

(11)

EP 2 631 248 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

(15) Correction information:
Corrected version no 1 (W1 B1)
 Corrections, see
 Description Paragraph(s) 5
 Claims EN 1

(51) Int Cl.:
C07K 16/28 (2006.01) **A61K 39/00 (2006.01)**
A61N 5/02 (2006.01) **A61N 5/06 (2006.01)**
A61K 39/395 (2006.01)

(48) Corrigendum issued on:
23.05.2018 Bulletin 2018/21

(45) Date of publication and mention
 of the grant of the patent:
15.11.2017 Bulletin 2017/46

(21) Application number: **13000027.6**

(22) Date of filing: **13.06.2008**

(54) **Treatment of tumors using specific anti-L1 antibody**

Behandlung von Tumoren unter Verwendung eines spezifischen Anti-L1-Antikörpers

Traitement de tumeurs à l'aide d'un anticorps anti-L1 spécifique

(84) Designated Contracting States:
**AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
 HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT
 RO SE SI SK TR**

(30) Priority: **15.06.2007 US 944359 P**

(43) Date of publication of application:
28.08.2013 Bulletin 2013/35

(62) Document number(s) of the earlier application(s) in
 accordance with Art. 76 EPC:
08759230.9 / 2 170 956

(73) Proprietors:

- **Medigene AG**
82152 Planegg/Martinsried (DE)
- **Deutsches Krebsforschungszentrum**
Stiftung des öffentlichen Rechts
69120 Heidelberg (DE)

(72) Inventors:

- **Kelm, Daniela**
71711 Steinheim an der Murr (DE)
- **Altevogt, Peter**
69151 Neckargemünd (DE)

- **Lüttgau, Sandra**
86596 Schongau (DE)
- **Krüger, Achim**
81929 München (DE)
- **Moldenhauer, Gerhard**
34454 Bad Arolsen (DE)
- **Breitling, Frank**
69115 Heidelberg (DE)
- **Bärreiter, Silke**
69469 Weinheim (DE)
- **Li, Yi**
Wantage
Oxfordshire OX12 0LD (GB)
- **Möbius, Ulrich**
82131 Gauting (DE)
- **Sebens, Susanne, Prof. Dr.**
24105 Kiel (DE)
- **Schäfer, Heiner, Prof. Dr.**
24105 Kiel (DE)

(74) Representative: **Lahrtz, Fritz**
Isenbruck Bösl Hörschler LLP
Patentanwälte
Prinzregentenstrasse 68
81675 München (DE)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

(56) References cited:

EP-A- 1 172 654 WO-A-2007/114550
WO-A-2008/023946

- RUDIKOFF S ET AL: "Single amino acid substitution altering antigen-binding specificity", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, NATIONAL ACADEMY OF SCIENCES, US, vol. 79, 1 March 1982 (1982-03-01), pages 1979-1983, XP007901436, ISSN: 0027-8424, DOI: 10.1073/PNAS.79.6.1979
- ARLT MATTHIAS J E ET AL: "Efficient inhibition of intra-peritoneal tumor growth and dissemination of human ovarian carcinoma cells in nude mice by anti-L1-cell adhesion molecule monoclonal antibody treatment", CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, BALTIMORE, USA, DE, vol. 66, no. 2, 1 January 2006 (2006-01-01), pages 936-943, XP002436282,

- GAST D ET AL: "The cytoplasmic part of L1-CAM controls growth and gene expression in human tumors that is reversed by therapeutic antibodies.", ONCOGENE 21 FEB 2008, vol. 27, no. 9, 21 February 2008 (2008-02-21), pages 1281-1289, XP002501631, ISSN: 1476-5594
- GERSHONI JONATHAN M ET AL: "Epitope mapping - The first step in developing epitope-based vaccines", BIODRUGS, vol. 21, no. 3, 1 January 2007 (2007-01-01), pages 145-156, XP009103541, ISSN: 1173-8804, DOI: 10.2165/00063030-200721030-00002

Description

[0001] The standard treatment of advanced cancer is often chemotherapy or radiotherapy. However, despite initial response to therapy, it is often observed that different carcinomas acquire resistance to chemotherapeutic drugs or radiotherapy leading to tumor recurrence and frequent death of the patients. Often, it is then decided to switch to another chemotherapeutic drug or to higher dosages. However, often no improvement of the clinical situation is observed.

[0002] L1 is a type I membrane glycoprotein of 200 to 230 kDa structurally belonging to the Ig superfamily (Moos M, Tacke R, Scherer H, Teplow D, Fruh K, Schachner M. Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. *Nature* 1988; 334:701-3). L1 plays a crucial role in axon guidance and cell migration in developing nervous system (Hortsch M. Structural and functional evolution of the L1 family: are four adhesion molecules better than one? *Mol Cell Neurosci* 2000; 15:1-10., Schachner M. Neural recognition molecules and synaptic plasticity. *Curr Opin Cell Biol* 1997; 9:627-34). Recent studies have also implicated L1 expression in the progression of human carcinomas. L1 expression was found on different tumors including lung cancer (Katayama M, Iwamatsu A, Masutani H, Furuke K, Takeda K, Wada H, et al. Expression of neural cell adhesion molecule L1 in human lung cancer cell lines. *Cell Struct Funct* 1997;22:511-6), gliomas (Senner V, Kismann E, Puttmann S, Hoess N, Baur I, Paulus W. L1 expressed by glioma cells promotes adhesion but not migration. *Glia* 2002;38:146-54), melanomas (Thies A, Schachner M, Moll I, Berger J, Schulze HJ, Brunner G, et al. Overexpression of the cell adhesion molecule L1 is associated with metastasis in cutaneous malignant melanoma. *Eur J Cancer* 2002;38:1708-1, Fogel M, Mechtersheimer S, Huszar M, Smirnov A, Abu DA, Tilgen W, et al. L1 adhesion molecule (CD 171) in development and progression of human malignant melanoma. *Cancer Lett* 2003;189:237-47), renal carcinoma (Meli ML, Carrel F, Waibel R, Amstutz H, Crompton N, Jaussi R, Moch H, Schubiger PA, Novak-Hofer I. Anti-neuroblastoma antibody chCE7 binds to an isoform of L1-CAM present in renal carcinoma cells. *Int J Cancer*, 1999; 83: 401-408, Allory Y, Matsuoka Y, Bazille C, Christensen EI, Ronco P, Debiec H. The L1 cell adhesion molecule is induced in renal cancer cells and correlates with metastasis in clear cell carcinomas. *Clin Cancer Res* 2005;11:1190-7) and colon carcinoma (Gavert N, Conacci-Sorrell M, Gast D, Schneider A, Altevogt P, Brabletz T, et al. L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. *J Cell Biol* 2005; 168:633-42). Furthermore, it is known in the art that L1 is overexpressed in ovarian and endometrial carcinomas in a stage-dependent manner (Fogel M, Gutwein P, Mechtersheimer S, Riedle S, Stoeck A, Smirnov A, et al. L1 expression as a predictor of progression and survival in patients with uterine and ovarian carcinomas. *Lancet* 2003; 362:869-75).

[0003] In the art, it has been suggested to use anti-L1 antibodies for the treatment of ovarian and endometrial tumors (cf. WO 02/04952, WO 06/013051 and Arlt MJ, Novak-Hofer I, Gast D, Gschwend V, Moldenhauer G, Grunberg J, et al. Efficient inhibition of intra-peritoneal tumor growth and dissemination of human ovarian carcinoma cells in nude mice by anti-L1-cell adhesion molecule monoclonal antibody treatment. *Cancer Res* 2006;66:936-43). In the art, various anti-L1 antibodies are known (e.g. mAb 14.10: Huszar M, Moldenhauer G, Gschwend V, Ben-Arie A, Altevogt P, Fogel M: Expression profile analysis in multiple human tumors identifies L1 (CD171) as a molecular marker for differential diagnosis and targeted therapy. *Hum Pathol* 37:1000-1008, 2006, mab chCE7: Meli ML, Carrel F, Waibel R, Amstutz H, Crompton N, Jaussi R, Moch H, Schubiger PA, Novak-Hofer I: Anti-neuroblastoma antibody chCE7 binds to an isoform of L1-CAM present in renal carcinoma cells. *Int J Cancer* 83:401-408, 1999, mAb UJ127.11: Patel K, Kiely F, Phimister E, Melino G, Rathjen F, Kemshead JT: The 200/220 kDa antigen recognized by monoclonal antibody (MAb) UJ127.11 on neural tissues and tumors is the human L1 adhesion molecule. *Hybridoma* 10:481-491, 1991, mAb 5G3: Wolff JM, Frank R, Mujoo K, Spiro RC, Reisfeld RA, Rathjen FG: A human brain glycoprotein related to the mouse cell adhesion molecule L1. *J Biol Chem* 263:11943-11947, 1988). Furthermore, in Sebens Müerkoster et al., *Oncogene*. 2007 Apr 26;26(19):2759-68, Epub 2006 Nov 6, it has been suggested to use anti-L1 antibodies for sensitizing tumor cells for the treatment with a chemotherapeutic drug or with radiotherapy.

[0004] There is always a need for improved anti-tumor agents.

[0005] The present invention relates in one aspect to a binding molecule capable of binding L1,

(a) being selected from the group consisting of single chain antibodies, scFv, multimers of scFv like diabodies, triabodies or tetrabodies, antibody fragments, Fab, tandabs, flexibodies, bispecific antibodies, and chimeric antibodies,

and/or

(b) which comprises at least one Ig domain,

and wherein the binding molecule capable of binding L1:

(i) is characterized in that its complementarity determining regions (CDRs) have the following sequences: LCDR1: RASQDISNYLN (SEQ ID No.: 24), LCDR2: YTSRLHS (SEQ ID No.: 25), LCDR3: QQGNTLPWT (SEQ ID No.: 26), HCDR1: RYWML (SEQ ID No.: 27), HCDR2: EINPRNDRTNYNEKFKT (SEQ ID No.: 28), and HCDR3: GGGYAMDY (SEQ ID No.: 29),

and which binding molecule binds L1 with an affinity (KD) of at least 10^{-10} M, or

(ii) is characterized in that its complementarity determining regions (CDRs) have the following sequences: LCDR1: QDISNY (SEQ ID No.: 30), LCDR2: YTS, LCDR3: QQGNTLPWT (SEQ ID No.: 31), HCDR1: GYT-FTRYW (SEQ ID No.: 32), HCDR2: INPRNDRT (SEQ ID No.: 33), and HCDR3: ALGGGYAMDY (SEQ ID No.: 34),

and which binding molecule binds L1 with an affinity (KD) of at least 10^{-10} M.

[0006] In the context of the present invention, it has been surprisingly found that the monoclonal antibody 9.3, produced by the hybridoma cell deposited under DSMZ ACC2841, has improved anti-tumor capacities (see examples). Especially, the monoclonal antibody 9.3 has the best ability to inhibit tumor growth and invasion of tumor cells of all antibodies tested. Furthermore, the monoclonal antibody 9.3 seems to abolish chemoresistance to a greater extend than the antibody 11A tested in WO 2008/046529 (see example 13).

[0007] Monoclonal antibodies and the production of monoclonal antibodies belongs to the state of the art and is also described in the references cited in the Materials and Methods section of the examples. In general, monoclonal antibodies can, for example, be prepared in accordance with the known method of Winter & Milstein (Winter, G. & Milstein, C. (1991) *Nature*, 349, 293-299). An alternative to preparing monoclonal antibody-secreting hybridomas, a monoclonal antibody directed against a polypeptide of the invention can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the polypeptide of interest. Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SurfZAP Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, U.S. Patent No. 5,223,409; WO 92/18619; WO 91/17271; WO 92/20791; WO 92/15679; WO 93/01288; WO 92/01047; WO 92/09690; WO 90/02809; Fuchs et al., 1991, *Bio/Technology* 9:1370-1372; Hay et al., 1992, *Hum. Antibod. Hybridomas* 3:81-85; Huse et al., 1989, *Science* 246:1275-1281; Griffiths et al., 1993, *EMBO J.* 12:725-734.

[0008] Since the effect of an antibody is mediated by its capacity to bind a specific epitope, the disclosure relates to all monoclonal antibodies recognizing the same epitope as the antibody 9.3. Methods for determining the epitope of a given antibody are known in the art and include the preparation of synthetic linear peptides of a given region of interest and the subsequent testing whether the antibody binds to said peptides (see *Epitope Mapping, A practical approach*, Oxford University Press 2001, Editors: Olwyn Westwood and Frank Hay). Alternatively, different recombinant proteins covering the region of interest can be produced and tested for the binding of the antibody (Oleszewski, M., Gutwein, P., von der Lieth, W., Rauch, U., Altevogt, P. Characterization of the L1-neurocan binding site. Implications for L1-L1 homophilic binding. *J. Biol. Chem.* 275: 34478-34485 (2000)).

[0009] Furthermore, once a specific epitope of a monoclonal antibody is known, it is within the skill of the person skilled in the art to identify or prepare other antibodies, especially monoclonal antibodies, or binding molecules as defined below which bind to the same epitope. For example, it is possible to use the peptides or proteins described above in the context of the epitope mapping also for the identification or production of said antibodies or binding molecules.

[0010] As it can be taken from the examples, the epitope of the antibody 9.3 is with the first immunoglobulin-like domain of L1. Therefore also the epitope of the monoclonal antibody is preferably within the first immunoglobulin-like domain of L1.

[0011] Disclosed is an anti-L1 monoclonal antibody, having the same capacity to inhibit tumor growth as the monoclonal antibody 9.3, produced by the hybridoma cell deposited under DSMZ ACC2841. This capacity can be tested by using the same tumor growth assay as described in the Example 1, section 1.3.9. According to the invention, "the same capacity" means that the monoclonal antibody has a tumor growth inhibiting capacity which does not differ more than 5 % from the tumor growth inhibiting capacity of the monoclonal antibody 9.3.

[0012] Preferably, this antibody also inhibits L1 dimerization, as it has been shown for the antibody 5G3 (see above).

[0013] Disclosed is an anti-L1 monoclonal antibody, characterized in that at least one of its complementarity determining regions (CDRs)

a) has one of the following sequences RASQDISNYLN, YTSRLHS, QQGNTLPWT, RYWML, EINPRNDRTNYNEK-FKT, or GGGYAMDY or

b) has a sequence which, in comparison to the sequences mentioned under a) has at least one conservative amino acid exchange.

[0014] The above mentioned sequences show the CDRs of the monoclonal antibody 9.3 determined according to the method of Kabat (see Example 2). Such a monoclonal antibody can, e.g. be produced by CDR grafting or by recombinant production of the antibody. Such methods are known in the art (see e.g. Queen, U.S. Patent No. 5,585,089 and Winter, U.S. 5,225,539, Cabilly U.S. 4,816,567).

[0015] Also disclosed is an anti-L1 monoclonal antibody, characterized in that at least one of its complementarity determining regions (CDRs)

5 a) has one of the following sequences QDISNY, YTS, QQGNTLPWT, GYTFTRYW, INPRNDRT, or ALGGGYAMDY
or

b) has a sequence which, in comparison to the sequences mentioned under a) has at least one conservative amino acid exchange.

10 [0016] These sequences show again the CDRs of the monoclonal antibody 9.3 (see Figure 12), but the CDRs have been determined using another method known in the art, namely according to the IMGT® method from the international ImMunoGeneTics information system®.

[0017] Disclosed is a monoclonal antibody, produced by the hybridoma cell deposited under DSMZ ACC2841. This hybridoma cell has been deposited with the Deutsche Sammlung fur Mikroorganismen und Zellen on April 25, 2007 15 under the Budapest Treaty.

[0018] Disclosed is a humanized antibody based on the monoclonal antibody as described above.

[0019] Humanized antibodies are antibody molecules from non-human species having one or more complementarily determining regions (CDRs) from the non-human species and a framework region (FR) from a human immunoglobulin molecule. (See, e.g., Queen, U.S. Patent No. 5,585,089 and Winter, U.S. 5,225,539.) Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art.

[0020] In general, in order to obtain a humanised antibody, nucleic acid sequences encoding human variable heavy chains and variable light chains may be altered by replacing one or more CDR sequences of the human (acceptor) sequence by sequence encoding the respective CDR in the mouse antibody sequence (donor sequence). The human acceptor sequence may comprise FR derived from different genes.

[0021] In a preferred embodiment, the disclosed humanized antibody has at least one non-human CDR and human framework region (FR) residues.

[0022] Sequences encoding full length antibodies can be subsequently obtained by joining the rendered variable heavy and variable light chain sequences to human constant heavy chain and constant light chain regions. Preferred human constant light chain sequences include kappa and lambda constant light chain sequences. Preferred human constant heavy chain sequences include IgG1, IgG2 and sequences encoding IgG1 mutants which have rendered immune-stimulating properties. Such mutants may have a reduced ability to activate complement and/or antibody dependent cellular cytotoxicity and are described in US 5,624,821; WO 99/58572, US 6,737,056. An especially preferred constant heavy chain is an IgG1 comprising the substitutions E233P, L234V, L235A, A327G, A330S, P331S and a deletion of residue 236.

[0023] In another embodiment, the full length antibody comprises an IgA, IgD, IgE, IgM, IgY or IgW sequence.

[0024] Suitable human donor sequences can be determined by sequence comparison of the peptide sequences encoded by the mouse donor sequences to a group of human sequences, preferably to sequences encoded by human germ line immunoglobulin genes or mature antibody genes. A human sequence with a high sequence homology, preferably with the highest homology determined may serve as the acceptor sequence for the humanization process.

[0025] In addition to the exchange of human CDRs for mouse CDRs, further manipulations in the human donor sequence may be carried out to obtain a sequence encoding a humanized antibody with optimized properties (such as affinity of the antigen).

[0026] In a preferred example, heavy chain residues 31-35, 50-58 and 95-102 and residues 6, 23, 24, and 49 in the human acceptor sequence are altered to correspond to the respective residues of the mouse sequence (Adair, U.S. 5,859,205).

[0027] Furthermore the altered human acceptor antibody variable domain sequences may also be rendered to encode one or more amino acids (according to the Kabat numbering system) of position 4, 35, 38, 43, 44, 46, 58, 62, 64, 65, 66, 67, 68, 69, 73, 85, 98 of the light variable region and 2, 4, 36, 39, 43, 45, 69, 70, 74, 75, 76, 78, 92 of the heavy variable region corresponding to the mouse donor sequence (Carter and Presta, U.S. 6,407,213)

[0028] The humanisation of a mouse L1 antibody is described in Example 2.

[0029] It is disclosed that the CDRs may be altered, preferably by exchanges leading to a conservative amino acid exchange.

[0030] In general, manipulations may result in alterations in the FR as well as the CDR regions and include exchanges, deletions and insertion of residues. The alterations may be induced by random or directed mutagenesis. An antibody phage display system, as described before, may be employed for the selection of mutants with desired and/or improved properties

[0031] Disclosed is a human antibody capable of recognizing the same epitope as the antibody 9.3. Methods for generating human antibodies are known in the art. These methods employ for example mice in which the endogenous

immunoglobulin genes have been partially or completely inactivated and human immunoglobulin loci were introduced. Upon immunization with an immunogenic epitope, these mice are capable of producing human antibodies (U.S. 5,545,807; 5,545,806; 5,569,825; 5,589,369; 5,591,669; 5,625,126; 5,633,425; 5,661,016).

5 [0032] In a further disclosure, the humanized antibody comprises the sequence of L1_9.3hu or L1_9.3hu3 as shown in Figure 8 a) and b).

[0033] Disclosed is a binding molecule comprising

10 a) at least one of the following sequences RASQDISNYLN, YTSRLHS, QQGNTLPWT, RYWML, EINPRNDRT-NYNEKFKT, or GGGYAMDY or

15 b) at least one sequence which has in comparison to the sequences given in a) at least one conservative amino acid exchange.

[0034] As explained above, these sequences show the CDRs of the antibody 9.3 (see Example 2).

15 [0035] Disclosed is a binding molecule comprising

20 a) at least one of the following sequences QDISNY, YTS, QQGNTLPWT, GYTFTRYW, INPRNDRT, or ALGGGYAMDY or

25 b) at least one sequence which has in comparison to the sequences given in a) at least one conservative amino acid exchange.

[0036] As explained above, these sequences show again the CDRs of the monoclonal antibody 9.3, determined by another method known in the art.

25 [0037] The present invention relates in one aspect to a binding molecule capable of binding L1,

30 (a) being selected from the group consisting of single chain antibodies, scFv, multimers of scFv like diabodies, triabodies or tetrabodies, antibody fragments, Fab, tandabs, flexibodies, bispecific antibodies, and chimeric antibodies,

and/or

35 (b) which comprises at least one Ig domain,

and wherein the binding molecule capable of binding L1:

(i) is characterized in that its complementarity determining regions (CDRs) have the following sequences:

35 LCDR1: RASQDISNYLN (SEQ ID No.: 24), LCDR2: YTSRLHS (SEQ ID No.: 25), LCDR3: QQGNTLPWT (SEQ ID No.: 26), HCDR1: RYWML (SEQ ID No.: 27), HCDR2: EINPRNDRTNYNEKFKT (SEQ ID No.: 28), and HCDR3: GGGYAMDY (SEQ ID No.: 29),

and which binding molecule binds L1 with an affinity (KD) of at least 10^{-10} M, or

40 (ii) is characterized in that its complementarity determining regions (CDRs) have the following sequences:

LCDR1: QDISNY (SEQ ID No.: 30), LCDR2: YTS, LCDR3: QQGNTLPWT (SEQ ID No.: 31), HCDR1: GYTFTRYW (SEQ ID No.: 32), HCDR2: INPRNDRT (SEQ ID No.: 33), and HCDR3: ALGGGYAMDY (SEQ ID No.: 34),

and which binding molecule binds L1 with an affinity (KD) of at least 10^{-10} M.

45 [0038] According to the invention, a binding molecule is a molecule capable of binding L1. The binding molecule is an immunoglobulin comprising molecule, i.e. comprises at least one Ig domain, and/or the binding molecule of the invention is selected from the group consisting of single chain antibodies (e.g. scFv, multimers of scFv like diabodies, triabodies or tetrabodies, antibody fragments (e.g. Fab), tandabs, flexibodies, bispecific antibodies, and chimeric antibodies.

50 [0039] The structure of an antibody and especially the function of its CDRs is known in the art (Carter PJ. Potent antibody therapeutics by design. *Nature Rev. Immunol.* 6:343-357,2006).

scFv and multimers thereof, tandabs, diabodies and flexibodies are standard antibody formats known in the art, e.g. from WO 88/1649, WO 93/11161, WO 99/57150 and EP1293514B1.

55 [0040] In single chain Fv (scFv) the two antigen binding variable regions of the light and heavy chain (VH Fv and VL Fv) of an antibody are artificially connected by a linker peptide, designated as single chain variable fragment or single chain antibody (Bird, et al. (1988) *Science* 242:423-426; Orlandi, et al (1989) *Proc Natl Acad Sci USA* 86:3833-3837; Clarkson et al., *Nature* 352: 624-628 (1991)). The antigen binding site is made up of the variable domains of light and heavy chains of a monoclonal antibody. Several investigations have shown that the Fv fragment has indeed the full

intrinsic antigen binding affinity of one binding site of the whole antibody.

[0041] In the context of this invention, diabodies are scFv with two binding specificities and can either be monospecific and bivalent or bispecific and bivalent.

[0042] Tandabs and flexibodies are further antibody formats which are e.g. defined in US2007031436 and EP1293514, respectively.

[0043] Antibody fragments that contain the idiotypes of the protein can be generated by techniques known in the art. For example, such fragments include, but are not limited to, the F(ab')2 fragment which can be produced by pepsin digestion of the antibody molecule; the Fab' fragment that can be generated by reducing the disulfide bridges of the F(ab')2 fragment; the Fab fragment that can be generated by treating the antibody molecular with papain and a reducing agent; and Fv fragments.

[0044] A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region. (See, e.g., Cabilly et al., U.S. Patent No. 4,816,567; and Boss et al., U.S. Patent No. 4,816,397).

[0045] Bifunctional, or bispecific, antibodies have antigen binding sites of different specificities. Various forms of bispecific antibodies have been produced. These include BS IgG, which are IgG molecules comprising two distinct heavy chains and two distinct light chains that are secreted by so-called "hybrid hybridomas", and heteroantibody conjugates produced by the chemical conjugation of antibodies or antibody fragments of different specificities (Segal DM, Weiner GJ, Weiner LM. Bispecific antibodies in cancer therapy. *Current Opin. Immunol.* 11:558-562, 1999, Van Spriel AB, Van Ojik HH, Van de Winkel JGJ. Immunotherapeutic perspective for bispecific antibodies. *Immunology Today* 21:391-397, 2000).

[0046] Bispecific antibodies have been generated to deliver cells, cytotoxins, or drugs to specific sites. An important use has been to deliver host cytotoxic cells, such as natural killer or cytotoxic T cells, to specific cellular targets. (P. J. Lachmann, *Clin. Exp. Immunol.* 79: 315 (1990)). Another important use has been to deliver cytotoxic proteins to specific cellular targets. (V. Raso, T. Griffin, *Cancer Res.* 41:2073 (1981); S. Honda, Y. Ichimori, S. Iwasa, *Cytotechnology* 4:59 (1990)). Another important use has been to deliver anti-cancer non-protein drugs to specific cellular targets (J. Corvalan, W. Smith, V. Gore, *Intl. J. Cancer Suppl.* 2:22 (1988); M. Pimm et al., *British J. of Cancer* 61:508 (1990)). Such bispecific antibodies have been prepared by chemical cross-linking (M. Brennan et al., *Science* 229:81 (1985)), disulfide exchange, or the production of hybrid-hybridomas (quadromas). Quadromas are constructed by fusing hybridomas that secrete two different types of antibodies against two different antigens (Kurokawa, T. et al., *Biotechnology* 7:1163 (1989)).

[0047] In a preferred embodiment of the invention, the binding molecule of the invention is linked to an active substance, preferably a toxin, a nanoparticle, a cytokine, or a radionuclide. Such antibody conjugates are known in the art (Wu AM, Senter PD. Arming antibodies: prospects and challenges for immunoconjugates. *Nature Biotechnol.* 23:1137-1146, 2005, Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ. Immunotoxin treatment of cancer. *Annu. Rev. Med.* 58:221-237, 2007, WO 90/12592, WO 2007/030642, WO 2004/067038, WO 2004/003183, US 2005/0074426, WO 94/04189).

[0048] The binding molecule of the invention binds L1 with an affinity (KD) of at least 10^{-10} or 10^{-11} M.

[0049] Preferably, the antibody does not significantly bind to other members of the L1-protein family as for example CHL1 (close homolog of L1, accession number NM_006614), NrCAM (Neuronal cell adhesion protein, accession number NM_001037132 or NM_005010) and/or NFASC (Neurofascin, accession number NM_015090). Preferably the antibody binds the other members of the L1-family with an at least 100-fold lower affinity, more preferably at least 1000-fold lower affinity compared to the affinity for L1. The affinity of the antibody for the different proteins can be determined for example by measuring the binding affinity to recombinant proteins as described in example 6. The binding of the antibody to the different L1 family members of the L1-family may also be determined by expressing said proteins on CHO cells and measuring the antibody binding by FACS analysis as described in Example 1.2 and Example 7.

[0050] It is disclosed that the antibody does not significantly increase the release of cytokines, e. g. tumour necrosis factor-alpha or interferon gamma. Preferably the release is not increased by more than 30%, more preferably not more than 20% and most preferably not more than 10%. The release of cytokines can be tested as described in Example 8. Alternatively the concentration of cytokines can be determined in the blood of an animal before and after the administration of the antibody. The cytokine concentration may be determined by an ELISA assay or other methods known in the art.

[0051] It is disclosed that the antibody does not significantly induce T-cell proliferation or inhibit T-cell proliferation. The effect of an antibody on T-cell proliferation can be determined as described in Example 9.

[0052] Further disclosed is a binding molecule which is capable of binding to the same L1 epitope recognized by the monoclonal antibody 9.3, produced by the hybridoma cell deposited under DSMZ ACC2841. With respect to this disclosed binding molecule, the same embodiments defined with respect to the structure of the binding molecule described above also apply to this binding molecule.

[0053] Preferably, the binding of the antibody to the epitope is not significantly increased or decreased by the glycosylation state of the L1 protein. The influence of the glycosylation state on the antibody binding can be determined as described in Example 10.

[0054] Furthermore, the disclosure relates to a hybridoma cell that produces the monoclonal antibody.

[0055] Furthermore, the disclosure relates to the hybridoma cell deposited under DSMZ ACC2841.

[0056] As explained above and as described in the example section, the disclosed monoclonal antibody or the binding molecule of the invention is especially suitable for the treatment of tumorigenic diseases.

[0057] Therefore, in another aspect, the invention relates to the binding molecule of the invention for use in a method of treatment of a tumorigenic disease.

[0058] Furthermore, the disclosure also relates to a method for treating a tumorigenic disease, wherein an antibody or binding molecule is administered to a subject in an effective amount to treat said disease.

[0059] As mentioned above, in the art it has been suggested to use anti-L1 antibodies for sensitizing tumor cells for the treatment with a chemotherapeutic drug or with radiotherapy (see Sebens Müerkoster et al., *Oncogene*. 2007 Apr 26;26(19):2759-68, *Epub* 2006 Nov 6). Consequently, in another aspect, the present invention relates to the binding molecule of the invention for use in a method of sensitizing tumor cells in a patient for the treatment with a chemotherapeutic drug or with radiotherapy.

[0060] This aspect of the present invention is especially useful in cases where the tumor cells are at least partially resistant to chemotherapy or to radiotherapy.

[0061] Therefore, in a preferred embodiment of the invention, the cells to be sensitized are at least partially resistant to the treatment with said chemotherapeutic drug or to radiotherapy.

[0062] In the context of the present invention, the term "sensitizing" is to be understood that after the treatment with the binding molecule of the invention, the tumor cells are more susceptible to the treatment with a chemotherapeutic drug or with radiotherapy than before said treatment. This can e.g. be tested by isolating tumor cells from the patient and testing *in vitro* whether the treatment with said binding molecule of the invention results in a sensitization of the cells. This test can be performed as described in reference (Sebens Müerkoster et al., *Oncogene*. 2007 Apr 26;26(19):2759-68, *Epub* 2006 Nov 6).

[0063] In a preferred embodiment, the cells, before the administration of the binding molecule of the invention, were not susceptible to the treatment or only susceptible to an extent that the treatment with a chemotherapeutic drug or with radiotherapy would not result in the desired therapeutic effect.

