

(11) **EP 2 631 315 A1**

(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC

(43) Date of publication: **28.08.2013 Bulletin 2013/35**

(21) Application number: 11835497.6

(22) Date of filing: 27.04.2011

(51) Int Cl.: C22C 38/40 (2006.01) C21D 8/12 (2006.01)

(86) International application number: **PCT/CN2011/073368**

(87) International publication number: WO 2012/055223 (03.05.2012 Gazette 2012/18)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 25.10.2010 CN 201010518005

(71) Applicant: Baoshan Iron & Steel Co., Ltd. Shanghai 201900 (CN)

(72) Inventors:

 HU, Zhanyuan Shanghai 201900 (CN)

• WANG, Bo Shanghai 201900 (CN) XIE, Shishu Shanghai 201900 (CN)

 MA, Aihua Shanghai 201900 (CN)

• ZOU, Liang Shanghai 201900 (CN)

 WANG, Zitao Shanghai 201900 (CN)

 ZHU, Yuhua Shanghai 201900 (CN)

 (74) Representative: Jennings, Nigel Robin et al Kilburn & Strode LLP
 20 Red Lion Street London WC1R 4PJ (GB)

(54) HIGH STRENGTH NON-ORIENTED ELECTRIC STEEL HAVING HIGHER MAGNETIC FLUX DENSITY AND MANUFACTURE METHOD THEREOF

(57) A non-oriented electrical steel having relative high magnetic induction and high intensity and a manufacturing method thereof, comprising steps as follows: 1) smelting and pouring, the weight percentage of the compositions of the electrical steel are as follows: $C \le 0.0040\%$, Si is 2.50% to 4.00%, Al is 0.20% to 0.80%, Cr is 1.0 to 8.0%, Ni is 0.5 to 5.0%, Mn $\le 0.50\%$, P $\le 0.30\%$, S $\le 0.0020\%$, N $\le 0.0030\%$, Ti $\le 0.0030\%$, Nb $\le 0.010\%$, V $\le 0.010\%$, C+S+N+Ti $\le 0.010\%$, and a balance substantially being Fe and inevitable impurities, carrying out smelting, RH vacuum process and pouring; 2) hot rolling; 3) normalizing, temperature is 850 to 950° C, time is 0.5

to 3 min, then being cooled to 650 to 750 °C slowly at 5 to 15°C/s, further being cooled to no higher than 100 °C fast at 20 to 70°C/s; 4) acid pickling and cold rolling, total screw-down rate is no less than 70%; 5) annealing, temperature is 800 to 1000 °C, holding 5 to 60s, then being cooled to 650 to 750°C slowly at 3 to 10°C/s, further being cooled to no higher than 100°C fast at 20 to 70°C/s. The present invention can manufacture a non-oriented electrical steel having high intensity and high magnetic induction without increasing manufacturing difficulty.

Description

Technical Field

[0001] The present invention relates to manufacturing of an electrical steel field, especially to a non-oriented electrical steel having relative high magnetic induction and high intensity and a manufacturing method thereof, which is applied in devices requiring high starting torque and impact resistant performance, such as electric automobile motor and running-up electric machine, wherein by adding solid molten strengthening elements such as Ni, Cr and the like, as well as controlling elements that damage magnetic property such as C, N, S, Ti and the like, the magnetic property of the electrical steel may be ensured so as to improve the yield strength of the electric steel, at the same time by carrring out a proper normalizing annealing process to a hot rolled plate so as to improve the magnetic induction of the product.

Background Art

10

15

25

30

35

40

45

[0002] With the exhaustion of nonrenewable resources such as oil and coal and the like day by day, the harmfulness of environmental greenhouse effect becomes severe day by day, electric automobile and hybrid power automobile, as a low pollutant and high environment-protective vehicle, is got more and more attention, which will be applied widely without doubt. Stator cores and rotor cores of traction motor of electric automobile and hybrid power automobile are made of non-oriented electric steel, when automobile starts up and accelerates, the traction motor needs high torque, so that it is necessary for electric steel plate to possess a high magnetic induction. Also, rotor cores of motor endures extreme strain due to centrifugal force in a high speed, and is subjected to strong impact momentarily when automobile starts up, so it is required for core material to possess high intensity and toughness.

[0003] In current non-oriented silicon steel product, as the content of Si improves, the intensity of product improves, the yield intension of a part of top level high steel grade product reaches up to 450MPa, the iron loss of product is relatively low as well, which satisfies application in normal industrial electric machinery and electric generating set. But toughness and plasticity of this kind of products is bad, being prone to creak, and magnetic induction is relatively low as well, which is not applied in the use of running-up electric machine such as electric automobile motor, so it is necessary to develop a non-oriented electrical steel having high intensity and high magnetic induction.

