

(11) **EP 2 647 699 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication: 09.10.2013 Bulletin 2013/41

(21) Application number: 11845474.3

(22) Date of filing: 02.12.2011

(51) Int Cl.: C12N 5/10 (2006.01)

C12N 15/09 (2006.01)

(86) International application number: PCT/JP2011/077992

(87) International publication number: WO 2012/074117 (07.06.2012 Gazette 2012/23)

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 03.12.2010 US 419320 P

(71) Applicant: Kyoto University Sakyo-ku Kyoto-shi Kyoto 606-8501 (JP) (72) Inventors:

 YAMANAKA, Shinya Kyoto-shi Kyoto 606-8507 (JP)

 TAKAHASHI, Kazutoshi Kyoto-shi Kyoto 606-8507 (JP)

• TANABE, Koji Kyoto-shi Kyoto 606-8507 (JP)

(74) Representative: Vossius & Partner Siebertstrasse 4 81675 München (DE)

(54) EFFICIENT METHOD FOR ESTABLISHING INDUCED PLURIPOTENT STEM CELLS

(57) The present invention provides a method of improving the efficiency of establishment of induced pluripotent stem cell, including increasing, in a nuclear reprogramming step of somatic cell, the level of activated form of one or more proteins selected from the group consisting of Ras family members, PI3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 and S6K. The present invention also provides an agent for improving the efficiency of establishment of induced pluripotent stem cell, containing a factor selected from the group consisting of Ras family members, PI3 kinase, RalGEF,

Raf, AKT family members, Rheb, TCL1 and S6K, and nucleic acids encode the same. Furthermore, the present invention provides a method of producing induced pluripotent stem cells, including contacting a somatic cell with a nuclear reprogramming substance and one or more factors selected from the group consisting of Ras family members, Pl3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 and S6K, and nucleic acids that encode the same.

Description

Technical Field

[0001] The present invention relates to a method of improving the efficiency of establishment of induced pluripotent stem (hereinafter sometimes referred to as iPS) cells and a reagent therefor. More specifically, the present invention relates to a method of improving the iPS cell establishment efficiency by using a member of the Ras family, and an agent for improving the iPS cell establishment efficiency, which comprises a member of the Ras family as an active ingredient.

10 Background Art

15

20

30

35

40

45

55

[0002] In recent years, mouse and human iPS cells have been established one after another. Takahashi and Yamanaka (non-patent document 1) induced iPS cells by transferring the Oct3/4, Sox2, Klf4 and c-Myc genes into fibroblasts from a reporter mouse wherein the neomycin resistance gene is knocked-in into the Fbx15 locus, and forcing the cells to express the genes. Okita et al. (non-patent document 2) succeeded in establishing iPS cells (Nanog iPS cells) that show almost the same gene expression and epigenetic modification profiles as those of embryonic stem (ES) cells by creating a transgenic mouse having the green fluorescent protein (GFP) and puromycin-resistance genes integrated into the locus of Nanog, whose expression is more localized in pluripotent cells than the expression of Fbx15, forcing fibroblasts from the mouse to express the above-mentioned four genes, and selecting puromycin-resistant and GFP-positive cells. Thereafter, it was revealed that iPS cells could also be produced with three of the factors other than the c-Myc gene (non-patent document 3).

Furthermore, Takahashi et al. (non-patent document 4) succeeded in establishing iPS cells by transferring into human dermal fibroblasts the same four genes as those used in the mouse. On the other hand, Yu et al. (non-patent document 5) produced human iPS cells using Nanog and Lin28 in place of Klf4 and c-Myc. Hence, it has been demonstrated that iPS cells comparable to ES cells in terms of pluripotency can be produced in both humans and mice, by transferring defined factors into somatic cells.

[0003] However, the iPS cell establishment efficiency is still low and, especially, a problem of extremely low iPS cell establishment efficiency occurs when human iPS cell is produced by introducing 3 factors (Oct3/4, Sox2 and Klf4) excluding c- Myc, which is feared to cause tumorigenesis in tissues or individuals differentiated from iPS cells, into somatic cells.

[0004] Ras, which is a small GTPase, regulates growth and differentiation in many cells. Ras is generally present as an inactivated form bound with GDP. When stimulated by a growth factor and the like, it dissociates GDP, binds to GTP to turn into an activated form, and transmits signal to the downstream via a target factor. As Ras target factor, Raf, phosphatidylinositol 3- kinase (PI3 kinase), Ral Guanine nucleotide Exchanging Factor (RalGEF) and the like are known. A constitutively activating point mutation of Ras has been reported in various human cancer cells, and therefore, functional collapse of Ras protein caused by abnormality in the downstream signaling by these target factors is assumed to be one of the important steps of cell canceration.