[0064] Preferably, with the help of the binding molecule of the invention, the susceptibility is increased by at least 20 %, more preferably by at least 40 % and even more preferably by at least 100 %.

[0065] An overview over chemotherapeutic drugs and radiotherapy is e.g. given in Remmington's *Pharmaceutical Sciences*, 5th ed., chapter 33, in particular pages 624 to 652.

[0066] Any of numerous chemotherapeutic drugs can be used in the uses of the invention. These compounds fall into several different categories, including, for example, alkylating agents, antineoplastic antibiotics, antimetabolites, and natural source derivatives.

[0067] Examples of alkylating agents that can be used in the invention include busulfan, caroplatin, carmustine, chlorambucil, cisplatin, cyclophosphamide (i.e., cytoxan), dacarbazine, ifosfamide, lomustine, mecholarethamine, melphalan, procarbazine, streptozocin, and thiotepa.

[0068] Examples of antineoplastic antibiotics include bleomycin, dactinomycin, daunorubicin, doxorubicin, idarubicin, mitomycin (e.g., mitomycin C), mitoxantrone, pentostatin, and plicamycin.

[0069] Examples of antimetabolites include fluorodeoxyuridine, cladribine, cytarabine, flouxuridine, fludarabine, fluro-racil (e.g., 5-fluorouracil (5FU)), gemcitabine, hydroxyurea, mercaptopurine, methotrexate, and thioguanine.

[0070] Examples of natural source derivatives include docetaxel, etoposide, irinotecan, taxanes (e.g. paclitaxel), teniposide, topotecan, vinblastine, vincristine, vinorelbine, prednisone, and tamoxifen.

[0071] Additional examples of chemotherapeutic agents that can be used in the invention include asparaginase and mitotane.

[0072] Furthermore, also C2 ceramide can be used.

[0073] In an especially preferred embodiment, the chemotherapeutic drug is selected from the group consisting of actinomycin-D, mitomycin C, cisplatin, doxorubicin, etoposide, verapamil, podophyllotoxin, 5-FU, taxans such as paclitaxel, and carboplatin.

[0074] According to the invention, the term "radiotherapy" refers to each radiation therapy which is commonly used to treat tumors cells. In a preferred embodiment, this therapy include γ -rays, X-rays, microwaves, UV radiation as well as the direct delivery of radio-isotopes to or next to tumor cells (brachytherapy).

[0075] As mentioned above, the object of this aspect of the invention is to sensitize tumor cells for the treatment with a chemotherapeutic drug or with radiotherapy. Consequently, in a preferred embodiment, after the sensitization with the binding molecule of the invention, the patient is further treated with said chemotherapeutic drug or with said radiotherapy.

[0076] In the context of the present invention, it is envisaged to sensitize tumor cells of any cell type or to treat any tumorigenic disease. Preferably, the tumor cells or the tumorigenic disease are of a type selected from the group consisting of astrocytoma, oligodendrogloma, meningioma, neurofibroma, glioblastoma, ependymoma, Schwannoma, neurofibrosarcoma, medulloblastoma, melanoma, pancreatic cancer, prostate carcinoma, head and neck cancer, breast cancer, lung cancer, ovarian cancer, endometrial cancer, renal cancer, neuroblastomas, squamous cell carcinomas,

medulloblastomas, hepatoma, colon cancer, and mesothelioma and epidermoid carcinoma.

[0077] Furthermore, it is preferred that the tumor cells are from an epithelial tumor or the tumorigenic disease is an epithelial tumor, preferably wherein the epithelial tumor is pancreatic cancer, colon cancer, ovarian cancer or endometrial cancer.

5 [0078] In a disclosure, the antibody does not induce neuronal side effects when administered in a therapeutically effective amount.

[0079] As discussed above, the binding molecule is used for the preparation of a pharmaceutical composition.

10 [0080] In general, the pharmaceutical compositions of the present invention comprise a therapeutically effective amount of a therapeutic, and a pharmaceutically acceptable carrier. In a specific embodiment, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly, in humans. The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, including but not limited to peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered orally. Saline and aqueous dextrose are preferred carriers when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions are preferably employed as liquid carriers for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsions, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E.W. Martin. Such compositions will contain a therapeutically effective amount of the therapeutic, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.

20 [0081] In a preferred embodiment, the composition is formulated, in accordance with routine procedures, as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lidocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water-free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water or saline for injection can be provided so that the ingredients may be mixed prior to administration.

25 [0082] The therapeutics of the invention can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with free carboxyl groups such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., those formed with free amine groups such as those derived from isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc., and those derived from sodium, potassium, ammonium, calcium, and ferric hydroxides, etc..

30 [0083] The amount of the therapeutic of the invention, which will be effective in the treatment of a particular disorder or condition, will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques. In addition, in vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances. However, suitable dosage ranges for intravenous administration are generally about 20-500 micrograms of active compound per kilogram body weight. Suitable dosage ranges for intranasal administration are generally about 0.01 pg/kg body weight to 1 mg/kg body weight. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems. In general, suppositories may contain active ingredient in the range of 0.5% to 10% by weight; oral formulations preferably contain 10% to 95% active ingredient.

35 [0084] Various delivery systems are known and can be used to administer a therapeutic of the invention, e.g., encapsulation in liposomes, microparticles, and microcapsules: use of recombinant cells capable of expressing the therapeutic, use of receptor-mediated endocytosis (e.g., Wu and Wu, 1987, J. Biol. Chem. 262:4429-4432); construction of a therapeutic nucleic acid as part of a retroviral or other vector, etc.. Methods of introduction include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The compounds may be administered by any convenient route, for example by infusion, by bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral, rectal and intestinal mucosa, etc.), and may be administered together

with other biologically active agents. Administration can be systemic or local. In addition, it may be desirable to introduce the pharmaceutical compositions of the invention into the central nervous system by any suitable route, including intra-ventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.

[0085] In a specific embodiment, it may be desirable to administer the pharmaceutical compositions of the invention locally to the area in need of treatment. This may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. In one embodiment, administration can be by direct injection at the site (or former site) of a malignant tumor or neoplastic or pre-neoplastic tissue.

[0086] In another embodiment, the therapeutic can be delivered in a vesicle, in particular a liposome (Langer, 1990, Science 249:1527-1533), more particular a cationic liposome (WO 98/40052).

[0087] In yet another embodiment, the therapeutic can be delivered via a controlled release system. In one embodiment, a pump may be used (Langer, *supra*). In yet another embodiment, a controlled release system can be placed in proximity of the therapeutic target, thus requiring only a fraction of the systemic dose.

[0088] Also disclosed is a method for sensitizing tumor cells in a patient for the treatment with a chemotherapeutic drug or with radiotherapy, comprising administering to the patient an efficient amount of an anti-L1 antibody or binding molecule. All embodiments described above also apply to this method.

[0089] Throughout the invention, the term "effective amount" means that a given molecule or compound is administered in an amount sufficient to obtain a desired therapeutic effect. In case that, throughout the invention, two compounds are administered in a therapeutic effective amount, this includes that one or each of the compounds is administered in a subtherapeutic amount, i.e. that the amount of each compound on its own is not sufficient to provide a therapeutic effect, but that the combination of the compounds results in the desired therapeutic effect. However, it is also included within the present invention that each of the compounds on its own is administered in a therapeutically effective amount.

[0090] In another aspect of the invention, the invention relates to the binding molecule of the invention for use in a method of treatment of tumor cells in a patient previously treated with a chemotherapeutic drug or with radiotherapy.

[0091] As mentioned above, the treatment of tumor cells with anti-L1 antibodies has already been described in WO 02/04952 and WO 06/013051.

[0092] In the context of the present invention, the term "previously treated" may include patients which have already been treated with a chemotherapeutic drug or with radiotherapy in the course of a separated regimen which has taken place e.g. within the last six or eight months.

[0093] In the course of tumor treatment with chemotherapeutic drugs or radiotherapy it is in most cases observed that after an initial response of the tumor to such therapy (tumor mass reduction or stabilization of the disease) the tumors start to progress again. Such progression usually starts upon weeks or months after such therapy. Typically these tumors are then resistant to further treatment with the previously applied chemotherapeutic drug and other treatment modalities are wanted. As described above it has been found that such resistant tumors express L1 and therefore become a target for anti-L1 antibodies.

[0094] Therefore, according to this embodiment of the invention, the term "previously treated" preferably means that the patient previously received such treatment, such treatment showed an initial effect and - at the time of therapy with the anti-L1 antibody or the binding molecule the tumor is progressing again.

[0095] Furthermore, the term "previously treated" may also be seen in a context where the L1 anti-L1 antibody or the binding molecule and the chemotherapeutic drug or radiotherapy are used within the same regimen, meaning that the treatments are given within one treatment schedule. In this context "in one treatment schedule" means that the treatment are applied at the same time, one after another or intermittently, but - in contrast to above - time distances between the individual treatments are short (within one week or within 2-4 days) and, if a treatment success is seen, one does not wait for tumor progression before the next treatment is applied.

[0096] Preferably, in this context, the invention includes the case where a patient is treated with a chemotherapeutic drug or with radiotherapy and subsequently, preferably within one week or less and more preferably within 2-4 days, a treatment with the binding molecule of the invention is started. In a further preferred embodiment several cycles of chemotherapy or radiotherapy on one side and treatment with the anti-L1 antibody or the binding molecule are made, with intervals of preferably one week or less and more preferably within 2-4 days.

[0097] In a preferred embodiment, the patient is at least partially resistant to the treatment with said chemotherapeutic drug or with radiotherapy, an effect often observed in the course of said treatment types (see above).

[0098] In a further aspect, the invention relates to the use of the binding molecule of the invention for use in a method of treatment of tumor cells in a patient at least partially resistant to treatment with a given chemotherapeutic drug or with radiotherapy.

[0099] In the context of the present invention, the term "resistant to treatment" means that the respective tumor cell does not react to the treatment with a chemotherapeutic drug or with radiotherapy in a complete manner. Rather, with respect to this tumor cell, treatment with said chemotherapeutic drug or radiotherapy is rather ineffective or even shows no effects.

5 [0100] In a further aspect of the invention, the invention relates to the binding molecule of the invention for use in a method of treatment of a tumorigenic disease, wherein the binding molecule is administered in combination with a chemotherapeutic drug or with radiotherapy, preferably wherein the chemotherapeutic drug or the radiotherapy is administered prior to the binding molecule of the invention.

10 [0101] According to the invention, the term "treatment of tumorigenic disease" includes both the killing of tumor cells, the reduction of the proliferation of tumor cells (e.g. by at least 30 %, at least 50 % or at least 90 %) as well as the complete inhibition of the proliferation of tumor cells. Furthermore, this term includes the prevention of a tumorigenic disease, e.g. by killing of cells that may or a prone to become a tumor cell in the future as well as the formation of metastases.

15 [0102] According to the invention, the term "in combination with" includes any combined administration of the binding molecule and the chemotherapeutic drug or radiotherapy. This may include the simultaneous application of the drugs or radiotherapy or, preferably, a separate administration. In case that a separate administration is envisaged, one would preferably ensure that a significant period of time would not expire between the time of delivery, such that the binding molecule and the chemotherapeutic drug or radiotherapy would still be able to exert an advantageously combined effect on the cell. In 20 such instances, it is preferred that one would contact the cell with both agents within about one week, preferably within about 4 days, more preferably within about 12-36 hours of each other.

25 [0103] The rational behind this aspect of the invention is that the administration of chemotherapeutic drugs or the treatment with radiotherapy leads to an increase of L1 expression on the surface of the tumor cells which in turn makes the tumor cells a better target for the binding molecule.

30 [0104] Therefore, this aspect of the invention also encompasses treatment regimens where the binding molecule is administered in combination with the chemotherapeutic drug or radiotherapy in various treatment cycles wherein each cycle may be separated by a period of time without treatment which may last e.g. for two weeks and wherein each cycle may involve the repeated administration of the binding molecule and/or the chemotherapeutic drug or radiotherapy. For example such treatment cycle may encompass the treatment with a chemotherapeutic drug or with radiotherapy, followed by e.g. the twice application of the binding molecule within 2 days.

35 [0105] Throughout the invention, the skilled person will understand that the individual therapy to be applied will depend on the e.g. physical conditions of the patient or on the severity of the disease and will therefore have to be adjusted on a case to case basis.

[0106] Especially in the course of such repeated treatment cycles, it is also envisaged within the present invention that the binding molecule is administered prior to the chemotherapeutic drug or the radiotherapy.

40 [0107] Also disclosed is a method for treating tumor cells in a patient previously treated with a chemotherapeutic drug or with radiotherapy, comprising administering to the patient a therapeutically effective amount of the anti-L1 antibody or binding molecule. Furthermore, the disclosure relates to a method for treating tumor cells in a patient at least partially resistant to treatment with a given chemotherapeutic drug or with radiotherapy, comprising administering to the patient a therapeutically effective amount of the anti-L1 antibody or binding molecule. Furthermore, the disclosure relates to a method for treating tumor cells in a patient, comprising administering to the patient a therapeutically effective amount of the anti-L1 antibody or binding molecule in combination with a chemotherapeutic drug or with radiotherapy. Furthermore, Furthermore, the disclosure relates to a method for treating tumor cells in a patient, comprising administering to the patient a therapeutically effective amount of the anti-L1 antibody or binding molecule.

45 [0108] The antibody may also be used in a method for a diagnostic method to determine the level of the L1 protein in body tissues or fluids.

[0109] With respect to these methods, it is disclosed that all embodiments described above for the other uses or methods also apply.

50 [0110] The invention also relates to the binding molecule of the invention for use in a method of treatment of a tumorigenic disease or for sensitizing of tumor cells in a patient for the treatment with a chemotherapeutic drug or with radiotherapy.

[0111] In a preferred embodiment, said use exhibits further the features as defined for the uses of the invention.

[0112] The invention also relates to pharmaceutical compositions comprising the binding molecule of the invention. With respect to said pharmaceutical composition, all embodiments described above also apply.

55 [0113] The invention is further illustrated by the following figures and examples.

Legends to Figures and Tables

Figure 1

5 [0114] (A) FACS analysis of CHO, CHO-L1, SKOV3ip and OVMz cells. Cells were stained with the indicated mAbs (10 µg/ml) for 30 min at 4°C. Followed by a secondary PE-conjugated mAb. (B) Western blot analysis. Cell lysates from CHO wt, CHO-L1, OVMz and SKOV3ip cells were transferred on a PVDF membrane and then incubated with the indicated mAb to L1 (1 µg/ml), followed by a POX-conjugated secondary mAb.

Figure 2

10 [0115] (A) Effect of antibodies on Erk phosphorylation in SKOV3ip cells. Cells were incubated for 24 h at 37°C with the indicated purified antibodies to L1 (10 µg/ml) or isotype control IgG1. Cells were also treated with DMSO (vehicle), or the MEK-specific inhibitor PD59098. Cell lysates were examined for phosphorylation of Erk. (B) Effect of antibodies 15 on Erk phosphorylation in SKOV3ip cells. Fluorescent staining of antibody treated cells with a phospho-Erk specific antibody and an Alexa488-conjugated secondary mAb.

Figure 3

20 [0116] Analysis of matrigel cell invasion. Antibody (10 µg/ml) treated SKOV3ip cells were seeded into a 4-well plate and allowed to invade into the matrigel for 20 h (5% CO₂; 37°C).

Figure 4

25 [0117] Differential gene expression in SKOV3ip cells. (A) SKOV3ip cells were transfected with L1-specific or scrambled siRNA and 72 h later mRNAs were isolated, transcribed to cDNA and used as template for qPCR (SYBRgreen analysis). (B) SKOV3ip cells were treated with the L1-9.3 mAb (10 µg/ml) or the control mAb IgG1 (10 µg/ml) and 96 h later 30 mRNAs were isolated, transcribed to cDNA and analyzed by qPCR for the expression of the indicated genes (SYBRgreen analysis). (C) Differential gene expression of residual tumor cells. mRNAs from residual tumors were isolated from antibody treated animals, transcribed into cDNA and analyzed by qPCR for the expression of the indicated genes.

Figure 5

35 [0118] Tumor growth in nude mice. LacZ-tagged SKOV3ip cells were injected i. p. into nude mice and after tumor implantation animals were treated with the indicated L1 mAbs or control mAb EpCAM (Hea125). After 30 days the tumor volume was determined and is given as the ratio between X-Gal stained tumor mass and the total situs. 6 animals were analyzed per group.

Figure 6

40 [0119] (A) Western blot analysis of L1-V5 constructs. Supernatant of transfected Sf9 insect cells were received from Ricardo Gouveia and analyzed by Western blot using L1-9.3 mAb and reprobed by anti-V5 mAb. (B) Western blot analysis of L1-FC constructs. L1-FC constructs were transfected into Cos-7 cells using Jet PEI™ transfection reagent as described. After 3 days supernatants were purified using SepharoseA and analyzed by Western blot using L1-9.3 mAb.

Figure 7

45 [0120] Homophilic cell adhesion assay. (A) The binding of J558-L1 cells was analyzed by bright field microscopy. One example of each treatment is shown here. In the red box coating with L1-Fc (10 µg/ml) is highlighted and in the black box the both controls, fibronectin (10 µg/ml) and BSA, are shown. (B) The graph shows the mean ± SD of bound cells after the indicated antibody or control treatment.

Figure 8

55 [0121] The antibody light chain and heavy chain DNA sequences used to construct the humanized antibodies are provided in Figures 8a and 8b respectively.

Figure 9

[0122] Amino acid sequences of the murine L1_9.3 scFv (a) and the humanized L1_9.3Hu (b) and L1_9.3Hu3 scFvs (c).

5 **Figure 10**

[0123] DNA and amino acid sequences of the expressed portions of L1_9.3 (a), L1-9.3Hu (b) and L1_9.3Hu3 scFv (c) constructs.

10 **Figure 11**

[0124] Binding of the L1_9.3, L1-9.3Hu and L1_9.3Hu3 scFvs to the human L1 cancer antigen. Rows A, B and C are coated with L1 and rows D, E and F are coated with streptavidin. The blue colour in the wells indicates binding of the individual scFv to the L1 on the plate. The lack of colour in the streptavidin coated rows shows that the single chain antibodies are specifically binding to L1

Figure 12

[0125] Genomic sequences of the variable domains of the monoclonal antibody 9.3

20 a) Sequence of the kappa chain variable region (dotted lines: CDR1, dashed lines: CDR2, underlined: CDR3)
 b) Sequence of the heavy chain variable region (dotted lines: CDR1, dashed lines: CDR2, underlined: CDR3)

Figure 13

25 [0126] A) Human PBMC and L1-positive OVMZ tumor cells were incubated with L1-9.3 mAb for 24h and the amount of bound antibody was determined by FACS analysis. B) The dissociation constants K_D were estimated from the regression curves using the concentration at half-maximal binding.

30 **Figure 14**

[0127] L1-9.3 has no effect on the release of cytokines by resting and activated human PBMC. Cytokine levels of resting and OKT3-activated PBMC from three different donors were determined after an incubation for 24h in presence or absence of 20 μ g/ml L1-9.3. Ionomycin/PMA and LPS were used as stimulation controls. Results for IFN- γ (A) and 35 TNF- α (B) are shown.

Figure 15

40 [0128] L1-9.3 does not induce T cell proliferation and has no effect on OKT3-induced T cell proliferation. Proliferation of OKT3-activated PBMC from two different donors was determined in presence or absence of 20 μ g/ml L1-9.3 using a BrdU incorporation assay 48h post stimulation. There was no difference, whether the antibody was added prior, in parallel or after stimulation with 75ng/ml OKT3. L1-9.3 by itself did not result in T cell activation.

Figure 16

45 [0129] L1-9.3 was unaffected by deglycosylation of L1. The Western blot staining of L1 in untreated and deglycosylated cell lysate is shown using several different anti-L1 mAbs. The tested antibodies can be divided into three classes in respect to their glycosylation-dependency: First class (unaffected by glycosylation): L1-9.3. Second class (binding in WB was negatively affected by deglycosylation): 11A, 14.10, OV52.24 and OV549.20. Third class (binding in WB was 50 positively affected by deglycosylation): 35.9 and 38.12.

Figure 17

55 [0130] The figure shows in vivo binding of intravenously applied L1-9.3 to collecting ducts of the kidney. In vivo binding was only detectable using the amplification system CSA (Fig. 17A), while by using the conventional ABC-method, no signal was visible (Fig. 17B). Hence, L1-9.3 was detected in a range of 30-300 pmol in the tissue (L1-9.3 concentration is presumably higher than 5 ng/ml and below 50 ng/ml). Negative control did not show staining, thus, unspecific staining can be excluded (Fig. Figure 17C). The staining pattern of in vivo bound L1-9.3 (Fig. 17A) corresponds to the L1 expression

pattern in the kidney when directly staining tissue sections with L1-9.3 (Fig. 17D).

Figure 18

5 *FACS analysis of humanized L1-9.3 mAbs*

[0131] Flow cytometry analysis of SKOV3ip pcDNA3.1 luciferase cells. Cells were stained with the indicated humanized mAbs(10 μ g/ml) for 30min 4°C, followed by a secondary PE-conjugated mAb.

10 **Figure 19**

Mouse SKOV3ip xenograft-model

15 [0132] 7*10⁶ SKOV3ip pcDNA3.1 luciferase cells were injected intraperitoneal into 6 weeks old CD1 nu/nu female mice. After 24h mice were randomized in groups of 10 mice. Each group of mice was three times weekly injected with 300 μ g either mAb L1-chi9.3, mAbL1-hu3 or PBS intraperitoneally.

20 [0133] On day 33 mice were imaged (Fig. 2). Tumor volume was determined using the XENOGEN IVIS 200 System. In brief, mice were anesthetised and injected with 100 μ l Luciferin D (3 μ g/mouse) intraperitoneally. Afterwards, luciferase activity of the tumor cells was measured by detecting light emission. The tumor volume is shown as photon per second (total flux). Statistical analysis was done using the student's t-test.

Figure 20

25 *In vivo total tumor mass*

30 [0134] After 36 days mice were sacrificed and the tumor mass was determined. Tumor growth is given as a ratio of tumor mass to bodyweight. (A individual mice, B mean value). Statistical analysis was done using the student's t-test. Thus, the treatment of immunodeficient mice with L1 9.3 antibody could be reproduced with chimarised and humanized forms of the L1 9.3 mAb.

Figure 21

35 [0135] PT45-P1res cells were either left untreated (w/o) or were treated with 20 μ g/mL gemcitabone (A) or etoposide (B) in the absence (w/o) or presence of either 1 or 10 μ g/mL anti L1CAM antibody 9.3 or 1 or 10 μ g/mL isotype matched control antibody. After 24 hours, cells were analysed by caspase-3/-7 assay. Means \pm SD from three independent experiments are shown. * indicates p< 0.05.

Figure 22

40 [0136] Colo357 cells were either left untreated (w/o) or were treated with 20 μ g/mL gemcitabone (A) or etoposide (B) in the absence (w/o) or presence of either 1 or 10 μ g/mL anti L1CAM antibody 9.3 or 1 or 10 μ g/mL isotype matched control antibody. After 24 hours, cells were analysed by caspase-3/-7 assay. Means \pm SD from three independent experiments are shown. * indicates p< 0.05.

45 **Table 1**

[0137] The table shows a summary of antibodies tested in the indicated assays.

50 **Examples**

1. Example 1

1.1 Summary of Example 1

55 [0138] The L1 adhesion molecule (L1-CAM) is a transmembrane cell adhesion molecule involved in cell migration and axon guidance in the developing nervous system. L1 is also over-expressed in ovarian and endometrial carcinomas. Here L1 expression is associated with poor prognosis. In carcinoma cell lines, L1 over-expression augments cell motility, tumor growth in mice and induces expression of Erk-dependent genes. Here we show that treatment with antibodies to

L1 abrogates Erk-activation, blocks cell invasion to matrigel and decreases tumor growth in nude mice. In cells treated with L1 antibodies the induction of Erk-dependent genes such as HOX A9, β 3 integrin and IER 3 are reversed *in vitro* and *in vivo*. In this report, we demonstrate that the antibody L1-9.3 is the best therapeutic antibody of all tested L1 antibodies. In all cases L1-9.3 showed the best results concerning the invasive phenotype or therapeutic effect on tumor growth. We could show that L1-9.3 binds to the first Ig-like domain of L1 and can block the L1-L1 homophilic binding. The blocking of homophilic binding was only observed with L1-9.3. We conclude, that L1-9.3 is superior in therapy as it combines two functions: it blocks erk activation and interferes with the binding function of L1.

1.2 Results of Example 1

1.2.1 FACS analysis of the new L1 antibodies

[0139] Using immunization with a recombinant L1-Fc fusion protein, we generated novel L1 antibodies L1-9.3, L1-14.10, L1-35.9 and L1-38.12. To elucidate the specificity for L1 the new L1 mAbs were tested these antibodies on the endogenous L1 expressing ovarian carcinoma cell lines OVMz and SKOV3ip and the chinese hamster ovary cells CHO and stably transduced CHO-L1 cells by fluorescent staining (Fig. 1A) and Western blot analysis (Fig. 1B). All tested antibodies showed a positive staining of L1 in CHO-L1 cells (Fig. 1A). The staining pattern for the OVMz and the SKOV3ip cells was different for the antibodies. Interestingly, the L1-9.3 antibody showed bright staining of both ovarian carcinoma cell lines OVMz and SKOV3ip, whereas the L1-14.10 showed a very weak staining (Fig. 1A). The two L1 antibodies L1-35.9 and L1-38.12 could not bind to the endogenous L1 of these cells (Fig. 1A). As expected, no staining for L1 could be observed in CHO cells which we used as negative control. All new antibodies detected the fulllength L1 in CHO-L1, OVMz and SKOV3ip cell lysates by Western blot analysis. The L1-negative CHO cells served again as negative control.

1.2.2 The Erk phosphorylation is decreased after antibody treatment

[0140] A recent report has shown that expression of L1 in cooperation with serum-derived growth factors lead to sustained Erk-activation and the induction of Erk-dependent genes (Silletti et al, 2004). We investigated if the suppressive effect of L1-antibodies might be due to interference with L1-mediated gene regulation. Therefore we examined the mode of action of L1 antibodies using SKOV3ip cells. The mAbs L1-11A, L1-9.3 and L1-14.10 efficiently blocked Erk-phosphorylation (Fig. 2A) *in vitro*. There was no inhibition with isotype matched control mAb, DMSO as vehicle or the L1 antibody L1-38.12 (Fig. 2A) that can bind only the neural isoform of L1. Fluorescent analysis with the phospho-specific Erk antibody confirmed a clear reduction of activated Erk. A depletion from the nucleus in L1-mAb treated cells (L1-11A, L1-9.3 and L1-14.10) could also be observed (Fig. 2B).

1.2.3 Antibody treatment with L1-antibodies reduced cell invasion

[0141] It has been demonstrated before that treatment with an antibody to L1 (L1-11A) reduced the haptotactic cell migration on fibronectin and the matrigel invasion of different cell lines (Arlt et al, 2006). We compared the invasion capacity of SKOV3ip cells treated with the different L1 antibodies. The antibodies L1-11A, L1-14.10 and especially L1-9.3 reduced the invasion of the SKOV3ip (Fig. 3). In sharp contrast, cells treated with the antibodies L1-35.9 or L1-38.12 did not show a reduction of invasion (Fig. 3).

1.2.4 Antibodies to L1 affect gene expression *in vitro* and *in vivo*

[0142] We further examined whether antibodies to L1 affect the gene expression profile in SKOV3ip cells *in vitro* in a similar fashion as observed for siRNA-mediated depletion of L1 (Fig. 4A). Indeed, qRT-PCR analysis of cells treated with L1-9.3 or L1-11A versus control antibody showed significant changes in the expression of L1-regulated genes such as β 3 integrin, the transcription factors HOXA9 and the apoptosis-related genes IER 3 and STK 39 (Fig. 4A). The same set of genes was downregulated in SKOV3ip cells transduced with a L1-specific siRNA (Fig. 4B). We tested whether mAb L1-9.3 could also influence the gene expression profile of SKOV3ip cells *in vivo* similar to that observed *in vitro*. To this end, mRNA from residual tumors of L1-9.3 treated mice or IgG control treated mice were isolated and subjected to qRT-PCR analysis. L1-9.3 treatment led to significant regulation of L1-dependent genes as demonstrated for HOXA9, β 3 integrin and IER 3 (Fig. 4C).

1.2.5 Analysis of tumorigenicity in nude mice

[0143] Next, we investigated whether the intraperitoneal growth of SKOV3ip in mice could be inhibited by treatment with the mAbs L1-11A, L1-9.3 or L1-14.10. SKOV3ip-*lacZ* cells were injected into the peritoneal cavity of female nude

mice 2 days before the onset of therapy. Biweekly i.p. treatments were done using the 10 mg/kg antibody concentration. Control mice were treated with PBS or HEA125 (anti EpCAM) as a control antibody (biweekly 10 mg/kg i.p.). In all anti-L1 mAb treatment groups, a substantial decrease in the amount of tumor mass was visible compared with PBS or the control antibody HEA-125 (Fig. 5). Compared with the control, all anti-L1 mAbs led to a dose-dependent reduction of i.p. tumor burden [L1-11A (10 mg/kg), -40%; L1-14.10 (10 mg/kg), -30%; L1-9.3 (10 mg/kg), -60%; Fig. 5]. Tumor reduction in the group treated with the L1-9.3 (10 mg/kg) was statistically significant ($P_{L1-9.3(10 \text{ mg/kg})} = 0.004$) compared with the PBS control. Mice treated with the HEA125 control antibody revealed no detectable reduction of SKOV3ip-lacZ i.p. tumor burden compared with the PBS-treated group (Fig. 5), although EpCAM is present on the SKOV3ip cells and HEA125 can bind to the tumor cells. No side effects or severe toxicity of L1mAbs L1-11A, L1-9.3 or L1-14.10 treatment was observed during the whole course of treatment.

Thus, treatment with antibodies to L1 reduced the tumor growth SKOV3ip cells (Fig. 5) suggesting that antibodies to L1 can regulate gene expression but also affect *in vivo* tumor growth.

1.2.6 Biacore studie of the new L1 antibodies

[0144] This study was performed by Avidex (Oxford) as described in Example 6. Table 1 summarizes these results concerning the binding kinetics of the new L1 antibodies (ka, kd and KD).

