Field of the invention
[0001] The invention relates more generally to the transporting of people and objects and
more particularly to the field of elevator technology.
Technical background
[0002] A quay is an embankment reinforced with masonry, which is generally situated in a
harbor or on the banks of a river or canal, and which is used for loading and unloading
cargoes of ships. The basin water in front of a quay is generally so deep that vessels
(e.g. ships and ferries) can moor to the quay.
[0003] Transferring people and transferring goods from shore to vessel and
vice versa must generally be implemented along an access platform.
[0004] More particularly when the transfer of people or the transfer of goods from shore
must be implemented onto, or off, a vessel moored to a quay, it is generally endeavored
to use structures that can be moved along the quay, which are often connected as a
part to the operation of a ship terminal.
[0005] On a quay it is generally endeavored to use a type of movable access platform, which
can be moved in the direction of the quay. Moving an access platform is simpler than
moving a large vessel. Since vessels nowadays often have multiple decks, it is generally
endeavored to implement the access platform as an access tower.
[0006] In this way it is possible to take into account, on the one hand, the fact that vessels
can be of different sizes and, on the other hand, that the exit or entrance to a vessel
can be from some certain level or from more than one level. One example of a modern
access tower is the Italian company V.T.P. Engineering's "MBT Multipurpose Boarding
Tower", a prototype of which has been constructed on quay 117 of the passenger terminal
of the Port of Venice.
[0007] When designing an access platform or an access tower, it must be taken into account
that the exits and entrances (hereinafter "entrance" refers to both) of a vessel can
be situated at a different height in each floating structure and accesses from the
quay to an entrance must therefore in principle be adjustable. On the other hand,
it must also be taken into account that owing to the variation in the height of the
water, the height of at least one necessary entrance can vary.
[0008] Variation in the height of a water surface resulting from evaporation of the water
or rain is generally very slow, but in particular the variation in the height of a
water surface resulting from tidewater can be large and relatively fast. The vertical
change in position can be up to six meters and can occur while a vessel is connected
to an access platform or access tower. This is the case e.g. for ship terminals on
the sides of some Norwegian fjords.
[0009] It is often desired to use an elevator for the vertical transfer needed between an
access platform, or an access tower, and the ship terminal. Thus, from the elevator
is a passageway to an entrance of the vessel. The entrance or exit of the elevator
(hereinafter also the "exit" of an elevator refers to both) is either attached to
the entrance of the vessel or to an access platform connected to the vessel. As the
vessel rises and falls with the tide, the level position of the exit also changes.
[0010] International patent application publication
WO 2009/067076 A1 describes an elevator with variable level positions. With end position switches or
with contactless optical or electronic sensors, the position of the elevator in relation
to the entrance of the vessel is detected and it is ensured that the elevator stops
in its top position at the new level position.
[0011] When using the solution presented in patent application publication
WO 2009/067076 A1, the elevator must be stopped quickly after the level position has changed. Consequently,
a passenger can in certain situations experience an unpleasantly abrupt stop. An abrupt
stop can also be dangerous for passengers. This document shows a system according
to the preamble of claim 1.
Aim of the invention
[0012] The aim of the invention is make embarkation or disembarkation of a vessel pleasanter
or safer.
[0013] This aim can be resolved with with a system according to claim 1 and with a method
according to claim 5 for enabling embarkation and disembarkation of a vessel.
[0014] The dependent claims describe preferred embodiments of the elevator, of the system
and of the method.
Advantages of the invention
[0015] The elevator of the inventive ystem comprises i) a first and a second exit, of which
at least the first exit can be fastened to an entrance of a vessel or which leads
to an access platform connecting to the vessel, ii) between the first and second exit
in the vertical direction, a movable platform, which is most preferably a part of
the elevator car, iii) drive means for displacing the platform in the vertical direction,
and iv) a speed reference unit for controlling the drive means such that the moving
speed of the platform can be decelerated at the point of a first deceleration point
from the nominal speed of the platform via an initial smoothing curve for deceleration
to a predetermined maximum value of deceleration, and after this at the point of a
second deceleration point by reducing the deceleration via a final smoothing curve
to zero.
