TECHNICAL FIELD
[0001] The present invention relates to a rotatable connector device for electrically connecting
elements on the side of a vehicle body of an automobile and elements on the side of
a steering wheel to each other.
BACKGROUND ART
[0002] Conventionally, various types of rotatable connector devices for electrically connecting
a fixed side and a rotatable side rotatable with respect to the fixed side to each
other are known. For example, one type of rotatable connector device electrically
connects elements on the side of a vehicle body of an automobile and elements on the
side of a steering wheel to each other.
[0003] In general, a steering wheel of an automobile includes an airbag or the like which
is required to operate without fail in emergency. Therefore, a slidable electrode
or the like having low dependability of connection is not used, and a rotatable connector
device having built-in flat cables or the like for connecting elements on the side
of the vehicle body and elements on the side of the steering wheel to each other is
used.
[0004] The above-described rotatable connector device mounted on an automobile includes
a cylindrical fixed case fixed to the vehicle body and a cylindrical rotatable case
attached to the steering wheel. The fixed case and the rotatable case are engaged
to each other so as to be rotatable with respect to each other. In a ring-shaped accommodation
space defined by the fixed case and the rotatable case, flat cables are accommodated
as being wound a plurality of times.
[0005] The flat cables are connected to fixed case-side connectors provided on the fixed
case, and rotatable case-side connectors provided on the rotatable case. In the ring-shaped
internal accommodation space, the flat cables are wound in one direction, then is
turned around in a U shape to have the winding direction thereof reversed, and is
wound in the opposite direction. Owing to such a structure, the rotatable connector
device can rotate the rotatable case clockwise and counterclockwise in correspondence
with the number of winds of the flat cables.
[0006] The fixed case of the above-described rotatable connector device is formed of a plastic
material, and as shown in Figure 1 of Patent Document 1, is easy to mold. Therefore,
the fixed case includes two members, namely, a ring-shaped flat fixed-side ring plate
and an outer cylinder having a cylindrical shape and extending perpendicularly from
an outer circumferential edge of the fixed-side ring plate. The fixed-side ring plate
and the outer cylinder are fit to each other.
[0007] The fixed-side ring plate and the outer cylinder are coupled to each other as follows,
for example. A plurality of engaging hole sections projecting from the outer circumferential
edge of the fixed-side ring plate perpendicularly to the fixed-side ring plate and
each having an engaging hole, and a plurality of engaging convexed sections located
on an outer circumferential edge of the outer cylinder at positions corresponding
to the engaging hole sections and projecting radially outward, are engaged with each
other. Thus, the fixed case is formed.
[0008] In this case, since the engaging hole sections located at the plurality of positions
along the outer circumferential edge, and the engaging convexed sections located at
the plurality of positions along the outer circumferential edge, are engaged with
each other, the fixed-side ring plate and the outer cylinder are fixed to each other
strongly in a direction of a rotation axis. However, in order to facilitate a work
of coupling the fixed-side ring plate and the outer cylinder, play is provided in
the circumferential direction at engaging positions of the engaging hole sections
and the engaging convexed sections.
[0009] Because of this, in the state where the fixed case of the rotatable connector device
is assembled to the vehicle body, the outer cylinder becomes rickety easily in the
circumferential direction with respect to the fixed-side ring plate, which is fixed
strongly to the vehicle body by a crush rib and a snap-fit. Thus, squeaky noise is
likely to be generated. Especially in the case where the rotatable connector device
is attached to the vehicle body in an eccentric state, the outer cylinder becomes
rickety easily in the circumferential direction, which causes a problem that the squeaky
noise is likely to be generated.
CITATION LIST
PATENT LITERATURE
[0010] Patent Document 1: Japanese Laid-Open Patent Publication No.
Hei 5-21108
SUMMARY OF INVENTION
TECHNICAL PROBLEM
[0011] The present invention has an object of providing a rotatable connector device capable
of suppressing generation of squeaky noise due to ricketiness of an outer cylinder
in a circumferential direction with respect to a fixed-side ring plate.