1.2.7 Epitope-mapping of L1-9.3 binding site

[0145] An important factor for the characterization of novel L1 antibodies is to examine their binding sites in L1. Therefore, we constructed a variety of L1-Fc fusion proteins covering different parts of the molecule. PCR products were amplified coding different length of L1 ectodomain regions. These constructs were cloned into the pLG vector, and expressed as Fc-fusion proteins. After purification, products were used for Western blot analysis. For comparing the results, we analyzed other recombinant L1 protein fragments (obtained from Ricardo Gouveia, Oeiras, Portugal). L1-9.3 was found to bind to first Ig domain of L1 (Fig. 6). L1-14.10 binds in the third Ig domain whereas L1-11A binds between the FN3-5 site (Fig. 6).

1.2.8 mAB L1-9.3 blocks L1-L1 homophilic binding

[0146] We asked if the L1 antibodies could interfere with the homophilic binding function of L1. To address this question, we used a cell adhesion assay in which L1-transfected cells are allowed to bind to immobilized L1. After initial coating of glass slides with a recombinant L1-Fc fusion protein, fibronectin for positive control (to which cells bind in an integrin dependent manner) or BSA as a negative control, we incubated J558-L1 cells with L1-11A, L1-9.3 or L1-14.10 antibody. For control, we used an IgG-control, PBS or an antibody to CD24 (SWA11). The mAb L1-9.3 could completely block the L1-L1 homophilic binding, whereas all other tested antibodies could not interfere with the homophilic binding capacity. None of the antibodies interfered with the binding to fibronectin (data not shown).

1.3 Materials and Methods

1.3.1 Cell lines and cell culture

[0147] The human ovarian carcinoma cell lines SKOV3ip (kindly provided by Ellen Vitetta, University of Texas, Dallas, TX) and OVMz were grown in DMEM (Biochrom, Berlin, Germany) with 10% FCS under cell culture conditions (5% CO₂, 95% relative humidity, 37°C). For identification and quantification of tumor mass, the SKOV3ip cells were stably transduced with a lacZ-encoding retroviral vector (GeneSuppressor Retroviral System, Biocarta, Hamburg, Germany). The Chinese hamster ovary cell line CHO stably expressing human L1 (-hL1) were established by transfection with superfect (Stratagene, Heidelberg, Germany) and selection for L1 expression with mAb L1-11A and magnetic beads (Myltenyi Biotech, Bergisch Gladbach, Germany) or sorting with FACS Calibur. All cells were cultivated in DMEM supplemented with 10% FCS at 37°C, 5% CO₂ and 100% humidity. Human L1 encoding plasmids and J558-L1 cells were obtained from Dr. Vance Lemmon (University of Miami, Miami, FL, USA).

1.3.2 Antibodies

[0148] HEA-125, a mouse IgG1 directed against EpCAM, was described before and binds to all human adenocarcinomas (Moldenhauer et al., 1987). Monoclonal antibody L1-14.10 (Huszar et al., 2006), L1-9.3, L1-35.9 and L1-38.12 were obtained after immunization of mice with human L1-Fc protein comprising the ectodomain of L1 (Oleszewski et al., 1999). Goat anti-mouse IgG was affinity purified and absorbed to human serum proteins (Zymed Laboratories, Inc.,

San Francisco, CA).

1.3.3 Biochemical analysis

[0149] SDS-PAGE and transfer of separated proteins to Immobilon membranes using semi-dry blotting were described before (Gutwein et al., 2000). After blocking with 5% skim milk in TBS or 1% BSA in TBS/0.1% Tween-20, the blots were developed with the respective primary antibody followed by peroxidase conjugated secondary antibody and ECL detection.

1.3.4 FACS analysis

[0150] The surface staining of cells with saturating amounts of mAbs, either hybridoma supernatants or purified antibodies, and PE-conjugated goat antibodies to mouse Ig (Dianova, Hamburg, Germany) has been described elsewhere (Ebeling et al., 1996). Stained cells were analyzed with a FACScan (Becton Dickinson).

1.3.5 Immunofluorescence

[0151] For immunofluorescent staining, cells were grown on coverslips, treated for 10 min with perva-nadate and fixed for 20 min with 4% paraformaldehyde/PBS at room temperature. Cells were washed in PBS and permeabilized with 0.1% NP-40 in PBS containing 5% goat serum for 15 min at room temperature. Cells were then incubated for 1 hour with first antibody (phospho-specific Erk1/2). After 3 washing steps with PBS cells were incubated 30 min in the dark to a second Alexa488-conjugated goat anti-mouse IgG. After washing the cells twice with PBS, stained cells were mounted on glass slides and examined with an epifluorescence microscope (Axioplan-2; Zeiss, Oberkochem).

1.3.6 Invasion assay

[0152] Tumor cell invasion *in vitro* was determined in a double-filter assay as described previously in Erkell et al. (1988). Briefly, a Matrigel was layered between two filters, a lower 5 μ m pore nitrocellulose filter and an upper 8 μ m pore polycarbonate filter. Following incubation of 10^5 cells with the filter sandwich for 20 h in 1 ml medium, the sandwich was fixed and the filters separated and stained with DAPI. Cells present in the gel on the lower filter were counted, and cell invasion was expressed as the ration of the cell number on the lower filter to the total number of cells present on both filters.

1.3.7 Quantitative PCR

[0153] For qPCR the cDNA was purified on Microspin G-50 columns (GE Healthcare, München, Germany) and quantitated by NanoDrop spectrophotometer (ND-1000. Kisker-Biotechnology, Steinfurt, Germany). Primers for qPCR were designed with the DNA Star Program and were produced by MWG (Ebersberg, Germany). β -actin was used as an internal standard. The PCR reaction was performed with the SYBRgreen mastermix (Applied biosystems, Darmstadt, Germany).

1.3.8 Cell binding assay

[0154] Cell binding assays to L1-Fc or fibronectin are described in detail in Oleszewski et al (JCB 2000).

1.3.9 Tumor model and therapy

[0155] Pathogen-free, female athymic CD1 *nu/nu* mice (7-9 weeks old; 20 g on average; Charles River) were inoculated with 5×10^6 human *lacZ*-tagged ovarian carcinoma cells (SKOV3ip-*lacZ*) into the peritoneal cavity at day 0, leading to i.p. tumor formation within 5 weeks. Anti-L1 mAbs were diluted in sterile PBS to the concentration needed for treatment. Tumor-bearing mice were treated i.p. twice weekly with a 300 μ L solution of the respective dosage (10 mg/kg per application, respectively), vehicle (PBS), or Hea125 antibody control. Antibody treatments started from day 3 after tumor cell injection to give the tumor cells time to attach to the inner side of the abdominal wall and the surfaces of the i.p. organs. At autopsy (day 38), ascites was sampled from all mice and the volume was determined. All i.p. organs (including tumor mass), the abdominal wall, and the diaphragm were removed, stained with β -galactosidase substrate (X-gal; Roche-Diagnostics, Penzberg, Germany), photographed, and weighed. The indigo blue tumor mass between the organs, on the diaphragm and the inner site of the abdominal wall, was removed and weighed alone. The relative tumor burden in each mouse was calculated by dividing tumor mass weight by total *situs* weight.

2. Example 2

Humanization of the anti-L1 murine antibody L1_9.3

5 [0156] In order to humanize the murine anti-L1 antibody L1_9.3, the genes of human v-kappa 1 (hum κ 1), and variable heavy chain family III (hum λ III) were utilised as the acceptor sequences. The numbering system used herein for these genes is adopted from Wu and Kabat (Kabat, E. A, Wu, T. T., Perry, HM, Gottesman, KS and Foeller, C (1992) Sequences of proteins of immunological interest, Diane Books Publishing company). The murine L1_9.3 antibody light and heavy chain amino acid sequences were aligned against the amino acid sequences of the hum κ 1 light chain and the hum λ III heavy chain respectively. Two humanized L1_9.3 antibodies (L1_9.3Hu and L1_9.3Hu3) were generated by replacing the six CDRs of the human antibody with the corresponding CDRs from the murine L1_9.3 antibody.

Locations of the six Complementarity Determining Regions (CDRs)

15 [0157]

Loop	Kabat numbering scheme
LCDR1	L24--L34
LCDR2	L50--L56
LCDR3	L89--L97
HCDR1	H31--H35B
HCDR2	H50--H65
HCDR3	H93--H101

20 [0158] A number of framework residues of the murine L1_9.3 antibody were transferred to the humanized L1_9.3 antibodies:

25 Version 1 (L1_9.3Hu) humanized antibody - heavy chain residue numbers 6, 23, 27, 30, 43, 49, 71, 73, 76, 78 and 94, and light chain residue number 100 were transferred from the murine L1_9.3 antibody and light chain residue number 73 was replaced with the corresponding (Phe) found at this position in the human RE1 antibody light chain.

30 Version 2 (L1_9.3Hu3) humanized antibody - heavy chain residue numbers 6, 23, 27, 30, 71, 73, and 94, and light chain residue number 100 were transferred from the murine L1_9.3 antibody.

35 [0159] DNA sequences encoding single-chain variable fragment (scFv) analogues of the murine L1_9.3 antibody and the two humanised versions of this antibody (L1_9.3Hu, and L1_9.3Hu3) for expression in *E. coli*. were then generated. All of these scFvs contain the same linker (TSGPGDGGKGGPGKPGGEGTKGTGPGG). The scFv genes were synthesized by GeneArt AG, Germany.

40 [0160] The antibody light chain and heavy chain DNA sequences used to construct the humanized antibodies are provided in Figures 8a and 8b respectively.

[0161] Figures 9a - 9c provide the amino acid sequences of the murine L1_9.3 scFv and the humanized L1_9.3Hu and L1_9.3Hu3 scFvs respectively.

45 3. Example 3

Cloning of DNA encoding the L1_9.3, L1_9.3Hu and L1_9.3Hu3 scFvs into *E. coli* periplasmic expression vectors and transformation of *E. coli* with these vectors.

50 [0162] Periplasmic expressed of scFvs is beneficial for a number of reasons. Firstly, such scFvs leak into the bacterial supernatant and from there can conveniently be assayed for binding to their cognate antigen (The L1 cancer antigen in this case). Secondly, periplasmic expression allows for purification of soluble active scFvs.

55 [0163] The DNA sequences encoding the L1_9.3, L1_9.3Hu and L1_9.3Hu3 scFvs as synthesized by GeneArt AG, Germany were not supplied in an *E. coli* periplasmic expression vector. Therefore, these DNA sequences were cloned into an *E. coli* periplasmic expression vector using the following methods.

[0164] The DNA encoding the synthesized scFvs were PCR rescued with the following primer pairs using standard PCR conditions and reagents:

scFv	Primer pair
L1_9.3	Yol811 and Yol812
L1-9.3Hu	Yol813 and Yol814
L1_9.3Hu3	Yol813 and Yol814

5 [0165] The primer sequences are shown below.

10 Yol811 AGCCGGCCATGGCCGATATTCAAGATGACCCAGAC
 Yol812 TCTATGCAGCGGCGGCACCGCCGCTGCTCACGGTAACGCTG
 Yol813 AGCCGGCCATGGCCGATATTCAAGATGACCCAGAG
 Yol814 TCTATGCAGCGGCCGCACCGCCGCTGCTCACGGTAACCAGGGTG

15 [0166] The PCR products were run on a 1.6% agarose gel and bands of the correct size excised and purified. The PCR products were double digested with *Nco*1 and *Not*1 restriction enzymes under standard conditions followed by re-purification. The PCR products were ligated into an IPTG inducible periplasmic expression vector which contained:

20 - a *peL* leader sequence to direct the encoded polypeptides to the periplasm where this leader sequence is then cleaved off
 - *Nco*1/*Not*1 cloning sites
 - the human antibody kappa chain constant region

25 [0167] The ligated vectors were transformed into *E. coli* TG1 cells and plated on of 2xTY agar (Bacto Trypton 16g/L, yeast extract 10g/L, 15g/L bactoagar and NaCl 5g/L) supplemented with 100µg/ml ampicillin and 2% glucose. The DNA and amino acid sequences of the expressed portions of L1_9.3, L1-9.3Hu and L1_9.3Hu3 scFv constructs are shown in Figures 10a, 10b and 10c respectively.

4. Example 4

30 Expression of L1_9.3, and L1_9.3Hu3 single-chain antibodies in *E. coli*

35 [0168] The polypeptides expressed by these vectors include the human antibody c kappa constant region fused to the C termini of the scFvs. These c kappa constant chain containing constructs are referred to herein as single chain antibodies.

40 [0169] Eight *E. coli* clones for each single chain antibody construct, L1_9.3, L1_9.3Hu, and L1_9Hu3, (24 clones in total) were picked into separate wells of a 96 well plate containing 300µl of 2xTY (Bacto Trypton 16g/L, yeast extract 10g/L and NaCl 5g/L) supplemented with 100µg/ml ampicillin and 2% glucose. Each well has a 1 ml volume. The cultures were grown with shaking (200rpm) at 37°C until the cultures reached an OD₆₀₀ of approximately 0.5. The 96 well plates were then spun down at 3200 rpm for 10 min and the supernatant was aspirated and discarded. The bacterial pellets were resuspended in fresh 2XTY 400µl supplemented with 100µg/ml ampicillin and 1mM IPTG to induce expression of the single chain antibodies. The cultures were shaken at 200rpm overnight at 25°C.

45 [0170] The following day the 96 well plate was spun down at 3200 rpm for 10 min to pellet the cells. The supernatant containing the expressed L1 single chain antibodies was kept for ELISA analysis.

5. Example 5

ELISA assay of binding of the L1_9.3, L1-9.3Hu and L1_9.3Hu3 scFvs to human L1 cancer antigen

50 [0171] This ELISA assay was carried out in order to confirm that the humanisation process had not lead to a loss of antibody binding to the L1 cancer antigen and to identify which of the clones picked correctly expressed the single chain antibody constructs.

55 [0172] Three rows of a 96 well plate were coated with 100µl L1 antigen comprising the extracellular domain of the L1 protein fused to an Fc fragment (5µg/ml) in PBS for 1 hr at room temperature. A further three rows were coated with streptavidin (5µg/ml) in PBS as a control.

[0173] The wells were washed three times with 370µl of PBS and blocked with 3% milk powder in PBS for 1 hr at room temperature.

50µl of each overnight bacterial supernatant was mixed with 50µl of 6% milk powder in PBS for 1 hour.

[0174] The blocked ELISA plate was washed twice with PBS as described above and the blocked supernatants containing single chain antibody were added and incubated for 1 hr at room temperature.

5 [0175] The 96 well plate was washed four times with PBS 0.1% tween followed by the addition of 100 μ l of anti-human kappa light chains bound and free antibody HRP conjugate (Sigma A7164) 1:5000 dilution in PBS 1% BSA. The conjugate was incubated for 1 hr at room temperature followed by five washes with PBS 0.1% tween.

[0176] The ELISA was developed by the addition of TMB 2-Component Microwell Peroxidase Substrate Kit (Kirkegaard and Perry Laboratories Inc., USA) according to the manufacturer's protocol. An image of the ELISA plate is shown in Figure 4. At least four L1 binding clones have been observed for each of three single chain antibody versions. These L1 binding single chain antibody clones do not bind to streptavidin.

10 [0177] Figure 11 shows the binding of the L1_9.3, L1-9.3Hu and L1_9.3Hu3 scFvs to the human L1 cancer antigen. Rows A, B and C are coated with L1 and rows D, E and F are coated with streptavidin. The blue colour in the wells indicates binding of the individual scFv to the L1 on the plate. The lack of colour in the streptavidin coated rows shows that the single chain antibodies are specifically binding to L1.

15 **6. Example 6**

Determination of binding affinity

20 [0178] Mouse antibody L1-9.3 and humanised antibody L1-hu3 were assayed by Biacore analysis (Biacore AB, Uppsala, Sweden) to determine binding kinetics.

25 [0179] A BIACore CM5 sensor chip was activated with EDC/NHS and purified recombinant L1-Fc extracellular fragment (515 μ g/ml in PBS) was coupled to the CM5 sensor chip to between 200 and 3000RU. The remaining active sites were blocked by ethanolamine/HCl. Antibody binding was measured by adding antibody at concentrations from 6 to 3333nM at a flow rate of 10 μ l/min using the Kinject function. The chip was regenerated with 10mM Glycine pH2.0 with 500mM NaCl to remove the bound antibodies.

[0180] The binding curves were fit to a Langmuir binding model using BIAevaluation software (Biacore AB, Uppsala, Sweden). Determined KD values are shown in Table 2.

Table 2

Antibody	L1-9.3	L1-hu3
Ka [1/Ms]	2.6 x 10⁵	8.0x10⁵
Kd [1/s]	2.2 x10⁻⁵	6.5x10⁻⁵
KD [M]	8.5 x 10⁻¹¹	8.1x10⁻¹¹

35 [0181] Table 2: The humanized variant L1-hu3 displays a similar high target affinity as the parent antibody L1-9.3.

7. Example 7

40 **Antibody binding to PBMCs and cancer cells**

45 [0182] PBMC were obtained by density gradient centrifugation from EDTA whole blood of healthy human donors. Cultured OVMZ tumor cells were harvested by trypsinization. 1 x 10⁵ cells/well (75 μ l) were seeded into FACS tubes. Dilutions of L1-9.3 mAb were prepared in culture medium with 10mM EDTA and 75 μ l/well of L1-mAb dilution were added, to PBMCs and OVMZ cells to result in final concentrations between 6.6x10⁻¹³ to 6.6x10⁻⁸ Mol. Subsequently cells were incubated over night (~24h) at 37°C / 5% CO₂ in an incubator. Cells were washed directly in FACS tubes using 2ml of FACS buffer followed by centrifugation at 300g/5min/4°C. The supernatant was removed by pipetting. For staining, a PE-labelled donkey anti-mouse secondary antibody (Dako) was added at a volume of 150 μ l/well followed by incubation for 30min at 4°C. Washing steps were repeated as above and cells were fixed in 200 μ l PBS/1% formaldehyde. Sample mean fluorescence was then measured by FACS analysis.

50 [0183] As shown in Figure 13, L1-9.3 mAb displays a strongly reduced affinity to L1 on PBMC compared to tumor L1. L1-9.3 binding to PBMC was detected in the nanomolar range (dashed line), while binding to tumor cells could be observed at picomolar concentrations (solid line). B) The dissociation constants K_D were estimated from the regression curves using the concentration at half-maximal binding. K_D of L1-9.3 on PBMC was at least 400-fold lower than on tumor cells.

8. Example 8

Determination of cytokine release

5 [0184] PBMC were obtained by density gradient centrifugation from citrate whole blood of healthy human donors. Cells were resuspended in RPMI 1640/5% human serum/5ml NEAA /5ml L-Glutamin/5ml Natrium-Pyruvate. 1×10^5 cells per $100 \mu\text{l}$ were seeded in round bottom 96 well plates. In a second step, $100 \mu\text{l}$ medium containing LPS (10ng/ml) L1-9.3 mAb (20 $\mu\text{g}/\text{ml}$), OKT3 mAB (ebioscience) (75ng/ml) or Ionomycin/PMA (1 $\mu\text{g}/\text{ml}$ / 5ng/ml) were added in triplicates followed by an incubation for 24h at 37°C, 5%CO₂. As negative control, untreated PBMC were used. After 24h, levels of the cytokines interferone-gamma and tumor necrosis factor were measured by FACS analysis using the CBA-Cytokine-Flex-Sets (BD)according to manufacturers information..

10 [0185] The resulting cytokine levels are depicted in Figure 14. In contrast to OKT3 mAB, Ionomycin/PMA, and LPS, L1-9.3 did not significantly increase the TNF or IFN-gamma release by PBMCs.

15 9. Example 9

T-cell proliferation assay

20 [0186] PBMC were obtained by density gradient centrifugation from citrate whole blood of two healthy human donors. 1×10^5 cells per well were seeded in flat bottom 96 well plates. In a second step, $100 \mu\text{l}$ medium containing either L1-9.3 mAb (20 $\mu\text{g}/\text{ml}$) and OKT3 (ebioscience, 75ng/ml) or L1-9.3 mAb (20 $\mu\text{g}/\text{ml}$) or OKT3 (75ng/ml) was added in triplicates. After 1h, the latter two were supplemented with OKT3 or L1-9.3, respectively. To exclude any antibody related activation, PBMC with or without L1-9.3 were incubated in absence of OKT3. Following an incubation for 24h at 37°C, 5%CO₂ T cell proliferation was assessed using a BrdU incorporation assay (Roche) according to manufacturers information.

25 [0187] It can be concluded from the results shown in Figure 15, that L1-9.3 mAb does neither induce T-cell proliferation or inhibit OKT3 induced T-cell proliferation.

10. Example 10

30 Glycosylation dependency of antibody binding

[0188] 2 \times 10⁶ SKOV3ip cells were seeded in a 10 cm petri dish and incubated for 24h at 37°C, 5% CO₂. After 24h, cells were washed with PBS and lysed with 500 μl M-PER reagent (Pierce) according to the protocol described in the Seize Classic Mammalian Immunoprecipitation Kit (Pierce). SkOv3ip cell lysate were deglycosylated as described in the *Enzymatic CarboRelease Kit* (QA_Bio). Briefly, 2.5 μl denaturation solution was added to 35 μl of cell lysate. The sample was incubated in a thermoblock at 100°C for 5min and then chilled on ice. Finally 2.5 μl Triton-X and 1 μl of each glycosidase contained in the *Enzymatic CarboRelease Kit* (QA_Bio) (PGNase F, O-Glycosidase, Sialidase, β -Galactosidase, Glucoaminidase) were added according to manufacturers protocol followed by an incubation at 37°C for 3h. Glycosylated and deglycosylated were subjected to SDS PAGE and subsequent Western blotting. Western blots were incubated with different L1 antibodies in dependence of their staining performance. Concentrations of 1 $\mu\text{g}/\text{ml}$ (9.3, 11A and 14.10), 5 $\mu\text{g}/\text{ml}$ (35.9) or 10 $\mu\text{g}/\text{ml}$ (OV52.24, OV543.18, 38.12, OV549.20) were used. L1 antibody binding to western blot was detected with HRP-labeled anti-mouse antibody (Dianova).

[0189] As shown in Figure 16, the tested anti L1 antibodies can be divided into three classes in respect to their glycosylation-dependency: First class (unaffected by glycosylation): L1-9.3. Second class (binding in WB was negatively affected by deglycosylation): 11A, 14.10, OV52.24 and OV549.20. Third class (binding in WB was positively affected by deglycosylation): 35.9 and 38.12.

11. Example 11

50 Biodistribution of L1-9.3 in rabbit

[0190] A female rabbit (White Himalayan) was twice injected with L1-9.3 (0h, 24h) via the intravenous application route at a dose of 10 mg/kg. 1 control animal received a comparable volume of PBS. Animals were necropsied 72 h after the first application. Organs were fixed in 4% buffered formalin and embedded in paraffin. Histological slides were prepared and immunehistochemistry was performed. Tissue sections of the L1-9.3-treated and control animal were stained with an anti-mouse antibody to detect binding of L1-9.3 after intravenous application. Signals were visualized by DAB (Sigma). Two different detection systems, conventional Avidin/Biotin Complex method or tyramide signal amplification system CSA II method (Dako) were used, which allowed rough estimation of the amount of in vivo bound L1-9.3. The conventional

Avidin/Biotin Complex method (Vector Laboratories) is able to detect L1-9.3 concentrations of 50 ng/ml or higher, while the biotin-free tyramide signal amplification system CSA II (Dako) has a detection limit of 5ng/ml. To determine the L1 expression pattern, tissues of the control animal were incubated with primary antibody L1-9.3 and with the detection antibody. For ABC method a biotinylated anti-mouse antibody (Dianova, dilution 1:3000) was used as detection antibody, for CSA method was performed according to manufacturers protocol.

[0191] Figure 17 shows the *in vivo* binding of intravenously applied L1-9.3 to collecting ducts of the kidney. *In vivo* binding was only detectable using the amplification system CSA (Fig. 17A), while by using the conventional ABC-method, no signal was visible (Fig. 17B). Hence, L1-9.3 was detected in a range of 30-300 pmol in the tissue (L1-9.3 concentration is presumably higher than 5 ng/ml and below 50 ng/ml). Negative control did not show staining, thus, unspecific staining can be excluded (Fig. Figure 17C). The staining pattern of *in vivo* bound L1-9.3 (Fig. 17A) corresponds to the L1 expression pattern in the kidney when directly staining tissue sections with L1-9.3 (Fig. 17D). It can be concluded that intravenously administered L1-9.3 antibody is able to extravasate to peripheral tissue.

12. Example 12

Function of humanized forms of L1 9.3mAb in nude mice

[0192] We investigated whether the humanized form of the mAb L1 9.3 could also inhibit the tumor growth of ovarian carcinoma *in vivo*. First we analysed the binding of the two humanized forms of L1 9.3 to the selected cell line. Therefore, flow cytometry was performed on SKOV3ip pcDNA3.1 Luciferase cells. (Fig. 18). Both mAbs showed strong binding to the tumor cell line, and gave similar binding results as the native L1 9.3 mAb.

[0193] SKOV3ip pcDNA3.1Luciferase cells were injected into immunodeficient mice 24h before starting the therapy. Humanized antibodies (300 μ g) or PBS were injected three times per week intraperitoneally. To detect the tumor growth *in vivo*, mice were imaged once weekly using the Xenogen IVIS 200 System. Mice were anesthetised and injected with Luciferin D, followed by detecting the light emission which is produced during luciferase activity of the tumor cells. During the time course we detected a slower tumor growth in the group of mice treated with humanized mAb compared to the control. At day 33 the last imaging data were taken. Imaging results gave a decreased tumor volume of around 80% using the hu3 mAb and approximately of 50% for chiL1 9.3. Both results were strongly significant (Fig. 19). After 36 days mice were sacrificed and tumor mass has determined. In both humanized anti-L1 mAbs treated groups a substantial decreased tumor mass was measured compared to the PBS group (Fig 20 (A, B)).

13. Example 13

[0194] Abolishment of chemoresistance by treatment with anti L1CAM monoclonal antibody 9.3 was tested as described in WO 2008/046529, Example 3 (see also Fig. 17e of WO 2008/046529). The results are shown in Figures 21 and 22. It could be demonstrated that the monoclonal antibody 9.3 abolishes chemoresistance. Its effect seems to be stronger than those of the antibody 11A tested in WO 2008/046529.

40

45

50

55

Table 1

mAb	FACS	Western blot	IP	L1-Fc	Invasion	phospho-Erk	ka (1/Ms)	kd (1/s)	KD (M)	tumor growth
L1-9.3	+++	+++	+++	+++	-60%	-50%	2.6E+05	2.2E-05	8.5E-11	-60%
L1-11A	+++	+++	+++	+++	-50%	-40%	1.0E+05	4.0E-06	4.0E-11	-40%
L1-14.10	+	++	+	+++	-40%	-40%	1.4E+04	1.0E-06	7.1E-11	-30%
L1-38.12	+	+++	+	+++	0	0	3.7E+04	2.0E-06	5.4E-11	
L1-35.9	+	+++	+	+++	0	0	4.0E+04	1.2E-05	3.0E-10	
L1-N15.17	++	-	++	++	0	0	5.3E+04	1.0E-03	1.9E-08	
L1-1D12.22	-	-	+	++	0	-20%	2.3E+04	1.0E-04	4.3E-09	
L1-1D17.3	-	-	+	++	0	0	2.3E+04	1.0E-04	4.3E-09	
L1-1D64.8	-	+++	+	+++	0	0	8.5E+04	1.5E-04	1.8E-09	
L1-1D74.8	-	+++	+	+++	-10%	0	3.0E+04	2.0E-03	6.7E-08	

5
10
15
20
25
30
35
40
45
50
55

[0195] Disclosed the following:

1. An anti-L1 monoclonal antibody which is capable of binding to the same L1 epitope recognized by the monoclonal antibody 9.3, produced by the hybridoma cell deposited under DSMZ ACC2841.

5 2. The anti-L1 monoclonal antibody according to 1, wherein the epitope is within the first immunoglobulin-like domain of L1.

10 3. An anti-L1 monoclonal antibody, having the same capacity to inhibit tumor growth as the monoclonal antibody 9.3, produced by the hybridoma cell deposited under DSMZ ACC2841.

4. An anti-L1 monoclonal antibody, characterized in that at least one of its complementarity determining regions (CDRs)

15 a) has one of the following sequences RASQDISNYLN, YTSRLHS, QQGNTLPWT, RYWML, EINPRNDRT-NYNEKFKT, or GGGYAMDY or

b) has a sequence which, in comparison to the sequences mentioned under a) has at least one conservative amino acid exchange.

20 5. A monoclonal antibody, produced by the hybridoma cell deposited under DSMZ ACC2841.

6. A humanized antibody based on the monoclonal antibody of any of 1 to 5.

25 7. The humanized antibody of 6, having at least one non-human CDR and human framework region (FR) residues.

8. The humanized antibody according to any of 6 or 7, comprising the sequence of L1_9.3hu or L1_9.3hu3 as shown in Figure 8 a) and b).

30 9. A binding molecule comprising

a) at least one of the following sequences RASQDISNYLN, YTSRLHS, QQGNTLPWT, RYWML, EINPRNDRT-NYNEKFKT, or GGGYAMDY or

b) at least one sequence which has in comparison to the sequences given in a) at least one conservative amino acid exchange.

35 10. The binding molecule of 9, being selected from the group consisting of single chain antibodies (e.g. scFv, multimers of scFv like diabodies, triabodies or tetrabodies, antibody fragments (e.g. Fab), tandabs, flexibodies, bispecific antibodies, and chimeric antibodies.

40 11. The antibody of any of 1 to 8 or the binding molecule of any of 9 or 10, linked to an active substance, preferably a toxin, a cytokine, a nanoparticle or a radionucleotide.

45 12. A hybridoma cell that produces the monoclonal antibody of any of 1 to 5.

13. The hybridoma cell deposited under DSMZ ACC2841.

50 14. Use of the antibody or the binding molecule of any of 1 to 11 for the preparation of a medicament for the treatment of a tumorigenic disease.

15. Use of the antibody or the binding molecule of any of 1 to 11 for sensitizing tumor cells in a patient for the treatment with a chemotherapeutic drug or with radiotherapy.

55 16. The use of 15, wherein the cells are at least partially resistant to the treatment with said chemotherapeutic drug or to radiotherapy.

17. The use of any of 15 or 16, wherein after the sensitization with the anti-L1 antibody the patient is further treated with said chemotherapeutic drug or with radiotherapy.

