angle after detecting
the first or the second signal.
[0016] Embodiments of the invention extend to a system implementing the above methods.
[0017] The invention can be put into practice in a number of ways, some of which will now
be described by way of example and with reference to the accompanying drawings in
which:
Figure 1 shows a typical prior art switched reluctance drive;
Figure 2 shows a known topology of one phase for the power converter of Figure 1;
Figure 3 shows a previous method of validating a current signal.
Figure 4 shows part of a logic circuit for use with the current relationship of Figure
3;
Figure 5 shows flux and inductance waveforms in a switched reluctance machine;
Figure 6 shows current and flux waveforms in a switched reluctance machine;
Figure 7 shows a switched reluctance drive according to an embodiment; and
Figure 8 shows flux-linkage waveforms derived from, respectively by, voltage and current
according to an embodiment.
[0018] Figure 5 shows a waveform of flux associated with one phase of a switched reluctance
machine while operating in single-pulse mode. In the drawings and this description,
the term "flux" is used for convenience. Those of ordinary skill in the art will recognise
that the term "flux linkage" could equally well be used and that one quantity is simply
a numerical scaling of the other. Figure 5 is idealised in that, in the flux waveform,
there is no non-linearity caused by voltage drop and no noise introduced by the method
of measurement used to produce the waveform. Likewise, the inductance profile of the
phase winding shown is also in idealised form. In practice, the corners of the profile
are rounded due to flux fringing in the air and to saturation of the ferromagnetic
paths.
[0019] In a typical drive system, the flux waveform would be computed as the time integral
of a voltage signal, the voltage signal representing: the DC link voltage; the applied
voltage at the terminals of the winding: the difference (v - ir), where v, i & r represent
the instantaneous phase quantities of voltage, current and resistance; or some other
signal which will yield a measure of flux to the required accuracy. Figure 6 shows
the current waveform corresponding to the flux waveform of Figure 5.
[0020] Figures 7 shows an embodiment in which the control unit 14' is similar to the control
unit 14 of Figure 1, except that it has an additional input of phase voltage from
the voltage transducer 17. The voltage input is used to provide an estimate of the
phase flux. Such methods are well known in the art and are based on the time integral
of voltage. This could be implemented in hardware or software to equal effect as will
be readily apparent to one of ordinary skill in the art.
[0021] An embodiment will now be described, in which signals are continuously compared and
validated throughout the conduction cycle of the machine. Figure 8 shows a typical
output from a software integrator which is computing the flux-linkage in a machine
from a signal representing the supply voltage. The step-wise feature of this first
signal is a result of the finite clock cycle of the control system.
[0022] Making use of the relationship between inductance, flux-linkage and current, (L =
ψ/i) a second signal representing flux-linkage can be computed by taking the current
feedback signal and multiplying it by the inductance corresponding to the known position.
This second signal, if the control system is working correctly, should match the first
signal, for example be within a margin of the first signal. If it does not, then it
may be assumed that an error has occurred in one or other of the voltage or current
feedback signals. To avoid spurious trips due to noise spikes, integrator drift, etc,
a scaling factor can be applied to one or other of the signals, as shown in Figure
8, to allow a safety margin before the validation process signals an error condition.
[0023] The advantage of this embodiment is that the feedback signals are monitored continuously
during the conduction cycle.
[0024] Various considerations have to be taken into account in a practical implementation.
In general, most control systems are based around a digital system such as a microprocessor
or a digital signal processor, which are inevitably driven by a system clock which
defines the timings of sequences of operations. It is therefore appropriate to base
embodiments of the invention on these timings. In certain situations, implementing
the examination of the signals in a digital circuit requires some care and a recognition
of quantisation effects which may be present in either signal.
[0025] For example, if the system clock allows decisions to be taken every 80µsec, the control
system could validate the current signal after, say, 240µsec and continue to validate
it every 80µsec until validation is no longer required, e.g. when the switches are
opened and control of the phase current is no longer possible. The reason for the
delay after the phase is energised is to allow for any noise present on a low-level
current signal to be disregarded, which might otherwise give rise to false readings
and possibly cause the drive to shut down.
[0026] The amount of delay can be chosen from a consideration of the parameters of the drive.
The skilled person will realise that the initial rate of current increase in the phase
winding depends on the rotor position, as well as on the supply voltage. In the minimum
inductance position, it is likely to be some 10 to 15 times faster than it would be
in the maximum inductance position. Knowing the minimum inductance, the supply voltage
and the maximum allowable current in the switch(es), the maximum time allowable for
validating the current data can be determined, so that remedial action can be taken,
if necessary, before damage occurs.
