FIELD OF THE INVENTION
[0001] The present invention relates to apparatus and methods for pressure regulation.
BACKGROUND
[0002] Inkjet printing heads dispense droplets of ink or other fluid material (for example
liquids, suspensions, gels) via nozzles. The material to be dispensed is selectively
discharged from an inkjet printing head nozzle or plurality of nozzles when an electric
pulse is directed to the respective nozzle or nozzles. To prevent gravitational leakage,
the printing head is maintained under a moderate sub-atmospheric pressure (vacuum)
compared to the surrounding atmosphere, which is sufficient to keep the material from
gravitationally dripping out of the nozzles.
[0003] The sub-atmospheric pressure needs to be continuously and precisely maintained within
a predefined narrow range, because insufficient vacuum may lead to leakage while excessive
vacuum might interfere with the operation of the discharge mechanism. The desired
vacuum may depend on the design of the printing head, the specific gravity of the
material being dispensed, and the height of the material above the nozzle level. An
exemplary representative value of the sub-atmospheric pressure employed may be about
-60 mm water pressure.
[0004] When material is dispensed from the printing head, the vacuum within the reservoir
of material feeding the head increases, whereas when material is fed into the reservoir,
the vacuum drops. For maintaining the vacuum at the desired level, a vacuum pump is
customarily used to draw air out of the reservoir to reduce the pressure within, whereas
a leak orifice inlet allows air to flow into the reservoir when the pressure inside
the reservoir of material is too low. The electrical power supplied to the pump is
controlled so as to ensure that a desired vacuum level is maintained.
[0005] Sub-atmospheric pressure is applied to prevent leakage, even when the printing device
is inoperative. The mechanism described above for maintaining the vacuum thus requires
uninterrupted operation of the vacuum pump at all times, which consumes energy and
reduces the effective life of the pump.
SUMMARY OF THE INVENTION
[0006] There is thus provided, in accordance with embodiments of the present invention,
a system for maintaining a desired pressure difference between a first pressure within
a chamber and a reference pressure at a reference space. The system may include a
peristaltic pump located along a duct that connects the chamber with the reference
space. The system may further include a pressure sensor for monitoring an actual pressure
difference between the first pressure within the chamber and the reference pressure
at the reference space. The system may also include a controller for receiving a signal
from the pressure sensor for determining the actual pressure difference from the pressure
sensor and for operating the peristaltic pump, in accordance with the actual pressure
difference and the desired pressure difference, to increase, decrease or leave unchanged
the pressure within the chamber so as to maintain the actual pressure difference within
predetermined proximity to the desired pressure difference.
[0007] In some embodiments of the present invention the reference space may be ambient atmosphere.
[0008] In some embodiments of the present invention the chamber forms part of a printing
block of a printer.
[0009] In accordance with embodiments of the present invention the chamber may be within
a material reservoir of the printing block.
[0010] In some embodiments of the present invention the controller may be designed to cause
the peristaltic pump to operate when the measured pressure difference exceeds a predetermined
pressure difference range.
[0011] In some embodiments of the present invention the predetermined pressure difference
range may be a modifiable parameter of the system.
[0012] In accordance with some embodiments of the present invention there is provided a
method for maintaining a desired pressure difference between a first pressure within
a chamber and a reference pressure at a reference space. The method may include providing
a peristaltic pump located along a duct that connects the chamber with the reference
space and a controller. The method may also include monitoring an actual pressure
difference between the first pressure within the chamber and the reference pressure
at the reference space using a pressure sensor. The method may further include using
the controller, receiving a signal from the pressure sensor for determining the actual
pressure difference from the pressure sensor and operating the peristaltic pump, in
accordance with the actual pressure difference and the desired pressure difference,
to increase, decrease or leave unchanged the pressure within the chamber so as to
maintain the actual pressure difference within predetermined proximity to the desired
pressure difference.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] The subject matter regarded as the invention is particularly pointed out and distinctly
claimed in the concluding portion of the specification. The invention, however, both
as to organization and method of operation, together with objects, features, and advantages
thereof, may best be understood by reference to the following detailed description
when read with the accompanying drawings in which:
[0014] Fig. 1 illustrates a schematic diagram of an apparatus for maintaining predetermined
sub-atmospheric pressure within a reservoir supplying material to a printing head
according to a preferred embodiment of the present invention.
[0015] Fig. 1A illustrates a schematic diagram of an apparatus for maintaining predetermined
sub-atmospheric pressure within a chamber according to a preferred embodiment of the
present invention; and
Fig. 2 is a flowchart describing the operation of an apparatus for maintaining a predetermined
pressure within a chamber.