18. Use of the antibody or the binding molecule of any of 1 to 11 for the preparation of a medicament for the treatment of a tumorigenic disease in a patient previously treated with a chemotherapeutic drug or with radiotherapy.

5 19. The use of 18, wherein the patient is at least partially resistant to the treatment with said chemotherapeutic drug or with radiotherapy.

20. Use of the antibody or the binding molecule of any of 1 to 11 for the preparation of a medicament for the treatment of a tumorigenic disease in a patient at least partially resistant to treatment with a given chemotherapeutic drug or with radiotherapy.

10 21. Use of the antibody or the binding molecule of any of 1 to 11 for the preparation of a medicament for the treatment of a tumorigenic disease, wherein the L1 binding molecule is administered in combination with a chemotherapeutic drug or with radiotherapy.

15 22. The use of 21, wherein the chemotherapeutic drug or the radiotherapy is administered prior to the anti-L1 antibody.

23. The use of any of 14 to 22, wherein the tumor cells or the tumorigenic disease are of a type selected from the group consisting of astrocytoma, oligodendrogloma, meningioma, neurofibroma, glioblastoma, ependymoma, Schwannoma, neurofibrosarcoma, medulloblastoma, melanoma, pancreatic cancer, prostate carcinoma, head and neck cancer, breast cancer, lung cancer, ovarian cancer, endometrial cancer, renal cancer, neuroblastomas, squamous carcinomas, medulloblastomas, hepatoma, colon cancer and mesothelioma and epidermoid carcinoma.

20 24. The use of any of 14 to 22, wherein the tumor cells are from an epithelial tumor or the tumorigenic disease is an epithelial tumor, preferably wherein the epithelial tumor is pancreatic cancer, colon cancer, ovarian cancer or endometrial cancer.

25 25. The use of any of 15 to 24, wherein the chemotherapeutic drug is a DNA damaging agent, preferably selected from the group consisting of actinomycin-D, mitomycin C, cisplatin, doxorubicin, etoposide, verapamil, podophyllotoxin, 5-FU, taxans, preferably paclitaxel and carboplatin.

30 26. The use of any of 15 to 24, wherein the radiotherapy is selected from the group consisting of X-ray radiation, UV-radiation, γ -irradiation, α - or β -irradiation, and microwaves.

35 27. The antibody or the binding molecule of any of 1 to 11 for use as a medicament.

28. The antibody or the binding molecule of any of 1 to 11 for use as a medicament for the treatment of a tumorigenic disease or for sensitizing of tumor cells in a patient for the treatment with a chemotherapeutic drug or with radiotherapy.

40 29. The antibody or the binding molecule of any of 1 to 11 for use as a medicament in the treatment of tumor cells, with the features as defined in any of 16 to 26.

30. A pharmaceutical composition, comprising the antibody or the binding molecule of any of 1 to 11.

SEQUENCE LISTING

45 [0196]

<110> Deutsches Krebsforschungszentrum Stiftung des Öffentlichen Rechts (DKFZ)

50 <120> Treatment of Tumors using Specific Anti-L1 Antibody

<130> D64791PCEPT1

<160> 23

55 <170> PatentIn version 3.4

<210> 1

<211> 108
 <212> PRT
 <213> Artificial

5 <220>
 <223> L1_9.3 antibody light chain amino acid sequence (Figure 8a)

<400> 1

10 Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Phe Leu Gly
 1 5 10 15

15 Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Ser Asn Tyr
 20 25 30

20 Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr Val Lys Leu Leu Ile
 35 40 45

25 Tyr Tyr Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

30 Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln
 65 70 75 80

35 Glu Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp
 85 90 95

40 Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg
 100 105

<210> 2
 <211> 109
 <212> PRT
 <213> Artificial

45 <220>
 <223> humkappa1 antibody light amino acid sequence (Figure 8a)

<400> 2

45 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
 1 5 10 15

50 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Val Asp Ile Ser
 20 25 30

Ser Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
 35 40 45

5 Leu Ile Tyr Ala Ala Ser Ser Leu Glu Ser Gly Val Pro Ser Arg Phe
 50 55 60

10 Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu
 65 70 75 80

Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Ser Leu
 85 90 95

15 Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
 100 105

<210> 3

<211> 108

20 <212> PRT

<213> Artificial

<220>

25 <223> RE1 antibody ligh chain amino acid sequence (Figure 8a)

<400> 3

30 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
 1 5 10 15

Asp Arg Val Thr Ile Thr Cys Gln Ala Ser Gln Asp Ile Ile Lys Tyr
 20 25 30

35 Leu Asn Trp Tyr Gln Gln Thr Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

40 Tyr Glu Ala Ser Asn Leu Gln Ala Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

45 Ser Gly Ser Gly Thr Asp Tyr Thr Phe Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

50 Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Tyr Gln Ser Leu Pro Tyr
 85 90 95

55 Thr Phe Gly Gln Gly Thr Lys Leu Gln Ile Thr Arg
 100 105

<210> 4

<211> 108

55 <212> PRT

<213> Artificial

<220>

<223> L1_9.3Hu antibody light chain amino acid sequence (Figure 8a)

<400> 4

5 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
 1 5 10 15

10 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Ser Asn Tyr
 20 25 30

15 Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

20 Tyr Tyr Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

25 Ser Gly Ser Gly Thr Asp Tyr Thr Phe Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

30 Glu Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp
 85 90 95

35 Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg
 100 105

<210> 5

<211> 108

<212> PRT

<213> Artificial

<220>

<223> L1_9.3Hu3 antibody light chain amino acid sequence (Figure 8a)

35 <400> 5

40

45

50

55

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
 1 5 10 15

5 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Ser Asn Tyr
 20 25 30

10 Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

15 Tyr Tyr Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

20 Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

25 Glu Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp
 85 90 95

30 Thr Phe Gly Gly Thr Lys Leu Glu Ile Lys Arg
 100 105

35 <210> 6
 <211> 117
 <212> PRT
 <213> Artificial

40 <220>
 <223> L1_9.3 antibody heavy chain amino acid sequence (Figure 8b)

45 <400> 6

50

55

Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Ser Gly Ala
 1 5 10 15

5 Ser Val Asn Leu Ser Cys Arg Ala Ser Gly Tyr Thr Phe Thr Arg Tyr
 20 25 30

10 Trp Met Leu Trp Val Arg Gln Arg Pro Gly His Gly Leu Glu Trp Val
 35 40 45

Gly Glu Ile Asn Pro Arg Asn Asp Arg Thr Asn Tyr Asn Glu Lys Phe
 50 55 60

15 Lys Thr Lys Ala Thr Leu Thr Val Asp Arg Ser Ser Ser Thr Ala Tyr
 65 70 75 80

20 Met Gln Leu Thr Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys
 85 90 95

Ala Leu Gly Gly Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Ser
 100 105 110

25 Val Thr Val Ser Ser
 115

30 <210> 7
 <211> 118
 <212> PRT
 <213> Artificial

35 <220>
 <223> HumIII antibody heavy chain amino acid sequence (Figure 8b)

40 <400> 7

Glu Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Lys Asp
 20 25 30

45 Tyr Ala Met Ser Ile Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu
 35 40 45

50 Trp Val Ala Val Ile Ser Asn Gly Ser Asp Thr Tyr Tyr Ala Asp Ser
 50 55 60

Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr Leu

65	70	75	80
Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95			
Cys Ala Arg Asp Ser Arg Phe Phe Asp Val Ile Trp Gly Gln Gly Thr 100 105 110			
10 Leu Val Thr Val Ser Ser 115			
15 <210> 8 <211> 117 <212> PRT <213> Artificial			
20 <220> <223> L1_9.3hu antibody heavy chain amino acid sequence (Figure 8b)			
25 <400> 8			
30 Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val Gln Ser Gly Gly 1 5 10 15			
Ser Leu Arg Leu Ser Cys Arg Ala Ser Gly Tyr Thr Phe Thr Arg Tyr 20 25 30			
35 Trp Met Leu Trp Val Arg Gln Arg Pro Gly His Gly Leu Glu Trp Val 35 40 45			
40 Gly Glu Ile Asn Pro Arg Asn Asp Arg Thr Asn Tyr Asn Glu Lys Phe 50 55 60			
Lys Thr Arg Phe Thr Ile Ser Val Asp Arg Ser Lys Ser Thr Ala Tyr 65 70 75 80			
45 Leu Gln Met Asp Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95			
Ala Leu Gly Gly Gly Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu 100 105 110			
Val Thr Val Ser Ser 115			
50 <210> 9 <211> 117 <212> PRT <213> Artificial			
55 <220> <223> L1_9.3hu3 antibody heavy chain amino acid sequence (Figure 8b)			

<400> 9

Glu Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val Gln Ser Gly Gly

5

1 5 10 15

Ser Leu Arg Leu Ser Cys Arg Ala Ser Gly Tyr Thr Phe Thr Arg Tyr
10 20 25 30Trp Met Leu Trp Val Arg Gln Arg Pro Gly Lys Gly Leu Glu Trp Val
15 35 40 45Ala Glu Ile Asn Pro Arg Asn Asp Arg Thr Asn Tyr Asn Glu Lys Phe
20 50 55 60Lys Thr Arg Phe Thr Ile Ser Val Asp Arg Ser Lys Asn Thr Leu Tyr
25 65 70 75 80Leu Gln Met Asp Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Phe Cys
30 85 90 95Ala Leu Gly Gly Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu
35 100 105 110Val Thr Val Ser Ser
30 115

<210> 10

<211> 253

<212> PRT

35 <213> Mus musculus

<400> 10

40

45

50

55

Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Phe Leu Gly
 1 5 10 15

5 Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Ser Asn Tyr
 20 25 30

10 Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr Val Lys Leu Leu Ile
 35 40 45

Tyr Tyr Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

15 Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln
 65 70 75 80

20 Glu Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp
 85 90 95

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Thr Ser Gly Pro
 100 105 110

25 Gly Asp Gly Gly Lys Gly Gly Pro Gly Lys Gly Pro Gly Gly Glu Gly
 115 120 125

30 Thr Lys Gly Thr Gly Pro Gly Gly Gln Val Gln Leu Gln Gln Pro Gly
 130 135 140

Ala Glu Leu Val Lys Ser Gly Ala Ser Val Asn Leu Ser Cys Arg Ala
 145 150 155 160

35 Ser Gly Tyr Thr Phe Thr Arg Tyr Trp Met Leu Trp Val Arg Gln Arg
 165 170 175

40 Pro Gly His Gly Leu Glu Trp Val Gly Glu Ile Asn Pro Arg Asn Asp
 180 185 190

Arg Thr Asn Tyr Asn Glu Lys Phe Lys Thr Lys Ala Thr Leu Thr Val
 195 200 205

45 Asp Arg Ser Ser Ser Thr Ala Tyr Met Gln Leu Thr Ser Leu Thr Ser
 210 215 220

50 Glu Asp Ser Ala Val Tyr Phe Cys Ala Leu Gly Gly Gly Tyr Ala Met
 225 230 235 240

Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser
 245 250

55 <210> 11
 <211> 253
 <212> PRT
 <213> Artificial

<220>

<223> amino acid sequence of humanized L1_9.3Hu scFv (Figure 9b)

<400> 11

5

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
1 5 10 15

10

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Ser Asn Tyr
20 25 30

15

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45

Tyr Tyr Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60

20

Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80

25

Glu Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp
85 90 95

30

35

40

45

50

55

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Thr Ser Gly Pro
 100 105 110
 5 Gly Asp Gly Gly Lys Gly Gly Pro Gly Lys Gly Pro Gly Gly Glu Gly
 115 120 125
 10 Thr Lys Gly Thr Gly Pro Gly Gly Glu Val Gln Leu Val Gln Ser Gly
 130 135 140
 145 Gly Gly Leu Val Gln Ser Gly Gly Ser Leu Arg Leu Ser Cys Arg Ala
 150 155 160
 15 Ser Gly Tyr Thr Phe Thr Arg Tyr Trp Met Leu Trp Val Arg Gln Arg
 165 170 175
 20 Pro Gly His Gly Leu Glu Trp Val Gly Glu Ile Asn Pro Arg Asn Asp
 180 185 190
 Arg Thr Asn Tyr Asn Glu Lys Phe Lys Thr Arg Phe Thr Ile Ser Val
 195 200 205
 25 Asp Arg Ser Lys Ser Thr Ala Tyr Leu Gln Met Asp Ser Leu Arg Ala
 210 215 220
 30 Glu Asp Thr Ala Val Tyr Phe Cys Ala Leu Gly Gly Gly Tyr Ala Met
 225 230 235 240
 Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
 245 250
 35 <210> 12
 <211> 253
 <212> PRT
 <213> Artificial
 40 <220>
 <223> amino acid sequence of humanized L1_9.3Hu3 scFv (Figure 9c)
 <400> 12
 45
 50

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
 1 5 10 15

5 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Ile Ser Asn Tyr
 20 25 30

10 Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

Tyr Tyr Thr Ser Arg Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

15 Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

20 Glu Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp
 85 90 95

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Thr Ser Gly Pro
 100 105 110

25 Gly Asp Gly Gly Lys Gly Pro Gly Lys Gly Pro Gly Gly Glu Gly
 115 120 125

30 Thr Lys Gly Thr Gly Pro Gly Gly Glu Val Gln Leu Val Gln Ser Gly
 130 135 140

Gly Gly Leu Val Gln Ser Gly Gly Ser Leu Arg Leu Ser Cys Arg Ala
 145 150 155 160

35 Ser Gly Tyr Thr Phe Thr Arg Tyr Trp Met Leu Trp Val Arg Gln Arg
 165 170 175

40 Pro Gly Lys Gly Leu Glu Trp Val Ala Glu Ile Asn Pro Arg Asn Asp
 180 185 190

Arg Thr Asn Tyr Asn Glu Lys Phe Lys Thr Arg Phe Thr Ile Ser Val
 195 200 205

45 Asp Arg Ser Lys Asn Thr Leu Tyr Leu Gln Met Asp Ser Leu Arg Ala
 210 215 220

50 Glu Asp Thr Ala Val Tyr Phe Cys Ala Leu Gly Gly Gly Tyr Ala Met
 225 230 235 240

Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
 245 250

55 <210> 13
 <211> 389
 <212> PRT
 <213> Mus musculus

EP 2 631 248 B9

<400> 13

5 Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala
1 5 10 15

10 Ala Gln Pro Ala Met Ala Asp Ile Gln Met Thr Gln Thr Thr Ser Ser
20 25 30

15 Leu Ser Ala Phe Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser
35 40 45

20 Gln Asp Ile Ser Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly
50 55 60

25

30

35

40

45

50

55

65 Thr Val Lys Leu Leu Ile Tyr Tyr Thr Ser Arg Leu His Ser Gly Val
 70 75 80

5 Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr
 85 90 95

10 Ile Ser Asn Leu Glu Gln Glu Asp Phe Ala Thr Tyr Phe Cys Gln Gln
 100 105 110

15 Gly Asn Thr Leu Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile
 115 120 125

20 Lys Arg Thr Ser Gly Pro Gly Asp Gly Lys Gly Gly Pro Gly Lys
 130 135 140

25 Gly Pro Gly Gly Glu Gly Thr Lys Gly Thr Gly Pro Gly Gly Gln Val
 145 150 155 160

30 Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys Ser Gly Ala Ser Val
 165 170 175

35 Asn Leu Ser Cys Arg Ala Ser Gly Tyr Thr Phe Thr Arg Tyr Trp Met
 180 185 190

40 Leu Trp Val Arg Gln Arg Pro Gly His Gly Leu Glu Trp Val Gly Glu
 195 200 205

45 Ile Asn Pro Arg Asn Asp Arg Thr Asn Tyr Asn Glu Lys Phe Lys Thr
 210 215 220

50 Lys Ala Thr Leu Thr Val Asp Arg Ser Ser Ser Thr Ala Tyr Met Gln
 225 230 235 240

55 Leu Thr Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Phe Cys Ala Leu
 245 250 255

60 Gly Gly Gly Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr
 260 265 270

65 Val Ser Ser Gly Gly Ala Ala Ala Ala Pro Ser Val Phe Ile Phe Pro
 275 280 285

70 Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu
 290 295 300

75 Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp
 305 310 315 320

80 Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp
 325 330 335

Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys
 340 345 350
 5 Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln
 355 360 365
 10 Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Ser His
 370 375 380
 His His His His His
 385

15 <210> 14
 <211> 1178
 <212> DNA
 <213> Mus musculus

20 <400> 14

	acatatgaaa tacctattgc ctacggcagc cgctggattg ttattactcg cggccagcc	60
25	ggccatggcc gatattcaga tgacccagac cacgagcagc ctgagcgcgt ttctggcga	120
	tcgtgtgacc attagctgcc gtgcgagcca ggatattagc aactatctga actggtatca	180
	gcagaaaaccg gatggcaccg tgaaactgct gatttattat accagccgtc tgcatagcgg	240
30	tgtgccgagc cgttttagcg gcagcggtag cggcaccgat tatacgctga ccatttctaa	300
	cctggaacag gaagatttg cgacctattt ttgccagcag ggcaacacgc tgccgtggac	360
	cttggcggt ggcaccaaac tggaaattaa acgtactagt ggtccggcg atggcgtaa	420
35	aggcggtccg gcaaaggcgc aggcaccaa ggcactggc ccgggggtca	480
	gttcagctg cagcagccgg gtgcggaact ggtaaaaagc ggcgcgagcg tgaacctgag	540
	ctgtcgatcg agcggctata ccttaccgg ttattggatg ctgtgggtgc gtcagcgtcc	600
40	gggccacggc ctggaatggg tggcgaaat taatccgcgt aacgatcgta ccaactataa	660
	cgaaaaattc aaaaccaaag cgaccctgac cgtggatcg agcagcagca ccgcgtata	720
	gcagctgacg agcctgacct ctgaagatag cgcggtgtat ttctgcgcgc tggcggtgg	780
45	ctatgcgtatcg gattattggg gccaggcac cagcggtacc gtgagcagcg gcgggtcg	840
	cgctgcacca tctgtcttca tcttccgcgc atctgatgag cagttaaat ctggaactgc	900
	ctctgttgc tgcctgctga ataacttcta tcccagagag gccaaagtac agtggaaagg	960
50	ggataacgcc ctccaatcggt gtaactccca ggagagtgtc acagagcagg acagcaagga	1020
	cagcacctac agcctcagca gcaccctgac gctgagcaaa gcagactacg agaaacacaa	1080
	agtctacgcc tgcgaagtca cccatcaggg cctgagttcg cccgtcacaa agagcttcaa	1140
55	ccgcggagag tcacaccacc accaccacca ctagtaat	1178

<210> 15
 <211> 1178

<212> DNA

<213> Mus musculus

<400> 15

5	tgtatacttt atggataacg gatgccgtcg gcgacctaac aataatgagc gccgggtcgg	60
	ccggtaccgg ctataagtct actgggtctg gtgctcggt gactcgca aagaccgct	120
10	agcacactgg taatcgacgg cacgctcggt cctataatcg ttgatagact tgaccatagt	180
	cgtcttggc ctaccgtggc actttgacga ctaaataata tggtcggcag acgtatcgcc	240
	acacggctcg gcaaaatcgc cgtcgccatc gccgtggcta atatcgact ggtaaagatt	300
15	ggaccttgtc cttctaaaac gctggataaa aacggtcgtc ccgttgtcg acggcacctg	360
	gaaaccgcca ccgtggttt acctttaatt tgcgtatca ccaggcccgc taccgccatt	420
	tccgcccaggc ccgtttccag gcccaccgct tccgtggttt ccgtgacccg ggccccag	480
20	ccaagtcgac gtcgtcgcc cacgccttga ccactttcg ccgcgcgtcgc acttgactc	540
	gacagcacgc tcgcccataat ggaaatggc aataacctac gacacccacg cagtcgcagg	600
	cccggtgccc gaccttaccc acccgctta attaggcgca ttgctagcat ggttgatatt	660
25	gcttttaag ttttggttt gctggactg gcacctagca tcgtcgatgt ggcgcataata	720
	cgtcgactgc tcggactgga gacttctatc gcgcacata aagacgcgcg acccgccacc	780
	gatacgctac ctaataaccc cggtcccgtg gtcgcaatgg cactcgatgc cgccacgccc	840
30	gcgacgtggt agacagaagt agaaggcg tagactactc gtcaacttta gaccttgacg	900
	gagacaacac acggacgact tattgaagat agggtctctc cggtttcatg tcaccttcca	960
	cctattgcgg gaggttagcc cattgagggt cctctcacag tgtctcgatcc tgcgttcct	1020
35	gtcggtggatg tcggagtcgt cgtggactg cgactcgatgc tctttgtgtt	1080
	tcagatgcgg acgcttcagt gggtagtccc ggactcaagc gggcagtgtt tctcgaagtt	1140
	ggcgcccttc agtgtggtgg tgggtgggt gatcatta	1178

40 <210> 16

<211> 406

<212> PRT

<213> Artificial

45 <220>

<223> amino acid sequence of expressed portion of L1_9.3Hu scFv construct
(Figure 10b)

50 <400> 16

EP 2 631 248 B9

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala
1 5 10 15

5 Ala Gln Pro Ala Met Ala Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
20 25 30

10 Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser
35 40 45

Gln Asp Ile Ser Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys
50 55 60

15

20

25

30

35

40

45

50

55

Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Ser Arg Leu His Ser Gly Val
 65 70 75 80

5 Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Phe Thr
 85 90 95

10 Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Phe Cys Gln Gln
 100 105 110

Gly Asn Thr Leu Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile
 115 120 125

15 Lys Arg Thr Ser Gly Pro Gly Asp Gly Gly Lys Gly Pro Gly Lys
 130 135 140

20 Gly Pro Gly Gly Glu Gly Thr Lys Gly Thr Gly Pro Gly Gly Glu Val
 145 150 155 160

Gln Leu Val Gln Ser Gly Gly Leu Val Gln Ser Gly Gly Ser Leu
 165 170 175

25 Arg Leu Ser Cys Arg Ala Ser Gly Tyr Thr Phe Thr Arg Tyr Trp Met
 180 185 190

30 Leu Trp Val Arg Gln Arg Pro Gly His Gly Leu Glu Trp Val Gly Glu
 195 200 205

Ile Asn Pro Arg Asn Asp Arg Thr Asn Tyr Asn Glu Lys Phe Lys Thr
 210 215 220

35 Arg Phe Thr Ile Ser Val Asp Arg Ser Lys Ser Thr Ala Tyr Leu Gln
 225 230 235 240

40 Met Asp Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Phe Cys Ala Leu
 245 250 255

Gly Gly Gly Tyr Ala Met Asp Tyr Trp Gly Ala Val Tyr Phe Cys Ala
 260 265 270

45 Leu Gly Gly Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu Val
 275 280 285

50 Thr Val Ser Ser Gly Gly Ala Ala Ala Ala Pro Ser Val Phe Ile Phe
 290 295 300

Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys
 305 310 315 320

55 Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val
 325 330 335

Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln
340 345 350

5 Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser
355 360 365

Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His
10 370 375 380

Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Ser
385 390 395 400

15 His His His His His His
405

<210> 17

<211> 1179

20 <212> DNA

<213> Artificial

<220>

<223> DNA sequence of the expressed portion of L1_9.3Hu construct (Figure 10b)

25 <400> 17

30

35

40

45

50

55

5	acatatgaaa tacctattgc ctacggcagc cgctggattg ttattactcg cggcccagcc	60
	ggccatggcc gatattcaga tgacccagag cccgagcagc ctgagcgcga gcgtgggtga	120
	tcgtgtgacc attacctgcc gtgcgagcca ggatattagc aactatctga actggtatca	180
	gcagaaaccg ggc当地agcgc cgaaactgct gatttattat accagccgtc tgc当地agcgg	240
10	tgtgccgagc cgttttagcg gcagcggtag cggcaccgat tatacctta ccattagcag	300
	cctgcagccg gaagatttg cgacctattt ttgccagcag ggcaacacgc tgccgtggac	360
	cttggcggt ggc当地aaac tggaaattaa acgtactagt ggtccggcgc atggcggtaa	420
	aggcggtccg ggc当地aggc cgggtggcga aggacccaaa ggc当地ctggc ccgggggtga	480
15	attcagctg gtgcagagcg gcgggtgtct ggttcagagc ggtggcagcc tgc当地ctgag	540
	ctgtcgtcg agcggctata ccttcacccg ttattggatg ctgtgggtgc gtc当地cgtcc	600
	gggccacggc ctggaatggg tggcgaaat taatccgcgt aacgatcgta ccaactataa	660
20	cgaaaaattt aaaacccgct tcaccattag cgtggatcgt agcaaaagca cc当地gtatct	720
	gcagatggat agcctgcgtg cggaaagatac cgc当地gtat tttgc当地cgc tggcggtgg	780
	ctatgc当地t gattattggg gccaggac cctggttacc gtgagcagcg gc当地gtcggc	840
25	cgctgc当地ca tctgtcttca tcttccc当地cc atctgatgag cagttgaaat ctggaactgc	900
	ctctgttgc当地tga ataacttcta tccc当地agagag gcca当地aggtac agtgg当地aggt	960
	ggataacgccc ctccaaatcgg gtaactccc当地 ggagagtgctc acagagcagg acagcaagga	1020
30	cagcacctac agcctcagca gcaccctgac gctgagccaaa gc当地actacg agaaacaccaa	1080
	agtctacgccc tgc当地agtc当地 cccatcaggc cctgagttcg cccgtcacaa agagcttcaa	1140
35	ccgc当地ggagag tcacaccacc accaccacca ctagtaatt	1179

<210> 18

<211> 1179

<212> DNA

<213> Artificial

<220>

<223> DNA sequence of the expressed portion of L1_9.3Hu construct (Figure 10b)

45 <400> 18

50

55

5	tgtatacttt atggataacg gatgccgtcg gcgacctaac aataatgagc gccgggtcgg ccggtaaccgg ctataagtct actgggtctc gggctcgctg gactcgctc cgacccact	60 120
10	agcacactgg taatggacgg cacgctcggt cctataatcg ttgatagact tgaccatagt cgtcttggc cggttcgcg gcttgacga ctaaataata tggtcggcag acgtatcgcc acacggctcg gcaaaatcgc cgtcgcacatc gccgtggcta atatggaaat ggtaatcg	180 240 300
15	ggacgtcggc cttctaaaac gctggataaa aacggtcgtc ccgttgctg acggcacctg gaaaccgcca ccgtggttt accttaatt tgcatgatca ccaggcccgc taccgccatt tccgccaggc cggttcag gccaccgct tccgtggttt ccgtgacccg ggccccact	360 420 480
20	tcaagtcgac cacgtctcgc cgccaccaga ccaagtctcg ccaccgtcg acgcagactc gacagcacgc tcgcccata ggaagtgggc aataacctac gacacccacg cagtcgcagg cccggtgccc gaccttaccc acccgctta attaggcgca ttgcttagcat gggtgatatt	540 600 660
25	gcttttaaa ttttggcga agtggtaatc gcacctagca tcgtttcgt ggcgcataga cgtctaccta tcggacgcac gccttctatg gcccacata aaaacgcgcg acccgccacc gatacgctac ctaataaccc cggtccgtg ggaccaatgg cactcgtcgc cgccacgccc	720 780 840
30	gcgacgtggt agacagaagt agaaggcgg tagactactc gtcaacttta gaccttgacg gagacaacac acggacgact tattgaagat agggtctctc cggtttcatg tcaccccca cctattgcgg gaggttagcc cattgagggt cctctcacag tgtctcgcc tgtcgttcct	900 960 1020
35	gtcgtggatg tcggagtcgt cgtggactg cgactcggtt cgtctgatgc tctttgtgtt tcagatgcgg acgcttcagt ggtagtccc ggactcaagc gggcagtgtt tctcgaagtt ggcgcctctc agtgtgggg tgggggtgtt gatcattaa	1080 1140 1179

35
 <210> 19
 <211> 389
 <212> PRT
 <213> Artificial

40
 <220>
 <223> amino acid sequence of expressed portion of L1_9.3Hu3 scFv construct
 (Figure 10c)

45 <400> 19

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala
 1 5 10 15

50

55

Ala Gln Pro Ala Met Ala Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
 20 25 30

5 Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser
 35 40 45

10 Gln Asp Ile Ser Asn Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys
 50 55 60

Ala Pro Lys Leu Leu Ile Tyr Tyr Thr Ser Arg Leu His Ser Gly Val
 65 70 75 80

15 Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr
 85 90 95

20 Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Phe Cys Gln Gln
 100 105 110

Gly Asn Thr Leu Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile
 115 120 125

25 Lys Arg Thr Ser Gly Pro Gly Asp Gly Lys Gly Gly Pro Gly Lys
 130 135 140

30 Gly Pro Gly Gly Glu Gly Thr Lys Gly Thr Gly Pro Gly Gly Glu Val
 145 150 155 160

Gln Leu Val Gln Ser Gly Gly Leu Val Gln Ser Gly Gly Ser Leu
 165 170 175

35 Arg Leu Ser Cys Arg Ala Ser Gly Tyr Thr Phe Thr Arg Tyr Trp Met
 180 185 190

40 Leu Trp Val Arg Gln Arg Pro Gly Lys Gly Leu Glu Trp Val Ala Glu
 195 200 205

Ile Asn Pro Arg Asn Asp Arg Thr Asn Tyr Asn Glu Lys Phe Lys Thr
 210 215 220

45 Arg Phe Thr Ile Ser Val Asp Arg Ser Lys Asn Thr Leu Tyr Leu Gln
 225 230 235 240

50 Met Asp Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Phe Cys Ala Leu
 245 250 255

Gly Gly Gly Tyr Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr
 260 265 270

55 Val Ser Ser Gly Gly Ala Ala Ala Ala Pro Ser Val Phe Ile Phe Pro
 275 280 285

Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu
 290 295 300

5 Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp
 305 310 315 320

10 Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp
 325 330 335

Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys
 340 345 350

15 Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln
 355 360 365

20 Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Ser His
 370 375 380

His His His His His
 385

25 <210> 20
 <211> 1179
 <212> DNA
 <213> Artificial

30 <220>
 <223> DNA sequence of the expressed portion of L1_9.3Hu3 scFv construct (Figure
 10c)