[0016] When the speed reference unit of the elevator is configured to displace at least
one of a first and a second deceleration point when the distance of the first exit
from the second exit changes, the speed reference of the elevator can also be changed
when the level position changes. As a consequence, sudden stopping of the elevator
after the level position has just changed can be avoided, as a result of which ride
comfort and passenger safety can be increased.
[0017] When the speed reference unit is configured to displace at least one of a first and
a second deceleration point by scaling the reference speed instruction by the relative
change in distance, changing of the speed reference can be implemented relatively
simply and in such a way that also the changed speed reference is reliable.
[0018] When the speed reference unit is configured to displace at least one of a first and
a second deceleration point by displacing them by the absolute change in distance
with respect to the reference speed instruction, changing of the speed reference can
be implemented in an extremely simple manner.
[0019] The speed reference unit can be configured to displace at least one of a first and
a second deceleration point on the basis of at least one item of the run data of the
drive means. In this way it is possible to automate the changing of the speed reference.
It is particularly advantageous in this case to use the means for setting or adjusting
the height of the first exit as the drive means. The speed reference of the elevator
is directly changed as the height of the exit changes and abrupt stopping no longer
occurs as it possibly would when using the arrangement described in patent application
publication
WO 2009/067076 A1.
[0020] The speed of the rotor, the rotation distance of the rotor, or a combination of these,
can be used as at least one item of the operating data of the drive means. By integrating
the speed of the rotor it is possible to calculate the distance by which the height
of the first exit has changed. When the second exit is fixed (or if the height of
the second exit can be adjusted but it is not changed), the change directly corresponds
to the change by which the distance of the first exit from the second exit changes.
The movement data of the rotor can be ascertained e.g. by the aid of a type of pulse
encoder that gives a predetermined quantity (e.g. 2048 units) of pulses during one
revolution rotated by the rotor. The pulse quantity data is proportional to the rotation
distance of the rotor.
[0021] The system for enabling embarkation and disembarkation of a vessel comprises i) a
first access, more particularly an access platform or corresponding, which can be
fastened to an entrance of a vessel or which leads to an access platform connecting
to the vessel, ii) a second access, more particularly a terminal platform or terminal
tower or corresponding, iii) means for adjusting the distance of the first access
from the second access; and iv) an elevator of any of the types described above, the
speed reference unit of which is configured to displace at least one of a first and
a second deceleration point when the distance of the first exit from the second exit
changes.
[0022] Method for enabling embarkation and disembarkation of a vessel between (I) a first
access, more particularly an access platform or corresponding, which can be fastened
to an entrance of the vessel or which leads to an access platform connecting to the
vessel and (II) a second access, more particularly a terminal platform or terminal
tower or corresponding, in which method means for adjusting the distance of the first
access from the second access are additionally used. In the method an elevator of
any of the types described above is used, the speed reference unit of which is configured
to displace at least one of a first and a second deceleration point when the distance
of the first exit from the second exit changes.
List of drawings
[0023] The invention will be described in more detail by referring to the embodiments presented
in the drawings FIG 1 - 3 below. The drawings present:
- FIG 1
- an elevator for boarding/unboarding a vessel;
- FIG 2
- a speed profile of the elevator; and
- FIG 3
- control of the elevator with a signal coming from the hoist of the access platform.
[0024] In all the FIGs the same reference numbers refer to the same technical features.
Detailed description of the invention
[0025] FIG 1 presents a system 103 for enabling embarkation of a vessel, for transferring
from a terminal 101 onto the vessel 106. The system comprises an elevator 104, which
connects the exit on the terminal 101 side and the exit on the vessel 106 side.
[0026] The system 103 preferably comprises a device 105 to be driven along the quay, which
device is disposed at a distance d from the edge of the quay 105, such as e.g. the
aforementioned "MBT Multipurpose Boarding Tower".