SOLUTION TO PROBLEM
[0012] The present invention is directed to a rotatable connector device including a fixed
case including a ring-shaped fixed-side ring plate and an outer cylinder having a
cylindrical shape and extending from an outer circumferential edge of the fixed-side
ring plate perpendicularly to a planar surface of the fixed-side ring plate; and a
rotatable case including a ring-shaped rotatable-side ring plate and an inner cylinder
having a cylindrical shape and extending from an inner circumferential edge of the
rotatable-side ring plate perpendicularly to a planar surface of the rotatable-side
ring plate toward the fixed case. The fixed case and the rotatable case are fit to
each other so as to be rotatable with respect to each other in a clockwise direction
and a counterclockwise direction; an accommodation section is defined by the fixed-side
ring plate and the outer cylinder of the fixed case and the rotatable-side ring plate
and the inner cylinder of the rotatable case; in the accommodation section, flat cables
for electrically connecting the fixed case and the rotatable case to each other are
accommodated in a wound state; the fixed-side ring plate and the outer cylinder are
formed of different members; a fixed-side ring plate rotation regulation section is
provided at the outer circumferential edge of the fixed-side ring plate; an outer
cylinder rotation regulation section is provided at an outer circumferential edge
of the outer cylinder, at a position corresponding to the fixed-side ring plate rotation
regulation section; and the fixed-side ring plate and the outer cylinder are aligned
so as to have the same rotation axis and are fit to each other in a direction of the
rotation axis, and the fixed-side ring plate rotation regulation section is put into
contact with the outer cylinder rotation regulation section so as not to rotate in
either the clockwise direction or the counterclockwise direction about the rotation
axis.
[0013] According to the present invention, the fixed-side ring plate rotation regulation
section and the outer cylinder rotation regulation section are in contact with each
other so as not to rotate in either the clockwise direction or the counterclockwise
direction. Therefore, the outer cylinder does not easily move in the circumferential
direction with respect to the fixed-side ring plate. Thus, generation of squeaky noise,
which would be caused by ricketiness of the outer cylinder in the circumferential
direction, can be suppressed.
[0014] In the present invention, one of the fixed-side ring plate rotation regulation section
and the outer cylinder rotation regulation section may be a fitting convexed portion,
and the other of the fixed-side ring plate rotation regulation section and the outer
cylinder rotation regulation section may be a fitting concaved portion. The fitting
convexed portion may be put into contact with, and fit to, the fitting concaved portion
in the circumferential direction. Alternatively, both of the fitting convexed portion
and the fitting concaved portion may be provided as the fixed-side ring plate rotation
regulation section, and the fitting concaved portion and the fitting convexed portion
may be provided as the outer cylinder rotation regulation section in correspondence
with the fixed-side ring plate rotation regulation section.
[0015] Still alternatively, both of the fixed-side ring plate rotation regulation section
and the outer cylinder rotation regulation section may be fitting convexed portions
projecting respectively from an outer side surface of the fixed-side ring plate and
an outer side surface of the outer cylinder.
[0016] In this case, for example, the fitting convexed portion of the fixed-side ring plate
is put into contact with the fitting convexed portion of the outer cylinder at one
position on the outer side surface so as not to rotate in the clockwise direction,
and the second fitting convexed portion of the fixed-side ring plate is put into contact
with the second fitting convexed portion of the outer cylinder at another position
on the outer side surface so as not to rotate in the counterclockwise direction. Thus,
the rotation of the outer cylinder can be regulated in both of the clockwise and counterclockwise
directions.
[0017] In an embodiment according to the present invention, the fixed-side ring plate may
include a plurality of engaging hole sections each having an engaging hole, the plurality
of engaging hole sections projecting perpendicularly from the outer circumferential
edge toward the outer cylinder and located at a prescribed interval in a circumferential
direction; the outer cylinder may include a plurality of engaging convexed sections
on an outer surface thereof at positions corresponding to the engaging hole sections,
the plurality of engaging convexed sections projecting radially outward and located
at a prescribed interval; and the fixed-side ring plate and the outer cylinder may
be engaged with each other by insertion of the engaging convexed sections into the
engaging hole sections in the direction of the rotation axis.
[0018] According to the present invention, since the engaging hole sections and the engaging
convexed sections are engaged with each other in the direction of the rotation axis,
the fixed-side ring plate and the outer cylinder can be coupled to each other strongly
in the direction of the rotation axis. In addition, by fitting the fixed-side ring
plate rotation regulation section and the outer cylinder rotation regulation section
to each other also in the direction of the rotation axis, these sections can be put
into contact with each other in the circumferential direction. Thus, the rotation
of the outer cylinder with respect to the fixed-side ring plate in the circumferential
direction can be regulated.