35 <400> 20

40

45

50

55

5	acatatgaaa tacctattgc ctacggcagc cgctggattt ttattactcg cggcccagcc ggccatggcc gatattcaga tgacccagag cccgagcagc ctgagcgcga gcgtgggtga	60 120
10	tcgtgtgacc attacctgcc gtgcgagcca ggatattagc aactatctga actggtatca gcagaaaccg ggcaaagcgc cgaaactgct gatttattat accagccgtc tgcatagcgg tgtgccgagc cgtttagcg gcagcggtag cgccaccat tataccctga ccattagcag cctgcagccg gaagattttg cgacctattt ttgccagcag ggcaacacgc tgccgtggac	180 240 300 360
15	ctttggcggt ggcaccaaac tggaaattaa acgtactagt ggtccggcg atggcgtaa aggcggtccg ggcaaaggc cggtggcga aggacccaaa ggcactggc ccgggggtga agttcagctg gtgcagagcg cggtggtct gttcagagc ggtggcagcc tgcgtctgag ctgtcgtgcg agcggctata ccttacccg ttattggatg ctgtgggtgc gtcagcgtcc	420 480 540 600
20	ggtaaaggc ctggaatggg tggcggaaat taatccgcgt aacgatcgta ccaactataa cgaaaaattt aaaacccgct tcaccattag cgtggatcgt agaaaaaca ccctgtatct gcagatggat agcctgcgtg cgaaagatac cgccgtgtat tttgcgcgc tggcggtgg ctatgcgtatg gattattggg gccaggcac cctggttacc gtgagcagcg gcggcgcggc	660 720 780 840
25	cgctgcacca tctgtcttca tcttcccgcc atctgatgag cagttgaaat ctggaactgc ctctgttgtg tgcctgctga ataacttcta tcccagagag gccaaggatc agtggaaagg ggataacgcc ctccaatcggttaactccca ggagagtgtc acagagcagg acagcaagga cagcacctac agcctcagca gcaccctgac gctgagcaaa gcagactacg agaaacacaa agtctacgcc tgcgaagtca cccatcaggg cctgagttcg cccgtcacaa agagcttcaa	900 960 1020 1080 1140
30	ccgcggagag tcacaccacc accaccacca ctagtaatt	1179

<210> 21

<211> 1179

<212> DNA

<213> Artificial

<220>

<223> DNA sequence of the expressed portion of L1_9.3Hu3 scFv construct (Figure
10c)

<400> 21

5	tgtatacttt atggataaacg gatgccgtcg gcgacctaac aataatgagc gccgggtcgg	60
	ccgggtaccgg ctataagtct actgggtctc gggctcgctg gactcgctc cgccacccact	120
10	agcacactgg taatggacgg cacgctcggt cctataatcg ttgatagact tgaccatagt	180
	cgtcttggc ccgtttcgcg gctttgacga ctaaataata tggtcggcag acgtatcgcc	240
15	acacggctcg gcaaaatcgc cgtcgccatc gccgtggcta atatggact ggtaatcgtc	300
	ggacgtcggc cttctaaaac gctggataaa aacggtcgtc ccgttgcgc acggcacctg	360
20	gaaaccgcca ccgtggtttgc accttaatt tgcatgatca ccaggcccgc taccgccatt	420
	tccgccaggc ccgtttccag gcccaccgct tccgtggttt ccgtgacccg ggccccact	480
25	tcaagtcgac cacgtctcgc cgccaccaga ccaagtctcg ccaccgtcgg acgcagactc	540
	gacagcacgc tcgcccataat ggaaatggc aataacctac gacacccacg cagtcgcagg	600
30	cccatttccg gaccttaccc accgcctta attaggcgca ttgcttagcat gggtgatatt	660
	gctttttaaa ttttggcga agtggtaatc gcacctagca tcgttttgc gggacataga	720
35	cgtctaccta tcggacgcac gccttctatg gcccacata aaaacgcgcg acccgccacc	780
	gatacgctac ctaataaccc cggtcccgtg ggaccaatgg cactcgctc cgccacgccc	840
40	gcgacgtggt agacagaagt agaaggcgg tagactactc gtcaacttta gaccttgacg	900
	gagacaacac acggacgact tattgaagat agggtctctc cggtttcatg tcaccttcca	960
45	cctattgcgg gaggttagcc cattgagggt cctctcacag tgtctcgcc tgtcgttcct	1020
	gtcgtggatg tcggagtcgt cgtggactg cgactcggtt cgtctgatgc tctttgtgtt	1080
	tcagatgcgg acgcttcagt ggtagtccc ggactcaagc gggcagtgtt tctcgaagtt	1140
	ggcgccctctc agtgtggtgg tgggtgggtt gatcattaa	1179

<210> 22

<211> 713

<212> DNA

<213> Artificial

<220>

<223> genomic sequence of the kappa chain variable region (Figure 12a)

<400> 22

50

55

gaagagttag ccttcagct gtgctcagcc ctaaatagtt cccaaaaatt tgcatgctct	60
cacttcctat ctttgggtac ttttcatat accagtcaga ttgtgagcca ttgttaattga	120
5 agtcaagact cagcctggac atgatgtcct ctgctcagtt ccttggtctc ctgttgctct	180
gtcttcaagg taaaagttac tacaatggga attttgcgt tgacacgtga ttcttggta	240
ctggaatttt ggaggggtcc tttctttcc tgcttaactc tgtgggtatt tattgtgtct	300
10 ccactcctag gtaccagatg tgatatccag atgacacaga ctacatcctc cctgtctgcc	360
tttctggag acagagtcac catcagttgc agggcaagtc aggacattag caattattta	420
aactggtatac agcagaaacc agatggaact gttaaactcc ttatctatta cacatcaaga	480
15 ttacactcag gagtcccctc aaggttcagt ggcagtggt ctggAACAGA ttattctctc	540
accattagca acctggagca agaagatttt gccacttact tttgccaaca gggtaatacg	600
cttccgtgga cattcggtgg aggcaccaag ctggaaatca aacgtaaata gaatccaaag	660
20 tctcttctt ccgttgtcta tgtctgtggc ttctatgtct acaaatgtat tat	713

<210> 23

<211> 839

<212> DNA

<213> Artificial

<220>

<223> genomic sequence of the heavy chain variable region (Figure 12b)

30 <400> 23

ttcagcatcc tgattcctga cccaggtgtc cttcttctc cagcaggagt aggtgctcat	60
ctaataatgta tcctgctcat gaatatgcaa atcctctgaa tctacatgggt aaatgttaggt	120
35 ttgtctatat cacacacaga aaaacatgag atcacagttc tctctacagt tactgaacac	180
acaggacctc accatggat ggagctatac catcctctt ttggtagcaa cagctacagg	240
taaggggctc acagtagaaag gcttgagggtc tggccatata catgggtgac agtgacatcc	300
40 actttgcctt tctttccaca gatgtccact cccaggtcca actgcagcag cctggggctg	360
aactggtgaa gtctggggct tcagtgaacc tgtcctgcag ggcttctggc tacaccttca	420
45 ccagataactg gatgctctgg gtgaggcaga ggcctggaca tggccttgag tgggttggag	480
agattaatcc tcgcaacgt cgtactaatt acaatgagaa attcaagacc aaggccacac	540
tgactgtaga ccgatcctcc agcacagcct acatgcaact caccagcctg acatctgagg	600
50 actctgcggc tattttctgt gccctgggg ggggctatgc tatggactat tggggtaag	660
gaacctcagt caccgtctcc tcaggtaaga atggcctctc caggtcttaa ttttaacct	720
ttgttatgga gttttctgag cattgcagac taatcttgaa tatttgccc tgagggagcc	780
55 ggctgagaga agttggaaaa taaactgtct agggatctca gagcctttag gacagatta	839

Claims

1. A binding molecule capable of binding L1,

5 (a) being selected from the group consisting of single chain antibodies, scFv, multimers of scFv like diabodies, triabodies or tetrabodies, antibody fragments, Fab, tandabs, flexibodies, bispecific antibodies, and chimeric antibodies,

and/or

10 (b) which comprises at least one Ig domain,

and wherein the binding molecule capable of binding L1:

15 (i) is **characterized in that** its complementarity determining regions (CDRs) have the following sequences: LCDR1: RASQDISNYLN (SEQ ID No.: 24), LCDR2: YTSRLHS (SEQ ID No.: 25), LCDR3: QQGNTLPWT (SEQ ID No.: 26),

20 HCDR1: RYWML (SEQ ID No.: 27), HCDR2: EINPRNDRTNYNEKFKT (SEQ ID No.: 28), and HCDR3: GGGYAMDY (SEQ ID No.: 29),

and which binding molecule binds L1 with an affinity (KD) of at least 10^{-10} M, or

25 (ii) is **characterized in that** its complementarity determining regions (CDRs) have the following sequences: LCDR1: QDISNY (SEQ ID No.: 30), LCDR2: YTS, LCDR3: QQGNTLPWT (SEQ ID No.: 31), HCDR1: GYTFTRYW (SEQ ID No.: 32), HCDR2: INPRNDRT (SEQ ID No.: 33), and HCDR3: ALGGGYAMDY (SEQ ID No.: 34),

20 and which binding molecule binds L1 with an affinity (KD) of at least 10^{-10} M.

2. The binding molecule capable of binding L1 of claim 1, wherein the binding molecule binds L1 with an affinity (KD) of at least 10^{-11} M.

3. The binding molecule capable of binding L1 of claim 1 or 2, linked to an active substance, preferably a toxin, a cytokine, a nanoparticle or a radionuclide.

4. A binding molecule capable of binding L1 of any of claims 1 to 3, for use in a method of treatment of a tumorigenic disease.

5. A binding molecule capable of binding L1 of any of claims 1 to 3, for use in a method of sensitizing tumor cells in a patient for the treatment with a chemotherapeutic drug or with radiotherapy.

6. The binding molecule capable of binding L1 for use according to claim 5, wherein the cells are at least partially resistant to the treatment with said chemotherapeutic drug or to radiotherapy.

7. The binding molecule capable of binding L1 for use according to claim 5 or 6, wherein after the sensitization with the binding molecule the patient is further treated with said chemotherapeutic drug or with radiotherapy.

8. The binding molecule capable of binding L1 for use according to claim 4, in a patient previously treated with a chemotherapeutic drug or with radiotherapy.

9. The binding molecule capable of binding L1 for use according to claim 8, wherein the patient is at least partially resistant to the treatment with said chemotherapeutic drug or with radiotherapy.

10. The binding molecule capable of binding L1,

50 (i) for use according to claim 4, in a patient at least partially resistant to treatment with a given chemotherapeutic drug or with radiotherapy, or

55 (ii) for use according to claim 4, wherein the binding molecule is administered in combination with a chemotherapeutic drug or with radiotherapy.

11. The binding molecule capable of binding L1 for use according to claim 10, item (ii), wherein the chemotherapeutic drug or the radiotherapy is administered prior to the binding molecule.

12. The binding molecule capable of binding L1 for use of any of claims 4 to 11, wherein the tumor cells or the tumorigenic disease are of a type selected from the group consisting of astrocytoma, oligodendrolioma, meningioma, neurofi-

broma, glioblastoma, ependymoma, Schwannoma, neurofibrosarcoma, medulloblastoma, melanoma, pancreatic cancer, prostate carcinoma, head and neck cancer, breast cancer, lung cancer, ovarian cancer, endometrial cancer, renal cancer, neuroblastomas, squamous carcinomas, hepatoma, colon cancer and mesothelioma and epidermoid carcinoma, or,

5 wherein the tumor cells are from an epithelial tumor or the tumorigenic disease is an epithelial tumor.

13. The binding molecule capable of binding L1 for use according to claim 12, wherein the epithelial tumor is pancreatic cancer, colon cancer, ovarian cancer or endometrial cancer.

10 14. The binding molecule capable of binding L1 for use of any of claims 5 to 13, wherein the chemotherapeutic drug is a DNA damaging agent, preferably selected from the group consisting of actinomycin-D, mitomycin C, cisplatin, doxorubicin, etoposide, verapamil, podophyllotoxin, 5-FU, taxans, preferably paclitaxel and carboplatin, or, wherein the radiotherapy is selected from the group consisting of X-ray radiation, UV-radiation, γ -irradiation, α - or β -irradiation, and microwaves.

15 15. A pharmaceutical composition, comprising the binding molecule capable of binding L1 of any of claims 1 to 3.

16. Use of a binding molecule capable of binding L1 of any of claims 1 to 3, for determining the level of the L1 protein in body tissues or fluids in vitro.

20

Patentansprüche

1. Bindungsmolekül, das in der Lage ist L1 zu binden,

25 (a) das ausgewählt ist aus der Gruppe bestehend aus Einzelketten-Antikörpern, scFv, Multimeren von scFv-ähnlichen Diabodies, Triabodies oder Tetrabodies, Antikörperfragmenten, Fab, Tandabs, Flexibodies, bispezifischen Antikörpern und chimeren Antikörpern, und / oder

30 (b) das mindestens eine Ig-Domäne umfasst, und wobei das Bindungsmolekül, das in der Lage ist L1 zu binden:

35 (i) dadurch charakterisiert ist, dass seine Komplementarität-bestimmenden Regionen (complementarity determining regions, CDRs) die folgenden Sequenzen haben: LCDR1: RASQDISNYLN (SEQ ID Nr.: 24), LCDR2: YTSLRHS (SEQ ID Nr.: 25), LCDR3: QQGNTLPWT (SEQ ID No.: 26), HCDR1: RYWML (SEQ ID Nr.: 27), HCDR2: EINPRNDRTNYNEKFKT (SEQ ID Nr.: 28), und HCDR3: GGGYAMDY (SEQ ID Nr.: 29), und wobei das Bindungsmolekül L1 mit einer Affinität (KD) von mindestens 10^{-10} M bindet, oder

40 (ii) dadurch charakterisiert ist, dass seine Komplementarität-bestimmenden Regionen (complementarity determining regions, CDRs) die folgenden Sequenzen haben: LCDR1: QDISNY (SEQ ID Nr.: 30), LCDR2: YTS, LCDR3: QQGNTLPWT (SEQ ID Nr.: 31), HCDR1: GYTFTRYW (SEQ ID No.: 32), HCDR2: INPRNDRT (SEQ ID Nr.: 33), und HCDR3: ALGGGYAMDY (SEQ ID Nr.: 34), und wobei das Bindungsmolekül L1 mit einer Affinität (KD) von mindestens 10^{-10} M bindet.

45 2. Bindungsmolekül, das in der Lage ist L1 zu binden von Anspruch 1, wobei das Bindungsmolekül L1 mit einer Affinität (KD) von mindestens 10^{-11} M bindet.

3. Bindungsmolekül, das in der Lage ist L1 zu binden von Anspruch 1 oder 2, verknüpft an eine aktive Substanz, bevorzugt ein Toxin, ein Zytokin, ein Nanopartikel, oder ein Radionuklid.

50 4. Bindungsmolekül, das in der Lage ist L1 zu binden von einem beliebigen der Ansprüche 1 bis 3, zur Verwendung in einem Verfahren zur Behandlung einer tumorigen Erkrankung.

55 5. Bindungsmolekül, das in der Lage ist L1 zu binden von einem beliebigen der Ansprüche 1 bis 3, zur Verwendung in einem Verfahren um Tumorzellen in einem Patienten für die Behandlung mit einem chemotherapeutischen Wirkstoff oder mit Strahlentherapie zu sensibilisieren.

6. Bindungsmolekül, das in der Lage ist L1 zu binden zur Verwendung gemäß Anspruch 5, wobei die Zellen zumindest

partiell resistent sind gegenüber der Behandlung mit diesem chemotherapeutischen Wirkstoff oder gegenüber Strahlentherapie.

5 7. Bindungsmolekül, das in der Lage ist L1 zu binden zur Verwendung gemäß Anspruch 5 oder 6, wobei der Patient nach dem Sensibilisieren mit dem Bindungsmolekül weiter mit diesem chemotherapeutischen Wirkstoff oder mit Strahlentherapie behandelt wird.

10 8. Bindungsmolekül, das in der Lage ist L1 zu binden zur Verwendung gemäß Anspruch 4, in einem Patienten der zuvor mit einem chemotherapeutischen Wirkstoff oder mit Strahlentherapie behandelt wurde.

15 9. Bindungsmolekül, das in der Lage ist L1 zu binden zur Verwendung gemäß Anspruch 8, wobei der Patient mindestens partiell resistent gegenüber der Behandlung mit diesem chemotherapeutischen Wirkstoff oder mit Strahlentherapie ist.

15 10. Bindungsmolekül, das in der Lage ist L1 zu binden,

(i) zur Verwendung gemäß Anspruch 4, in einem Patienten, der mindestens partiell resistent gegenüber der Behandlung mit einem bestimmten chemotherapeutischen Wirkstoff oder mit Strahlentherapie ist, oder
 20 (ii) zur Verwendung gemäß Anspruch 4, wobei das Bindungsmolekül in Kombination mit einem chemotherapeutischen Wirkstoff oder mit Strahlentherapie verabreicht wird.

11. Bindungsmolekül, das in der Lage ist L1 zu binden zur Verwendung gemäß Anspruch 10, Punkt (ii), wobei der chemotherapeutische Wirkstoff oder die Strahlentherapie vor dem Bindungsmolekül verabreicht wird.

25 12. Bindungsmolekül, das in der Lage ist L1 zu binden zur Verwendung von einem beliebigen der Ansprüche 4 bis 11, wobei die Tumorzellen oder die tumorigene Erkrankung von einem Typ sind, der ausgewählt ist aus der Gruppe bestehend aus Astrozytom, Oligodendrogiom, Meningiom, Neurofibrom, Glioblastom, Ependymom, Schwannom, Neurofibrosarkom, Medulloblastom, Melanom, Bauchspeicheldrüsenkrebs, Prostatakarzinom, Kopf- und Halskrebs, Brustkrebs, Lungenkrebs, Eierstockkrebs, Endometriumkrebs, Nierenkrebs, Neuroblastomen, Plattenepithelkarzinomen, Hepatom, Darmkrebs und Mesotheliom und epidermoidem Karzinom, oder
 30 wobei die Tumorzellen von einem epithelialen Tumor sind oder die tumorigene Erkrankung ein epithelialer Tumor ist.

13. Bindungsmolekül, das in der Lage ist L1 zu binden zur Verwendung gemäß Anspruch 12, wobei der epithelialen Tumor Bauchspeicheldrüsenkrebs, Darmkrebs, Eierstockkrebs oder Endometriumkrebs ist.

35 14. Bindungsmolekül, das in der Lage ist L1 zu binden zur Verwendung von einem beliebigen der Ansprüche 5 bis 13, wobei der chemotherapeutische Wirkstoff eine DNA-schädigende Substanz ist, bevorzugt ausgewählt aus der Gruppe bestehend aus Actinomycin-D, Mitomycin C, Cisplatin, Doxorubicin, Etoposid, Verapamil, Podophyllotoxin, 5-FU, Taxanen, bevorzugt Paclitaxel und Carboplatin, oder
 40 wobei die Strahlentherapie ausgewählt ist aus der Gruppe bestehend aus Röntgenstrahlung, UV-Strahlung, γ -Strahlung, α - oder β -Strahlung und Mikrowellen.

15. Pharmazeutische Zusammensetzung umfassend das Bindungsmolekül, das in der Lage ist L1 zu binden von einem beliebigen der Ansprüche 1 bis 3.

45 16. Verwendung eines Bindungsmoleküls, das in der Lage ist L1 zu binden von einem beliebigen der Ansprüche 1 bis 3, zur Bestimmung des Spiegels des L1-Proteins in Körpergeweben oder -flüssigkeiten in vitro.

50 **Revendications**

1. Molécule de liaison capable de se lier à L1,

55 (a) qui est choisie dans le groupe consistant en des anticorps à chaîne unique, scFv, des multimères de dianicorps, de trianticorps ou de tétra-anticorps de type scFv, des fragments d'anticorps, Fab, des tandabs, des flexibodies, des anticorps bispécifiques et des anticorps chimériques, et/ou

 (b) qui comprend au moins un domaine Ig,
 et la molécule de liaison capable de se lier à L1 :

(i) étant caractérisée en ce que ses régions de détermination de complémentarité (CDR) ont les séquences suivantes : LCDR1 : RASQDISNYLN (SEQ ID No : 24), LCDR2 : YTSRLHS (SEQ ID No : 25), LCDR3 : QQGNTLPWT (SEQ ID No : 26), HCDR1 : RYWML (SEQ ID No : 27), HCDR2 : EINPRNDRTNYNEKFKT (SEQ ID No : 28) et HCDR3 : GGGYAMDY (SEQ ID No : 29),

et laquelle molécule de liaison se liant à L1 avec une affinité (KD) d'au moins 10^{-10} M, ou

(ii) étant caractérisée en ce que ses régions de détermination de complémentarité (CDR) ont les séquences suivantes : LCDR1 : QDISNY (SEQ ID No : 30), LCDR2 : YTS, LCDR3 : QQGNTLPWT (SEQ ID No : 31), HCDR1: GYTFTRYW (SEQ ID No : 32), HCDR2 : INPRNDRT (SEQ ID No : 33) et HCDR3 : ALGGGYAMDY (SEQ ID No : 34),

et laquelle molécule de liaison se liant à L1 avec une affinité (KD) d'au moins 10^{-10} M.

2. Molécule de liaison capable de se lier à L1 de la revendication 1, la molécule de liaison se liant à L1 avec une affinité (KD) d'au moins 10^{-11} M.

15 3. Molécule de liaison capable de se lier à L1 de la revendication 1 ou 2, liée à une substance active, de préférence une toxine, une cytokine, une nanoparticule ou un radionucléide.

4. Molécule de liaison capable de se lier à L1 de l'une des revendications 1 à 3, destinée à être utilisée dans un procédé de traitement d'une maladie tumorigène.

20 5. Molécule de liaison capable de se lier à L1 de l'une des revendications 1 à 3, destinée à être utilisée dans un procédé de sensibilisation de cellules tumorales chez un patient pour le traitement avec un médicament chimiothérapeutique ou par radiothérapie.

25 6. Molécule de liaison capable de se lier à L1 destinée à être utilisée selon la revendication 5, où les cellules sont au moins partiellement résistantes au traitement avec ledit médicament chimiothérapeutique ou à la radiothérapie.

7. Molécule de liaison capable de se lier à L1 destinée à être utilisée selon la revendication 5 ou 6, où, après la sensibilisation avec la molécule de liaison, le patient est en outre traité avec ledit médicament chimiothérapeutique ou par radiothérapie.

30 8. Molécule de liaison capable de se lier à L1 destinée à être utilisée selon la revendication 4, chez un patient précédemment traité avec un médicament chimio-thérapeutique ou par radiothérapie.

35 9. Molécule de liaison capable de se lier à L1 destinée à être utilisée selon la revendication 8, où le patient est au moins partiellement résistant au traitement avec ledit médicament chimiothérapeutique ou par radio-thérapie.

10. Molécule de liaison capable de se lier à L1,

40 (i) destinée à être utilisée selon la revendication 4, chez un patient au moins partiellement résistant au traitement avec un médicament chimiothérapeutique donné ou par radiothérapie, ou
(ii) destinée à être utilisée selon la revendication 4, la molécule de liaison étant administrée en combinaison avec un médicament chimiothérapeutique ou avec la radio-thérapie.

45 11. Molécule de liaison capable de se lier à L1 destinée à être utilisée selon la revendication 10, point(ii), où le médicament chimiothérapeutique ou la radio-thérapie est administré avant la molécule de liaison.

50 12. Molécule de liaison capable de se lier à L1 destinée à être utilisée selon l'une des revendications 4 à 11, où les cellules tumorales ou la maladie tumorigène sont d'un type choisi dans le groupe consistant en l'astrocytome, l'oligodendrogiome, le méningiome, le neurofibrome, le glioblastome, l'épendymome, le Schwannome, le neurofibrosarcome, le méulloblastome, un mélanome, le cancer du pancréas, le cancer de la prostate, le cancer de la tête et du cou, le cancer du sein, le cancer du poumon, le cancer de l'ovaire, le cancer de l'endomètre, le cancer du rein, les neuroblastomes, les carcinomes squameux, un hépatome, le cancer du côlon et le mésothéliome et le carcinome épidermoïde, ou,
55 où les cellules tumorales proviennent d'une tumeur épithéliale ou la maladie tumorigène est une tumeur épithéliale.

13. Molécule de liaison capable de se lier à L1 destinée à être utilisée selon la revendication 12, où la tumeur épithéliale est le cancer du pancréas, le cancer du côlon, le cancer de l'ovaire ou le cancer de l'endomètre.

14. Molécule de liaison capable de se lier à L1 destinée à être utilisée selon l'une des revendications 5 à 13, où le médicament chimiothérapeutique est un agent endommageant l'ADN, de préférence choisi dans le groupe consistant en l'actinomycine-D, la mitomycine C, le cisplatine, la doxorubicine, l'étoposide, le vérapamil, la podophyllotoxine, le 5-FU, les taxanes, de préférence le paclitaxel et le carboplatine, ou 5 où la radiothérapie est choisie dans le groupe consistant en le rayonnement X, le rayonnement UV, l'irradiation aux rayons γ , l'irradiation aux rayons α ou β et des micro-ondes.

15. Composition pharmaceutique, comprenant la molécule de liaison capable de se lier à L1 de l'une des revendications 1 à 3. 10

16. Utilisation d'une molécule de liaison capable de se lier à L1 de l'une des revendications 1 à 3, pour déterminer le niveau de la protéine L1 dans des tissus ou des fluides corporels in vitro.

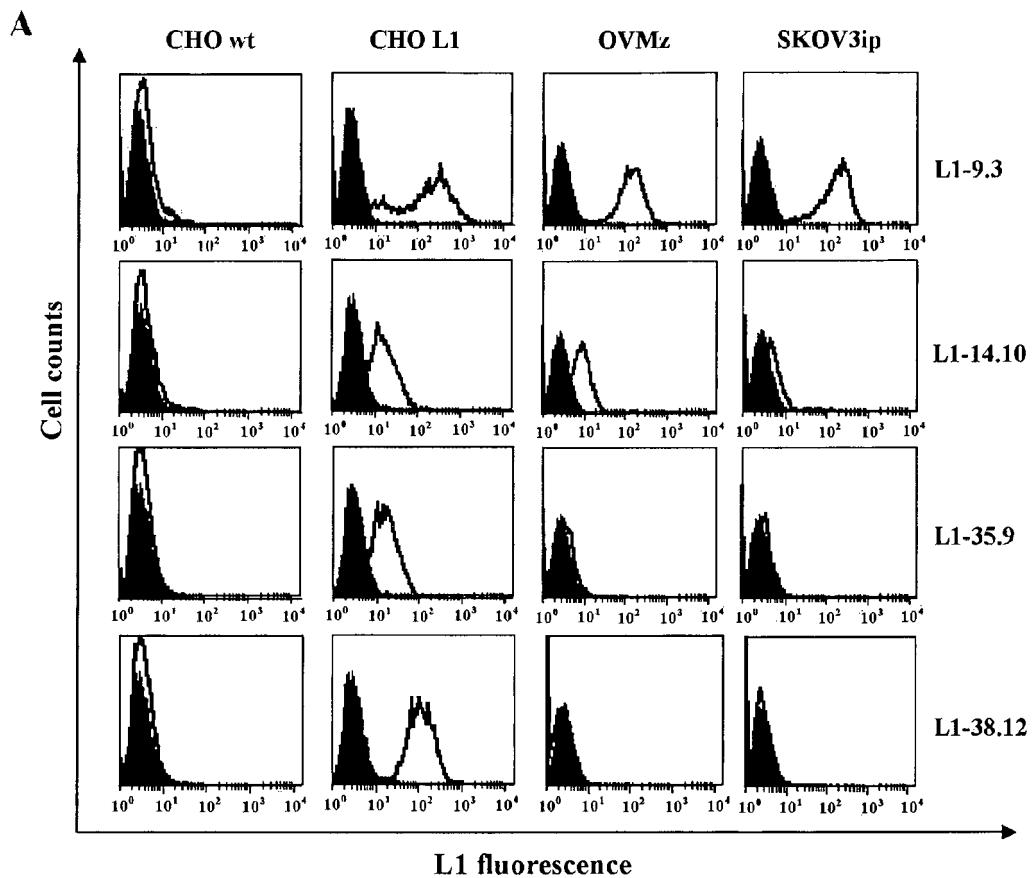
15

20

25

30

35


40

45

50

55

Figure 1

Figure 1

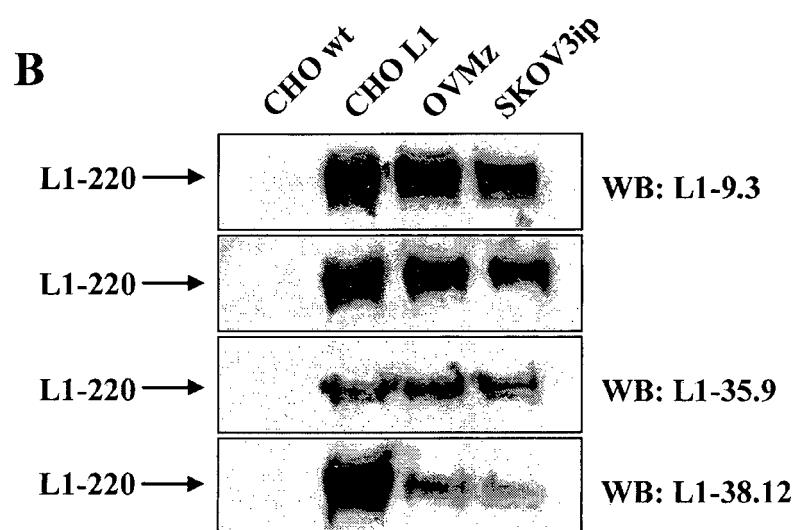
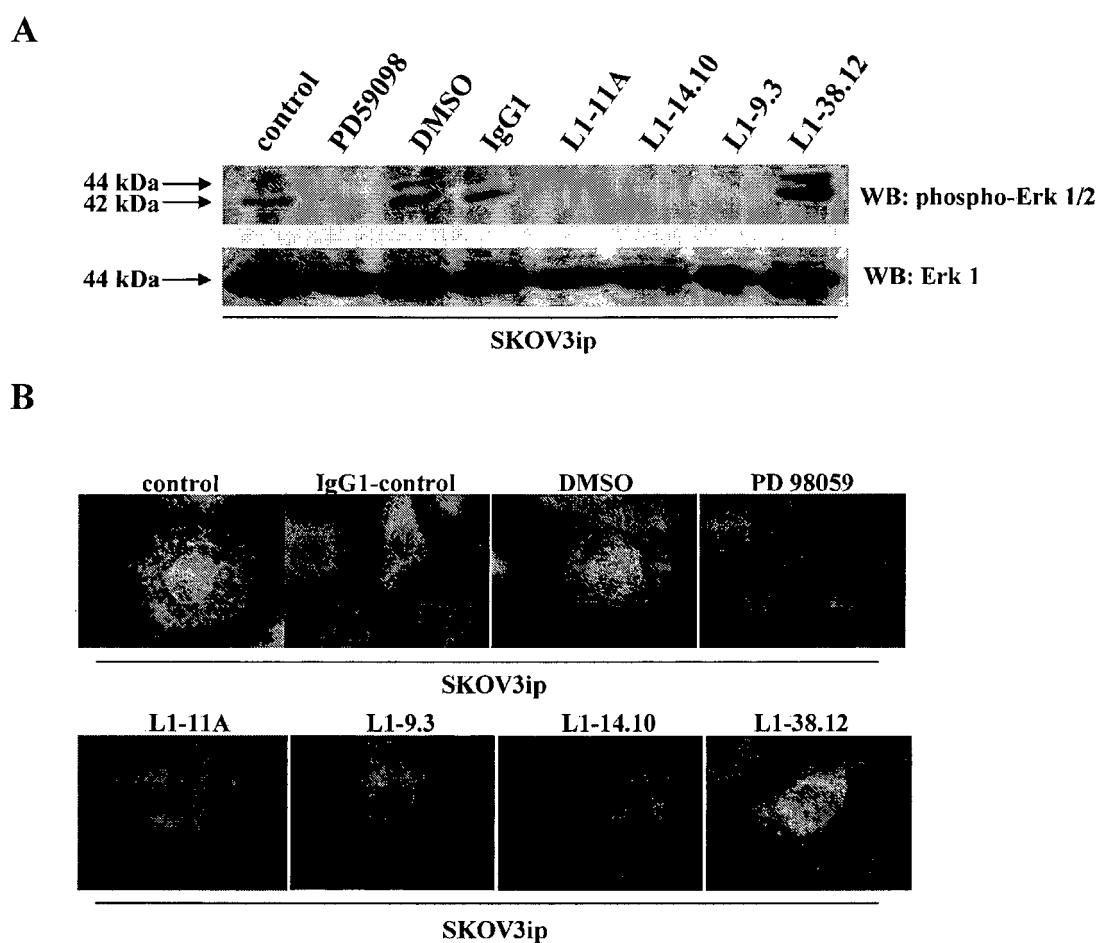