[0027] When a vessel 106 moors to the quay 105, an elevator 104 must be used for enabling
transfer, or the transfer of goods, from the terminal 101 into the elevator 104 and
from the elevator 103 onto the vessel 106 and
vice versa in such a way that the exit of the elevator 104 on the vessel 106 side, such as a
section leading to the access platform 102, comes to a height that gives access from
it to the deck of the vessel 106 or to an entrance on the vessel 106. The elevator
104 is stopped for this purpose preferably at the level of the access platform 102
or such that there is access from it to the vessel 106 without proceeding up/down
steps. The system 103 can comprise a number of elevators 104 to be operated side by
side, e.g. the "MBT Multipurpose Boarding Tower" is implemented as a system with three
elevators 104 side by side.
[0028] The access platform 102 is operated with a hoisting machine, the motor 180 of which
is presented in FIG 1. The height of the access platform 102 is adjusted with the
hoisting machine.
[0029] In this case the level position data in the control of the elevator 104 can be changed
always when the motor 180 is operated, e.g. always when the height of the access platform
102 changes. FIG 2 presents one speed reference 30 of an elevator. The speed reference
30 can be divided into the following phases: P1 = startup smoothing curve; P2 = essentially
constant acceleration; P3 = smoothing curve to nominal speed; P4 = nominal speed;
P5 = initial smoothing curve of deceleration; P6 = constant deceleration; P7 = smoothing
curve for arrival at level.
[0030] At the finish of the initial smoothing curve P5 of deceleration, the deceleration
of the moving platform 411 of the elevator car 410 has achieved the maximum value
for deceleration during constant deceleration.
[0031] At the point of the second deceleration point P7 of the speed reference, the speed
of the moving platform 411 of the elevator car 410 is reduced via a final smoothing
curve to zero.
[0032] In principle the deceleration can be implemented softly also by omitting the constant
deceleration phase P6 from between the deceleration points P5 and P7, by joining the
initial smoothing curve and the final smoothing curve (i.e. deceleration point P5
and deceleration point P7 from the speed reference) to follow each other immediately,
in which case the speed profile would be the shape of a downward-sloping S-curve.
It is good if there is a final smoothing curve so that a soft stop of the moving platform
411 is achieved.
[0033] According to what is presented above, the deceleration points P5 and P7 are magnitudes
dependent on position. The first deceleration point P5 can be defined in the speed
reference as the point of the path of movement of the elevator car 410 at which deceleration
is started and the second deceleration point P7 can be defined in the speed reference
as the point of the path of movement of the elevator car 410 at which the final smoothing
curve to zero is started.
[0034] The speed reference 30 presented in FIG 2 is given only as an example. In practice
the speed reference comprises at least a subset of points P1 - P7.
[0035] FIG 3 presents how the operating mode of the elevator 104 is changed with the data
coming from the hoisting machine of the access platform 102, more particularly from
the motor 180. If the system 103 has a number of elevators 104 operating side-by-side,
similar or corresponding changes to each other can be made in the operating mode of
all the elevators 104 in the system 103.
[0036] The elevator car 410 can drive away from the level on the vessel 106 side always
when it is known that this level position is changing.
[0037] The elevator car 410 of the elevator 104 is suspended on a rope 470 that passes around
a wheel 450. The wheel 450 is suspended e.g. with a bracket 452 on a fixed structure
451 such as, in the case of the present arrangement 103, preferably on a harbor tower.
[0038] The elevator car 410 is able to travel suspended on the rope 470 upwards or downwards
driven by the motor 490. For stopping the elevator car 410, brakes 455 can be used,
which act e.g. on the wheel 450 preventing its rotation.
[0039] When the elevator moves the elevator car 410 is connected to the counterweight 430
via the rope 480. By pulling from the rope 480 the elevator car 410 can be lifted
or lowered at the same time moving the counterweight 430 in the opposite direction.