[0019] Namely, by fitting the fixed-side ring plate and the outer cylinder to each other
merely in one direction, the movement of the outer cylinder with respect to the fixed-side
ring plate can be regulated in both of the direction of the rotation axis and the
circumferential direction.
In an embodiment according to the present invention, either one of the fixed-side
ring plate rotation regulation section and the outer cylinder rotation regulation
section may be a fitting convexed portion, and the other of the fixed-side ring plate
rotation regulation section and the outer cylinder rotation regulation section may
be a fitting concaved portion; and the fitting convexed portion may be in contact
with, and thus fit to, the fitting concaved portion at both of two ends thereof in
the circumferential direction.
[0020] According to the present invention, the fitting convexed portion and the fitting
concaved portion are in contact with each other at both of two ends thereof in the
circumferential direction. Therefore, merely one pair of the fitting convexed portion
and the fitting concaved portion can suppress the ricketiness of the outer cylinder
in both of the clockwise direction and the counterclockwise direction.
[0021] In an embodiment according to the present invention, a contact surface along which
the fitting convexed portion and the fitting concaved portion contact each other may
be in a radial direction.
According to the present invention, when a force is applied to the contact surface
in the circumferential direction, the direction of the force is perpendicular to the
contact surface. Therefore, the movement of the outer cylinder in the circumferential
direction with respect to the fixed-side ring plate can be regulated most effectively.
ADVANTAGEOUS EFFECTS OF INVENTION
[0022] According to the present invention, a rotatable connector device capable of suppressing
generation of squeaky noise due to ricketiness of an outer cylinder in a circumferential
direction with respect to a fixed-side ring plate can be provided.
BRIEF DESCRIPTION OF DRAWINGS
[0023]
[FIG. 1] FIG. 1 is an isometric view showing an external appearance of a steering
roll connector.
[FIG. 2] FIG. 2 is an exploded isometric view of the steering roll connector.
[FIG. 3] FIG. 3 is a plan view of the steering roll connector in the state where a
rotatable case has been detached.
[FIG. 4] FIG. 4 is a cross-sectional view taken along line A-A in FIG. 1.
[FIG. 5] FIG. 5 is an exploded isometric view of a fixed case.
[FIG. 6] FIG. 6 provides enlarged isometric views of an engaging hole section and
an engaging convexed section.
[FIG. 7] FIG. 7 provides enlarged isometric views of a fitting concaved portion and
a fitting convexed portion.
[FIG. 8] FIG. 8 provides an enlarged side view and an enlarged cross-sectional view
of a state where the fitting concaved portion and the fitting convexed portion are
fit to each other.
DESCRIPTION OF EMBODIMENTS
[0024] Hereinafter, an embodiment of the present invention will be described with reference
to the drawings.
FIG. 1 is an isometric view showing an external appearance of a steering roll connector
10 in this embodiment. FIG. 2 is an exploded isometric view of the steering roll connector
10 shown in FIG. 1, showing a fixed case 12, a rotatable case 13 and a rotation clock
structure 51.
[0025] FIG. 3 is a plan view of the steering roll connector 10 in the state where the rotatable
case 13 has been detached. FIG. 4 is a cross-sectional view taken along line A-A in
FIG. 1. FIG. 5 is an exploded view of the fixed case 12, showing a fixed-side ring
plate 14 and an outer cylinder 15.
[0026] FIG. 6 (a) is an enlarged view of an engaging convexed section 19 included in the
outer cylinder 19, and FIG. 6 (b) is an enlarged view of an engaging hole section
18 included in the fixed-side ring plate 14. FIG. 7(a) shows a fitting convexed portion
2 included in the outer cylinder 19, and FIG. 7 (b) shows a fitting concaved portion
1 formed in the fixed-side ring plate 14.
[0027] FIG. 8(a) is a side view of a state where the fitting concaved portion 1 and the
fitting convexed portion 2 are fit to each other, and FIG. 8(b) is a cross-sectional
view taken along a plane parallel to a side surface including the fitting concaved
portion 1 and the fitting convexed portion 2.