[0027] While this fixed value of delay is acceptable in many drive systems, it is possible
to refine the technique to use a variable delay which is related to the position of
the rotor (and hence the position on the inductance profile, as shown in Figure 5)
where a phase is energised. For example, an electric drive may also operate in a braking
(generating) mode, firing the phase switches close to a maximum inductance position
rather than close to a minimum inductance position as for a motoring mode.
[0028] With the position in the inductance profile of the firing angles known for a given
mode, the delay between the start of energisation of a phase and the beginning of
validation can be adjusted as a function of the position of energisation. Alternatively,
the delay can be adjusted as a function of detected rotor position.
[0029] In the latter case, the degree of refinement available depends on the precision of
the rotor position information provided in the drive system. For example, if a traditional
rotor position transducer is used (as is typical of many drive systems), there are
two transitions in the binary output in a cycle of each phase channel. For a typical
3-phase system, the phase signals can be combined to give rotor position within one
sixth of an inductance cycle. This would allow three zones of inductance to be used
to set three different delay times, rather than just using a constant value. If an
encoder or resolver or some software equivalent were used, finer resolution of position
would be available and so smaller steps of delay time would be possible. The benefit
of these variable delay times is that tighter control of the drive system is achieved.
[0030] If the drive is operating very slowly in a chopping mode (see the Stephenson et al
paper referenced above), the flux and current will be present for a relatively long
time. Since the flux signal is an estimate derived by integration, there is a danger
of the inherent drift in the integrator extending the apparent presence of flux and
implying that flux is present after the current has decayed to zero. This can be avoided
by setting a time limit, beyond which validation is not attempted. The time limit
can be easily determined from a knowledge of the integrator characteristics and will
generally be in a typical range of 50-100msec.
[0031] The skilled person will appreciate that the method may be applied with equal benefit
to machines operating as motors or as generators and that variations of the disclosed
arrangements are possible without departing from the invention, particularly in the
details of the implementation of the algorithms in the controller in hardware, firmware
and/or software. While the invention has been described in terms of a rotating machine
the invention is equally applicable to a linear machine having a stator in the form
of a track and a moving part moving on it. The word "rotor" is used in the art to
refer to the movable part of both rotating and linear machines and is to be construed
herein in this way. Accordingly, the above description of several embodiments is made
by way of example and not for the purposes of limitation. It will be clear to the
skilled person that minor modifications can be made to the control method without
significant changes to the operation described above. The present invention is intended
to be limited only by the scope of the following claims.
1. A method of validating signals used in the operation of a switched reluctance drive
including a switched reluctance machine (12), comprising:
monitoring a first signal indicative of a flux in a phase (16) of the switched reluctance
machine (12);
monitoring a second signal indicative of the flux in the phase (16) of the switched
reluctance machine (12); and
validating the signals if a predetermined condition of the first and second signals
is met, wherein one of the first and second signals is derived by a time integral
of a DC-link, supply or phase voltage signal and the other one of the first and second
signals is derived by multiplying a phase current signal and phase inductance corresponding
to a known position in a inductance cycle.
2. A method as claimed in claim 1 in which the predetermined condition is the first and
second signal being present together.
3. A method as claimed in claim 1 or claim 2 in which the predetermined condition is
the respective values of the first and second signals being within a margin of each
other.
4. A method as claimed in any of claims 1 to 3, wherein the step of validating the signals
is performed within a predetermined period of time after the predetermined condition
has been met.
5. A method as claimed in any of claims 1 to 4 in which the electrical drive has an operating
cycle and the method further includes monitoring operation of the electrical drive
and validating the signals at a predetermined point in the operating cycle.
6. A method as claimed in any of claims 1 to 5 in which the method includes energising
a phase of the switched reluctance machine (12) at a position in the inductance cycle
and starting to validate the signals after a delay with respect to energisation of
the phase (16); the method further including determining a duration of the delay as
a function of the position.
7. A system for validating signals used in the operation of a switched reluctance drive
including a switched reluctance machine (12), the system comprising means for monitoring
a first signal indicative of a flux in a phase (16) of the switched reluctance machine
(12);
means for monitoring a second signal indicative of the flux in the phase of the switched
reluctance machine (12);
means for validating the signals if a predetermined condition of the first and second
signals is met, wherein one of the first and second signals is derived by a time integral
of a phase voltage signal and the other one of the first and second signals is derived
by multiplying a phase current signal and a phase inductance corresponding to a known
position in a inductance cycle.
8. A system as claimed in claim 7, in which the predetermined condition is the first
and second signal being present together.