[0005] Takahashi et al. (non-patent document 6) identified a gene specifically expressed in embryonic stem cells (ES cells) and having a homology with other Ras genes and named it ERas. Although ERas shows only about 40% homology with other Ras as a whole, it highly conserves 5 guanine nucleotide-binding domains (G1-G5) essential for the function of Ras, and also has C-terminal Caax motif (C: cysteine, a: aliphatic amino acid, x: any amino acid) necessary for membrane localization.

[0006] However, the relationship between Ras family and reprogramming of somatic cell has not been sufficiently elucidated.

[Document List]

[non-patent documents]

50 [0007]

non-patent document 1: Takahashi, K. and Yamanaka, S., Cell, 126: 663-676 (2006) non-patent document 2: Okita, K. et al., Nature, 448: 313-317 (2007) non-patent document 3: Nakagawa, M. et al., Nat. Biotethnol., 26: 101-106 (2008) non-patent document 4: Takahashi, K. et al., Cell, 131: 861-872 (2007) non-patent document 5: Yu, J. et al., Science, 318: 1917-1920 (2007) non-patent document 6: Takahashi, K. et al., Nature, 423: 541-545 (2003)

Summary of the Invention

10

20

25

30

35

40

50

Problems to be Solved by the Invention

- [0008] It is an object of the present invention to provide a means of improving the iPS cell establishment efficiency, and a method of efficiently producing iPS cells using the means. Means of Solving the Problems
 - [0009] The present inventors have conducted intensive studies in an attempt to achieve the above-mentioned object, and clarified that the iPS cell establishment efficiency can be remarkably enhanced by increasing the level of the Ras family members in activated form, or target factors or related factors thereof (PI3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 and activated molecule of S6K) in activated form during the nuclear reprogramming step of somatic cell. Moreover, they have clarified from experiments using various activated mutants that activation of signal transduction pathway via PI3 kinase (PI3 kinase pathway), signal transduction pathway via RalGEF (Ral pathway) and AKT pathway by Ras protein greatly contributes to the improvement of iPS cell establishment efficiency, which resulted in the completion of the present invention.
- 15 **[0010]** Accordingly, the present invention provides:
 - [1] A method of improving the efficiency of establishment of induced pluripotent stem cell, comprising the step of increasing the level of activated form of one or more proteins selected from the group consisting of Ras family members, PI3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 and S6K in a nuclear reprogramming step of somatic cell.
 - [2] The method according to [1] above, comprising contacting one or more factors selected from the group consisting of Ras family members, PI3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 and S6K, and nucleic acids that encode the same with a somatic cell.
 - [3] The method according to [2] above, wherein the Ras family members, PI3 kinase, RalGEF, Raf, AKT family members and S6K are constitutively active forms.
 - [4] The method according to [2] or [3] above, wherein the Ras family members are selected from the group consisting of ERas, HRas, NRas and KRas.
 - [5] The method according to [3] or [4] above, wherein the Ras family members constitutively activate one or more signal transduction pathways selected from PI3 kinase pathway, Ral pathway and MAP kinase pathway.
 - [6] The method according to [3] or [4] above, wherein the Ras family members constitutively activate PI3 kinase pathway and/or Ral pathway.
 - [7] The method according to [3] above, wherein the PI3 kinase constitutively activates signal transduction pathway of AKT pathway.
 - [8] The method according to [2] or [3] above, wherein the AKT family members are selected from the group consisting of AKT1, AKT2 and AKT3.
 - [9] The method according to [3] or [8] above, wherein the AKT family members constitutively activate signal transduction pathway of mTOR pathway.
 - [10] The method according to [2] above, further comprising contacting one or more factors selected from the group consisting of p53 inhibitor, GLIS family members, and nucleic acids that encode the same them with the somatic cell.
 - [11] An agent for improving the efficiency of establishment of induced pluripotent stem cell, comprising a factor selected from the group consisting of Ras family members, PI3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 and S6K, and nucleic acids that encode the same.
 - [12] The agent according to [11] above, wherein the Ras family members, PI3 kinase, RalGEF, Raf, AKT family members and S6K are constitutively active forms.
- [13] The agent according to [11] or [12] above, wherein the Ras family members are selected from the group consisting of ERas, HRas, NRas and KRas.
 - [14] The agent according to [12] or [13] above, wherein the Ras family members constitutively activate one or more signal transduction pathways selected from PI3 kinase pathway, Ral pathway and MAP kinase pathway.
 - [15] The agent according to [12] or [13] above, wherein the Ras family members constitutively activate PI3 kinase pathway and/or Ral pathway.
 - [16] The agent according to [12] above, wherein the PI3 kinase constitutively activates signal transduction pathway of AKT pathway.
 - [17] The agent according to [11] or [12] above, wherein the AKT family members are selected from the group consisting of AKT1, AKT2 and AKT3.
- [18] The agent according to [12] or [17] above, wherein the AKT members constitutively activate signal transduction pathway of mTOR pathway.
 - [19] The agent according to [11] above, further comprising one or more factors selected from the group consisting of p53 inhibitor, GLIS family members, and nucleic acids that encode the same.