In this embodiment, as shown in FIG. 1 and FIG. 2, the steering roll connector 10
mainly includes a cable housing 11, a retainer 41, and the rotation lock structure
51.
[0028] The cable housing 11 is generally cylindrical and has an insertion hole H running
through the cable housing 11 in a direction of a rotation axis X of a steering wheel
(up-down direction in FIG. 4). The insertion hole H is formed at a central part of
the cable housing 11 as seen in a plan view. The insertion hole H is formed to have
a diameter which allows a steering shaft (not shown) to be inserted thereto. The steering
shaft projects from a steering column (not shown), and at a top end of the steering
shaft, a steering wheel (not shown) for making a rotation operation is fixed.
[0029] The cable housing 11 is a generally cylindrical case including the fixed case 12
and the rotatable case 13 which are rotatable with respect to each other. As shown
in FIG. 2 through FIG. 4, an accommodation space S for accommodating flat cables C
in an appropriately wound state is formed inside the cable housing 11.
[0030] As shown in FIG. 5, the fixed case 12 includes the fixed-side ring plate 14 and the
outer cylinder 15.
The fixed-side ring plate 14 includes a ring plate section 14P which is flat and ring-shaped,
and a ring-plate cylindrical section 14Q which is cylindrical and projects perpendicularly
from an outer circumferential edge of the ring plate section 14P toward the rotatable
case 13. The outer cylinder 15 is a separate member from the fixed-side ring plate
14. The outer cylinder 15 is cylindrical and extends perpendicularly from the outer
circumferential edge of the fixed-side ring plate 14 toward the rotatable case 13.
An inner side surface 14Qs of the ring-plate cylindrical section 14Q has a diameter
which is the same as the diameter of an outer side surface 15a of the outer cylinder
15.
[0031] As shown in FIG. 5 and FIG. 6, the fixed-side ring plate 14 includes a plurality
of engaging hole sections 18 with a prescribed distance kept therebetween. The engaging
hole sections 18 project perpendicularly from a top end 14Qt of the ring-plate cylindrical
section 14Q toward the outer cylinder 15, and each have an engaging hole which is
rectangular as seen from a side view.
[0032] The outer cylinder 15 includes engaging convexed sections 19 on the outer side surface
15a thereof, at positions corresponding to the engaging hole sections 18. The engaging
convexed sections 19 project in a radial direction and each have a rectangular shape
as seen in a side view which is generally the same as the shape of the engaging hole.
[0033] FIG. 6 (a) shows height h2 from a bottom end 15b of the outer cylinder 15 to a top
surface 19c of the engaging convexed section 19. FIG. 6(b) shows height h1 from a
bottom surface 14b of the fixed-side ring plate 14 to a top surface 18c of the engaging
hole. Height h2 is equal to, or slightly larger than, height h1.
[0034] FIG. 6 (a) shows width w2 from a left side surface 19a to a right side surface 19b
of the engaging convexed section 19. FIG. 6(b) shows width w1 from a left side surface
18a to a right side surface 18b of the engaging hole. Width w2 is slightly smaller
than width w1 in order to facilitate engagement of the engaging convexed section 19
and the engaging hole section 18.
[0035] As shown in FIG. 5, FIG. 7 and FIG. 8, the fixed-side ring plate 14 has the fitting
concaved portion 1 at one prescribed position at the top end 14Qt of the ring-plate
cylindrical section 14Q. The outer cylinder 15 includes the fitting convexed portion
2 at the position of the outer side surface 15a corresponding to the fitting concaved
portion 1. The fitting concaved portion 1 and the fitting convexed portion 2 have
the same shape.
[0036] This will be described in more detail. As shown in FIG. 7(b) and FIG. 8, the fitting
concaved portion 1 is recessed from the top end 14Qt of the ring-plate cylindrical
section 14Q in a rectangular shape as seen in a side view. The fitting concaved portion
1 runs through the ring-plate cylindrical section 14Q in the radial direction and
is generally rectangular as seen in a plan view. As shown in FIG. 7(a) and FIG. 8,
the fitting convexed portion 2 is a convexed portion having the same generally rectangular
shape as that of the fitting concaved portion 1 as seen in a plan view and the same
rectangular shape as that of the fitting concaved portion 1 as seen in a side view.