9. A system as claimed in claim 7 or claim 8 in which the predetermined condition is
the respective values of the first and second signals being within a margin of each
other.
10. A system as claimed in any of claims 7 to 9 including means for limiting validation
of the signals within a predetermined period of time after the predetermined condition
has been met.
11. A system as claimed in any of claims 7 to 10 in which the switched reluctance drive
has an operating cycle and the means for validating validates the signals at a predetermined
point in the operating cycle.
12. A system as claimed in any of claims 7 to 11 in which the system includes means for
energising the phase (16) of the switched reluctance machine (12) at a position in
the inductance cycle; wherein the means for validating is arranged to start validating
the signals after a delay with respect to the energisation of the phase (16); the
means for validating further being arranged to determine a duration of the delay as
a function of the position.
1. Verfahren zum Validieren von Signalen, die beim Betrieb eines geschalteten Reluktanzantriebs
einschließlich einer geschalteten Reluktanzmaschine (12) verwendet werden, aufweisend:
Überwachen eines ersten Signals, das einen Fluss in einer Phase (16) der geschalteten
Reluktanzmaschine (12) anzeigt;
Überwachen eines zweiten Signals, das den Fluss in der Phase (16) der geschalteten
Reluktanzmaschine (12) anzeigt; und
Validieren der Signale, wenn eine vorbestimmte Bedingung des ersten und des zweiten
Signals erfüllt ist, wobei eines des ersten und des zweiten Signals durch ein Zeitintegral
eines Zwischenkreises, einer Versorgung oder eines Phasenspannungssignals abgeleitet
wird und das andere des ersten und des zweiten Signals durch ein Multiplizieren eines
Phasenstromsignals und einer Phaseninduktivität abgeleitet wird, die einer bekannten
Position in einem Induktivitätszyklus entspricht.
2. Verfahren nach Anspruch 1, wobei die vorbestimmte Bedingung darin besteht, dass das
erste und das zweite Signal zusammen vorhanden sind.
3. Verfahren nach Anspruch 1 oder Anspruch 2, wobei die vorbestimmte Bedingung darin
besteht, dass die jeweiligen Werte des ersten und des zweiten Signals innerhalb einer
Spanne voneinander liegen.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei der Schritt des Validierens der
Signale in einem vorbestimmten Zeitraum durchgeführt wird, nachdem die vorbestimmte
Bedingung erfüllt ist.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei der elektrische Antrieb einen Betriebszyklus
hat und das Verfahren des Weiteren das Überwachen des Betriebs des elektrischen Antriebs
und das Validieren der Signale an einem vorbestimmten Punkt des Betriebszyklus beinhaltet.
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei das Verfahren das Bestromen einer
Phase der geschalteten Reluktanzmaschine (12) an einer Position im Induktivitätszyklus
und das Beginnen mit dem Validieren der Signale nach einer Verzögerung in Bezug auf
die Bestromung der Phase (16) beinhaltet; wobei das Verfahren des Weiteren das Bestimmen
einer Dauer der Verzögerung als Funktion der Position beinhaltet.
7. System zum Validieren von Signalen, die beim Betrieb eines geschalteten Reluktanzantriebs
einschließlich einer geschalteten Reluktanzmaschine (12) verwendet werden, wobei das
System Mittel zum Überwachen eines ersten Signals aufweist, das einen Fluss in einer
Phase (16) der geschalteten Reluktanzmaschine (12) anzeigt;
Mittel zum Überwachen eines zweiten Signals, das den Fluss in der Phase der geschalteten
Reluktanzmaschine (12) anzeigt;
Mittel zum Validieren der Signale, wenn eine vorbestimmte Bedingung des ersten und
des zweiten Signals erfüllt ist, wobei eines des ersten und des zweiten Signals durch
ein Zeitintegral eines Phasenspannungssignals abgeleitet wird und das andere des ersten
und des zweiten Signals durch ein Multiplizieren eines Phasenstromsignals und einer
Phaseninduktivität abgeleitet wird, die einer bekannten Position in einem Induktivitätszyklus
entspricht.
8. System nach Anspruch 7, wobei die vorbestimmte Bedingung darin besteht, dass das erste
und das zweite Signal zusammen vorhanden sind.
9. System nach Anspruch 7 oder Anspruch 8, wobei die vorbestimmte Bedingung darin besteht,
dass die jeweiligen Werte des ersten und des zweiten Signals innerhalb einer Spanne
voneinander liegen.
10. System nach einem der Ansprüche 7 bis 9, enthaltend Mittel zum Begrenzen der Validierung
der Signale in einem vorbestimmten Zeitraum, nachdem die vorbestimmte Bedingung erfüllt
ist.