- [20] A method of producing induced pluripotent stem cells, comprising contacting a somatic cell with nuclear reprogramming substance(s) and one or more factors selected from the group consisting of Ras family members, PI3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 and S6K, and nucleic acids that encode the same.
- [21] The method according to [20] above, wherein the Ras family members, PI3 kinase, RalGEF, Raf, AKT family members and S6K are constitutively active forms.
- [22] The method according to [20] or [21] above, wherein the Ras family members are selected from the group consisting of ERas, HRas, NRas and KRas.
- [23] The method according to [21] or [22] above, wherein the Ras family members constitutively activate one or more signal transduction pathways selected from PI3 kinase pathway, Ral pathway and MAP kinase pathway.
- [24] The method according to [21] or [22] above, wherein the Ras family members constitutively activate PI3 kinase pathway and/or Ral pathway.

5

15

35

40

- [25] The method according to [21] above, wherein the PI3 kinase constitutively activates signal transduction pathway of AKT pathway.
- [26] The method according to [20] or [21] above, wherein the AKT family members are selected from the group consisting of AKT1, AKT2 and AKT3.
- [27] The method according to [21] or [26] above, wherein the AKT family members constitutively activate signal transduction pathway of mTOR pathway.
- [28] The method according to [20] above, further comprising contacting one or more factors selected from the group consisting of p53 inhibitor, GLIS family members, and nucleic acids that encode the same with the somatic cell.
- [29] The method according to [20] above, wherein the nuclear reprogramming substance(s) is(are) selected from the group consisting of Oct family members, Sox family members, Klf4 family members, Myc family members, Lin family members and Nanog, as well as nucleic acids that encode the same.
 - [30] The method according to [20] above, wherein the nuclear reprogramming substances are Oct3/4, Klf4 and Sox2, or nucleic acids that encode the same.
- [31] The method according to [20] above, wherein the nuclear reprogramming substances are Oct3/4, Klf4, Sox2, as well as c-Myc or L-Myc and/or Nanog and/or Lin28 or Lin28B, or nucleic acids that encode the same.
 - [32] An agent for inducing an induced pluripotent stem cell, comprising a factor selected from the group consisting of Ras family members, PI3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 and S6K, and nucleic acids that encode the same, as well as nuclear reprogramming substance(s).
- [33] The agent according to [32] above, Ras family members, Pl3 kinase, RalGEF, Raf, AKT family members and S6K are constitutively active forms.
 - [34] The agent according to [32] or [33] above, wherein the Ras family members are selected from the group consisting of ERas, HRas, NRas and KRas.
 - [35] The agent according to [33] or [34] above, wherein the Ras family members constitutively activate one or more signal transduction pathways selected from PI3 kinase pathway, Ral pathway and MAP kinase pathway.
 - [36] The agent according to [33] or [34] above, wherein the Ras family members constitutively activate PI3 kinase pathway and/or Ral pathway.
 - [37] The agent according to [32] above, wherein the nuclear reprogramming substance(s) is(are) selected from the group consisting of Oct family members, Sox family members, Klf4 family members, Myc family members, members of the Lin family and Nanog, and nucleic acids that encode the same.
 - [38] The agent according to [33] above, wherein the PI3 kinase constitutively activates signal transduction pathway of AKT pathway.
 - [39] The agent according to [32] or [33] above, wherein the AKT family members are selected from the group consisting of AKT1, AKT2 and AKT3.
- [40] The agent according to [33] or [39] above, wherein the AKT family members constitutively activate signal transduction pathway of mTOR pathway.
 - [41] The agent according to [32] above, further comprising one or more factors selected from the group consisting of p53 inhibitor, GLIS family members, and nucleic acids that encode the same.
 - [42] The agent according to [32] above, wherein the nuclear reprogramming substances are Oct3/4, Klf4 and Sox2, or nucleic acids that encode the same.
 - [43] The agent according to [32] above, wherein the nuclear reprogramming substance(s) are Oct3/4, Klf4, Sox2 as well as c-Myc or L-Myc and/or Nanog and/or Lin28 or Lin28B, or nucleic acids that encode the same.
 - [44] An induced pluripotent stem cell, comprising an exogeneous nucleic acid encoding Ras family members, PI3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 or S6K.
- [45] The cell according to [44] above, wherein the aforementioned exogenous nucleic acid is integrated in the genome.