[0037] Circumferential length 11 and depth d1 of the fitting concaved portion 1 are respectively
equal to circumferential length 12 and height w3 of the fitting convexed portion 2.
Thickness t1 of the ring-plate cylindrical section 14Q in the radial direction, thickness
t2 of the fitting concaved portion 1 in the radial direction, and thickness t3 of
the fitting convexed portion 2 in the radial direction are equal to one another.
Height h3 from the bottom surface 14b of the fixed-side ring plate 14 to a bottom
surface 1c of the fitting concaved portion 1 is equal to height h4 from the bottom
end 15b of the outer cylinder 15 to a bottom surface 2c of the fitting convexed portion
2.
[0038] The fixed-side ring plate 14 and the outer cylinder 15 thus structured are located
so as to have the same central axis. The engaging hole sections 18 of the fixed-side
ring plate 14 and the corresponding engaging convexed sections 19 of the outer cylinder
15 are engaged with each other so as to be fixed to each other in the direction of
the rotation axis X. In addition, the fitting convexed portion 2 of the outer cylinder
15 is fit into the fitting concaved portion 1 of the fixed-side ring plate 14, so
that the inner side surface 14Qs of the fixed-side ring plate 14 contacts the outer
side surface 15a of the outer cylinder 15, and also the bottom surface 14b of the
fixed-side ring plate 14 contacts the bottom end 15b of the outer cylinder 15. Thus,
the fixed case 12 is integrally structured.
[0039] The fixed case 12 is fixed to an appropriate member on the side of a vehicle body,
for example, a combination bracket switch (not shown) of the steering column so as
to be rotatable with respect to the steering wheel.
The fixed case 12 is provided with fixed case-side connectors 17.
[0040] The fixed case-side connectors 17 include a first fixed case-side connector 17A and
a second fixed case-side connector 17B. The first fixed case-side connector 17A and
the second fixed case-side connector 17B are located with a prescribed distance kept
therebetween and outer to the outer cylinder 15, and connection openings thereof are
directed in the same direction.
[0041] The rotatable case 13 includes a rotatable-side ring plate 21 formed to be ring-shaped
and acting as a top plate, and an inner cylinder 22 having a cylindrical shape and
extending perpendicularly from an inner circumferential edge of the rotatable-side
ring plate 21.
The rotatable case 13 is rotatable integrally with the steering wheel. In more detail,
the rotatable case 13 is rotatable with respect to the fixed case 12 about the same
axis as that of the rotation axis X of the steering wheel.
[0042] The rotatable-side ring plate 21 is located so as to face the fixed-side ring plate
14 in the direction of the rotation axis X of the rotatable case 13. The direction
of the rotation axis X of the rotatable case 13 is the same as the direction of the
rotation axis of the steering wheel (up-down direction in FIG. 4).
[0043] The inner cylinder 22 is located so as to face the outer cylinder 15 in the radial
direction (left-right direction in FIG. 4).
The rotatable case 13 is provided with a first rotatable case-side connector 23A and
a second rotatable case-side connector 23B, which are rotatable integrally with the
rotatable case 13.
[0044] The first rotatable case-side connector 23A and the first fixed case-side connector
17A, and the second rotatable case-side connector 23B and the second fixed case-side
connector 17B, are electrically connected to each other by the flat cables C located
in the accommodation space S.
[0045] The fixed case-side connectors 17 are each connected to a cable (not shown) drawn
from an electrical circuit or the like on the side of the vehicle body in a lower
column cover (not shown).
The rotatable case-side connectors 23 are each connected to a cable drawn from an
electrical circuit of, for example, a horn switch, an airbag unit or the like.
[0046] As shown in FIG. 2 and FIG. 3, the retainer 41 includes a plurality of rotatable
rollers 43 and a base ring 42. The retainer 41 is located so as to be rotatable in
the accommodation space S, with the rotation axis X of the rotatable case 13 being
the rotation center.
[0047] The rotatable rollers 43 are provided by the same number as that of roller supporting
projection sections 45, and are axially supported by the roller supporting projection
sections 45 respectively. The rotatable rollers 43 are each provided to be rotatable,
with an axis parallel to the rotation axis X of the rotatable case 13 being the rotation
center.