[0004] "High Intensity electromagnetic steel plate and processing component thereof and manufacturing method thereof" is disclosed in Chinese Patent Application CN 1863934, wherein strengthening elements such as Mn, Cu and the like, are added in its composition, so as to improve yield intension and tensile intension of electromagnetic steel plate, the short of which is that when product is manufactured in accordance with this method, cold rolling is difficult, magnetic property of electromagnetic steel plate is affected as well, so the magnetic induction of the manufactured electromagnetic steel plate is relatively low. In order to improve the intensity of the product, it is necessary to cool from high temperature to intermediate temperature at a high cooling speed after the cold rolling plate is annealed, but in this treatment, a larger stress will be produced in the inner of the strip which has a bad influence on the shape of the strip, and affects the magnetic property and fatigue resistance of the product. Also, in this patent application, it is necessary to hold a long time at intermediate temperature zone to carry out hardening treatment in annealing and cooling for cold rolling, which is adverse to achieve in a normal industrial annealing machine set. Another aspect of this application is to manufacture an electromagnetic steel plate, wherein the material thereof is relatively soft before being punched, the manufactured component is thermo-hardened to achieve the object of intensity improvement and abrasion resistance, which makes several thermal treatment processes added in customer use.

[0005] In the application WO 2009/128428 A1, it is necessary to cool at more than 50°C/s of cooling speed in a temperature interval from 900°C to 500°C, after the product is finally annealed. But in this method, intense stress will be produced in strip, having a strong influence on the shape of the strip and the magnetic property, which is adverse to be applied in actual industrial production.

Summary of the Invention

[0006] The object of the present invention is to provide a non-oriented electrical steel having relative high magnetic induction and high intensity and a manufacturing method thereof, which can be manufactured from existing devices without increasing manufacturing difficulty, so as to stably manufacture a non-oriented electrical steel having high intensity, abrasion resistance as well as high magnetic property.

[0007] In order to obtain the above-described object, the technical solution of the present invention is that

[0008] A non-oriented electrical steel having relative high magnetic induction and high intensity, wherein the weight percentage of the chemical composition are:

C: ≤0.0040%

Si: $2.50\% \sim 4.00\%$ Al: $0.20\% \sim 0.80\%$ Cr: $1.0\sim 8.0\%$ Ni: $0.5\sim 5.0\%$ Mn: <0.50%P: $\le 0.30\%$ S: $\le 0.0020\%$ N: $\le 0.0030\%$ Ti: $\le 0.0030\%$

Nb: ≤0.010% V: ≤0.010%

5

10

15

20

25

30

35

40

45

50

55

C+S+N+Ti: ≤0.010%

and a balance substantially being Fe and inevitable impurities.

[0009] Further, the non-oriented electrical steel of the present invention comprises Cu≤3%, as represented by weight percentage.

[0010] Also, the non-oriented electrical steel of the present invention comprises Sb and/or Sn, having a total content of no more than 0.5%, as represented by weight percentage.

[0011] Preferably, in the non-oriented electrical steel of the present invention, $C \le 0.002\%$ or $C \le 0.0015\%$; the content of Si is 2.8 to 3.3%; the content of Al is 0.4% to 0.6%; the content of Cr is 2.5% to 6%; the content of Ni is 1.0% to 3.5%; the contention of P is no more than 0.1%, the content of S is no more than 0.0015%; the content of N is no more than 0.002%; the content of Ti is no more than 0.0015%, as represented by weight percentage.

[0012] A method for manufacturing a non-oriented electrical steel having relative high magnetic induction and high intensity in accordance with the present invention, comprising steps as follows:

1) smelting and pouring

the weight percentage of the chemical compositions of the non-oriented electrical steel are as follows: C \leq 0.0040%, Si is 2.50% \sim 4.00%, A1 is 0.20% \sim 0.80%, Cr is 1.0 \sim 8.0%, Ni is 0.5 \sim 5.0%, Mn \leq 0.50%, P \leq 0.30%, S \leq 0.0020%, N \leq 0.0030%, Ti \leq 0.0030%, Nb \leq 0.010%, V \leq 0.010%, C+S+N+Ti \leq 0.010%, and a balance substantially being Fe and inevitable impurities, carrying out smelting, RH vacuum process and being poured to a slab in accordance with the above compositions;

2) hot rolling

heating temperature of the slab is $1050\,^{\circ}\text{C}$ to $1200\,^{\circ}\text{C}$, holding time is no less than 30min, incipient rolling temperature in planishing process is controlled to 940 $^{\circ}\text{C}$ to $1000\,^{\circ}\text{C}$, end-rolling temperature is no less than 850 $^{\circ}\text{C}$, final stand screw-down rate is controlled to 10 to 15%, the coiling temperature is controlled to 500 to 700 $^{\circ}\text{C}$, the thickness of rolled plate is 2.0 to 2.6mm;

3) hot rolled plate normalizing

the normalizing temperature is 850 to 950°C, holding time is 0.5 to 3min, then being cooled to 650 to 750°C slowly at a cooling speed of 5 to 15°C/s, further being cooled to no higher than 100°C fast at a cooling speed of 20 to 70°C/s;

4) acid pickling and cold rolling

being cold rolled by means of single cold rolled process, total screw-down rate is no less than 70%;

5) annealing with continuous furnace

carrying out annealing treatment with continuous furnace, annealing temperature is 800 to 1000 $^{\circ}$ C, holding it 5 to 60s, then being cooled to 650 to 750 $^{\circ}$ C slowly at a cooling speed of 3 to 10 $^{\circ}$ C/s, further being cooled to no higher than 100 $^{\circ}$ C fast at a cooling speed of 20 to 70 $^{\circ}$ C/s.