 [46] A method of producing a somatic cell, comprising the steps of:
 - (1) producing an induced pluripotent stem cell by the method according to any of [20] to [31] above, and

- (2) performing a differentiation induction treatment on the iPS cell obtained through the step (1) to cause the induced pluripotent stem cell to differentiate into a somatic cell.
- [47] A use of one or more factors selected from the group consisting of Ras family members, Pl3 kinase, RalGEF,
 Raf, AKT family members, Rheb, TCL1 and S6K, and nucleic acids that encode the same for improving the iPS cell establishment efficiency.
 - [48] A use of one or more factors selected from the group consisting of Ras family members, Pl3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 and S6K, and nucleic acids that encode the same, for producing an iPS cell, wherein the factor(s) is(are) contacted with a somatic cell along with nuclear reprogramming substance(s).
 - [49] A use of the induced pluripotent stem cell according to [44] or [45] above in producing a somatic cell.
 - [50] The induced pluripotent stem cell according to [44] or [45] above, as a cell source in producing a somatic cell.

Effect of the Invention

- 15 [0011] The iPS cell establishment efficiency can be remarkably enhanced by increasing the level of activated molecules of the Ras family members, target factors thereof (PI3 kinase, RalGEF or Raf), or related factors thereof (AKT family members, Rheb, TCL1 or S6K) during nuclear reprogramming, which is particularly useful in the induction of iPS cells by means of 3 factors except c-Myc that has conventionally showed low establishment efficiency.
- 20 Brief Description of the Drawings

[0012]

10

25

30

35

40

45

50

- Fig. 1 shows a graph presenting the results of Example 1, wherein the vertical axis shows fold change of the number of iPS colonies when the number of colonies obtained by 4 transgenes of Oct3/4, Sox2, Klf4 and c-Myc is 1 (Red in the Figure), and the horizontal axis shows combinations of Oct3/4, Sox2, Klf4 and c-Myc genes and respective genes shown in the horizontal axis.
- Fig. 2 shows a graph presenting the results of Example 2, wherein the vertical axis shows fold change of the number of iPS colonies when the number of colonies obtained by 4 transgenes of Oct3/4, Sox2, Klf4 and c-Myc is 1 (Red in the Figure), and the horizontal axis shows combinations of Oct3/4, Sox2, Klf4 and c-Myc genes and respective genes shown in the horizontal axis.
- Fig. 3 shows a graph presenting the results of Example 3, wherein the left Figure shows the results using Tig-120 cells, and the right Figure shows the results using 1616 cells. In the Figure, the vertical axis indicates the number of iPS cell colonies, and the horizontal axis shows combinations of Oct3/4, Sox2, Klf4 and c-Myc genes and respective genes shown in the horizontal axis.
- Fig. 4 shows a graph presenting the results of Example 4, wherein the vertical axis shows fold change of the number of iPS colonies when the number of colonies obtained by 4 transgenes of Oct3/4, Sox2, Klf4 and c-Myc is 1 (Red in the Figure), and the horizontal axis shows combinations of Oct3/4, Sox2, Klf4 and c-Myc genes and respective genes shown in the horizontal axis.
- Fig. 5 shows a graph presenting the results of Example 5, wherein the vertical axis indicates the number of iPS cell colonies, and the horizontal axis shows combinations of Oct3/4, Sox2, Klf4 and c-Myc genes and respective genes shown in the horizontal axis.
 - Fig. 6 shows a graph presenting the results of Example 6, wherein the vertical axis indicates the number of iPS cell colonies, and the horizontal axis shows combinations of Oct3/4, Sox2, Klf4 and c-Myc genes and respective genes shown in the horizontal axis.
 - Fig. 7 shows alkaline phosphatase stain images of iPS cell colonies showing the results of Example 7, wherein each value shows the number of the iPS cell colonies.
 - Fig. 8 shows graphs presenting the results of Example 8. In Fig. 8A, the vertical axis indicates the number of iPS cell colonies. The horizontal axis shows combinations of Oct3/4, Sox2 and Klf4 genes with the 2-fold amounts of and Mock; Mock and Myr-AKT1; Mock and c-MYC shRNA; Myr-AKT1 and c-MYC shRNA; or Myr-AKT1 and GSK3βS9A. In Fig. 8B, the vertical axis indicates the number of iPS cell colonies, and the horizontal axis shows combinations of Oct3/4, Sox2 and Klf4 genes and respective genes shown in the horizontal axis.
 - Fig. 9 shows a graph presenting the results of Example 9, wherein the vertical axis indicates the number of iPS cell colonies, and the horizontal axis shows combinations of Oct3/4, Sox2 and Klf4 genes and respective genes shown in the horizontal axis
 - Fig. 10 shows a graph presenting the results of Example 10, wherein the vertical axis indicates the number of iPS cell colonies, and the horizontal axis shows combinations of Oct3/4, Sox2 and Klf4 genes and respective genes shown in the horizontal axis.