[0040] The rotational movement of the motor 490 is conducted along the rope 480 via the
rollers 491 for moving the elevator car 410 and the counterweight 430. The speed of
the motor 490 is controlled by the speed reference unit 493, in which the speed reference
of the elevator 410 is recorded. The speed reference is in this case the speed reference
30, or a speed reference similar to this, and comprises at least a subset of points
P1 - P7.
[0041] When the level position of the exit of the access platform 102 or of the elevator
104 on the vessel 106 side changes, i.e. when the motor 180 is operated, information
about this is transmitted to the speed reference unit 493 of the elevator 104.
[0042] The speed reference unit 493 of the elevator 104 scales the speed reference 403 on
the basis of the data of the change in level position to be narrower or wider and/or
displaces at least some of the positions of the points P1 - P7 in the speed reference,
e.g. to the right or to the left, in such a way that the elevator car 410 is able
to stop as close as possible to the changed level position of the exit of the access
platform 102 or of the elevator 104 on the vessel 106 side.
[0043] When driving the elevator car 410 towards the exit (e.g. to the access platform 102),
the position of the first deceleration point P5 can be calculated or determined on
the basis of the run data of the drive means 180. The position of the second deceleration
point P7 can be marked to a constant distance in the proximity of the exit in such
a way that the final smoothing curve (deceleration point 7) of deceleration starts
when the elevator car 107 arrives at the second deceleration point.
[0044] The invention must not be regarded as being limited only to the claims below but
instead should be understood to include all legal equivalents of said claims.
1. System (103) for enabling embarkation and disembarkation of a vessel, which system
comprises
- a first access, more particularly an access platform or corresponding, which can
be fastened to an entrance of a vessel (106) or which leads to an access platform
connecting to the vessel (106);
- a second access, more particularly a terminal platform or terminal tower or corresponding;
- adjusting means (180, 181) for adjusting the distance of the first access from the
second access, wherein the adjusting means (180, 181) comprises a drive means (180)
arranged for setting or adjusting the height of the first access, and
- an elevator (104) comprising
- a first (102) and a second (101) exit, of which at least the first exit (102) is
fastened to or is the first access and the second exit (101) is connected to the terminal;
- between the first and second exit in the vertical direction, a movable platform
(411), which is most preferably a part of the elevator car (410);
- drive means (490) for displacing the platform (411) in the vertical direction;
- a speed reference unit (493) for controlling the drive means (490) for displacing
the platform in the vertical direction such that the moving speed of the platform
(411) can be decelerated at the point of a first deceleration point (P5) from the
nominal speed of the platform via an initial smoothing curve for deceleration to a
maximum value of deceleration, and after this at the point of a second deceleration
point by reducing the deceleration via a final smoothing curve to zero (P7),
characterized in that the speed reference unit (493) of the system is configured to displace at least one
of a first and a second deceleration point (P5, P7) when the distance of the first
exit (102) from the second exit (101) changes,
and wherein the speed reference unit (493) is configured to displace at least one
of a first and a second deceleration point (P5, P7) on the basis of at least one item
of the run data of the drive means arranged for setting or adjusting the height of
the first access (180).
2. System according to claim 1, wherein the speed reference unit (493) is configured
to displace at least one of a first and a second deceleration point (P5, P7) by scaling
the reference speed instruction (30) by the relative change in distance.
3. System according to claim 1 or 2, wherein the speed reference unit (493) is configured
to displace at least one of a first and a second deceleration point (P5, P7) by displacing
them by the absolute change in distance with respect to the reference speed instruction.
4. System according to one of the preceding claims, wherein the speed of the rotor, the
rotation distance of the rotor, or a combination of these, is used as at least one
item of the operating data of the drive means (180).