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
[0016] According to embodiments of the present invention, an inkjet printer may be equipped
with one or more printing heads. Each of the printing heads may include or be connected
via valves or other means to a container, e.g. reservoir containing the fluid material
to be dispensed and one or more print nozzles for dispensing the material upon electric
actuation. One or more pressure sensors may be provided for sensing the relative pressure
above the liquid material level, e.g. air in the reservoir, above the liquid level,
and a peristaltic pump may be provided for regulating the pressure as described below.
[0017] Reference is made to Fig. 1 which illustrates a schematic diagram of an apparatus
100 for maintaining predetermined sub-atmospheric pressure of the air above the liquid
level in a reservoir supplying material to a printing head according to a preferred
embodiment of the present invention.
[0018] An inkjet printing block 140A may include material reservoir 150R for retaining a
liquid material, such as ink, wax and/or a curable polymer (e.g. in printers for printing
three-dimensional objects, such as, for example, described in
US patents 7,658,976,
7,725,209,
7,991,498, all incorporated herein by reference) and a print head 150H that includes one or
more print nozzles 150N for dispensing the material.
[0019] Material reservoir 150R may be designed to supply liquid material to print head 150H
as needed, to compensate for, i.e. replace quantities of material dispensed via the
print nozzles 150N. The wavy line within material reservoir 150R symbolically represents
separation between the material (below the line) and air (above the line), i.e. the
liquid level within the reservoir. To prevent gravitational leakage from print nozzles
150N, a certain vacuum level relative to the surrounding atmosphere 120, for example
-60 mm water pressure, may be continually maintained within material reservoir 150R.
In practice, the mechanisms for the maintenance of the pressure difference may afford
a tolerance of for example ±5%. In another example, the mechanisms for the maintenance
of the pressure difference may afford a tolerance of ±5mm water pressure.
[0020] In order to maintain the required vacuum level, a peristaltic pump 110 may be placed
between material reservoir 150R and atmosphere 120, the peristaltic pump located along
duct 124 connecting material reservoir 150R with atmosphere 120. When peristaltic
pump 110 revolves in the direction indicated by A (counter-clockwise, in this example),
it moves air from material reservoir 150R of inkjet printing block 140A to atmosphere
120, thereby increasing the vacuum within material reservoir 150R. Similarly, revolving
peristaltic pump 110 in the opposite (B) direction (that is clockwise, in this example)
moves air from atmosphere 120 into material reservoir 150R, thereby increasing the
pressure within material reservoir 150R, i.e. reducing the vacuum there.
[0021] There are five mechanisms that regulate the current pressure above the material level
in the material reservoir 150R (see also blocks 209-225 in Fig. 2): (i) Pump 150P
may add material from material container 144, thereby reducing the vacuum within the
material reservoir; (ii) Print nozzle(s) 150N dispenses material during printing,
thereby increasing vacuum within the material reservoir 150R; and Peristaltic pump
110 may controllably: (iii) increase the vacuum (revolving in direction A), (iv) decrease
the vacuum (revolving in direction B) or (v) remain still, to maintain the current
pressure within the material reservoir 150R, virtually acting as a closed valve.
[0022] Controller 114 receives a current pressure data from pressure sensor 130, which represents
the pressure difference between the atmospheric pressure and the pressure within pipe
124, which, in turn, corresponds to the pressure above the liquid material level within
material reservoir 150R, and actuates peristaltic pump 110 to revolve as necessary
to maintain a predetermined level of vacuum within material reservoir 150R. If the
current pressure is sufficiently close to the predetermined level, then controller
114 keeps peristaltic pump 110 still, actually functioning as a closed valve.
[0023] Reference is now made to Fig. 1A, illustrating a schematic diagram of an apparatus
100A for maintaining predetermined sub-atmospheric pressure within a chamber according
to a preferred embodiment of the present invention, generalizing the inventive concept
described above to a more general case of maintaining a specified air pressure within
a chamber, which can be positive or negative within the operative range of peristaltic
pumps.
[0024] Thus, apparatus 100A includes chamber 140 in which it is desired to maintain a predetermined
pressure level. Pressure variator 150 may be any device or combination of devices
that may add air or another material into chamber 140 and may remove air or another
material from chamber 140. To prevent or compensate for pressure fluctuations within
chamber 140 caused by operation of pressure variator 150, peristaltic pump 110 may
be placed between chamber 140 and atmosphere 120, and operate under the control of
controller 114. Pressure sensor 130 may be used to measure the pressure difference
between the inside of chamber 140 and the outside atmosphere 120, and controller 114
may actuate peristaltic pump 110 so as to maintain a predetermined pressure within
chamber 140, in a manner similar to the manner described hereinabove with reference
to Fig. 1. Similarly as described with relation to Fig. 1, five mechanisms play a
role in maintaining the pressure in chamber 140: (i) addition of air or another material
into chamber 140 by a device being part of Pressure variator 150; (ii) removal of
air or material from chamber 140 by a device being part of Pressure variator 150;
and peristaltic pump 110 may controllably: (iii) increase the vacuum (revolving in
direction A), (iv) decrease the vacuum (revolving in direction B) or (v) remain still,
to maintain the current pressure within chamber 140.