Fig. 11 shows a graph and photographs presenting the results of Example 11. In Fig. 11A, the vertical axis indicates the number of the iPS cell colonies, and the horizontal axis shows combinations of Oct3/4, Sox2 and Klf4 genes and respective genes shown in the horizontal axis, in the presence or absence of c-Myc shRNA. Fig. 11B shows the measurement results by Western blotting of the intracellular expression of the proteins of c-Myc, p-AKT (phosphorylated AKT), AKT, p-S6K1 (phosphorylated S6K1), S6K1, p-TSC2 (phosphorylated TSC2) and TSC2, when Mock, Myr-AKT1, Rheb, S6K1 T389E or p53 shRNA were each introduced into the human dermal fibroblast. Fig. 12 shows a graph presenting the results of Example 12. Fig. 12A shows the results of introduction into human dermal fibroblast, wherein the vertical axis indicates the number of iPS cell colonies and the horizontal axis shows combinations of Oct3/4, Sox2 and Klf4 genes and respective genes shown in the horizontal axis, in the presence or absence of p53 shRNA. Fig. 12B shows the results of introduction into human dermal fibroblast, wherein the vertical axis indicates the number of iPS cell colonies and the horizontal axis shows combinations of Oct3/4, Sox2 and Klf4 genes and respective genes shown in the horizontal axis, in the presence or absence of GLIS1. Fig. 12C shows the results of introduction into human dental pulp cell, wherein the vertical axis indicates the number of the iPS cell colonies and the horizontal axis shows combinations of Oct3/4, Sox2 and Klf4 genes and respective genes shown in the horizontal axis, in the presence or absence of p53 shRNA, as well as combinations of Oct3/4, Sox2 and Klf4 genes and respective genes shown in the horizontal axis, in the presence or absence of GLIS1.

Description of Embodiments

5

10

15

30

35

40

45

50

55

[0013] The present invention provides a method of improving efficiency of iPS cell establishment, comprising increasing the intracellular level of a Ras protein in activated form, an activated form of the target factor thereof, an activated form of a signaling factor downstream of Ras target factor or an activator of the signaling, in a nuclear reprogramming step of somatic cell. While the means of increasing the intracellular level of a Ras protein in activated form, an activated form of target factor thereof, an activated form of a signaling factor downstream of Ras target factor or an activator of the signal is not particularly limited, for example, a method including contacting a Ras family member protein, a target factor thereof (PI3 kinase, RalGEF or Raf), a signaling factor downstream of Ras target factor or an activator of the signaling (AKT family member, Rheb, TCL1 or S6K), or nucleic acids encoding them, or a substance that promotes conversion reaction of Ras protein into an activated form or a substance that inhibits conversion reaction of Ras protein into an inactivated form, with a somatic cell, and the like can be mentioned.

[0014] While nuclear reprogramming of a somatic cell is achieved by transferring a nuclear reprogramming substance to the somatic cell, the present invention also provides a method of producing an iPS cell by contacting the above-mentioned substance with a nuclear reprogramming substance to a somatic cell. In the present specification, cases where iPS cells cannot be established by using a nuclear reprogramming substance alone, but can be established by increasing the level of a Ras protein in activated form and the like, are also deemed as corresponding to "an improvement of establishment efficiency."

(a) Sources of somatic cells

[0015] In the present invention, any cells other than germ cells of mammalian origin (e.g., humans, mice, monkeys, bovines, pigs, rats, dogs etc.) can be used as starting material for the production of iPS cells. Examples include keratinizing epithelial cells (e.g., keratinized epidermal cells), mucosal epithelial cells (e.g., epithelial cells of the superficial layer of tongue), exocrine gland epithelial cells (e.g., mammary gland cells), hormone-secreting cells (e.g., adrenomedullary cells), cells for metabolism or storage (e.g., liver cells), intimal epithelial cells constituting interfaces (e.g., type I alveolar cells), intimal epithelial cells of the obturator canal (e.g., vascular endothelial cells), cells having cilia with transporting capability (e.g., airway epithelial cells), cells for extracellular matrix secretion (e.g., fibroblasts), constrictive cells (e.g., smooth muscle cells), cells of the blood and the immune system (e.g., T lymphocytes), sense-related cells (e.g., bacillary cells), autonomic nervous system neurons (e.g., cholinergic neurons), sustentacular cells of sensory organs and peripheral neurons (e.g., satellite cells), nerve cells and glia cells of the central nervous system (e.g., astroglia cells), pigment cells (e.g., retinal pigment epithelial cells), progenitor cells (tissue progenitor cells) thereof and the like. There is no limitation on the degree of cell differentiation, the age of an animal from which cells are collected and the like; even undifferentiated progenitor cells (including somatic stem cells) and finally differentiated mature cells can be used alike as sources of somatic cells in the present invention. Examples of undifferentiated progenitor cells include tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells.