[0013] Further, the non-oriented electrical steel of the present invention comprises Cu≤3%, as represented by weight percentage.

[0014] Also, the non-oriented electrical steel of the present invention comprises Sb and/or Sn, having a total content of no more than 0.5%, as represented by weight percentage.

[0015] In the composition designs of the present invention,

[0016] C can improve the intensity of the steel plate, but fine carbonization will strongly deteriorate magnetic property, when the content of C is larger, magnetic aging will occur in electrical steel, so the percentage of C is no more than 0.004% in the present invention, if the content of C is 0.002% or lower, the inhibiting effect on magnetic aging is prominent, in order to improve intensity without producing non-metallic deposition such as carbonization etc., more preferred being $\le 0.0015\%$.

[0017] Si can improve electric resistance of steel and reduce iron loss, if improving the content of Si, iron loss may be reduced while intensity may be improved, so the content of Si can be improved as high as possible, requiring no less

than 2.5%, but when the content of Si is improved to a certain extent, product become brittle while magnetic induction decreases, therefore, it is required that the content of Si is no more than 4.0%, further preferably being 2.8 to 3.3%.

[0018] The effect of AI is similar to that of Si, which may reduce iron loss, if the content of AI is improved, AIN may be coarsened, which facilitates the growth of structure crystal grain to improve magnetic property of steel, but with the increase of AI, viscosity of liquid steel increases, making steel-making more difficult, while magnetic induction decreases as well, so the content of AI is chosen to 0.2% to 0.8%, preferably to 0.4% to 0.6%.

[0019] Cr and Ni are essential elements in the present invention, added as strengthening elements, and metallic phase based on Cr and Ni is formed in steel plate, so that try for high intensity without deterioration in magnetic property. If the content of Cr is low, the effect of high intensity decreases, in order to improve the intensity of steel plate, technological requirement in subsequent process is high, degrees of freedom of adjustment in manufacture is low, but if the content of Cr is high, magnetic property will deteriorate, and crack is subjected to occur in hot rolling process, so it is required that the content of Cr is 1.0% to 8.0%, further preferably in 2.5% to 6%.

[0020] Ni can improve the intensity of steel plate and improve magnetic induction, having a little influence on iron loss, which is added as a beneficial element, but if Ni is added too more, crack is subjected to occur in hot rolling process, and the coating performance of the surface is worsened, and the cost of product is improved, so it is required in the present invention that the content of Ni is 0.5% to 5.0%, further preferably being 1.0% to 3.5.

[0021] Mn can improve the intensity of steel, however, in the present invention, Mn is not added for that purpose, but is added for improving intrinsic resistance or coarsening sulfide to reduce iron loss, adding Mn too more will result in reduction of magnetic induction, so it is required that the content of Mn is no more than 0.5%.

[0022] P is an element for improving tension stress prominently, but P is subjected to segregate and accumulate in grain boundary, making steel plate brittle severely, so it is required that the content of P is no more than 0.3%, preferably being no more than 0.1%.

[0023] S is a element that damages magnetic property, the formed fine sulfide inhibits growth of crystal grain, making iron loss increasing, so it is required that the content of S is no more than 0.002%, preferably being no more than 0.0015%.

[0024] N, which is similar to S, will damage magnetic property, so it is required that the content of N is no more than 0.003%, preferably being no more than 0.002%.

[0025] Ti can improve the intensity of steel plate, but has a strong influence on magnetic property, its fine deposition such as TiC and TiN, will root in grain boundary, which inhibits growth of crystal grain, making iron loss increased and magnetic induction reduced, so it is required that the content of Ti is no more than 0.003%, further preferably being no more than 0.0015.

30

35

40

45

50

55

[0026] In the present invention, the total content of C + N + S + Ti is controlled to within 0.01 %, so as to ensure the magnetic property of steel plate.

[0027] Nb and V, as elements that damage magnetic property, are required to be controlled no more than 0.01 %.

[0028] Cu is added selectively as an element for improving intensity, Sn and Sb are added selectively as an element for improving magnetic property.

[0029] Steel containing composition described above, as is similar to normal electrical steel, is manufactured by means of processes such as hot rolling, normalizing, acid pickling, cold rolling and final annealing and the like from a slab that is manufactured by using continuous casting process by means of smelting for decarburizing in converter, ladle refining for deoxidizing and alloying.

[0030] In the manufacturing method, in order to produce characterizing metallic phase in the steel plate, as well as ensure manufacturability and magnetic property, the cooling course in normalizing process and the final annealing process are controlled as follows.