The base ring 42 includes a plate-like base ring main body 44 having a ring shape
as seen in a plan view, the roller supporting projection sections 45, and outer-to-roller
projection sections 46.
[0048] The base ring main body 44 is located on the fixed-side ring plate 14 so as to be
slidable against the fixed-side ring plate 14 in a rotation direction thereof, and
is rotatable with respect to the fixed case 12. The roller supporting projection sections
45 are provided at an equal interval in a circumferential direction of the base ring
main body 44, and project upward so as to be capable of axially supporting the rotatable
rollers 43. The outer-to roller projection sections 46 are provided outer to the roller
supporting projection sections 45 in a radial direction thereof, and project upward
with respect to the base ring main body 44. One of the outer-to roller projection
sections 46 guides a turned-around part (reversed part Cr described later) of the
flat cables C, which is turned around and wound along the corresponding rotatable
roller 43 as described later, from a radially outer side.
[0049] Two flat cables C are accommodated in the accommodation space S, and are wound around
therein in a layered state. One end, in a length direction, of one of the two layered
flat cables C is connected to the first fixed case-side connector 17A, and one end,
in the length direction, of the other flat cable C is connected to the second fixed
case-side connector 17B.
[0050] The other end, in the length direction, of the one of the two layered flat cables
C is connected to the first rotatable case-side connector 23A, and the other end,
in the length direction, of the other flat cable C is connected to the second rotatable
case-side connector 23B.
[0051] Such flat cables C are supported by the retainer 41 located to be rotatable with
respect to the fixed-side ring plate 14 and is accommodated in a wound state in the
accommodation space S in the cable housing 11.
This will be described in more detail. The flat cables C are drawn into the accommodation
space S from the first fixed case-side connector 17A and the second fixed case-side
connector 17B respectively. Thus, as shown in FIG. 3, an outside wound part Co is
formed which is wound along an inner circumferential surface of the outer cylinder
15 of the fixed case 15 at a position outer to the retainer 41. Accordingly, base
ends of the outside wound part Co are fixed at the positions of the fixed case-side
connectors 17.
[0052] The two flat cables C are wound around in the accommodated space S in a layered state
as described above, but in FIG. 3, such a structure is simplified and only one wound
flat cable C is shown.
[0053] As represented by the two-dot chain line in FIG. 3, the flat cables C have the reversed
part Cr in the middle thereof in the length direction. The reversed part Cr is turned
around in a U shape and wound along one of the plurality of rotatable rollers 43.
[0054] After this part, the other ends of the flat cables C in the length direction are
formed to be an inside wound part Ci which is wound along an outer circumferential
surface of the inner cylinder 22 of the rotatable case 13 at a position inner to the
retainer 41.
The flat cables C are finally drawn out of the accommodation space S and connected
to the first rotatable case-side connector 23A and the second rotatable case-side
connector 23B, respectively. Accordingly, the base ends of the inside wound part Ci
are fixed at the positions of the rotatable case-side connectors 23.
[0055] As described above, by the rotation of the rotatable case 13 with respect to the
fixed case 12, the outside wound part Co and the inside wound part Ci of the flat
cables C are respectively wound and unwound, or vice versa, in the accommodation space
S.
[0056] In this state, the reversed part Cr of the flat cables C is appropriately rotated
together with the retainer 41 so as to follow the change of balance in the wound state
between the outside wound part Co and the inside wound part Ci.
Owing to this, the steering roll connector 10 can always hold the flat cables C in
an aligned wound state in the accommodation space S and can rotate the steering wheel
smoothly.
[0057] The steering roll connector 10 having the above-described structure provides various
functions and effects as described below.
Owing to the above-described structure of the engaging hole sections 18 and the engaging
convexed sections 19, the top surface 18c of each engaging hole and the top surface
19c of the corresponding engaging convexed section 19 contact each other with no gap
therebetween. Thus, the fixed-side ring plate 14 and the outer cylinder 15 are strongly
fixed to each other in the direction of the rotation axis X.
[0058] By contrast, there is slight play at least between the left side surface 18a of each
engaging hole and the left side surface 19a of the corresponding engaging convexed
section 19, or between the right side surface 18b of each engaging hole and the right
side surface 19b of the corresponding engaging convexed section 19.