11. System nach einem der Ansprüche 7 bis 10, wobei der geschaltete Reluktanzantrieb einen
Betriebszyklus hat und das Mittel zum Validieren die Signale an einem vorbestimmten
Punkt des Betriebszyklus validiert.
12. System nach einem der Ansprüche 7 bis 11, wobei das System Mittel zum Bestromen der
Phase (16) der geschalteten Reluktanzmaschine (12) an einer Position im Induktivitätszyklus
enthält; wobei das Mittel zum Validieren dafür angeordnet ist, mit dem Validieren
der Signale nach einer Verzögerung in Bezug auf die Bestromung der Phase (16) zu beginnen;
wobei das Mittel zum Validieren des Weiteren dafür angeordnet ist, eine Dauer der
Verzögerung als Funktion der Position zu bestimmen.
1. Procédé de validation de signaux utilisés dans le fonctionnement d'un moteur à réluctance
variable comprenant une machine à réluctance variable (12), comprenant :
la surveillance d'un premier signal indicatif d'un flux dans une phase (16) de la
machine à réluctance variable (12) ;
la surveillance d'un second signal indicatif du flux dans la phase (16) de la machine
à réluctance variable (12) ; et
la validation des signaux si une condition prédéterminée des premier et second signaux
est satisfaite, dans lequel l'un des premier et second signaux est dérivé par une
intégrale temporelle d'un signal de liaison à courant continu (CC), d'alimentation
ou de tension de phase et l'autre des premier et second signaux est dérivé par multiplexage
d'un signal de courant de phase et d'une inductance de phase correspondant à une position
connue dans un cycle d'inductance.
2. Procédé selon la revendication 1, dans lequel la condition prédéterminée est que les
premier et second signaux sont présents ensemble.
3. Procédé selon la revendication 1 ou la revendication 2, dans lequel la condition prédéterminée
est que les valeurs respectives des premier et second signaux sont dans une marge
l'un de l'autre.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel l'étape de validation
des signaux est réalisée à l'intérieur d'une période de temps prédéterminée après
que la condition prédéterminée a été satisfaite.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le moteur électrique
possède un cycle de fonctionnement et le procédé comprend en outre la surveillance
du fonctionnement du moteur électrique et la validation des signaux à un point prédéterminé
dans le cycle de fonctionnement.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le procédé comprend
la mise sous tension d'une phase de la machine à réluctance variable (12) au niveau
d'une position dans le cycle d'inductance et le démarrage de la validation des signaux
après un retard par rapport à la mise sous tension de la phase (16) ; le procédé comprenant
en outre la détermination d'une durée du retard en fonction de la position.
7. Système pour valider des signaux utilisés dans le fonctionnement d'un moteur à réluctance
variable comprenant une machine à réluctance variable (12), le système comprenant
des moyens pour surveiller un premier signal indicatif d'un flux dans une phase (16)
de la machine à réluctance variable (12) ;
des moyens pour surveiller un second signal indicatif du flux dans la phase de la
machine à réluctance variable (12) ;
des moyens pour valider les signaux si une condition prédéterminée des premier et
second signaux est satisfaite, l'un des premier et second signaux étant dérivé par
une intégrale temporelle d'un signal de tension de phase et l'autre des premier et
second signaux étant dérivé par multiplexage d'un signal de courant de phase et d'une
inductance de phase correspondant à une position connue dans un cycle d'inductance.
8. Système selon la revendication 7, dans lequel la condition prédéterminée est que les
premier et second signaux sont présents ensemble.
9. Système selon la revendication 7 ou la revendication 8, dans lequel la condition prédéterminée
est que les valeurs respectives des premier et second signaux sont dans une marge
l'un de l'autre.
10. Système selon l'une quelconque des revendications 7 à 9, comprenant des moyens pour
limiter la validation des signaux à l'intérieur d'une période de temps prédéterminée
après que la condition prédéterminée a été satisfaite.
11. Système selon l'une quelconque des revendications 7 à 10, dans lequel le moteur à
réluctance variable possède un cycle de fonctionnement et les moyens pour valider
valident les signaux à un point prédéterminé dans le cycle de fonctionnement.
12. Système selon l'une quelconque des revendications 7 à 11, dans lequel le système comprend
des moyens pour mettre sous tension la phase (16) de la machine à réluctance variable
(12) au niveau d'une position dans le cycle d'inductance ; les moyens pour valider
étant agencés pour démarrer la validation des signaux après un retard par rapport
à la mise sous tension de la phase (16) ; les moyens pour valider étant en outre agencés
pour déterminer une durée du retard en fonction de la position.