[0016] The choice of mammal individual as a source of somatic cells is not particularly limited; however, when the iPS cells obtained are to be used for regenerative medicine in humans, it is particularly preferable, from the viewpoint of prevention of graft rejection, to collect the somatic cells from a patient or another person with the same or substantially the same HLA gene type as that of the patient. "Substantially the same HLA type" as used herein means that the HLA

gene type of donor matches with that of patient to the extent that the transplanted cells, which have been obtained by inducing differentiation of iPS cells derived from the donor's somatic cells, can be engrafted when they are transplanted to the patient with use of immunosuppressant and the like. For example, it includes an HLA gene type wherein major HLAs (e.g., the three major loci of HLA-A, HLA-B and HLA-DR, the four loci further including HLA-C) are completely identical (hereinafter the same meaning shall apply) and the like. When the iPS cells obtained are not to be administered (transplanted) to a human, but used as, for example, a source of cells for screening for evaluating a patient's drug susceptibility or adverse reactions, it is likewise desired to collect the somatic cells from the patient or another person with the same genetic polymorphism correlating with the drug susceptibility or adverse reactions.

[0017] Somatic cells isolated from a mammal can be pre-cultured using a medium known per se suitable for their cultivation according to the choice of cells before being subjected to the nuclear reprogramming step. Examples of such media include, but are not limited to, minimal essential medium (MEM) containing about 5 to 20% fetal bovine serum (FCS), Dulbecco's modified Eagle medium (DMEM), RPMI1640 medium, 199 medium, F12 medium, and the like. When a transfer reagent such as cationic liposome, for example, is used in bringing the somatic cell into contact with nuclear reprogramming substances and a substance that increases the level of a Ras protein in activated form (and another iPS cell establishment efficiency improver if required), it is sometimes preferable that the medium have been replaced with a serum-free medium so as to prevent the transfer efficiency from decreasing.

(b) Substance that increases level of Ras protein, activated molecule of target factor thereof, signaling factor downstream of Ras target factor or activator of the signaling

[0018] In the present specification, the "substance that increases the level of Ras protein in activated form" may be any substance as long as it can increase the level of protein present as an activated form (GTP-bound form) of one or more proteins belonging to Ras family. That is, Ras protein per se or a nucleic acid per se encoding same, as well as a substance that eventually increases the level of Ras protein in an activated form by promoting a reaction to convert Ras protein from an inactivated form (GDP-bound form) to an activated form (GDP-GTP exchange reaction), or inhibiting a reaction to convert Ras protein from an activated form to an inactivated form (GTP hydrolysis), are included in the "substance that increases the level of Ras protein in activated form" in the present specification.

[0019] In the present specification, the "substance that increases level of activated form of Ras protein target factor" may be any substance as long as it can increase the intracellular level of an activated form of one or more factors, preferably 1 or 2 factors, of the three target factors of Ras protein, PI3 kinase, RalGEF and Raf, more preferably PI3 kinase and/or RalGEF. That is, PI3 kinase, RalGEF or Raf per se or a nucleic acid per se encoding the same, as well as a localization factor that recruits such target factors in the cell into the plasma membrane such as Ras protein in activated form, are included in the "substance that increases level of activated form of Ras protein target factor" in the present specification.

[0020] In the present specification, the "substance that increases level of signaling factor downstream of Ras target factor or activator of the signaling" may be any substance as long as it can increase the intracellular level of a signaling factor downstream of Ras protein target factor or an activator of the signaling (i.e., AKT family members, Rheb, TCL1 or S6K, preferably an activated form of AKT family members, an activated form of Rheb, TCL1 or S6K). That is, AKT family members, Rheb, TCL1 or S6K per se or a nucleic acid per se encoding the same, as well as a localization factor that recruits intracellular AKT family members into the plasma membrane such as PI3 kinase in activated form, are included in the "substance that increases level of Ras protein-related factors in activated form" in the present specification.

[0021] In the following, substances that increase the level of activated molecule of Ras protein, target factor thereof or a signaling factor downstream of Ras target factor, as well as an activator of the signalin, are sometimes collectively referred to as "the establishment efficiency improving factor of the present invention".

(b1) Ras family members

15

20

25

30

35

40

45

50

55

[0022] The "Ras family members" in the present specification means a protein from the Ras subfamily proteins characterized by homology of the primary structure with HRas, KRas, NRas identified as proto-oncogenes, which protein targets one or more molecules selected from Raf, Pl3 kinase and RalGEF, preferably Pl3 kinase and/or RalGEF, and can activate signal transduction pathway at the downstream of the above-mentioned target factors (i.e., Raf/MAP kinase pathway) (MAP kinase pathway), Pl3 kinase pathway, Ral pathway), by the action of activated form of the Ras protein. Preferable examples of the Ras family members include, but are not limited to, HRas, KRas; NRas, ERas and the like. [0023] Preferable examples of the HRas protein include mouse HRas consisting of the amino acid sequence shown by SEQ ID NO:2 (RefSeq Accession No. NP_032310), human HRas consisting of the amino acid sequence shown by SEQ ID NO:4 (RefSeq Accession No. NP_001123914), orthologs thereof in other mammals, natural allelic variants and polymorphic variants thereof, splicing variants thereof, natural and artificial activated mutants thereof and the like. While HRas homologous to the animal species of the somatic cell to be the introduction target is desirably used, heterologous

HRas can also be used.