5. Method for enabling embarkation and disembarkation of a vessel between a first access,
more particularly an access platform or corresponding, which can be fastened to an
entrance of a vessel (106) or which leads to an access platform connecting to the
vessel (106) and a second access, more particularly a terminal platform or terminal
tower or corresponding, in which method adjusting means (180, 181) for adjusting the
distance of the first access (102) from the second access (101) are additionally used;
wherein the adjusting means comprises a drive means for setting or adjusting the height
of the first access,
in addition to which in the method an elevator (104) is used, which elevator comprises:
- a first (102) and a second (101) exit, of which at least the first exit (102) can
be fastened is connected to or is the first access and the second exit (101) is connected
to the terminal;
- between the first and second exit in the vertical direction, a movable platform
(411), which is most preferably a part of the elevator car (410);
- drive means (490) for displacing the platform (411) in the vertical direction, whereby
the height of the first exit (102) is set or adjusted by said drive means for setting
or adjusting the height of the first access (180);
- a speed reference unit (493) for controlling the drive means (490),
whereby the speed reference unit decelerates the moving speed of the platform (411)
at the point of a first deceleration point (P5) from the nominal speed of the platform
via an initial smoothing curve for deceleration to a maximum value of deceleration,
and after this at the point of a second deceleration point by reducing the deceleration
via a final smoothing curve to zero (P7);
characterized in that the speed reference unit (493) of the elevator is configured to displace at least
one of a first and a second deceleration point (P5, P7) when the distance of the first
exit (102) from the second exit (101) changes, and
that the speed reference unit (493) is configured to displace at least one of a first
and a second deceleration point (P5, P7) on the basis of at least one item of the
run data of the drive means (180).
6. Method according to claim 5, wherein the speed reference unit is configured to displace
at least one of a first and a second deceleration point (P5,P7) by scaling the reference
speed instruction by the relative change in said distance.
7. Method according to claim 5 or 6, wherein the speed reference unit (493) is configured
to displace at least one of a first and a second deceleration point (P5, P7) by displacing
them by the absolute change in distance with respect to reference speed instruction.
8. Method according to one of claims 5 to 7, wherein the speed of the rotor, the rotation
distance of the rotor, or a combination of these, is used as at least one item of
the operating data of the drive means (180).
1. System (103) zum Ermöglichen eines Anlegens und Ablegens eines Schiffs, wobei das
System Folgendes umfasst:
- einen ersten Zugang, insbesondere eine Zugangsplattform oder Entsprechendes, das
an einem Eingang eines Schiffs (106) befestigt werden kann oder das zu einer Zugangsplattform
führt, die das Schiff (106) verbindet,
- einen zweiten Zugang, insbesondere eine Terminalplattform oder einen Terminalturm
oder Entsprechendes,
- Einstellmittel (180, 181) zum Einstellen des Abstands des ersten Zugangs von dem
zweiten Zugang, wobei das Einstellmittel (180, 181) ein Antriebsmittel (180) umfasst,
das zum Festlegen oder Einstellen der Höhe des ersten Zugangs angeordnet ist, und
- einen Aufzug (104), umfassend
- einen ersten (102) und einen zweiten (101) Ausgang, wobei mindestens der erste Ausgang
(102) oder der erste Zugang und der zweite Ausgang (101) an dem Terminal befestigt
ist bzw. damit verbunden sind,
- zwischen dem ersten und zweiten Ausgang in der vertikalen Richtung, eine bewegbare
Plattform (411), die am bevorzugtesten ein Teil der Aufzugkabine (410) ist,
- Antriebsmittel (490) zum Verschieben der Plattform (411) in die vertikale Richtung,
- eine Geschwindigkeitsreferenzeinheit (493) zum Steuern des Antriebsmittels (490)
zum Verschieben der Plattform in die vertikale Richtung, so dass die Bewegungsgeschwindigkeit
der Plattform (411) am Punkt eines ersten Abbremspunkts (P5) von der Nenngeschwindigkeit
der Plattform über eine anfängliche glättende Kurve zur Abbremsung auf einen maximalen
Abbremswert und danach am Punkt eines zweiten Abbremspunkts durch Verringern der Abbremsung
über eine abschließende glättende Kurve auf null (P7) abgebremst werden kann, dadurch gekennzeichnet, dass die Geschwindigkeitsreferenzeinheit (493) des Systems konfiguriert ist, um mindestens
einen eines ersten und eines zweiten Abbremspunkts (P5, P7) zu verschieben, wenn sich
der Abstand des ersten Ausgangs (102) von dem zweiten Ausgang (101) verändert,
und wobei die Geschwindigkeitsreferenzeinheit (493) konfiguriert ist, um mindestens
einen eines ersten und eines zweiten Abbremspunkts (P5, P7) auf der Basis von mindestens
einem Element der ausgeführten Daten des Antriebsmittels, das zum Festlegen oder Einstellen
der Höhe des ersten Zugangs angeordnet ist, (180) zu verschieben.