Figure 2

Figure 3

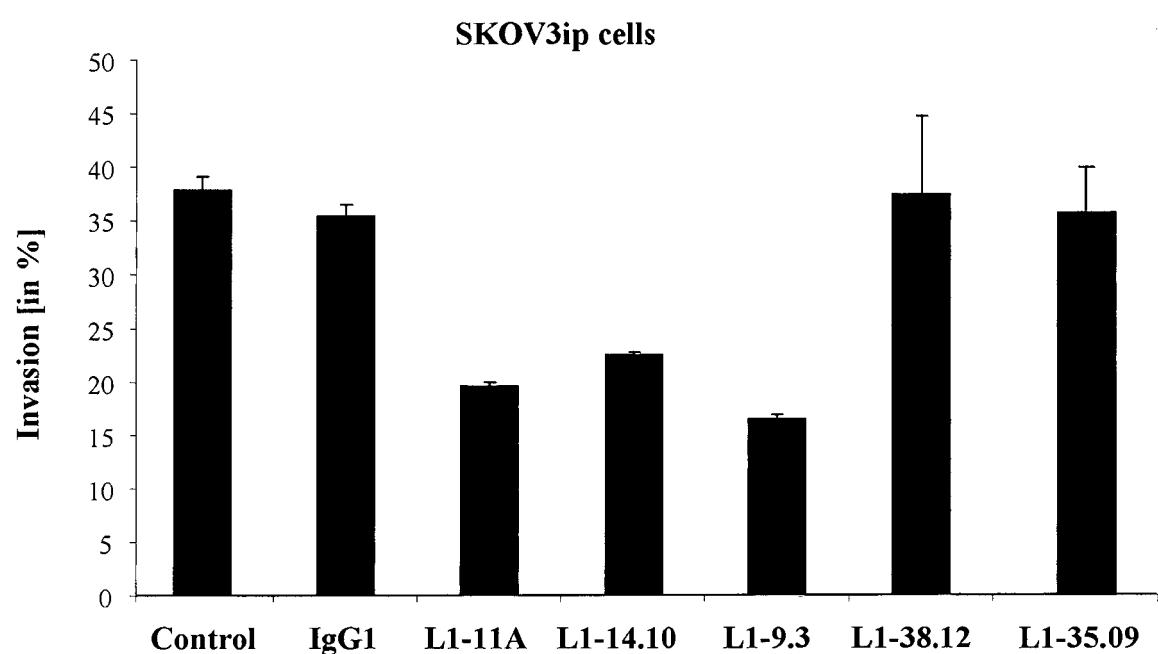
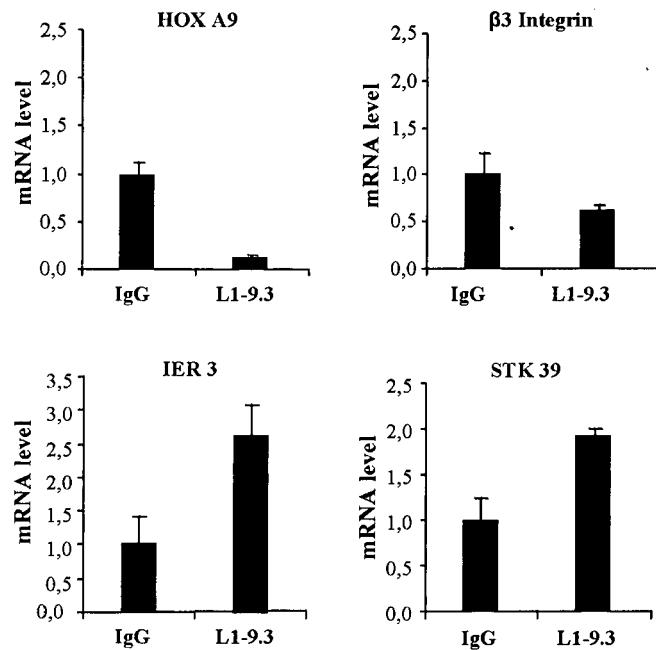
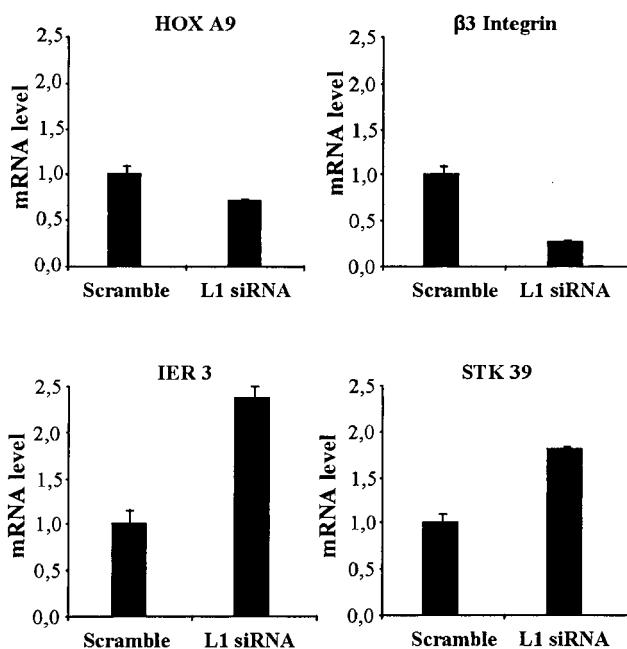
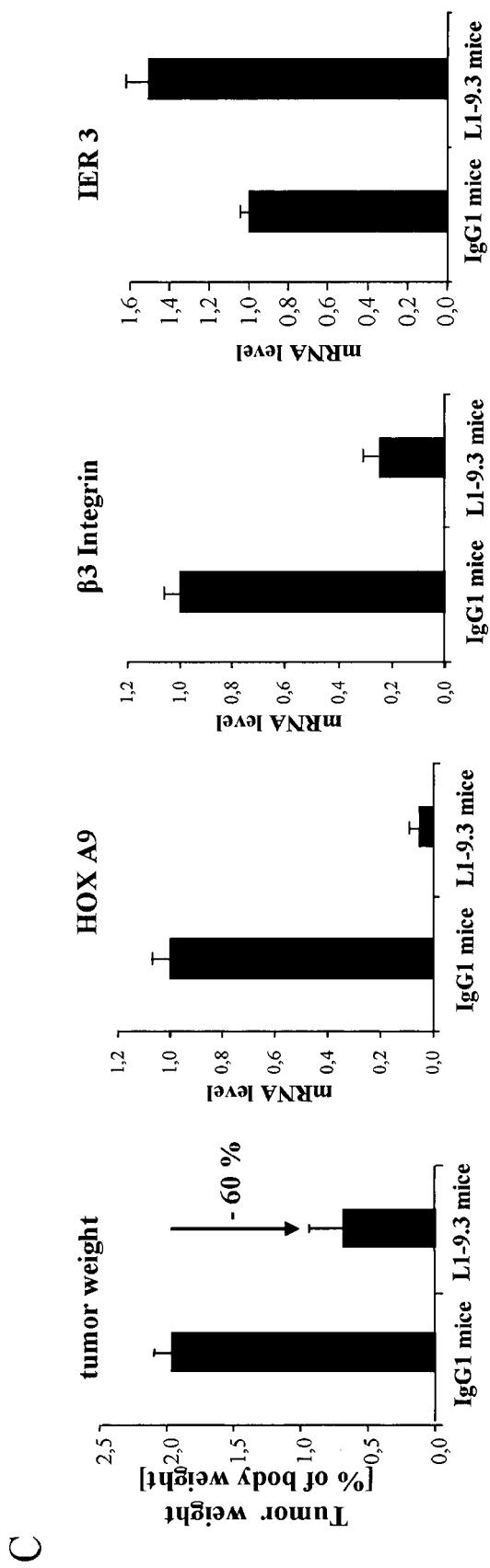
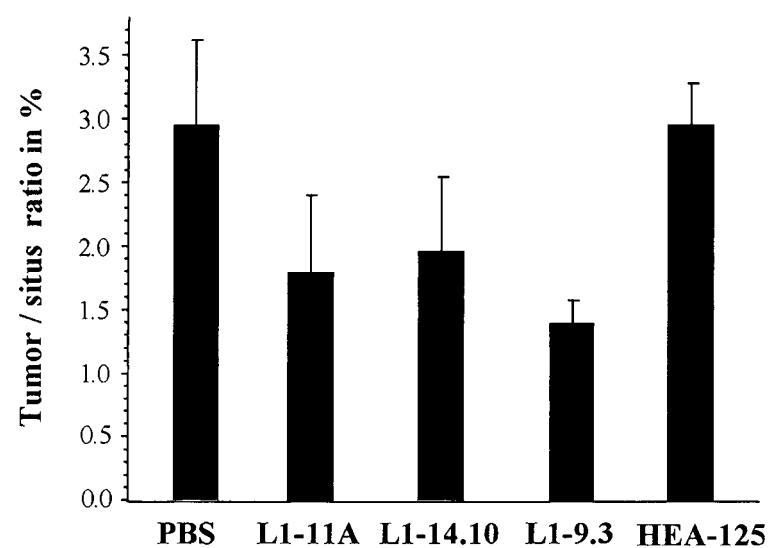
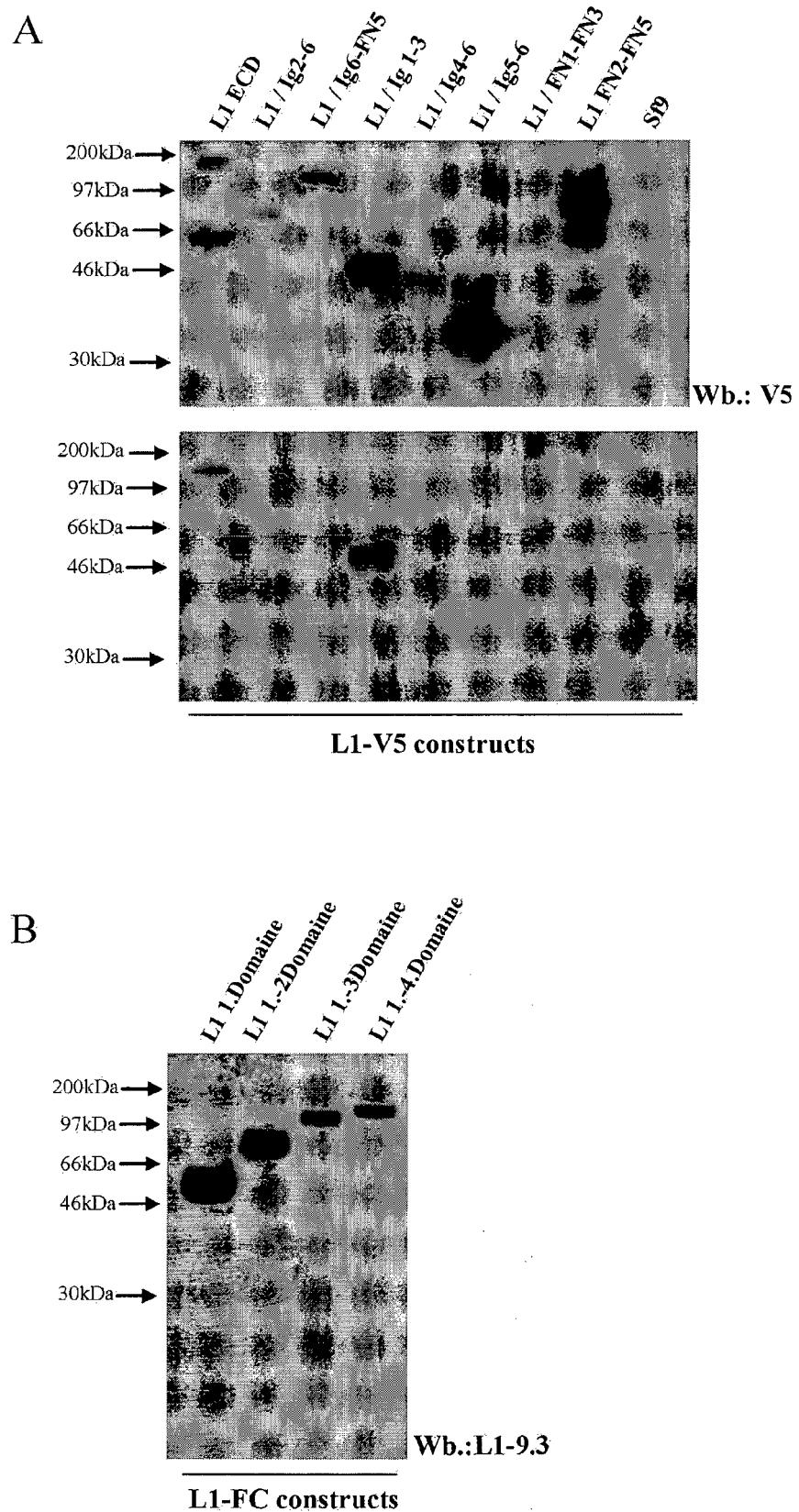



Figure 4

A SKOV3ip cells + mAb

B SKOV3ip cells + L1 siRNA

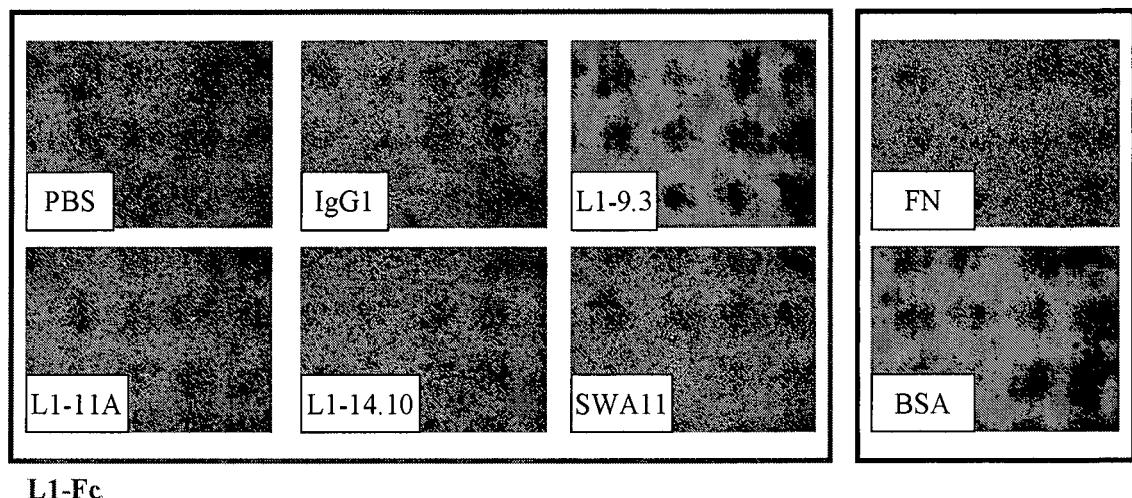

Figure 4

Figure 5

Figure 6

Figure 7**A**

L1-Fc

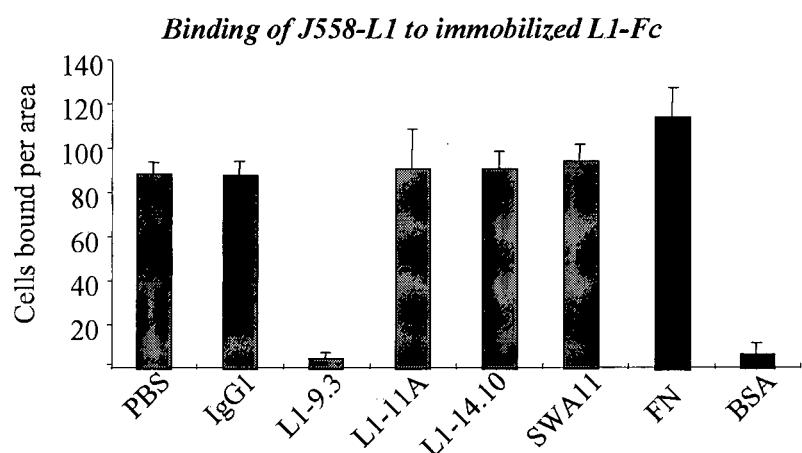

B

Figure 8

a)

Antibody Light chain amino acid sequences

name	CDR1				CDR2				CDR3			
	1	2	3	4	5	6	7	8	9	10	11	
LL_9_3	12345678901234567890123		4567ABCDEF8901234		567890123456789	0123456	78901234567890123456789012345678		9012345ABCDEF67		8901234567890	
humx1	DIQMTQSPSSLSASVGDRVTITC		RASQ	DISNYLN	WYQQKPGKAKPLLLY	YTSRLHS	GVPFRFSGSGSGCTDYSI	TL1S1NLEQEDFATYFC	QQGNTLP	WT	FGGGTKEIKR	
REI	DIQMTQSPSSLSASVGDRVTITC		RASQ	DISYLN	WYQQKPGKAKPLLLY	AAASL3S	GVPFRFSGSGSGCTDFT	TL1S1LQFEDFATYFC	QQYNSLP	YT	FGGGTKEIKR	
LL_9_3Hu	DIQMTQSPSSLSASVGDRVTITC		RASQ	DISYLN	WYQQKPGKAKPLLLY	EAISLQ	GVPFRFSGSGSGCTDFT	TL1S1LQFEDFATYFC	QQYQSLP	YT	FGGGTKEIKR	
LL_9_3Hu3	DIQMTQSPSSLSASVGDRVTITC		RASQ	DISYLN	WYQQKPGKAKPLLLY	YTSRLHS	GVPFRFSGSGSGCTDFT	TL1S1LQFEDFATYFC	QQGNTLP	WT	FGGGTKEIKR	
					WYQQKPGKAKPLLLY	YTSRLHS	GVPFRFSGSGSGCTDFT	TL1S1LQFEDFATYFC	QQGNTLP	WT	FGGGTKEIKR	

b)

Antibody Heavy chain amino acid sequences

name	CDR1				CDR2				CDR3			
	1	2	3	4	5	6	7	8	9	10	11	
LL_9_3	123456789012345678901234567890		12345AB	67890123456789	012ABC3456789012345		67890123456789012ABC3456789012345		567890123456789012ABCDEFGHIJK12		34567890123	
Humx1	QVQLQSPGAPLWKSIGASVNLSCRASGYFTF		RYWML	WVRQRPKGLEWVG	EINP	RNDRTNYNEKFKT	KATLTIVDRSSSTAYMQLTSLTSEDAVYFCAL	GGGYAM	DY	WQGQTSVTVSS		
LL_9_3Hu	EVQLVESGGGLVQPGGSLRLISCAASGFTFS		KDYMAMSI	WVRQRPKGLEWVA	VIS	NGSCTTYADSVKG	RFTISRDRDSSKNTLYIQMNSRAEDTAVYFCAR	DSRFD	VI	WQGQTSVTVSS		
LL_9_3Hu3	EVQLVQSGGGLVQSGISLRLISCRASGYFTF		RYWML	WVRQRPKGLEWVG	EINP	RNDRTNYNEKFKT	RFTISVDRKSTAYLQHDSLRAEDTAVYFCAL	GGCYAM	DY	WQGQTSVTVSS		
			RYWML	WVRQRPKGLEWVA	EINP	RNDRTNYNEKFKT	RFTISVDRSQTLYLQHDSLRAEDTAVYFCAL	GGGYAM	DY	WQGQTSVTVSS		

Figure 9

a)

L1_9.3 scFv

DIQMTQTTSSLSAFLGDRVTISCRASQDISNYLNWYQQKPDGTVKLLIYYTSRLHSGVPSRFSGSQGTDYSLTI
SNLEQEDFATYFCQQGNTLPWTFGGGTGLEIKRT**TSGPGDGGKGGPGKGPGEGTKG**TGPQVQLQQPGAEVLKS
GASVNLSCRASGYTFTRYWMLWVRQRPGHGLEWVGEINPRNDRTNYNEKFKTKATLTVDRSSSTAYMQLTSLTSE
DSAVYFCALGGGYAMDYWGQGTSVTVSS

b)

L1_9.3Hu

DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGSQGTDYTLTI
SSLQPEDFATYFCQQGNTLPWTFGGGTGLEIKRT**TSGPGDGGKGGPGKGPGEGTKG**TGPGEVQLVQSGGGLVQ
GGSLRLSCRASGYTFTRYWMLWVRQRPGHGLEWVGEINPRNDRTNYNEKFKTRFTISVDRSKSTAYLQMDSLRAE
DTAVYFCALGGGYAMDYWGQGTLVTVSS

c)

L1_9.3Hu3

DIQMTQSPSSLSASVGDRVTITCRASQDISNYLNWYQQKPGKAPKLLIYYTSRLHSGVPSRFSGSQGTDYTLTI
SSLQPEDFATYFCQQGNTLPWTFGGGTGLEIKRT**TSGPGDGGKGGPGKGPGEGTKG**TGPGEVQLVQSGGGLVQ
GGSLRLSCRASGYTFTRYWMLWVRQRPGKGLEWVVAEINPRNDRTNYNEKFKTRFTISVDRSKNTLYLQMDSLRAE
DTAVYFCALGGGYAMDYWGQGTLVTVSS

Figure 10

a)

L1-9.3 murine single chain antibody

NdeI

```

M K Y L L P T A A A G L L L L A
1 ACATATGAAA TACCTATTGC CTACGGCAGC CGCTGGATTG TTATTAATCG
TGTATACTTT ATGGATAACG GATGCCGTG GCGACCTAAC AATAATGAGC
SfiI
```

NcoI

```

A Q P A M A D I Q M T Q T T S S
51 CGGCCAGCC GGCCATGGCC GATATTAGA TGACCCAGAC CACGAGCAGC
GCCGGTACCGG CTATAAGTCT ACTGGGTCTG GTGCTCGTGC
L S A F L G D R V T I S C R A S Q
101 CTGAGCCGCT TTCTGGGCGA TCGTGTGACC ATTAGCTGCC GTGCGAGCCA
GACTCGCGCA AAGACCCGCT AGCACACTGG TAATCGACGG CACGCTCGGT
D I S N Y L N W Y Q Q K P D G T V
151 GGATATTAGC AACTATCTGA ACTGGTATCA GCAGAAACCG GATGGCACCG
CCTATAATCG TTGATAGACT TGACCATAGT CGTCTTGGC CTACCGTGGC
K L L I Y Y T S R L H S G V P S
201 TGAAAATGCT GATTTATTAT ACCAGCCGTC TSCATAGCGG TGTGCCGAGC
ACTTTGACGA CTTAAATAATA TGGTCGGAG ACGTATCGCC ACACGGCTCG
R F S G S G S G T D Y S L T I S N
251 CGTTTAGCG GCAGCGGTAG CGGCACCGG TATAGCTGA CCATTTCTAA
GCAAAATCGC CGTCGCGATC GCGCGCTA ATATCGGACT GGTAAAGATT
L E Q E D F A T Y F C Q Q G N T L
301 CCTGGAACAG GAAGATTTTC CGACCTATTT TTGCCAGCAG GGCAACACGC
GGACCTTGTG CTTCTAAAAC GCTGATATAA AACCGTCCGTC CCGTTGTGGC
P W T F G G G T K L E I K R T S
351 TGCGTGGAC CTTGGCGGT GGCACCAAAC TGGAAATTAA ACGTACTAGT
ACGGCACCTG GAAACCGCCA CGGTGTTTG ACCTTAATT TGCATGATCA
G P G D G G K G G P G K G P G G E
401 GGTCCGGGCG ATGGCGGTAA AGGCAGTCCG GGCAAGGTC CGGGTGGCGA
CCAGGCCCCGC TACCGCCATT TCCGCCAGGC CGCTTCCAG GCCCACCGCT
SmaI
```

XmaI

AvaI

PstI

```

G T K G T G P G G Q V Q L Q Q P G
451 AGGCACCAAA GGCACTGGC CCGGGGGTCA GTTCAGCTG CAGCAGCCGG
TCCGTGGTTT CCGTGACCCG GGCCCCCAGT CCAAGTCGAC GTCGTCGGCC
A E L V K S G A S V N L S C R A
501 GTGCGGAACT CGTAAAAGC GGCGCAGCG TGAACCTGAG CTGCTGTGCG
CACCGCTTGA CCACCTTTCG CGCGCTCGC ACTTGGACTC GACAGCACGC
S G Y T F T R Y W M L W V R Q R P
551 AGCGGCTATA CTTTACCCG TTATTGGATG CTGTGGGTGC GTCAGCGTCC
TCGCGATAT GGAATGGGC AATAACCTAC GACACCCACG CAGTCGCAGG
G H G L E W V G E I N P R N D R T
601 GGGCACCGC CTGGAATGGG TGGCGAAAT TAATCCGCGT AACGATCGTA
CCCCGTGCCG GACCTTACCC ACCCGCTTA ATTAGGCAGA TTGCTAGCAT
N Y N E K F K T A T L T V D R
651 CCAACTATAA CGAAAAATTG AAAACCAAAG CGACCTGAC CGTGGATCTG
GGTTGATATT CTTTTTAAG TTTGGTTTC GCTGGGACTG GCACCTAGCA
S S S T A Y M Q L T S L T S E D S
701 AGCAGCAGCA CGCGTATAT GCAGCTGACG AGCCTGACCT CTGAAGATAG
TCGTCGTCGT GGCGCATATA CGTCGACTGC TCGGACTGGA GACTTCTATC
BssHII
```

A V Y F C A L G G G Y A M D Y W G

751 CGCGGTGTAT TTCTGCGCGC TGGCGGTGG CTATGCGATG GATTATTGGG
GCGCCACATA AAGACGCGCG ACCCGCACC GATACGCTAC CTAATAACCC

NotI

```

Q G T S V T V S S G G A A A A P
801 GCCAGGGCAC CAGCGTTACC GTGAGCAGCG GCGGTGCGGC CGCTGCACCA
CGGTCCCGTG CTCGCAATGG CACTCGTCGC CGCCACGCC GCGACGTGGT
S V F I F P P S D E Q L K S G T A
851 TCTGTCTTCA TCTTCCCGCC ATCTGATGAG CAGTTGAAAT CTGGAACCTGC
AGACAGAAGT AGAAGGGCGG TAGACTACTC GTCAACTTA GACCTTGACG
S V V C L L N N F Y P R E A K V Q
901 CTCTGTTGTG TGCCTGCTGA ATAACCTCTA TCCCAGAGAG GCCAAAGTAC
GAGACAACAC ACGGACGACT TATTGAAGAT AGGGTCTCTC CGGTTTCATG
W K V D N A L Q S G N S Q E S V
```

Figure 10 a) cont.

```

951 AGTGGAAAGT GGATAACGCC CTCCAATCGG GTAACTCCCA GGAGAGTGTG
TCACCTTCCA CCTATTGCGG GAGGTTAGCC CATTGAGGGT CCTCTCACAG
```

T E Q D S K D S T Y S L S S T L T ·
1001 ACAGAGCAGG ACAGCAAGGA CAGCACCTAC AGCCTCAGCA GCACCTGAC
TGTCTCGTCC TGTCTGTTCC GTCGTGGATG TCGGAGTCGT CGTGGGACTG
· L S K A D Y E K H K V Y A C E V T ·
1051 GCTGAGCAAA GCAGACTACG AGAAACACAA AGTCTACGCC TGCAGAAGTCA
CGACTCCCTT CGCTCTGATGC TCTTTGTGTT TCAGATGCC ACGCTTCAGT
· H Q G L S S P V T K S F N R G E
1101 CCCATCAGGG CCTGAGTTCG CCCGTCACAA AGAGCTCAA CCGCGGAGAG
GGGTAGTCCC GGACTCAAGC GGGCAGTGTT TCTCGAAGTT GGCGCCTCTC
S H H H H H * *
1151 TCACACCAACC ACCACCAACCA CTAGTAAT
AGTGTGGTGG TGGTGGTGGT GATCATTA

Figure 10

b)

L1-9.3Hu humanized single chain antibody

NdeI

```

M K Y L L P T A A A G L L L L A
1 ACATATGAAA TACCTATTGC CTACGGCAGC CGCTGGATTG TTATTACTCG
TGTATACTTT ATGGATAACG GATGCCGTG GCGACCTAAC AATAATGAGC
SfiI

```

NcoI

```

A Q P A M A D I Q M T Q S P S S
51 CGGCCAGCC GGCCATGGCC GATATTAGA TGACCCAGAG CCCGAGCAGC
GCCGGTCTGG CCGGTACCGG CTATAAGTCT ACTGGTCTC GGGCTCGT
L S A S V G D R V T I T C R A S Q
101 CTGAGCGCGA CGCTGGTGA TCGTGTGAC ATTACCTGCC GTGGAGCCA
GACTCGCGCT CCCACCCACT AGCACACTGG TAATGGACGG CACGCTCGGT
D I S N Y L N W Y Q Q K P G K A P
151 GGATATTAGC AACTATCTGA ACTGGTATCA GCAGAAACCG GGCAAAGCGC
CCTATAATCG TTGATAGACT TGACCATAGT CGTCTTGGC CCGTTTCGCG
K L L I Y T S R L H S G V P S
201 CGAAACTGCT GATTATTATT ACCAGCCGTC TGCAAGCGG TGTCGGAGC
GCTTGACGA CTAATAATA TGGTCGGAG ACGTATCGCC ACACGGCTCG
R F S G S G S G T D Y T F T I S S
251 CGTTTAGCG CGAGCGGTAG CGGCACCGAT TATACCTTA CCATTAGCAG
GCAAATCGC CGTCGCCATC GCGTGGCTA ATATGAAAT GGTAATCGTC
PstI
L Q P E D F A T Y F C Q Q G N T L
301 CCTGCAGCCG GAAGATTTTG CGACCTATT TTGCCAGCAG GGCAACACGC
GGACGTCGGC CTTCTAAAC GCTGGATAAA AACGGTCGTC CCGTTGCG
P W T F G G G T K L E I K R T S
351 TGCCGTGGAC CTTGGCGGT GGCACCAAAC TGGAAATTAA ACGTACTAGT
ACGGCACCTG GAAACGCCA CCCTGGTTTG ACCTTTAATT TGCAATGATCA
G P G D G G K G G P G K G P G G E
401 GGTCCGGCG ATGGCGGTAA AGGCGGTCCG GGCAAAGGTC CGGGTGGCGA
CCAGGCCGC TACCGCCATT TCCGCCAGG CCGTTCCAG GCCCACCGCT
SmaI
XmaI
AvaI
G T K G T G P G G E V Q L V Q S G
451 AGGCACCAAA GGCAGCTGGC CCGGGGGTGA AGTCAGCTG GTGCAGAGCG
TCCGTGGTT CCGTGACCCG GGCCCCACT TCAAGTCGAC CACGCTCGC
G G L V Q S G G S L R L S C R A
501 GCGGTGGTCT GGTCAGAGC GGTGGCAGCC TGCGTCTGAG CTGCTGTGCG
CGCCACAGA CCAAGTCTCG CCACCGTCGG ACGCAGACTC GACAGCACGC
S G Y T F T R Y W M L W V R Q R P
551 AGCGGCTATA CCTTCACCCG TTATTCGATG CTGTGGTGC GTCAACCGTCC
TCGGCGATAT GGAAGTGGGC AATAACCTAC GACACCCACG CAGTCGAGG
G H G L E W V G E I N P R N D R T
601 GGGCACCGC CTGGAATGGG TGGCGAAAT TAATCCGCGT AACGATCGTA
CCGGTGGCG GACCTTACCC ACCCGCTTTA ATTAGCGCA TTGCTAGCAT
N Y N E K F K T R F T I S V D R
651 CCAACTATAA CGAAAAATTAA AAAACCCGCT TCACCAATTAG CGTGGATCGT
GGTGATATT GCTTTAA TTTGGCGA AGTGGTAATC GCACCTAGCA
PstI
S K S T A Y L Q M D S L R A E D T
701 AGCAAAAGCA CCGCGTATCT GCAGATGGAT AGCCTGGCTG CGGAAGATAC
TCGTTTCGT GGCGCATAGA CGTCTACCTA TCGGACGCAC GCCTCTATG
BssHII
A V Y F C A L G G G Y A M D Y W G
751 CGCGGTGTAT TTTTGGCGC TGGCGGTGG CTATGGATG GATTATTGGG
GCGCCACATA AAAACCGCGC ACCCGCACC GATACTGAC CTAATAACCC
NotI
Q G T L V T V S S G G A A A A A P
801 GCCAGGGCAC CCTGGTTACC GTGAGCACCG GCGGTGGCGC CGCTGCACCA
CGGTCCCGTG GGACCAATGG CACTCGTCGC CGCCACGCC GCGACGTGGT
S V F I F P P S D E Q L K S G T A
851 TCTGTCTTCA TCTTCCCGCC ATCTGATGAG CAGTTGAAAT CTGGAACCTGC

```

AGACAGAAAGT AGAAGGGCGG TAGACTACTC GTCAACTTTA GACCTTGACG
S V V C L L N N F Y P R E A K V Q

Figure 10 b) cont.