[0031] Cooling is carried out in segment after hot rolled plate is normalized, slow cooling is employed in hot section, and fast cooling is employed in cold section, after strip comes from normalizing soaking section, the strip is cooled to 650 to 750 °C slowly at a cooling speed of 5 to 15°C/s, then is cooled to no higher than 100°C fast at a cooling speed of 20 to 70°C/s. Reducing cooling speed in hot section will make the structure of crystal grains recover sufficiently, which reduces stress in steel plate, improves the flatness of the shape of normalizing plate, and improves efficiency of cold rolling. Also, reducing cooling speed in hot section after being normalized, will make solid molten carbonization and nitride depositing sufficiently, forming gross impurities of carbonization and nitride, which avoids to form fine impurities that inhibits growth of crystal grain, and forms advantageous structure within finished steel plate, so that improving the magnetic property of steel plate.

[0032] Cooling is carried out in segment after strip is final annealed, the strip is cooled to 650 to 750 °C slowly at a cooling speed of 3 to 10°C/s at first, then is cooled to no higher than 100 °C fast at a cooling speed of 20 to 70°C/s. In high temperature slow cooling period, Cr and Ni metallic phases that is characterized in composition, size and number density, are formed efficiently, not solid molten body or sulfide whose strengthening ability is low, which worsens strongly magnetic property. Meanwhile, slow cooling in hot section also reduces internal stress in finished strip, improves magnetic property of finished product, and improves fatigue resistance of the product as well.

Advantageous Effects of Invention

[0033] In the non-oriented electrical steel having high magnetic induction and high intensity of the present invention, strengthening elements such as Ni and Cr and the like are added into the compositions, and elements that damage magnetic property such as C, N, S, Ti and the like, are controlled to a relatively low level, making the intensity of electrical steel improved without prominent deterioration in magnetic property. Cooling process can be controlled in normalizing process and annealing process, which ensures the shape of the strip and stabilizes the magnetic property of product, and solves the problem that cold rolling is difficult as well.

Detailed Description of the Preferred Embodiment of the Invention

 $\textbf{[0034]} \quad \text{Hereinafter, the present invention will be described in connection with embodiments}.$

[0035] The compositions in the embodiments can be seen in Table 1.

5
J

Table 1

qs	1	1	1	1	1	1	90.0	1	90.0	1	1
Cu	/	1	/	1.0	1	1	2.0	1	1	1	2.5
Ż	/	1	0.5	2.0	1.0	2.0	3.0	2.5	3.0	5.0	2.0
Cr	1	1	1.0	1.5	2.0	3.0	2.5	5.5	2.5	8.0	2.0
Λ	0.0022	0.003	0.001	0.002	0.002	0.002	0.002	0.0025	0.002	0.0017	9800'0
qN	0.0029	0.002	0.0015	0.003	0.003	0.003	0.003	0.0032	0.003	0.0021	0.0037
Ħ	0.0015	0.002	0.001	0.0007	0.0017	0.0011	0.001	0.0014	0.0015	0.0008	0.0011
 z	0.002	0.003	0.001	0.0015	0.0017	6000.0	0.0007	0.0014	0.002	0.0018	0.0019
Ν	0.55	0.75	0.25	0.45	0.54	9.0	0.5	0.4	0.50	0.55	9.0
S	0.0007	0.0011	0.001	0.0019	0.001	0.0005	0.001	0.0015	0.0019	0.0018	0.0014
Ь	0.01	0.1	0.05	0.02	0.009	0.015	0.01	0.1	0.02	0.05	0.003
Mn	0.40	0.45	0.25	09.0	0.40	08.0	0.42	68.0	0.45	0.35	0.41
Si	3.0	9.6	2.5	2.8	3.21	3.11	3.0	5.9	3.30	3.5	3.0
Э	0.0020	0.0014	0.0035	0.0010	0.0031	0.0021	0.0025	0.0019	0.0015	0.002	0.0023
=mbodiments	_	2	3	4	5	9	7	8	6	10	11

[0036] After heating the manufactured slab to 1120 °C and holding this temperature for 60 min, hot rolling this manufactured slab to a strip having 2.3mm of thickness, the end-rolling temperature is 860 °C, and the coiling temperature is 570 °C. After the hot rolled plate is normalized at normalizing temperature 900 °C for 60s of heat preservation time, rolling this hot rolled plate to a cold rolled plate having a thickness of 0.5mm. After the cold rolled plate is annealed at annealing temperature 900 °C for 15s of heat preservation time, cooling this cold rolled plate from 900 °C to 500 °C at different cooling speeds, then cooling to room temperature at 70 °C/s, the magnetic property of the manufactured sample is measured by means of EPSTINE frame, mechanical performance and high cycle fatigue performance of the sample is measured by means of JIS5 tension (average load is 172MPa, amplitude is 156MPa), the performance measuring results corresponding to compositions and processes can be seen in Table 2.