[0025] Fig. 2 is a flowchart describing the operation of an apparatus for maintaining a
predetermined pressure within a chamber, in accordance with embodiments of the present
invention. The apparatus includes a peristaltic pump located along a duct connecting
the inside of the chamber to the outside ambient atmosphere (see, for example Fig.
1 and Fig. 1A). The method may include measuring 205 the actual relative pressure
of the chamber (that is, the pressure difference between the pressure within the chamber
and a reference ambient pressure of atmosphere 120, i.e. a "reference space").
[0026] The relative pressure may be measured by a pressure sensor and reported to a controller.
The method may further include comparing 209 the pressure difference between the actual
relative pressure and a desired relative pressure or pressure range. The comparison
may be carried out, for example, by a controller that receives pressure measurements
from a pressure sensor. If the measured relative pressure, i.e. actual relative pressure
is lower than the desired relative pressure, or a desired pressure difference range,
the peristaltic pump may be operated 215 to add air to the chamber, thereby increasing
the actual relative pressure (reducing the vacuum) toward the desired level. If the
measured actual relative pressure is higher than the desired relative pressure, or
a desired pressure difference range, then the peristaltic pump may be operated 225
to remove air from the chamber, thereby reducing the actual relative pressure (increasing
the vacuum) within the chamber toward the desired level. If the measured actual relative
pressure is found to be equal or sufficiently close (within a predetermined pressure
difference range) to the desired relative pressure, then the peristaltic pump is kept
219 still, thereby effectively causing the peristaltic pump to act as a valve that
blocks passage of air between the ambient atmosphere and the inside of the chamber.
[0027] The pressure difference range may be a modifiable parameter of the apparatus, so
as to allow setting it by a user, thereby affecting the sensibility of the apparatus
to changes in the pressure difference.
[0028] Examples of determination of desired pressure levels:
[0029] EXAMPLE 1: Liquid level above nozzle level = 50-60mm; Gravity of liquid material
= 1; the desired relative pressure: about -60mm water pressure
[0030] EXAMPLE 2: Liquid level above nozzle level: = 50-60mm; Gravity of liquid material
= 3; the desired relative pressure: about -160mm water pressure
[0031] While the invention has been described with respect to a limited number of embodiments,
it will be appreciated by persons skilled in the art that the present invention is
not limited by what has been particularly shown and described herein. Rather the scope
of the present invention includes both combinations and sub-combinations of the various
features described herein, as well as variations and modifications which would occur
to persons skilled in the art upon reading the specification and which are not in
the prior art.
1. A system for maintaining a desired pressure difference between a first pressure within
a chamber and a reference pressure at a reference space, the system comprising:
a peristaltic pump located along a duct that connects the chamber with the reference
space;
a pressure sensor for monitoring an actual pressure difference between the first pressure
within the chamber and the reference pressure at the reference space; and
a controller for receiving a signal from the pressure sensor, for determining the
actual pressure difference and for operating the peristaltic pump according to the
actual pressure difference and the desired pressure difference so as to maintain the
actual pressure difference within predetermined proximity to the desired pressure
difference.
2. The system of claim 1, wherein the reference space comprises ambient atmosphere.
3. The system of claim 1or 2, wherein the chamber forms part of a printing block of a
printer.
4. The system of claim 3, wherein the chamber is within a material reservoir of the printing
block.
5. The system of any preceding claim, wherein the controller is designed to cause the
peristaltic pump to operate when the measured pressure difference exceeds a predetermined
pressure difference range.
6. The system of claim 5, wherein the predetermined pressure difference range is a modifiable
parameter of the system.
7. A method for maintaining a desired pressure difference between a first pressure within
a chamber and a reference pressure at a reference space, the method comprising:
monitoring an actual pressure difference between the first pressure within the chamber
and the reference pressure at the reference space using a pressure sensor by:
receiving a signal from the pressure sensor;
determining the actual pressure difference from the pressure sensor; and
operating a peristaltic pump located along a duct that connects the chamber with the
reference space according to the actual pressure difference and the desired pressure
difference to control the pressure within the chamber so as to maintain the actual
pressure difference within predetermined proximity to the desired pressure difference.
8. The method of claim 7, wherein the reference space comprises ambient atmosphere.
9. The method of claim 7 or 8, wherein the chamber forms part of a printing block of
a printer.
10. The method of claim 9, wherein the chamber is within a material reservoir of the printing
block.
11. The method of any one of claim 7 to 10, further comprising causing the peristaltic
pump to operate when the measured pressure difference exceeds a predetermined pressure
difference range.
12. The method of claim 11, further comprising modifying the predetermined pressure difference
range.