901 CTCTGTTGTG TGCCTGCTGA ATAACCTCTA TCCCAGAGAG GCCAAAGTAC
 GAGACAACAC ACGGACGACT TATTGAAGAT AGGGTCTCTC CGGTTTCATG
 W K V D N A L Q S G N S Q E S V
 951 AGTGGAAGGT GGATAACGCC CTCCAATCGG GTAACTCCCA GGAGAGTGT
 TCACCTTCCA CCTATTGCGG GAGGTTAGCC CATTGAGGGT CCTCTCACAG
 T E Q D S K D S T Y S L S S T L T
 1001 ACAGAGCAGG ACAGCAAGGA CAGCACCTAC AGCCTCAGCA GCACCCCTGAC
 TGTCTGTCC TGTGTTCTT GTCGTGGATG TCGGAGTCGT CGTGGACTG
 L S K A D Y E K H K V Y A C E V T
 1051 GCTGAGCAAA GCAGACTACG AGAAACACAA AGTCTACGCC TGCAGTCA
 CGACTCGTT CGTCTGATGC TCTTTGTGTT TCAGATGCC CGCCTTCAGT
 H Q G L S S P V T K S F N R G E
 1101 CCCATCAGGG CCTGAGTCG CCCGTACAAA AGAGCTCAA CGCGGGAGAG
 GGGTAGTCCC GGACTCAAGC GGGCAGTGT TCTCGAAGTT GGCGCCTCTC
 S H H H H H H * *
 1151 TCACACCACC ACCACCACCA CTAGTAATT
 AGTGTGGTGG TGGTGGTGGT GATCATTAA

Figure 10

c)

L1-9.3Hu3 humanized single chain antibody

NdeI

```

M K Y L L P T A A A G L L L L A
1 ACATATGAAA TACCTATTGC CTACGGCAGC CGCTGGATTG TTATTAATCTCG
TGTATACTTT ATGGATAACG GATGCCGTCG GCGACCTAAC AATAATGAGC

```

SfiI

```

A Q P A M A D I Q M T Q S P S S
51 CGGCCAGCC GGCCATGGCC GATATTAGA TGACCCAGAG CCCGAGCAGC
GCCGGTCCG CCGGTACCG CTATAAGTCT ACTGGGTC GGGCTCGTCG
L S A S V G D R V T I T C R A S Q
101 CTGAGCGCGA CGCTGGGTGA TCGTGTGACC ATTACCTGCC GTGCGAGCCA
GACTCGCGCT CGCACCCACT AGCACACTGG TAATGGACGG CACGCTCGGT
D I S N Y L N W Y Q Q K P G K A P
151 GGATATTAGC AACTATCTGA ACTGGTATCA GCAGAAACCG GCAAAGCGC
CCTATAATCG TTGATAGACT TGACCATAGT CGTCTTGGC CCGTTTCGCG
K L L I Y Y T S R L H S G V P S
201 CGAAACTGCT GATTTATTAT ACCAGCGTC TGCAAGCGG TGTGCCGAGC
GCTTGACGA CAAATAATAA TGCTCGCGAG ACGTATGCC ACACGGCTCG
R F S G S G S G T D Y T L T I S S
251 CGTTTAGCG CGAGCGGTAG CGGCACCGAT TATACCTGA CCATTAGCAG
GCAAATCGC CGTCGCCATC GCGTGGCTA ATATGGACT GGTAAATCGTC

```

PstI

```

L Q P E D F A T Y F C Q Q G N T L
301 CCTGCAGCGC GAAGATTTTG CGACCTATTG TTGCAGCAG GCAAACACGC
GGACGTCGGC CTTCTAAAC GCTGGATAAA AACGGTCGTC CGCTGTGCG
P W T F G G G T K L E I K R T S
351 TGCGTGGAC CTTGGCGGT GGCACCAAAAC TGGAAATTAA ACGTACTAGT
ACGGCACCTG GAAACCGCCA CGGTGGTTTG ACCTTAAATT TGCATGATCA
G P G D G G K G G P G K G P G G E
401 GGTCCGGGCG ATGGCGGTAA AGGCGGTCCG GGCAAAGGTC CGGGTGGCGA
CCAGGCCCGC TACCGCCATT TCCGCCAGGC CGTCTTCAG GCCCACCGCT

```

SmaI

XmaI

AvaI

```

G T K G T G P G G E V Q L V Q S G
451 AGGCACCAAA GGCACGGGGC CGGGGGGTGA AGTCAGCTG GTGCAGAGCG
TCCGTGGTTT CGTGACCGG GGCCCCACT TCAAGTCGAC CACGCTCTCGC
G G L V Q S G G S L R L S C R A
501 CGGGTGGCT GGTTCAGAGC GGTGGCAGCC TGCGTCTGAG CTGTCGTGCG
CGCCACCAAGA CCAAGTCTCG CCACCGTCGG ACGCAGACTC GACAGCACGC
S G Y T F T R Y W M L W V R Q R P
551 AGCGGCTATA CCTTTACCCG TTATTGGATG CTGTCGGTGC GTCAGCGTCC
TCGCCGATAT CGAAATGGGC AATAACCTAC GACACCCACG CAGTCGCGAGG
G K G L E W V A E I N P R N D R T
601 GGGTAAAGGC CTGGAATGGG TGGCGGAAAT TAATCCCGT AACGATCGTA
CCCATTTCCG GACCTTACCC ACCGCCCTTA ATTAGCCGCA TTGCTAGCAT
N Y N E K F K T R F T I S V D R
651 CCAACTATAA CGAAAATTT AAAACCCGCT TCACCAATTAG CGTGGATCGT
GGTGATATT CCTTTAAATTTTTGGCGA AGTGGTAAATC GCACCTAGCA

```

PstI

```

S K N T L Y L Q M D S L R A E D T
701 AGCAAAACACCA CCTGTATCT GCAGATGGAT AGCCTGCGTG CGGAAGATAC
TCGTTTTGT GGGACATAGA CGTCTACCTA TCGGACGCAC GCCTCTATG

```

BssHII

```

A V Y F C A L G G G Y A M D Y W G
751 CGCGGTGTAT TTTGCGCGC TGGCGGTGG CTATGGATG GATTATTGGG
GCGCCACATA AAAACCGCGC ACCCGCCACC GATACCGCTAC CTAATAACCC

```

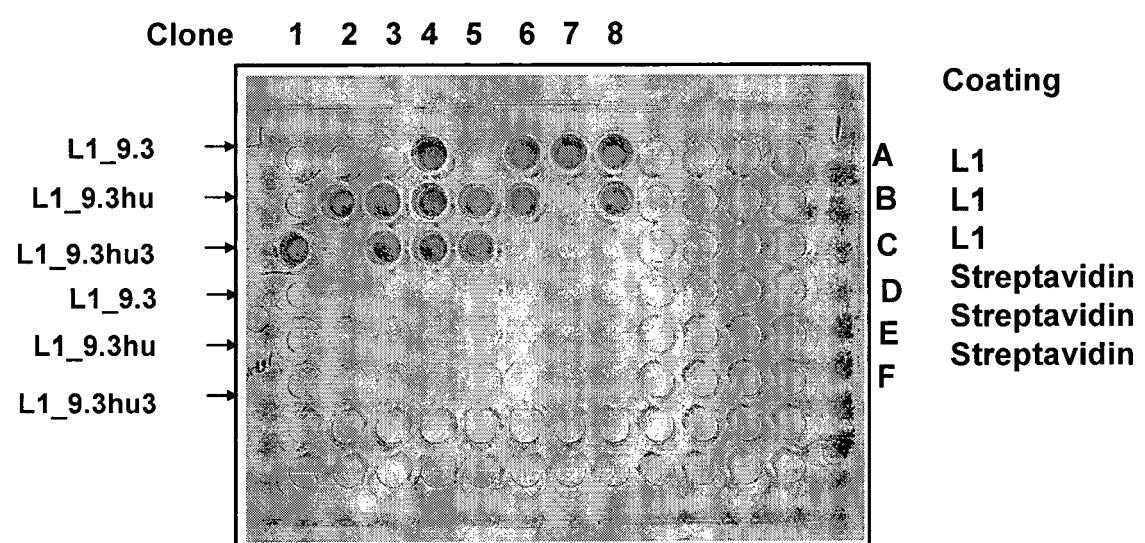
NotI

```

Q G T L V T V S S G G A A A A A P
801 GCCAGGGCAC CCTGGTTACC GTGAGCAGCG GCGTGCAGGC CGCTGCACCA

```

Figure 10 c) cont.


```

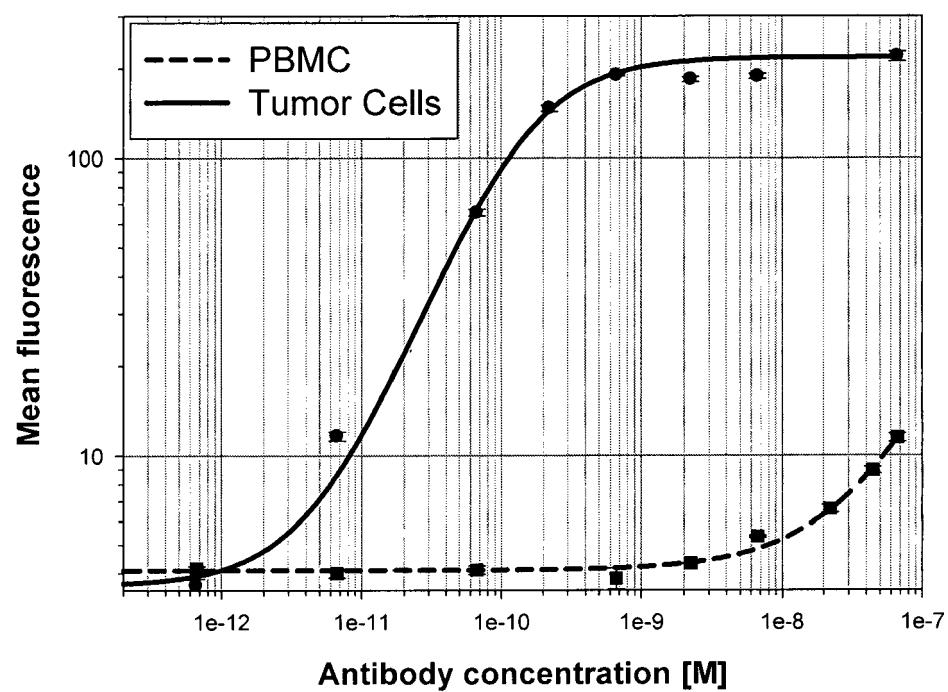
CGTCCCCGTG GGACCAATGG CACTCGTCGC CGCCACGCCG GCGACGTGGT
S V F I F P P S D E Q L K S G T A

```

851 TCTGTCTTCA TCTTCCCGCC ATCTGATGAG CAGTTGAAAT CTGGAAC TGC
 AGACAGAA GT AGAAGGGCGG TAGACTACTC GTCAACTTTA GACCTTGACG
 · S V V C L L N N F Y P R E A K V Q ·
 901 CTCTGTTGTG TGCCTGCTGA ATAAC TTCTA TCCCAGAGAG GCCAAAGTAC
 GAGACAAACAC ACGGACGACT TATTGAAGAT AGGGTCTCTC CGGTTTCATG
 · W K V D N A L Q S G N S Q E S V ·
 951 AGTGGAAAGGT GGATAACGCC CTCCAATCGG GTAACTCCCA GGAGAGTGTGTC
 TCACCTTCCA CCTATTGCGG GAGGTTAGCC CATTGAGGGT CCTCTCACAG
 T E Q D S K D S T Y S L S S T L T ·
 1001 ACAGAGCAGG ACAGCAAGGA CAGCACCTAC AGCCTCAGCA GCACCCCTGAC
 TGTCTCGTCC TGTCGTTCCGT GTCGTGGATG TCGGAGTCGT CGTGGGACTG
 · L S K A D Y E K H K V Y A C E V T ·
 1051 GCTGAGCAAA GCAGACTACG AGAAACACAA AGTCTACGCC TCGGAAGTCA
 CGACTCGTTT CGCTCTGATGC TCTTTGTGTT TCAGATGCCG ACGCTTCAGT
 · H Q G L S S P V T K S F N R G E ·
 1101 CCCATCAGGG CCTGAGTTCG CCCGTCAAA AGAGCTTCAA CGCGGAGAG
 GGGTAGTCCC GGACTCAAGC GGGCAGTGTT TCTCGAAGTT GGCGCCTCTC
 S H H H H H * * ·
 1151 TCACACCACC ACCACCACCA CTAGTAATT
 AGTGTGGTGG TGGTGGTGGT GATCATTAA

Figure 11

Figure 12

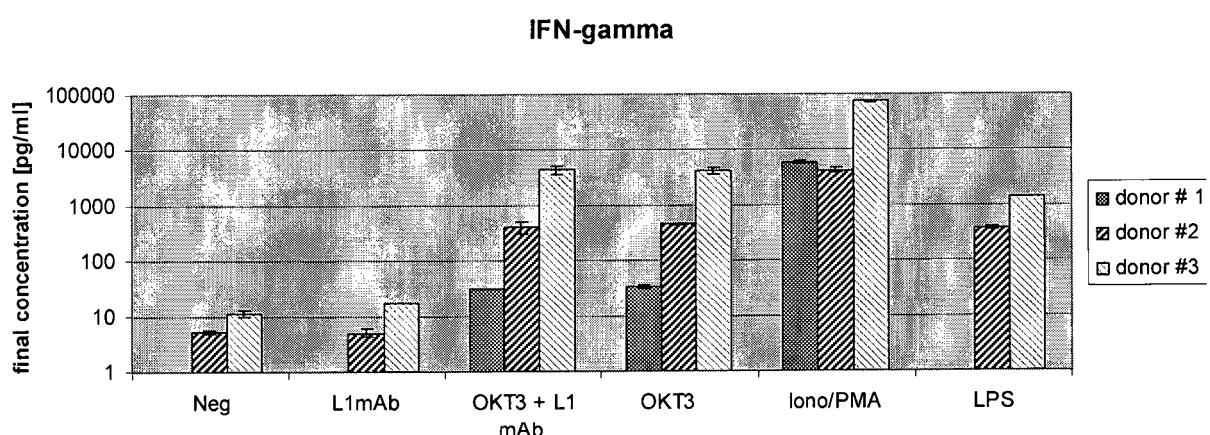

a)

GAAGAGTTAGCCTTGCAGCTGTGCTCAGCCCTAAATAGTCCCAAAATTGCATGCTCTCACTTC
 CTATTTGGTACTTTTATACAGTCAGATTGTGAGCCATTGTAATTGAAGTCAAGACTCA
 GCCTGGACAT**GATGTCCTCTGCTCAGTTCCTGGTCTCCTGTCCTGTCCTCAAGGTAAAAGT**
 TACTACAATGGGAATTTGCTGTTGCACAGTGATTCTGTTGACTGGAATTGGAGGGTCTT
 CTTTCCTGCTTAACTCTGTTGGTATTATTGTTGCTCCACTCCTAGGTACCAAGATGTGATATCCA
 GATGACACAGACTACATCCTCCCTGCTGCCTTCTGGGAGACAGACTCACCACAGTTGCAG
 GGCAAGTCAGGACATTAGCAATTAACTGGTATCAGCAGAAACCAAGATGGAACCTGTTAAA
 CTCCTTATCTATTACACATCAAGATTACACTCAGGAGTCCCCTCAAGGTTAGTGGCAGTGGT
 CTGGAACAGATTATTCTCTCACCATTAGCAACCTGGAGCAAGAAGATTGCACTTACTTTGC
CAACAGGGTAATACGCTCCGTGGACATTGGTGGAGGCACCAAGCTGGAAATCAAACGTAA
 TAGAATCCAAAGTCTCTTCTCGTTGTATGTCTGGCTTCTATGTCTACAAATGATGTAT

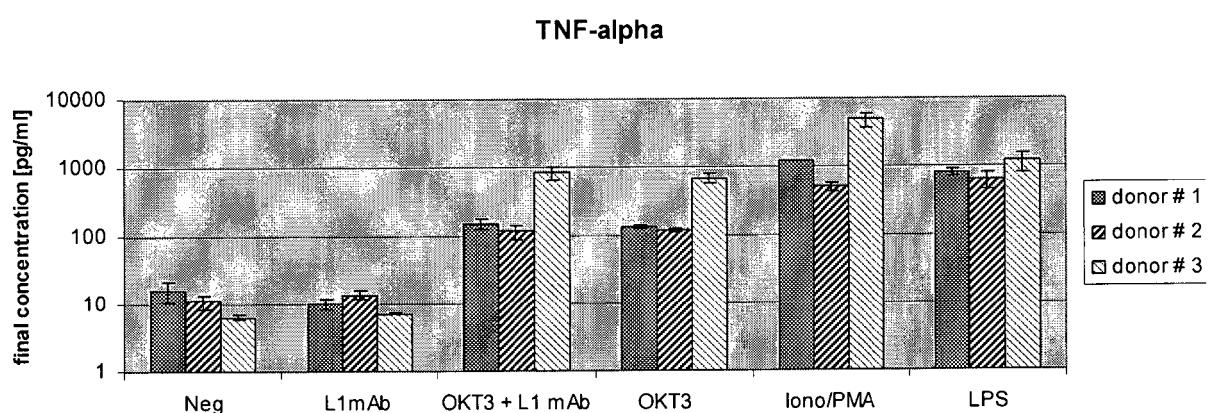
b)

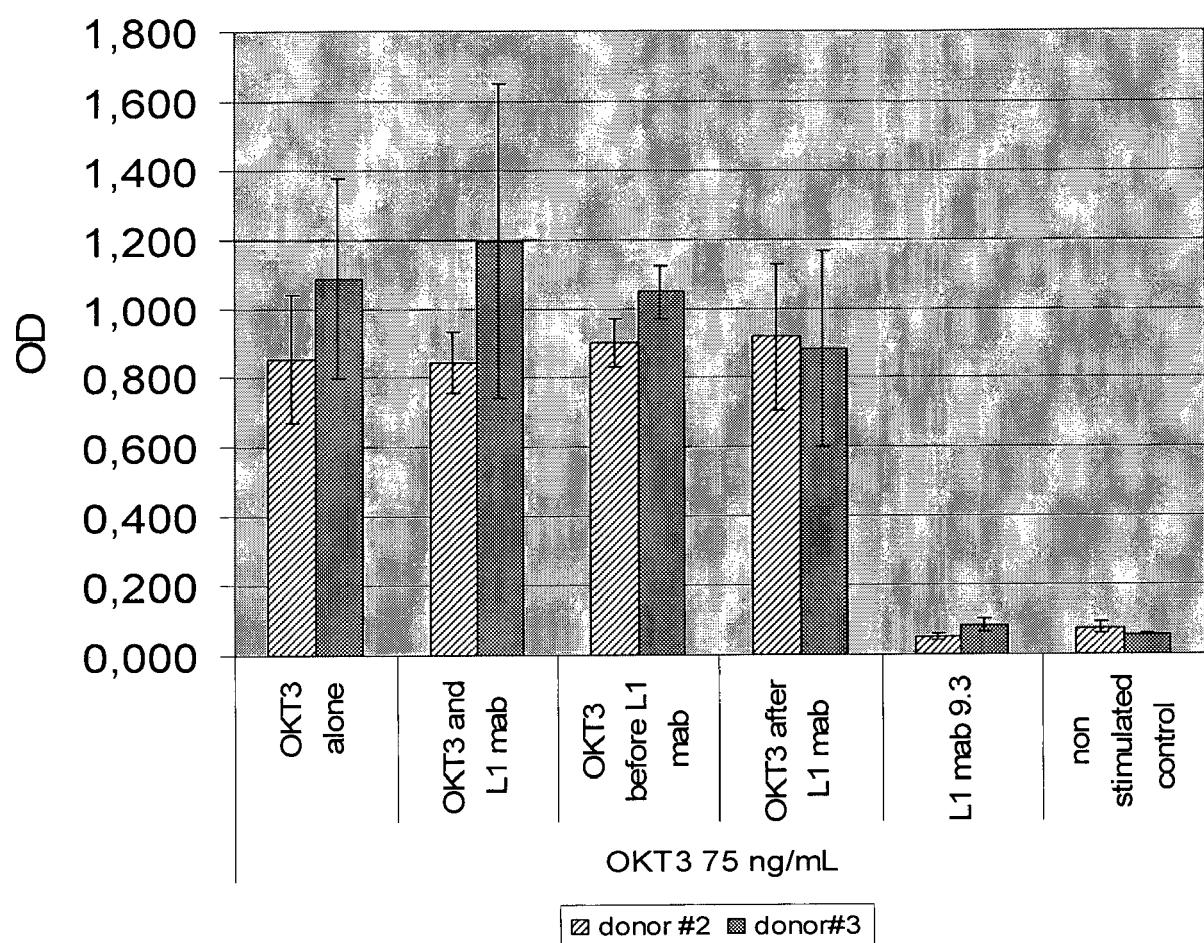
TTCAGCATCCTGATTCCCTGACCCAGGTGTCCTTCTCCAGCAGGAGTAGGTGCTCATCTAAT
 ATGTATCCTGCTCATGAATATGCAAATCCTCTGAATCTACATGGTAAATGTAGGTTGTCTATATCA
 CACACAGAAAAACATGAGATCACAGTTCTCTACAGTTACTGAACACACAGGACCTCACCATGG
GATGGAGCTATATCATCCTCTTTGGTAGCAACAGCTACAGGTAAGGGCTCACAGTAGAAGG
 CTTGAGGTCTGCCATATACATGGGTGACAGTGACATCCACTTGCCTTCTTCCACAGATGTC
 CACTCCCAGGTCCAAC TGCA GAGC CTGGGCTGA ACTGGTGAAGTCTGGGCTTCAGTGAAC
 CTGTCCTGCAGGGCTTCTGGCTACACCTTCA CAGGAGATACTGGATGCTCTGGGTGAGGCAGAGG
 CCTGGACATGGCCTTGAGTGGTTGGAGAGATTAACTCTCGCAACGAACTGTACCTAATTACAATG
 AGAAATTCAAGACCAAGGCCACACTGACTGTAGACCGATCCTCCAGCACAGCCTACATGCAAC
 TCACCAAGCCTGACATCTGAGGACTCTGCGGTCTATTCTGTGCCCTGGGGGGGGCTATGCTAT
GGACTATTGGGTCAAGGAACCTCAGTCACCGTCTCCTCAGGTAAGAATGGCCTCCAGGTCT
 TAATTTTAACCTTGTATGGAGTTCTGAGCATTGCAAGACTAATCTTGGATATTGTCCCTGAG
 GGAGCCGGCTGAGAGAAGTTGGAAATAACTGTCTAGGGATCTCAGAGCCTTACAGGACAGATT
 A

Figure 13

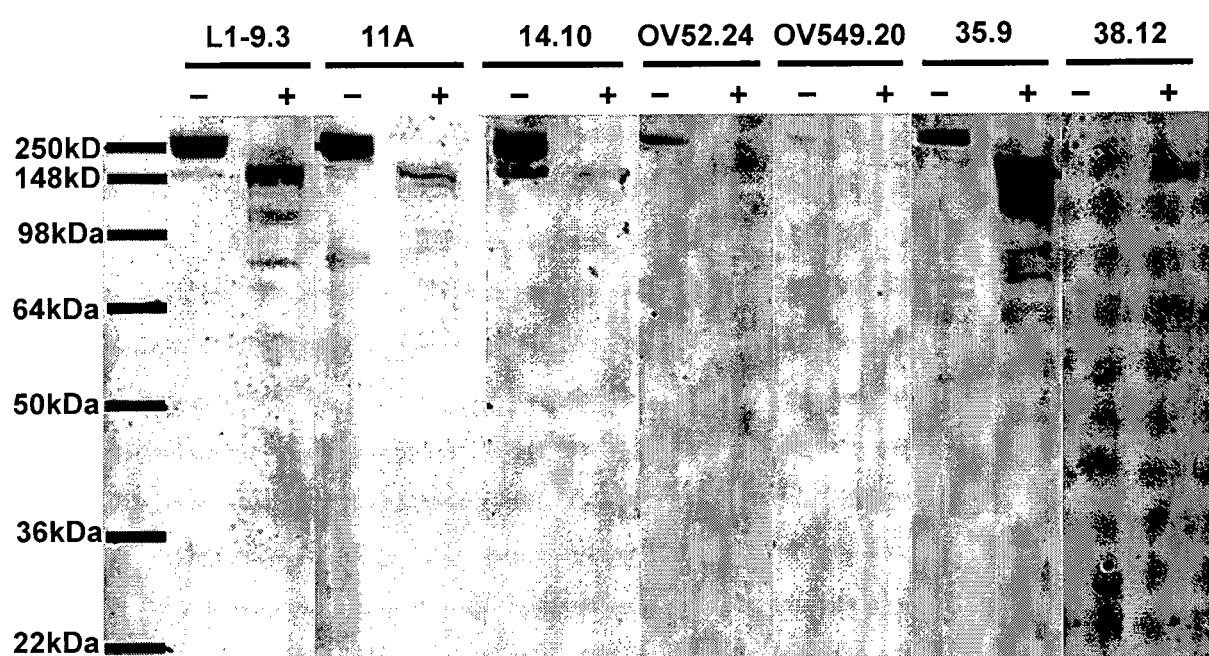

A)

B)


	K_D [M]
Tumor Cells	1×10^{-10}
PBMC (estimated)	$>4 \times 10^{-8}$


Figure 14

A)



B)