2. System nach Anspruch 1, wobei die Geschwindigkeitsreferenzeinheit (493) konfiguriert
ist, um mindestens einen eines ersten und eines zweiten Abbremspunkts (P5, P7) durch
Skalieren der Referenzgeschwindigkeitsanweisung (30) um die relative Veränderung des
Abstands zu verschieben.
3. System nach Anspruch 1 oder 2, wobei die Geschwindigkeitsreferenzeinheit (493) konfiguriert
ist, um mindestens einen eines ersten und eines zweiten Abbremspunkts (P5, P7) durch
Verschieben davon um die absolute Veränderung des Abstands in Bezug auf die Referenzgeschwindigkeitsanweisung
zu verschieben.
4. System nach einem der vorhergehenden Ansprüche, wobei die Geschwindigkeit des Rotors,
der Drehabstand des Rotors oder eine Kombination aus diesen als mindestens ein Element
der Betriebsdaten des Antriebsmittels (180) verwendet wird.
5. Verfahren zum Ermöglichen eines Anlegens und Ablegens eines Schiffs zwischen einem
ersten Zugang, insbesondere einer Zugangsplattform oder Entsprechendem, das an einem
Eingang eines Schiffs (106) befestigt werden kann oder das zu einer Zugangsplattform
führt, die das Schiff (106) verbindet, und einem zweiten Zugang, insbesondere einer
Terminalplattform oder einem Terminalturm oder Entsprechendem, wobei bei dem Verfahren
Einstellmittel (180, 181) zum Einstellen des Abstands des ersten Zugangs (102) von
dem zweiten Zugang (101) zusätzlich verwendet werden, wobei das Einstellmittel ein
Antriebsmittel zum Festlegen oder Einstellen der Höhe des ersten Zugangs umfasst,
wobei zusätzlich dazu bei dem Verfahren ein Aufzug (104) verwendet wird, wobei der
Aufzug Folgendes umfasst:
- einen ersten (102) und einen zweiten (101) Ausgang, wobei mindestens der erste Ausgang
(102) an dem Terminal befestigt werden kann, damit verbunden ist oder der erste Zugang
und der zweite Ausgang (101) damit verbunden sind,
- zwischen dem ersten und zweiten Ausgang in der vertikalen Richtung, eine bewegbare
Plattform (411), die am bevorzugtesten ein Teil der Aufzugkabine (410) ist,
- Antriebsmittel (490) zum Verschieben der Plattform (411) in die vertikale Richtung,
wodurch die Höhe des ersten Ausgangs (102) durch das Antriebsmittel zum Festlegen
oder Einstellen der Höhe des ersten Zugangs (180) festgelegt oder eingestellt wird,
- eine Geschwindigkeitsreferenzeinheit (493) zum Steuern des Antriebsmittels (490),
wodurch die Geschwindigkeitsreferenzeinheit die Bewegungsgeschwindigkeit der Plattform
(411) am Punkt eines ersten Abbremspunkts (P5) von der Nenngeschwindigkeit der Plattform
über eine anfängliche glättende Kurve zur Abbremsung auf einen maximalen Abbremswert
und danach am Punkt eines zweiten Abbremspunkts durch Verringern der Abbremsung über
eine abschließende glättende Kurve auf null (P7) abbremst,
dadurch gekennzeichnet, dass die Geschwindigkeitsreferenzeinheit (493) des Aufzugs konfiguriert ist, um mindestens
einen eines ersten und eines zweiten Abbremspunkts (PS, P7) zu verschieben, wenn sich
der Abstand des ersten Ausgangs (102) von dem zweiten Ausgang (101) verändert, und
dass die Geschwindigkeitsreferenzeinheit (493) konfiguriert ist, um mindestens einen
eines ersten und eines zweiten Abbremspunkts (P5, P7) auf der Basis mindestens eines
Elements der ausgeführten Daten des Antriebsmittels (180) zu verschieben.