[0059] Nonetheless, owing to the above-described structure of the fitting concaved portion
1 and the fitting convexed portion 2, as shown in FIG. 8, a fitting concaved portion
left side surface 1a of the fitting concaved portion 1 and a fitting convexed portion
left side surface 2a of the fitting convexed portion 2 contact each other, and a fitting
concaved portion right side surface 1b of the fitting concaved portion 1 and a fitting
convexed portion right side surface 2b of the fitting convexed portion 2 contact each
other. Thus, the outer cylinder 15 is prevented from moving in the circumferential
direction with respect to the fixed-side ring plate 14.
[0060] Therefore, in the steering roll connector 10, owing to the engagement of the engaging
hole sections 18 and the engaging convexed sections 19, the fixed-side ring plate
14 and the outer cylinder 15 can be strongly fit to each other in the direction of
the rotation axis X (see FIG. 4), and the fitting concaved portion 1 of the fixed-side
ring plate 14 and the fitting convexed portion 2 of the outer cylinder 19 can contact
each other in both of a clockwise circumferential direction and a counterclockwise
circumferential direction. Therefore, the outer cylinder 15 is not easily moved in
the circumferential direction with respect to the fixed-side ring plate 14. Thus,
generation of squeaky noise, which would be caused by circumferential-direction ricketiness
of the outer cylinder 15, can be suppressed.
[0061] Moreover, the work of fitting the engaging hole sections 18 and the engaging convexed
sections 19 and fitting the fitting concaved portion 1 and the fitting convexed portion
2, in one direction (direction of the rotation axis X), can regulate the movement
of the outer cylinder 15 with respect to the fixed-side ring plate 14 in the direction
of the rotation axis X and also in the circumferential direction.
[0062] The fitting concaved portion 1 and the fitting convexed portion 2 are in contact
with each other at both of two ends thereof in the circumferential direction. Therefore,
merely one pair of the fitting concaved portion 1 and the fitting convexed portion
2 can suppress the ricketiness of the outer cylinder 15 in both of the clockwise circumferential
direction and the counterclockwise circumferential direction.
[0063] The fitting concaved portion left side surface 1a of the fitting concaved portion
1 and the fitting convexed portion left side surface 2a of the fitting convexed portion
2, and the fitting concaved portion right side surface 1b of the fitting concaved
portion 1 and the fitting convexed portion right side surface 2b of the fitting convexed
portion 2, match each other in the radial direction. In other words, the radial direction
of these surfaces is an in-plane direction. Therefore, when a force is applied in
the circumferential direction, the direction of the force matches the direction perpendicular
to the contact surface along which the fitting concaved portion left side surface
1a and the fitting convexed portion left side surface 2a contact each other, and the
contact surface along which the fitting concaved portion right side surface 1b and
the fitting convexed portion right side surface 2b contact each other. Thus, the movement
of the outer cylinder 15 in the circumferential direction with respect to the fixed-side
ring plate 14 can be regulated more effectively than in the case where the side surfaces
contact at another angle.
[0064] The fitting concaved portion 1 and the fitting convexed portion 2 are provided over
the entire thickness in the radial direction of the ring-plate cylindrical section
14Q of the fixed-side ring plate 14 and the outer cylinder 15. Therefore, the fitting
concaved portion 1 and the fitting convexed portion 2 can contact each other in a
large area size in the circumferential direction. Thus, the force of restricting the
rotation in the circumferential direction can be made strong.
[0065] The fitting concaved portion 1 and the fitting convexed portion 2 are provided in
the radial direction, and are respectively exposed to an outer side surface 14Qd of
the ring-plate cylindrical section 14Q of the fixed-side ring plate 14 and the outer
side surface 15a of the outer cylinder 15. Therefore, the fitting concaved portion
1 of the fixed-side ring plate 14 and the fitting convexed portion 2 of the outer
cylinder 15 can be fit to each other visually. Thus, the fixed-side ring plate 14
and the outer cylinder 15 can be fit to each other easily.
[0066] Width w1 of the fitting concaved portion 1 in the circumferential direction and width
w2 of the fitting convexed portion 2 in the circumferential direction are long as
shown in this embodiment. Owing to this, when a force is applied to the fitting convexed
portion 2 in the circumferential direction, deformation of the fitting convexed portion
2 in the circumferential direction can be suppressed small. Therefore, the generation
of squeaky noise can be suppressed.