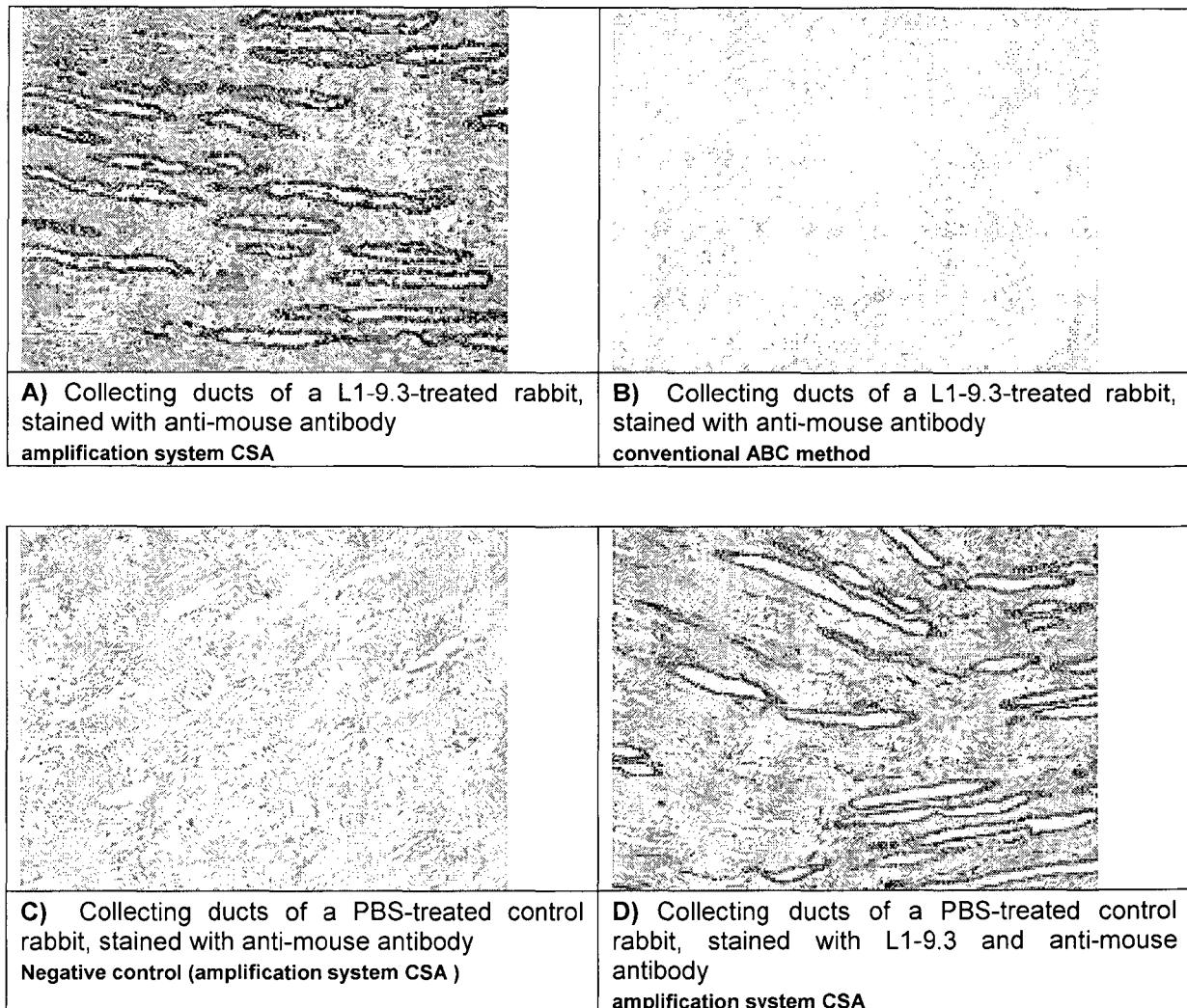


Figure 15

Figure 16

Figure 17

Figure 18

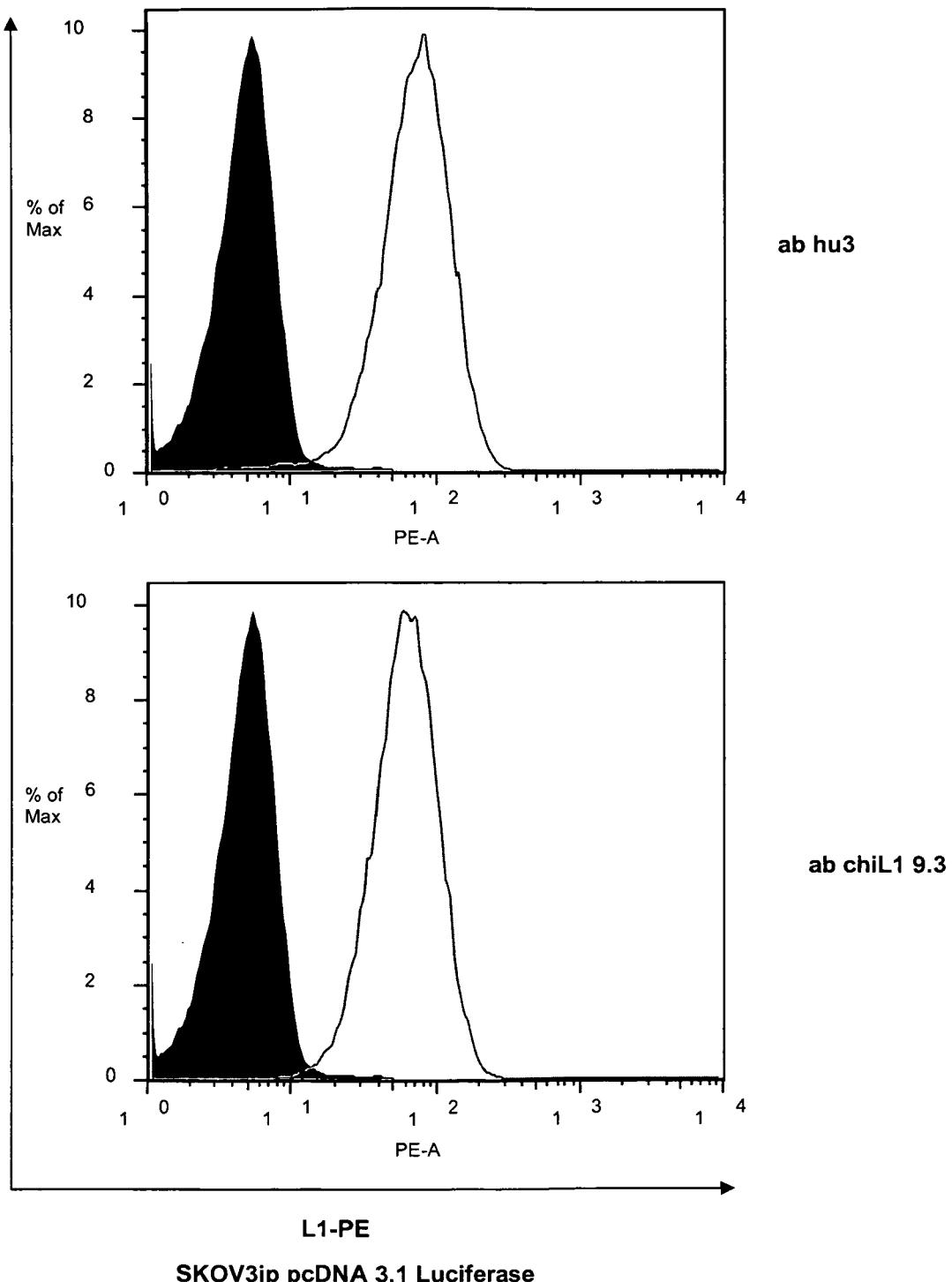
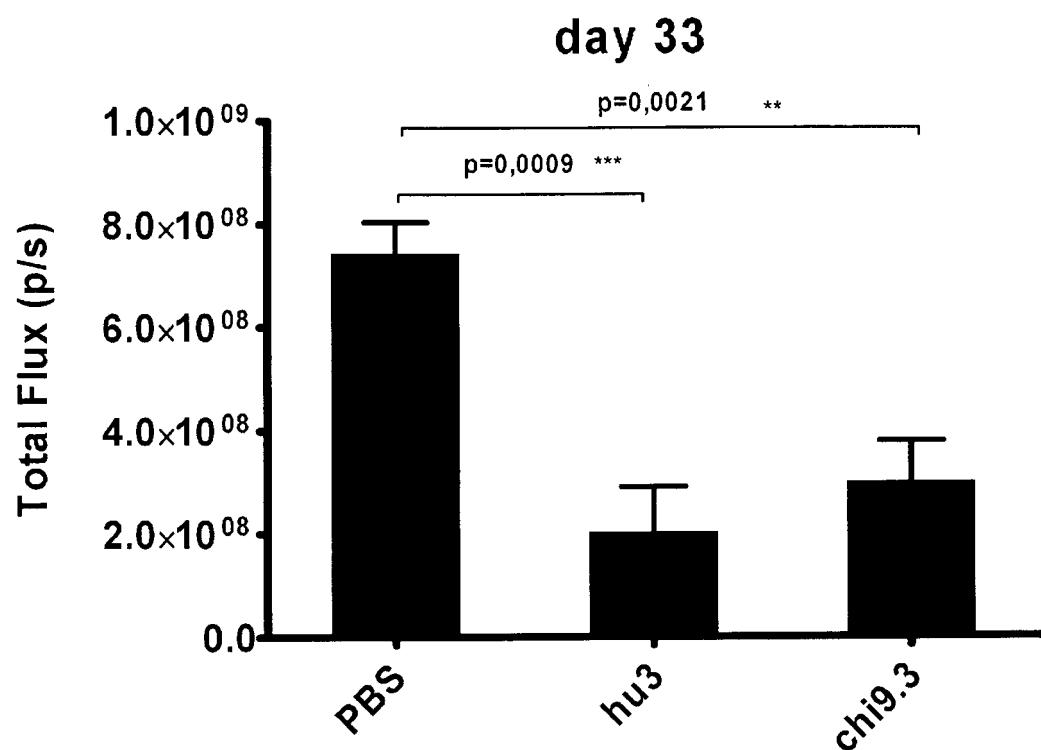



Figure 19

Figure 20

A

B

day 36

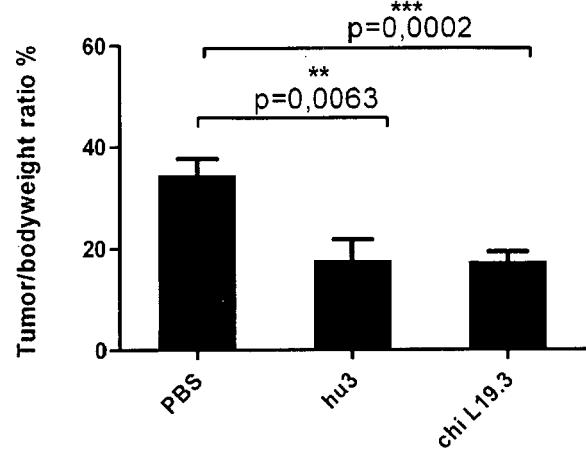


Figure 21 A

Caspase-3/-7 activity:
in PT45res cells after stimulation with gemcitabine and L1-9.3 antibody

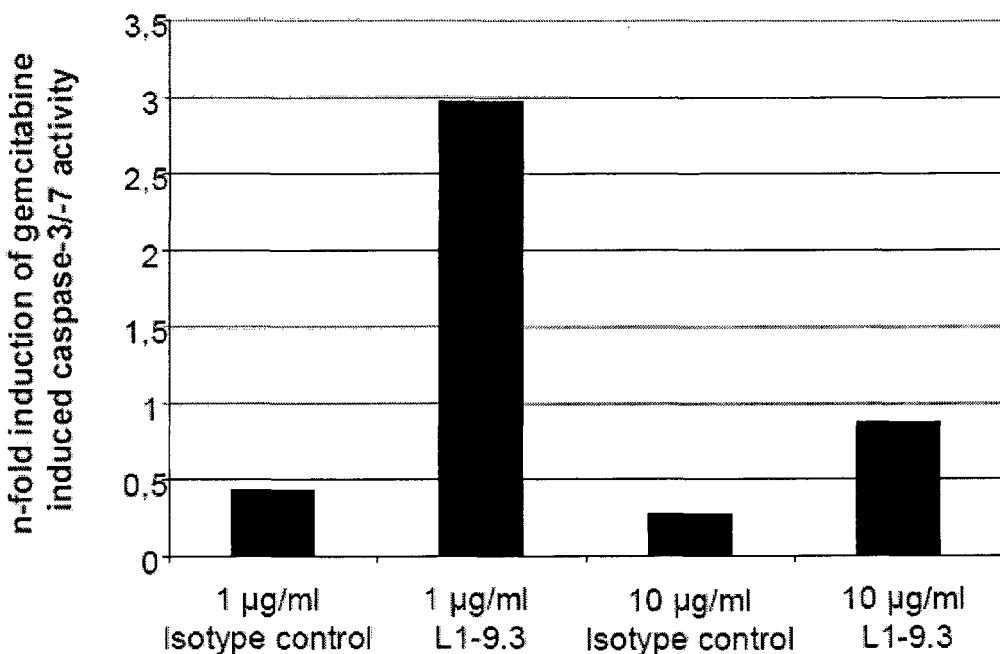


Figure 21 B

Caspase-3/-7 activity:
in PT45res cells after stimulation with etoposide and L1-9.3 antibody

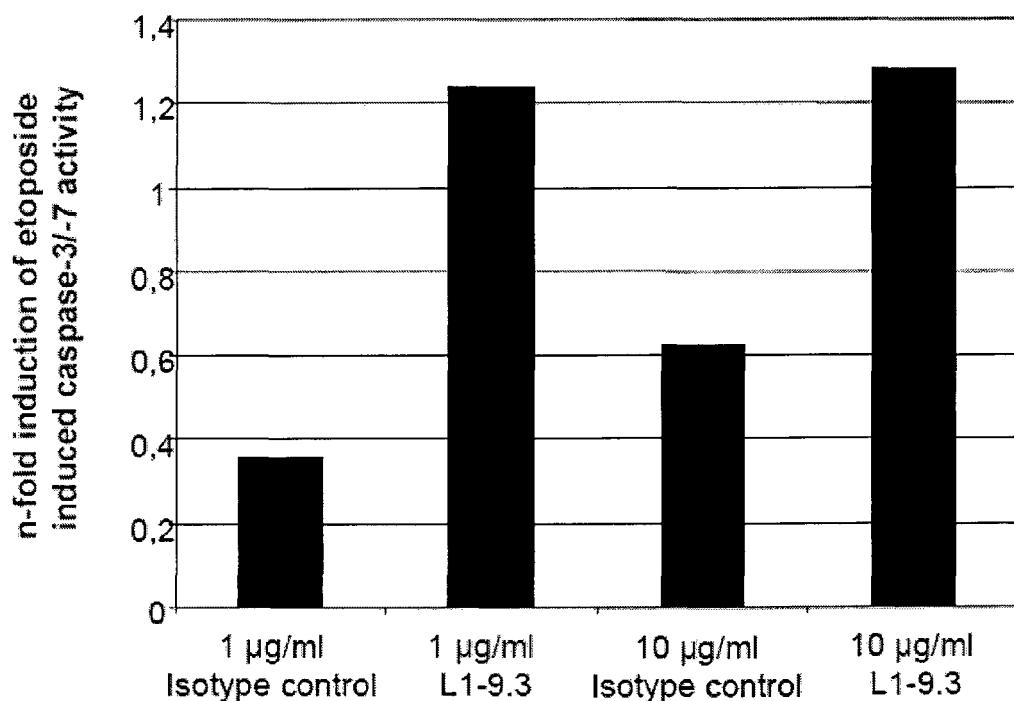


Figure 22 A

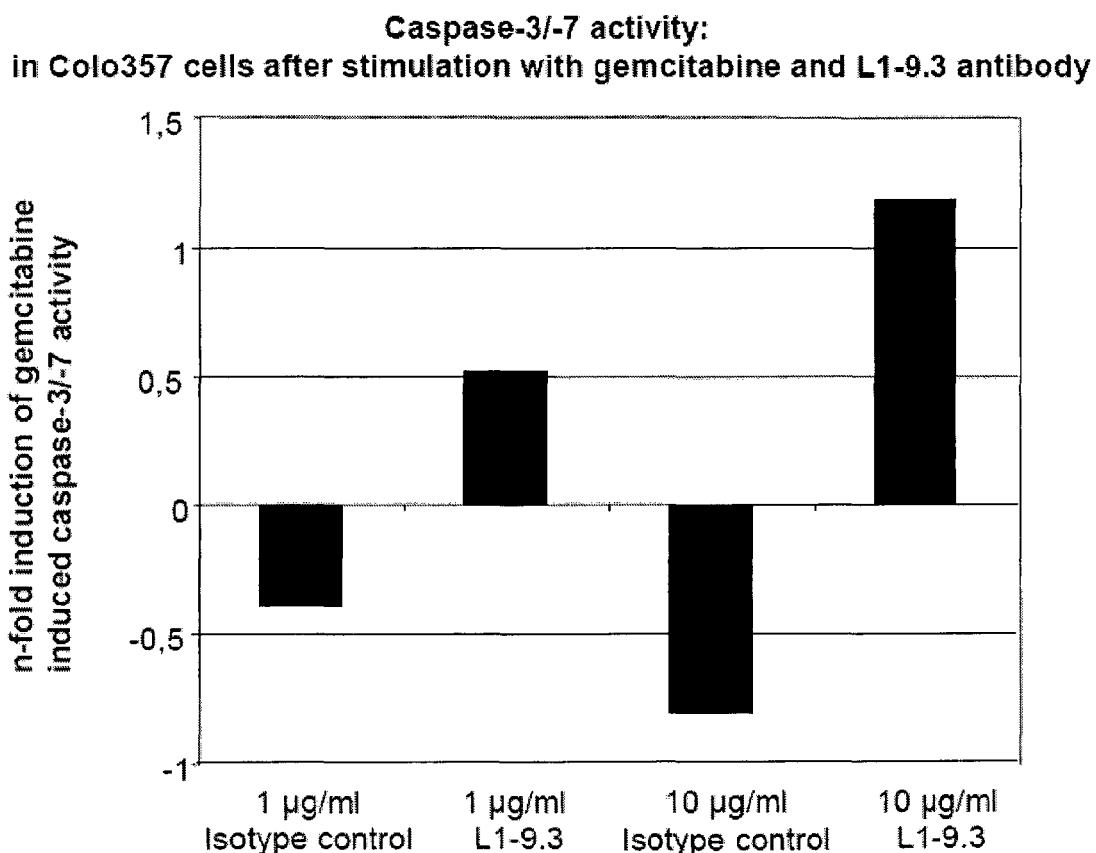
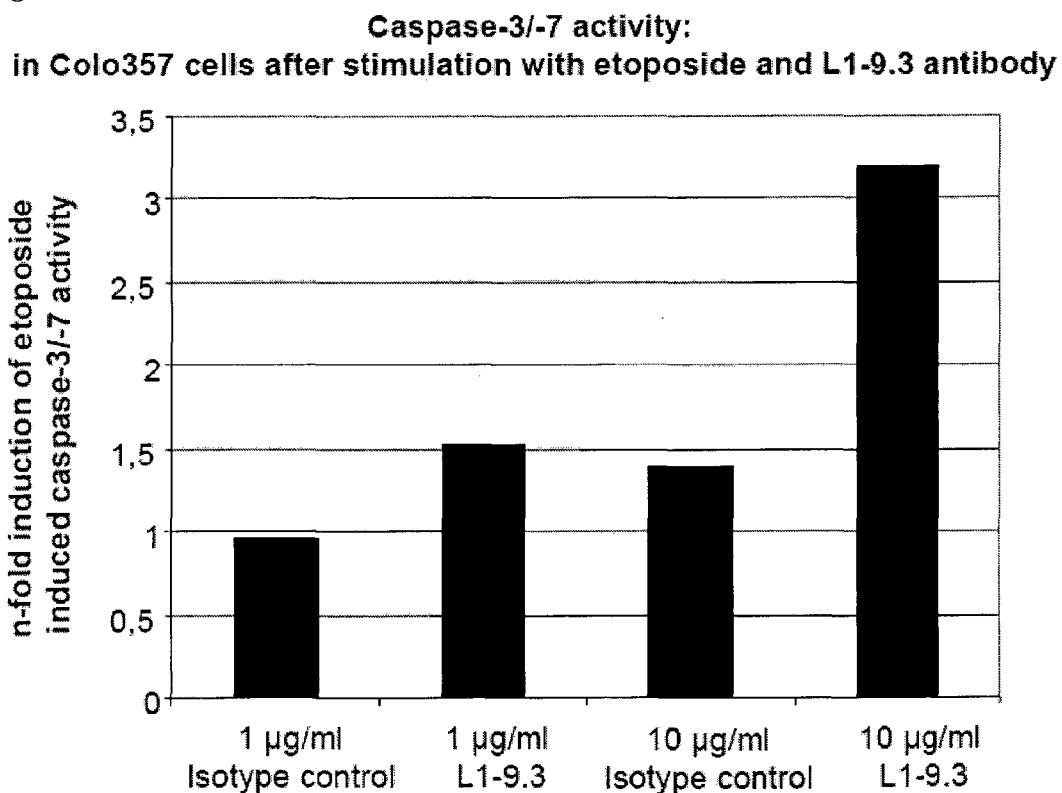



Figure 22 B

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 0204952 A [0003] [0091]
- WO 06013051 A [0003] [0091]
- WO 2008046529 A [0006] [0194]
- US 5223409 A [0007]
- WO 9218619 A [0007]
- WO 9117271 A [0007]
- WO 9220791 A [0007]
- WO 9215679 A [0007]
- WO 9301288 A [0007]
- WO 9201047 A [0007]
- WO 9209690 A [0007]
- WO 9002809 A [0007]
- US 5585089 A, Queen [0014] [0019]
- US 5225539 A, Winter [0014] [0019]
- US 4816567 A, Cabilly [0014] [0044]
- US 5624821 A [0022]
- WO 9958572 A [0022]
- US 6737056 B [0022]
- US 5859205 A [0026]
- US 6407213 B [0027]
- US 5545807 A [0031]
- US 5545806 A [0031]
- US 5569825 A [0031]
- US 5589369 A [0031]
- US 5591669 A [0031]
- US 5625126 A [0031]
- US 5633425 A [0031]
- US 5661016 A [0031]
- WO 881649 A [0039]
- WO 9311161 A [0039]
- WO 9957150 A [0039]
- EP 1293514 B1 [0039]
- US 2007031436 A [0042]
- EP 1293514 A [0042]
- US 4816397 A, Boss [0044]
- WO 9012592 A [0047]
- WO 2007030642 A [0047]
- WO 2004067038 A [0047]
- WO 2004003183 A [0047]
- US 20050074426 A [0047]
- WO 9404189 A [0047]
- WO 9840052 A [0086]

Non-patent literature cited in the description

- MOOS M ; TACKE R ; SCHERER H ; TEPLow D ; FRUH K ; SCHACHNER M. Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. *Nature*, 1988, vol. 334, 701-3 [0002]
- HORTSCH M. Structural and functional evolution of the L1 family: are four adhesion molecules better than one?. *Mol Cell Neurosci*, 2000, vol. 15, 1-10 [0002]
- SCHACHNER M. Neural recognition molecules and synaptic plasticity. *Curr Opin Cell Biol*, 1997, vol. 9, 627-34 [0002]
- KATAYAMA M ; IWAMATSU A ; MASUTANI H ; FURUKE K ; TAKEDA K ; WADA H et al. Expression of neural cell adhesion molecule L1 in human lung cancer cell lines. *Cell Struct Funct*, 1997, vol. 22, 511-6 [0002]
- SENNER V ; KISMANN E ; PUTTMANN S ; HOESS N ; BAUR I ; PAULUS W. L1 expressed by glioma cells promotes adhesion but not migration. *Glia*, 2002, vol. 38, 146-54 [0002]
- THIES A ; SCHACHNER M ; MOLL I ; BERGER J ; SCHULZE HJ ; BRUNNER G et al. Overexpression of the cell adhesion molecule L1 is associated with metastasis in cutaneous malignant melanoma. *Eur J Cancer*, 2002, vol. 38, 1708-1 [0002]
- FOGEL M ; MECHTERSHEIMER S ; HUSZAR M ; SMIRNOV A ; ABU DA ; TILGEN W et al. L1 adhesion molecule (CD 171) in development and progression of human malignant melanoma. *Cancer Lett*, 2003, vol. 189, 237-47 [0002]
- MELI ML ; CARREL F ; WAIBEL R ; AMSTUTZ H ; CROMPTON N ; JAUSSI R ; MOCH H ; SCHUBIGER PA ; NOVAK-HOFER I. Anti-neuroblastoma antibody chCE7 binds to an isoform of L1-CAM present in renal carcinoma cells. *Int J Cancer*, 1999, vol. 83, 401-408 [0002] [0003]
- ALLORY Y ; MATSUOKA Y ; BAZILLE C ; CHRISTENSEN EI ; RONCO P ; DEBIEC H. The L1 cell adhesion molecule is induced in renal cancer cells and correlates with metastasis in clear cell carcinomas. *Clin Cancer Res*, 2005, vol. 11, 1190-7 [0002]

- **GAVERT N ; CONACCI-SORRELL M ; GAST D ; SCHNEIDER A ; ALTEVOGT P ; BRABLETZ T et al.** L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. *J Cell Biol*, 2005, vol. 168, 633-42 [0002]
- **FOGEL M ; GUTWEIN P ; MECHTERSHEIMER S ; RIEDLE S ; STOECK A ; SMIRNOV A et al.** L1 expression as a predictor of progression and survival in patients with uterine and ovarian carcinomas. *Lancet*, 2003, vol. 362, 869-75 [0002]
- **ARLT MJ ; NOVAK-HOFER I ; GAST D ; GSCHWEND V ; MOLDENHAUER G ; GRUNBERG J et al.** Efficient inhibition of intra-peritoneal tumor growth and dissemination of human ovarian carcinoma cells in nude mice by anti-L1-cell adhesion molecule monoclonal antibody treatment. *Cancer Res*, 2006, vol. 66, 936-43 [0003]
- **HUSZARM M ; MOLDENHAUER G ; GSCHWEND V ; BEN-ARIE A ; ALTEVOGT P ; FOGEL M.** Expression profile analysis in multiple human tumors identifies L1 (CD171) as a molecular marker for differential diagnosis and targeted therapy. *Hum Pathol*, 2006, vol. 37, 1000-1008 [0003]
- **PATEL K ; KIELY F ; PHIMISTER E ; MELINO G ; RATHJEN F ; KEMSHEAD JT.** The 200/220 kDa antigen recognized by monoclonal antibody (MAb) UJ127.11 on neural tissues and tumors is the human L1 adhesion molecule. *Hybridoma*, 1991, vol. 10, 481-491 [0003]
- **WOLFF JM ; FRANK R ; MUJOO K ; SPIRO RC ; REISFELD RA ; RATHJEN FG.** A human brain glycoprotein related to the mouse cell adhesion molecule L1. *J Biol Chem*, 1988, vol. 263, 11943-11947 [0003]
- **SEBENS MÜERKOSTER et al.** *Oncogene*, 26 April 2007, vol. 26 (19), 2759-68 [0003] [0059]
- **WINTER, G. ; MILSTEIN, C.** *Nature*, 1991, vol. 349, 293-299 [0007]
- **FUCHS et al.** *Bio/Technology*, 1991, vol. 9, 1370-1372 [0007]
- **HAY et al.** *Hum. Antibod. Hybridomas*, 1992, vol. 3, 81-85 [0007]
- **HUSE et al.** *Science*, 1989, vol. 246, 1275-1281 [0007]
- **GRIFFITHS et al.** *EMBO J.*, 1993, vol. 12, 725-734 [0007]
- A practical approach. Epitope Mapping. Oxford University Press, 2001 [0008]
- **OLESZEWSKI, M. ; GUTWEIN, P. ; LIETH, W. ; RAUCH, U. ; ALTEVOGT, P.** Characterization of the L1-neurocan binding site. Implications for L1-L1 homophilic binding. *J Biol Chem.*, 2000, vol. 275, 34478-34485 [0008]
- **CARTER PJ.** Potent antibody therapeutics by design. *Nature Rev. Immunol.*, 2006, vol. 6, 343-357 [0039]
- **BIRD et al.** *Science*, 1988, vol. 242, 423-426 [0040]
- **ORLANDI et al.** *Proc Natl Acad Sci USA*, 1989, vol. 86, 3833-3837 [0040]
- **CLARKSON et al.** *Nature*, 1991, vol. 352, 624-628 [0040]
- **SEGAL DM ; WEINER GJ ; WEINER LM.** Bispecific antibodies in cancer therapy. *Current Opin. Immunol.*, 1999, vol. 11, 558-562 [0045]
- **VAN SPRIEL AB ; VAN OJIK HH ; VAN DE WINKEL JGJ.** Immunotherapeutic perspective for bispecific antibodies. *Immunology Today*, 2000, vol. 21, 391-397 [0045]
- **P. J. LACHMANN.** *Clin. Exp. Immunol.*, 1990, vol. 79, 315 [0046]
- **V. RASO ; T. GRIFFIN.** *Cancer Res.*, 1981, vol. 41, 2073 [0046]
- **S. HONDA ; Y. ICHIMORI ; S. IWASA.** *Cytotechnology*, 1990, vol. 4, 59 [0046]
- **J. CORVALAN ; W. SMITH ; V. GORE.** *Intl. J. Cancer*, 1988, 22 [0046]
- **M. PIMM et al.** *British J. of Cancer*, 1990, vol. 61, 508 [0046]
- **M. BRENNAN et al.** *Science*, 1985, vol. 229, 81 [0046]
- **KUROKAWA, T. et al.** *Biotechnology*, 1989, vol. 7, 1163 [0046]
- **WU AM ; SENTER PD.** Arming antibodies: prospects and challenges for immunoconjugates. *Nature Biotechnol.*, 2005, vol. 23, 1137-1146 [0047]
- **PASTAN I ; HASSAN R ; FITZGERALD DJ ; KREITMAN RJ.** Immunotoxin treatment of cancer. *Annu. Rev. Med.*, 2007, vol. 58, 221-237 [0047]
- **MÜERKOSTER et al.** *Oncogene*, 26 April 2007, vol. 26 (19), 2759-68 [0062]
- Remmington's Pharmaceutical Sciences. 624-652 [0065]
- **WU ; WU.** *J. Biol. Chem.*, 1987, vol. 262, 4429-4432 [0084]
- **LANGER.** *Science*, 1990, vol. 249, 1527-1533 [0086]
- **KABAT, E. A ; WU, T. T. ; PERRY, HM ; GOTTESMAN, KS ; FOELLER, C.** Sequences of proteins of immunological interest. Diane Books Publishing company, 1992 [0156]