Table 2

		1 4 5 10 2		
Embodi ments	W15/50 (W/kg)	B50(T)	Ys (MPa)	Fatigue Cycle (10 ⁵)
1	3.25	1.71	450	1.8
2	3.01	1.66	460	0.2
3	3.42	1.69	460	2.1
4	3.5	1.70	580	3.3
5	3.61	1.71	510	2.3
6	3.55	1.72	530	5.8
7	4.2	1.69	720	6.2
8	4.51	1.70	650	5.6
9	3.48	1.73	640	5.1
10	4.78	1.65	690	4.5

[0037] A slab is manufactured with the composition according to Embodiment 11 in Table 1, after heating the slab to 1120°C and holding this temperature for 60 min, this slab is hot rolled to a strip having a thickness of 2.3mm, the endrolling temperature is 860 °C, and the coiling temperature is 570°C. After the hot rolled plate is normalized at normalizing temperature 900 °C for 60s of heat preservation time, this hot rolled plate is rolled to a cold rolled plate having a thickness of 0.5mm. After the cold rolled plate is annealed at annealing temperature 900 °C for 15s of heat preservation time, this cold rolled plate is cooled from 900 °C to 500 - 600 °C at different cooling speeds (1# to 5#), the cooling process can be seen in Table 3.

[0038] The magnetic property of the manufactured sample is measured by means of EPSTINE frame, mechanical performance and high cycle fatigue performance of the sample is measured by means of JIS5 tension (average load is 172MPa, amplitude is 156MPa), the performance measuring results can be seen in Table 4.

Table 3

Embodiment 11	Cooling Speed (°C/s)	Cool Intermediate Temperature (°C)
1#	3	600
2#	10	550
3#	20	550
4#	50	500
5#	80	500

Table 4

Embodime nt 11	W/15/50 (W/kg)	B50 (T)	Ys (MPa)	Fatigue Cycle (10 ⁵)
1#	3.43	1.71	690	4.5
2#	3.48	1.70	705	4.5

(continued)

Embodime nt 11	W/15/50 (W/kg)	B50 (T)	Ys (MPa)	Fatigue Cycle (10 ⁵)
3#	3.65	1.68	695	3.0
4#	4.05	1.63	710	2.1
5#	4.15	1.59	735	1.2

[0039] As can be seen in Table 3 and Table 4, the annealing cooling temperature is too fast, the magnetic performance of steel plate becomes worse, so that iron loss increases, magnetic induction decreases, and fatigue resistance becomes worse.

Claims

5

15

20

25

30

45

1. A non-oriented electrical steel having relative high magnetic induction and high intensity, wherein the weight percentage of the chemical composition are :

C: ≤0.0040%

Si: 2.50%~4.00%

Al: 0.20%~0.80%

Cr: 1.0~8.0%

Ni: 0.5~5.0%

Mn: ≤0.50%

P: ≤0.30%

S: ≤0.0020%

N: ≤0.0030%

Ti: ≤0.0030%

Nb: ≤0.010%

V: ≤0.010%

C+S+N+Ti: ≤0.010%

and a balance substantially being Fe and inevitable impurities.

- The non-oriented electrical steel having relative high magnetic induction and high intensity in claim 1, characterized
 by comprising Cu≤3%, as represented by weight percentage.
 - 3. The non-oriented electrical steel having relative high magnetic induction and high intensity in claim 1 or 2, **characterized by** comprising Sb and/or Sn with a total content of no more than 0.5%, as represented by weight percentage.
- 40 4. The non-oriented electrical steel having relative high magnetic induction and high intensity in claim 1, characterized by C≤0.0.02% or C≤0.0015%, as represented by weight percentage.
 - 5. The non-oriented electrical steel having relative high magnetic induction and high intensity in claim 1, **characterized by** having a content of Si of 2.8 to 3.3%, as represented by weight percentage.
 - **6.** The non-oriented electrical steel having relative high magnetic induction and high intensity in claim 1, **characterized by** having a content of Al of 0.4% to 0.6%, as represented by weight percentage.
- 7. The non-oriented electrical steel having relative high magnetic induction and high intensity in claim 1, **characterized**by having a content of Cr of 2.5% to 6%, as represented by weight percentage.
 - **8.** The non-oriented electrical steel having relative high magnetic induction and high intensity in claim 1, **characterized by** having a content of Ni of 1.0% to 3.5%, as represented by weight percentage.
- 9. The non-oriented electrical steel having relative high magnetic induction and high intensity in claim 1, characterized by having a content of P of no more than 0.1%, and a content of S of no more than 0.0015%, as represented by weight percentage.

- **10.** The non-oriented electrical steel having relative high magnetic induction and high intensity in claim 1, **characterized by** having a content of N of no more than 0.002%, as represented by weight percentage.
- **11.** The non-oriented electrical steel having relative high magnetic induction and high intensity in claim 1, **characterized by** having a content of Ti of no more than 0.0015%, as represented by weight percentage.
 - **12.** A method for manufacturing a non-oriented electrical steel having relative high magnetic induction and high intensity, comprising steps as follows:
 - 1) smelting and pouring

the weight percentage of the chemical compositions of the non-oriented electrical steel are C \leq 0.0040%, Si is 2.50% \sim 4.00%, Al is 0.20% \sim 0.80%, Cr is 1.0 \sim 8.0%, Ni is 0.5 \sim 5.0%, Mn \leq 0.50%, P \leq 0.30%, S \leq 0.0020%, N \leq 0.0030%, Ti \leq 0.0030%, Nb \leq 0.010%, V \leq 0.010%, C+S+N+Ti \leq 0.010%, and a balance substantially being Fe and inevitable impurities; carrying out smelting, RH vacuum process and being poured to a slab in accordance with the compositions;