[0067] The present invention is not limited to the above-described embodiment and may be
implemented in various other embodiments.
The rotatable connector device according to the present invention corresponds to the
steering roll connector 10 in the embodiment; and in the same manner,
the fixed-side ring plate rotation regulation section corresponds to the fitting concaved
portion 1 or the fitting convexed portion 2;
the outer cylinder rotation regulation section corresponds to the fitting convexed
portion 2 or the fitting concaved portion 1; and
the contact surface corresponds to the fitting concaved portion left side surface
1a, the fitting convexed portion left side surface 2a, the fitting concaved portion
right side surface 1b, or the fitting convexed portion right side surface 2b.
However, the present invention is not limited to the above-described embodiment, and
can be implemented in many other embodiments.
[0068] For example, in the above embodiment, the fitting concaved portion 1 is provided
at the top end 14Qt of the fixed-side ring plate 14 at a position between the first
fixed case-side connector 17A and the second fixed case-side connector 17B, and the
fitting convexed portion 2 is provided on the outer side surface 15a of the outer
cylinder 15. Alternatively, the fitting concaved portion 1 and the fitting convexed
portion 2 may be respectively provided at positions shifted by 180 degrees from the
positions in the above embodiment at the top end 14Qt of the fixed-side ring plate
14 and on the outer side surface 15a of the outer cylinder 15.
[0069] Namely, the fitting concaved portion 1 and the fitting convexed portion 2 may be
located at appropriate positions at which the position of the outer cylinder 15 with
respect to the fixed-side ring plate 14 is considered to be changed at a largest degree
in the circumferential direction, based on the structure of the steering roll connector
10.
[0070] Alternatively, for example, the circumferential length 11 of the fitting concaved
portion 1 and the circumferential length 12 of the fitting convexed portion 2 may
be longer than those in the above embodiment. Owing to this, the deformation of the
fitting convexed portion 2 in the circumferential direction caused by a force applied
thereto in the circumferential direction can be reduced, and thus the generation of
squeaky noise can be more suppressed.
[0071] In the above embodiment, the fitting concaved portion 1 and the fitting convexed
portion 2 are fit to each other so as to contact each other in the circumferential
direction. Alternatively, for example, a fitting convexed portion projecting from
an outer side surface of the fixed-side ring plate and a fitting convexed portion
projecting from the outer side surface of the outer cylinder may contact each other.
[0072] In this case, the fitting convexed portion of the fixed-side ring plate is put into
contact with the fitting convexed portion of the outer cylinder at one position on
the outer side surface so as not to rotate in the clockwise direction, and another
fitting convexed portion of the fixed-side ring plate is put into contact with another
fitting convexed portion of the outer cylinder at another position on the outer side
surface so as not to rotate in the counterclockwise direction. Thus, the rotation
of the outer cylinder 15 in both of the clockwise and counterclockwise directions
can be regulated.
[0073] The fitting concaved portion 1 and the fitting convexed portion 2 may be formed to
be tapered. Alternatively, a concaved portion may be formed at each of the fitting
concaved portion left side surface 1a and the fitting concaved portion right side
surface 1b of the fitting concaved portion 1, and a convexed portion may be formed
at each of the fitting convexed portion left side surface 2a and the fitting convexed
portion right side surface 2b of the fitting convexed portion 2, at positions corresponding
to the concaved portions at the fitting concaved portion 1.
INDUSTRIAL APPLICABILITY
[0074] The present invention is usable for various types of rotatable connector devices
for electrically connecting elements on the fixed side and elements on the rotatable
side to each other.
REFERENCE SIGNS LIST
[0075]
1 ... Fitting concaved portion
1a ... Fitting concaved portion left side surface
1b ... Fitting concaved portion right side surface
2 ... Fitting convexed portion
2a ... Fitting convexed portion left side surface
2b ... Fitting convexed portion right side surface
10 ... Steering roll connector
12 ... Fixed case
13 ... Rotatable case
14 ... Fixed-side ring plate
15 ... Outer cylinder
18 ... Engaging hole section
19 ... Engaging convexed section
21 ... Rotatable-side ring plate
22 ... Inner cylinder
C ... Flat cable
S ... Accommodation space
X ... Rotation axis