30

35

45

50

55

[0024] Preferable examples of the KRas protein include mouse KRas consisting of the amino acid sequence shown by SEQ ID NO:6 (RefSeq Accession No. NP_067259), human KRas consisting of the amino acid sequence shown by SEQ ID NO:8 (RefSeq Accession No. NP_203524), orthologs thereof in other mammals, natural allelic variants and polymorphic variants thereof, splicing variants, natural and artificial activated mutants and the like. While KRas homologous to the animal species of the somatic cell to be the introduction target is desirably used, heterologous KRas can also be used.

[0025] Preferable examples of the NRas protein include mouse NRas consisting of the amino acid sequence shown by SEQ ID NO:10 (RefSeq Accession No. NP_035067), human NRas consisting of the amino acid sequence shown by SEQ ID NO:12 (RefSeq Accession No. NP_002515), orthologs thereof in other mammals, natural allelic variants and polymorphic variants thereof, splicing variants, natural and artificial activated mutants and the like. While NRas homologous to the animal species of the somatic cell to be the introduction target is desirably used, heterologous NRas can also be used.

[0026] Preferable examples of the ERas protein include mouse ERas consisting of the amino acid sequence shown by SEQ ID NO:14 (RefSeq Accession No. NP_853526), human ERas consisting of the amino acid sequence shown by SEQ ID NO:16 (RefSeq Accession No. NP_853510), orthologs thereof in other mammals, natural allelic variants and polymorphic variants thereof, splicing variants thereof, and the like. While ERas homologous to the animal species of the somatic cell to be the introduction target is desirably used, heterologous ERas can also be used.

[0027] The homology of the amino acid sequences of Ras protein can be calculated using the blastp program of homology calculation algorithm NCBI BLAST (National Center for Biotechnology Information Basic Local Alignment Search Tool) and under the following conditions (expect threshold=10; accept gap; matrix=BLOSUM62; filtering=OFF). Under the above-mentioned conditions, human HRas and mouse HRas show 100% amino acid identity, human KRas and mouse KRas show about 89% amino acid identity, and human NRas and mouse NRas show about 99% amino acid identity. The region of 164 amino acids from the N-terminus of Ras protein is extremely highly conserved and, in this region, human KRas and mouse KRas show about 98% amino acid identity, and human NRas and mouse NRas show 100% amino acid identity. In this region, moreover, the amino acid identity of human HRas and human KRas is about 95%, and the amino acid identity of human HRas and human NRas is about 92%. In said region, 5 domains (G1 - G5) relating to the binding with guanine nucleotide, and the effector domain relating to the binding with target factor are particularly well conserved. Furthermore, of the C-terminal sequences rich in diversity, 4 amino acid residues at the C-terminal are called Caax motif (C: cysteine, a: aliphatic amino acid, x: any amino acid; SEQ ID NO:17) and highly conserved. They are subject to post-translational modification, whereby farnesyl group is added to the cysteine residue, and successive cleavage of terminal 3 amino acids, and methyl esterification of newly exposed C-terminal cysteine. Ras protein is strongly bonded to the inner surface of plasma membrane by such lipid modification.

[0028] Many of the Ras proteins such as HRas, KRas, NRas and the like are generally present as a GDP-bound inactivated form, and converted to a GTP-bound activated form on receipt of a signal from the upstream. Constitutively active Ras mutant has been isolated from various carcinomas, and a number of amino acid substitutions contributing to constitutive activation have been reported. The level of Ras protein in activated form can be efficiently increased by introducing a constitutively active mutant of such Ras protein into a somatic cell. For example, a mutant wherein 12th glycine of H-, K- and N-Ras is substituted by valine is a constitutively active mutant that activates all 3 signal transduction pathways (PI3 kinase pathway, Ral pathway, MAP kinase pathway) at the downstream of Ras. A double mutant wherein 35th threonine is substituted by serine, a double mutant wherein 37th glutamic acid is substituted by glycine and a double mutant wherein 40th tyrosine is substituted by cysteine, each in addition to the above-mentioned mutation, are constitutively active mutants that selectively activate MAP kinase pathway, Ral pathway and Pl3 kinase pathway, respectively. [0029] While human and mouse ERas have about 40% homology with HRas over entire protein, G1 - G5 and effector domain essential for the function of Ras, and Caax motif necessary for membrane localization are conserved. When even only one of 12th glycine of H-, K- and N-Ras, 59th alanine and 63rd glutamic acid is substituted by other amino acid, a constitutively active form is produced. It is known that in human Eras, 2 of the 3 amino acids are different from other Ras, and in mouse Eras, all the 3 amino acids different from other Ras, and PI3 kinase pathway from the 3 signal transduction pathways at the downstream of Ras is constitutively activated.