2) hot rolling

5

10

15

20

25

30

35

40

45

50

55

heating temperature of the slab is 1050° C to 1200° C, holding time is no less than 30min, incipient rolling temperature in planishing process is controlled to 940 °C to 1000 °C, end-rolling temperature is no less than 850 °C, final stand screw-down rate is controlled to 10 to 15%, the coiling temperature is controlled to 500 to 700 °C, the thickness of rolled plate is 2.0 to 2.6mm;

3) hot rolled plate normalizing

the normalizing temperature is 850 to 950°C, holding time is 0.5 to 3min, then being cooled to 650 to 750°C slowly at a cooling speed of 5 to 15°C/s, further being cooled to no higher than 100°C fast at a cooling speed of 20 to 70°C/s;

4) acid pickling and cold rolling

being cold rolled by means of single cold rolled process, total screw-down rate is no less than 70%;

5) annealing with continuous furnace

carrying out annealing treatment with continuous furnace, annealing temperature is 800 °C to 1000°C, holding it 5 s to 60s, then being cooled to 650 °C to 750 °C slowly at a cooling speed of 3 to 10 °C/s, further being cooled to no higher than 100 °C fast at a cooling speed of 20 to 70°C/s.

- **13.** The method for manufacturing a non-oriented electrical steel having relative high magnetic induction and high intensity in claim 12, **characterized by** the non-oriented electrical steel further comprising Cu≤3%, as represented by weight percentage.
- **14.** The method for manufacturing a non-oriented electrical steel having relative high magnetic induction and high intensity in claim 12 or 13, **characterized by** the non-oriented electrical steel further comprising Sb and/or Sn, having a total content of no more than 0.5%, as represented by weight percentage.

9

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2011/073368

A. CLASSIFICATION OF SUBJECT MATTER

See extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: C22C38/-, C21D8/-

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI, EPODOC, CN-PAT, CNKI: C, carbon, Si, silicon, silicium, Al, aluminium, aluminium, Cr, chrome, chromium, Ni, nickel, Mn, manganese, Fe, iron, ferrum, roll+, anneal+, strength, non oriented, non directional, electrical steel, electric steel, magnetic steel, silicon steel, si steel

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP2004-339603A(KAWASAKI STEEL CORP)02 Dec.2004(02.12.2004) Paragraph [0049], table 3 table4	1-11
Α	CN101333620A(BAOSHAN IRON & STEEL CO LTD)31 Dec.2008 (31.12.2008)	1-14
A	whole document CN101069943A(FENXIANGKE IND TRADE CO LTD et al)14 Nov.2007 (14.11.2007) whole document	1-14

▼ Further documents are listed in the continuation of Box C.

- ⊠ See patent family annex.
- * Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- 'E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&"document member of the same patent family

but later than the priority date claimed	
Date of the actual completion of the international search	Date of mailing of the international search report
15 Jul.2011 (15.07.2011)	04 Aug. 2011 (04.08.2011)
Name and mailing address of the ISA/CN The State Intellectual Property Office, the P.R.China 6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China	Authorized officer CHEN Dazhou
100088 Facsimile No. 86-10-62019451	Telephone No. (86-10)62084752

Form PCT/ISA /210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2011/073368

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	CN1813074A(AK PROPERTIES INC)02 Aug.2006(02.08.2006) whole document	1-14
A	JP2001-316729A(KAWASAKI STEEL CORP)16 Nov.2001(16.11.2001) whole	1-14
A	document US5037493A(NIPPON STEEL CORP)06 Aug.1991(06.08.1991) whole document	1-14

Form PCT/ISA /210 (continuation of second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

 $\label{eq:pct_norm} \begin{tabular}{ll} International application No. \\ PCT/CN2011/073368 \end{tabular}$