6. Verfahren nach Anspruch 5, wobei die Geschwindigkeitsreferenzeinheit konfiguriert
ist, um mindestens einen eines ersten und eines zweiten Abbremspunkts (P5, P7) durch
Skalieren der Referenzgeschwindigkeitsanweisung um die relative Veränderung des Abstands
zu verschieben.
7. Verfahren nach Anspruch 5 oder 6, wobei die Geschwindigkeitsreferenzeinheit (493)
konfiguriert ist, um mindestens einen eines ersten und eines zweiten Abbremspunkts
(P5, P7) durch Verschieben davon um die absolute Veränderung des Abstands in Bezug
auf die Referenzgeschwindigkeitsanweisung zu verschieben.
8. Verfahren einem der Ansprüche 5 bis 7, wobei die Geschwindigkeit des Rotors, der Drehabstand
des Rotors oder eine Kombination aus diesen als mindestens ein Element der Betriebsdaten
des Antriebsmittels (180) verwendet wird.
1. Système (103) permettant l'embarquement et le débarquement d'un navire, ledit système
comprenant :
- un premier accès, plus particulièrement une plateforme d'accès ou correspondante,
qui peut être fixée à une entrée d'un navire (106) ou qui conduit à une plateforme
d'accès reliant le navire (106) ;
- un second accès, plus particulièrement une plateforme de terminal ou tour de terminal
ou correspondante ;
- des moyens d'ajustement (180, 181) pour ajuster la distance du premier accès à partir
du second accès, dans lequel les moyens d'ajustement (180, 181) comprennent un moyen
d'entraînement (180) agencé pour régler ou ajuster la hauteur du premier accès, et
- un ascenseur (104) comprenant :
- une première (102) et une seconde (101) sortie, parmi lesquelles au moins la première
sortie (102) est fixée au premier accès ou est le premier accès et la seconde sortie
(101) est reliée au terminal ;
- entre la première et la seconde sortie dans la direction verticale, une plateforme
mobile (411), qui est plus préférablement une partie de la cabine d'ascenseur (410)
;
- un moyen d'entraînement (490) pour déplacer la plateforme (411) dans la direction
verticale ;
- une unité de référence de vitesse (493) pour commander le moyen d'entraînement (490)
afin de déplacer la plateforme dans la direction verticale de telle sorte que la vitesse
de déplacement de la plateforme (411) peut être décélérée au niveau d'un premier point
de décélération (P5) à partir de la vitesse nominale de la plateforme par le biais
d'une courbe de lissage initiale pour la décélération vers une valeur maximum de décélération,
et après quoi au niveau d'un second point de décélération en réduisant la décélération
par le biais d'une courbe de lissage finale vers zéro (P7),
caractérisé en ce que l'unité de référence de vitesse (493) du système est configurée pour déplacer au
moins un point parmi un premier et un second point de décélération (P5, P7) lorsque
la distance de la première sortie (102) à partir de la seconde sortie (101) change,
et dans lequel l'unité de référence de vitesse (493) est configurée pour déplacer
au moins un point parmi un premier et un second point de décélération (P5, P7) sur
la base d'au moins un élément des données de déplacement du moyen d'entraînement agencé
pour régler ou ajuster la hauteur du premier accès (180).