Patent Documents referred in the Report	,		101	1/CNZ011/075506
CNI01333620A 31.12.2008 CNI00567545C 09.12.2009 CNI01069943A 14.11.2007 CNI00513060C 15.07.2009 CNI813074A 02.08.2006 WO2004101831A1 25.11.2004 US2005000596A1 06.01.2005 EP1627086A1 22.02.2006 BRP10410333A 30.05.2006 MXPA05012277A 01.02.2006 KR20060007431A 24.01.2006 INKOLNP200502468E 13.10.2006 US2007023103A1 01.02.2007 IP2007516345T 21.06.2007 EP1627086B1 12.09.2007 DE602004008909E 25.10.2007 US7377986B2 27.05.2008 DE602004008909T2 29.05.2008 MX272584B 09.12.2009 CA2525742C 24.08.2010 IP2010209467A 24.09.2010 IN233930B 24.04.2009 JP201316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 JP2043715A 27.09.1990 JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP1982010C 25.10.1995 JP1982010C 25.10.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995		Publication Date	Patent Family	Publication Date
CN101069943A 14.11.2007 CN100513060C 15.07.2009 CN1813074A 02.08.2006 WO2004101831A1 25.11.2004 US2005000596A1 06.01.2005 EP1627086A1 22.02.2006 BRP10410333A 30.05.2006 MXPA05012277A 01.02.2006 KR20060007431A 24.01.2006 INKOLNP200502468E 13.10.2006 US2007023103A1 01.02.2007 IP2007516345T 21.06.2007 EP1627086B1 12.09.2007 DE602004008909E 25.10.2007 US7377986B2 27.05.2008 MX272584B 09.12.2009 CA2525742C 24.08.2010 JP2010316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 JP2043715A 27.09.1990 JP2013263B 15.02.1995 JP1982010C 25.10.1995 JP28243716A 27.09.1990 JP201395 JP1982010C 25.10.1995 JP2843716A 27.09.1990 JP201395 JP1982010C 25.10.1995 JP2843716A 27.09.1990 JP7013264B 15.02.1995	JP2004339603A	02.12.2004	JP4265400B	20.05.2009
CN1813074A 02.08.2006 W02004101831A1 25.11.2004 US2005000596A1 06.01.2005 EP1627086A1 22.02.2006 BRPI0410333A 30.05.2006 MXPA05012277A 01.02.2006 KR20060007431A 24.01.2006 INKOLNP200502468E 13.10.2006 US2007023103A1 01.02.2007 IP2007516345T 21.06.2007 EP1627086B1 12.09.2007 DE602004008909E 25.10.2007 US7377986B2 27.05.2008 DE602004008909T2 29.05.2008 MX272584B 09.12.2009 CA2525742C 24.08.2010 IP2010209467A 24.09.2010 IN233930B 24.04.2009 JP2010316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 JP2243715A 27.09.1990 JP2043715A 27.09.1990 JP2043716A 27.09.1990 JP2243716A 27.09.1990 JP2243716A 27.09.1990 JP2243716A 27.09.1990 JP2243716A 27.09.1990	CN101333620A	31.12.2008	CN100567545C	09.12.2009
US2005000596A1 06.01.2005 EP1627086A1 22.02.2006 BRPI0410333A 30.05.2006 MXPA05012277A 01.02.2006 KR20060007431A 24.01.2006 INKOLNP200502468E 13.10.2006 US2007023103A1 01.02.2007 JP2007516345T 21.06.2007 EP1627086B1 12.09.2007 DE602004008909E 25.10.2007 US7377986B2 27.05.2008 DE602004008909T2 29.05.2008 MX272584B 09.12.2009 CA2525742C 24.08.2010 JP2010209467A 24.09.2010 IN233930B 24.04.2009 JP2001316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 JP2243715A 27.09.1990 JP2013263B 15.02.1995 JP1982010C 25.10.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP2013264B 15.02.1995	CN101069943A	14.11.2007	CN100513060C	15.07.2009
EP1627086A1 22.02.2006 BRPI0410333A 30.05.2006 MXPA05012277A 01.02.2006 KR20060007431A 24.01.2006 INKOLNP200502468E 13.10.2006 US2007023103A1 01.02.2007 JP2007516345T 21.06.2007 EP1627086B1 12.09.2007 DE602004008909E 25.10.2007 US7377986B2 27.05.2008 DE602004008909T2 29.05.2008 MX272584B 09.12.2009 CA2525742C 24.08.2010 JP2010209467A 24.09.2010 IN233930B 24.04.2009 JP201316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995	CN1813074A	02.08.2006	WO2004101831A1	25.11.2004
BRP[0410333A 30.05.2006 MXPA05012277A 01.02.2006 KR20060007431A 24.01.2006 INKOLNP200502468E 13.10.2006 US2007023103A1 01.02.2007 JP2007516345T 21.06.2007 EP1627086B1 12.09.2007 DE602004008909E 25.10.2007 US7377986B2 27.05.2008 DE602004008909T2 29.05.2008 MX272584B 09.12.2009 CA2525742C 24.08.2010 JP2010209467A 24.09.2010 IN233930B 24.04.2009 JP201316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP2013264B 15.02.1995			US2005000596A1	06.01.2005
MXPA05012277A 01.02.2006 KR20060007431A 24.01.2006 INKOLNP200502468E 13.10.2006 US2007023103A1 01.02.2007 JP2007516345T 21.06.2007 EP1627086B1 12.09.2007 DE602004008909E 25.10.2007 US7377986B2 27.05.2008 DE602004008909T2 29.05.2008 MX272584B 09.12.2009 CA2525742C 24.08.2010 JP2010209467A 24.09.2010 IN233930B 24.04.2009 JP2001316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 DE69020015E 20.07.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995			EP1627086A1	22.02.2006
KR20060007431A			BRPI0410333A	30.05.2006
INKOLNP200502468E 13.10.2006 US2007023103A1 01.02.2007 JP2007516345T 21.06.2007 EP1627086B1 12.09.2007 DE602004008909E 25.10.2007 US7377986B2 27.05.2008 DE602004008909T2 29.05.2008 MX272584B 09.12.2009 CA2525742C 24.08.2010 JP2010209467A 24.09.2010 IN233930B 24.04.2009 JP2001316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995			MXPA05012277A	01.02.2006