2. Système selon la revendication 1, dans lequel l'unité de référence de vitesse (493)
est configurée pour déplacer au moins un point parmi un premier et un second point
de décélération (P5, P7) en réduisant l'instruction de vitesse de référence (30) selon
le changement de distance relatif.
3. Système selon la revendication 1 ou 2, dans lequel l'unité de référence de vitesse
(493) est configurée pour déplacer au moins un point parmi un premier et un second
point de décélération (P5, P7) en les déplaçant selon le changement de distance absolu
par rapport à l'instruction de vitesse de référence.
4. Système selon une quelconque des revendications précédentes, dans lequel la vitesse
du rotor, la distance de rotation du rotor, ou une combinaison de celles-ci, est utilisée
comme au moins un élément des données de fonctionnement du moyen d'entraînement (180).
5. Procédé permettant l'embarquement et le débarquement d'un navire entre un premier
accès, plus particulièrement une plateforme d'accès ou correspondante, qui peut être
fixée à une entrée d'un navire (106) ou qui conduit à une plateforme d'accès reliant
le navire (106), et un second accès, plus particulièrement une plateforme de terminal
ou tour de terminal ou correspondante, dans lequel procédé des moyens d'ajustement
(180, 181) pour ajuster la distance du premier accès (102) à partir du second accès
(101) sont utilisés en plus,
dans lequel les moyens d'ajustement comprennent un moyen d'entraînement pour régler
ou ajuster la hauteur du premier accès ;
en plus dans ledit procédé un ascenseur (104) est utilisé, ledit ascenseur comprenant
:
- une première (102) et une seconde (101) sortie, parmi lesquelles au moins la première
sortie (102) peut être fixée, est relié au premier accès ou est le premier accès et
la seconde sortie (101) est reliée au terminal ;
- entre la première et la seconde sortie dans la direction verticale, une plateforme
mobile (411), qui est plus préférablement une partie de la cabine d'ascenseur (410)
;
- un moyen d'entraînement (490) pour déplacer la plateforme (411) dans la direction
verticale, dans lequel la hauteur de la première sortie (102) est réglée ou ajustée
par ledit moyen d'entraînement (180) pour régler ou ajuster la hauteur du premier
accès ;
- une unité de référence de vitesse (493) pour commander le moyen d'entraînement (490),
dans lequel l'unité de référence de vitesse décélère la vitesse de déplacement de
la plateforme (411) au niveau du point d'un premier point de décélération (P5) à partir
de la vitesse nominale de la plateforme par le biais d'une courbe de lissage initiale
pour la décélération sur une valeur maximum de décélération, et après quoi au niveau
du point d'un second point de décélération en réduisant la décélération par le biais
d'une courbe de lissage finale vers zéro (P7) ;
caractérisé en ce que l'unité de référence de vitesse (493) de l'ascenseur est configurée pour déplacer
au moins un point parmi un premier et un second point de décélération (P5, P7) lorsque
la distance de la première sortie (102) par rapport à la seconde sortie (101) change,
et
en ce que l'unité de référence de vitesse (493) est configurée pour déplacer au moins un point
parmi un premier et un second point de décélération (P5, P7) sur la base d'au moins
un élément des données de déplacement du moyen d'entraînement (180).
6. Procédé selon la revendication 5, dans lequel l'unité de référence de vitesse est
configurée pour déplacer au moins un point parmi un premier et un second point de
décélération (P5, P7) en réduisant l'instruction de vitesse de référence selon le
changement relatif de ladite distance.
7. Procédé selon la revendication 5 ou 6, dans lequel l'unité de référence de vitesse
(493) est configurée pour déplacer au moins un point parmi un premier et un second
point de décélération (P5, P7) en les déplaçant selon le changement de distance absolu
par rapport à l'instruction de vitesse de référence.
8. Procédé selon une quelconque des revendications 5 à 7, dans lequel la vitesse du rotor,
la distance de rotation du rotor, ou une combinaison de celles-ci, est utilisée comme
au moins un élément des données de fonctionnement du moyen d'entraînement (180).