US2007023103A1 01.02.2007 JP2007516345T 21.06.2007 EP1627086B1 12.09.2007 DE602004008909E 25.10.2007 US7377986B2 27.05.2008 DE602004008909T2 29.05.2008 MX272584B 09.12.2009 CA2525742C 24.08.2010 JP2010209467A 24.09.2010 IN233930B 24.04.2009 JP2001316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 DE69020015E 20.07.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995			KR20060007431A	24.01.2006
JP2007516345T 21.06.2007 EP1627086B1 12.09.2007 DE602004008909E 25.10.2007 US7377986B2 27.05.2008 DE602004008909T2 29.05.2008 MX272584B 09.12.2009 CA2525742C 24.08.2010 JP2010209467A 24.09.2010 IN233930B 24.04.2009 JP2001316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 DE69020015E 20.07.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995			INKOLNP200502468E	13.10.2006
DE602004008909E 25.10.2007 US7377986B2 27.05.2008 DE602004008909T2 29.05.2008 MX272584B 09.12.2009 CA2525742C 24.08.2010 JP2010209467A 24.09.2010 IN233930B 24.04.2009 JP2001316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 DE69020015E 20.07.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995			US2007023103A1	01.02.2007
DE602004008909E 25.10.2007 US7377986B2 27.05.2008 DE602004008909T2 29.05.2008 MX272584B 09.12.2009 CA2525742C 24.08.2010 JP2010209467A 24.09.2010 IN233930B 24.04.2009 JP2001316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 DE69020015E 20.07.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995			JP2007516345T	21.06.2007
US7377986B2 27.05.2008 DE602004008909T2 29.05.2008 MX272584B 09.12.2009 CA2525742C 24.08.2010 JP2010209467A 24.09.2010 IN233930B 24.04.2009 JP2001316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 DE69020015E 20.07.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995			EP1627086B1	12.09.2007
DE602004008909T2 29.05.2008 MX272584B 09.12.2009 CA2525742C 24.08.2010 JP2010209467A 24.09.2010 IN233930B 24.04.2009 JP2001316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 DE69020015E 20.07.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995			DE602004008909E	25.10.2007
MX272584B 09.12.2009 CA2525742C 24.08.2010 JP2010209467A 24.09.2010 IN233930B 24.04.2009 JP2001316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 DE69020015E 20.07.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995			US7377986B2	27.05.2008
CA2525742C 24.08.2010 JP2010209467A 24.09.2010 IN233930B 24.04.2009 JP2001316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 DE69020015E 20.07.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995			DE602004008909T2	29.05.2008
JP2010209467A 24.09.2010 IN233930B 24.04.2009 JP2001316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 DE69020015E 20.07.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995			MX272584B	09.12.2009
IN233930B 24.04.2009 JP2001316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 DE69020015E 20.07.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995			CA2525742C	24.08.2010
JP2001316729A 16.11.2001 JP4126479B 30.07.2008 US5037493A 06.08.1991 DE69020015T 21.09.1995 DE69020015E 20.07.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995			JP2010209467A	24.09.2010
US5037493A 06.08.1991 DE69020015T 21.09.1995 DE69020015E 20.07.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995			IN233930B	24.04.2009
DE69020015E 20.07.1995 JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995	JP2001316729A	16.11.2001	JP4126479B	30.07.2008
JP2243715A 27.09.1990 JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995	US5037493A	06.08.1991	DE69020015T	21.09.1995
JP7013263B 15.02.1995 JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995			DE69020015E	20.07.1995
JP1982010C 25.10.1995 JP2243716A 27.09.1990 JP7013264B 15.02.1995			JP2243715A	27.09.1990
JP2243716A 27.09.1990 JP7013264B 15.02.1995			JP7013263B	15.02.1995
JP7013264B 15.02.1995			JP1982010C	25.10.1995
			JP2243716A	27.09.1990
			JP7013264B	15.02.1995
JP1982011C 25.10.1995			JP1982011C	25.10.1995
JP2243717A 27.09.1990			JP2243717A	27.09.1990

Form PCT/ISA /210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No. PCT/CN2011/073368

	1		PCT/CN2011/073368
Patent Documents referred in the Report	Publication Date	Patent Family	Publication Date
		JP7009039B	01.02.1995
		JP1975151C	27.09.1995
		JP2243718A	27.09.1990
		JP7013265B	15.02.1995
		JP1982012C	25.10.1995
		JP2243719 A	27.09.1990
		JP7009040B	01.02.1995
		JP1975152C	27.09.1995
		EP0388776A	26.09.1990
		EP0388776B1	14.06.1995

Form PCT/ISA /210 (patent family annex) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2011/073368

Continuation of: second sheet,	A. CLASSIFICATION OF SUBJECT MATTER
C22C38/40 (2006.01)i	
C21D8/12 (2006.01)i	

Form PCT/ISA /210 (extra sheet) (July 2009)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• CN 1863934 [0004]

• WO 2009128428 A1 [0005]