[0030] The constitutively active Ras protein to be used in the present invention is not particularly limited as long as it can constitutively activate at least one of the 3 signal transduction pathways at the downstream of Ras (PI3 kinase pathway, Ral pathway, MAP kinase pathway). It preferably constitutively activates 1 or 2 signal transduction pathways from PI3 kinase pathway, Ral pathway and MAP kinase pathway, more preferably PI3 kinase pathway and/or Ral pathway. Specific examples of the Ras protein that constitutively activates PI3 kinase pathway and/or Ral pathway include, but are not limited to, ERas, a double mutant wherein 12th glycine of H-, K- or N-Ras is substituted by valine, and 37th glutamic acid is substituted by glycine or 40th tyrosine is substituted by cysteine and the like.

[0031] The Ras protein to be used in the present invention may be a protein containing an amino acid sequence which is the amino acid sequence of any of the above-mentioned Ras proteins wherein 1 or more, preferably 1 - 20, more

preferably 1 - 10, still more preferably 1 - several (5, 4, 3, 2), amino acids are substituted, deleted, inserted or added, as long as any of the 3 signal transduction pathways at the downstream of Ras is not constitutively inactivated, preferably none of Pl3 kinase pathway and Ral pathway is constitutively inactivated. Alternatively, it may be a protein containing an amino acid sequence having identity of not less than 80%, preferably not less than 90%, more preferably not less than 95%, still more preferably not less than 97%, particularly preferably not less than 98%, with the amino acid sequence of any of the above-mentioned Ras proteins. Preferred is a protein that conserves Caax motif necessary for membrane localization, and G1 (10 - 17th amino acids), G2 (32 - 36th amino acids), G3 (57 - 60th amino acids), G4 (116 - 119th amino acids), G5 (145 - 147th amino acids) domain, and effector domain (26 - 45th amino acids) essential for the function of Ras, or a protein that is mutated to provide constitutively activation.

(b2) Ras target factor (effector)

10

30

35

40

45

50

55

[0032] As the "Ras target factor (effector)" to be used in the present invention, PI3 kinase, RalGEF and Raf can be mentioned.

[0033] PI3 kinase in the present invention is a class IA PI3 kinase to be the target factor of Ras, which consists of p110 catalytic subunit (3 isoforms of α , β and δ) and regulatory subunit (p85 α , p85 β , p55 γ and splicing variants thereof) . Of these, p110 having a domain relating to the binding with Ras and a kinase domain that catalyzes the phosphorylation reaction from phosphatidylinositol-4, 5- diphosphoric acid (PIP₂) to phosphatidylinositol-3, 4, 5- triphosphoric acid (PIP₃) can be preferably used as an establishment efficiency improving factor in the present invention.

[0034] Preferable examples of p110 protein include mouse p110 α consisting of the amino acid sequence shown by SEQ ID NO:19 (RefSeq Accession No. NP_032865), human p110 α consisting of the amino acid sequence shown by SEQ ID NO:21 (RefSeq Accession No. NP_06209), mouse p110 β (RefSeq Accession No. NP_083370), human p110 β (RefSeq Accession No. NP_006210), mouse p110 δ (RefSeq Accession No. NP_010250058), human p110 δ (RefSeq Accession No. NP_005017), orthologs thereof in other mammals, natural allelic variants and polymorphic variants thereof, splicing variants thereof, natural and artificial activated mutants thereof and the like. While p110 homologous to the animal species of the somatic cell to be the introduction target is desirably used, heterologous p110 can also be used. [0035] Preferable examples of RalGEF protein include mouse RalGDS consisting of the amino acid sequence shown by SEQ ID NO:23 (RefSeq Accession No. NP_033084), human RalGDS consisting of the amino acid sequence shown by SEQ ID NO:25 (RefSeq Accession No. NP_006266), mouse Rgl (RefSeq Accession No. NP_058542), human Rgl (RefSeq Accession No. NP_055964), mouse Rlf/Rgl2 (RefSeq Accession No. NP_033085), human Rlf/Rgl2 (RefSeq Accession No. NP_004752), orthologs thereof in other mammals, natural allelic variants and polymorphic variants thereof, splicing variants thereof, natural and artificial activated mutants thereof and the like. While RalGEF homologous to the animal species of the somatic cell to be the introduction target is desirably used, heterologous RalGEF can also be used.

[0036] Preferable examples of Raf protein include mouse c-Raf consisting of the amino acid sequence shown by SEQ ID NO:27 (RefSeq Accession No. NP_084056), human c-Raf consisting of the amino acid sequence shown by SEQ ID NO:29 (RefSeq Accession No. NP_002871), mouse A-Raf (RefSeq Accession No. NP_033833), human A-Raf (RefSeq Accession No. NP_001645), mouse B-Raf (RefSeq Accession No. NP_647455), human B-Raf (RefSeq Accession No. NP_004324), orthologs thereof in other mammals, natural allelic variants and polymorphic variants thereof, splicing variants thereof, natural and artificial activated mutants thereof and the like. While Raf homologous to the animal species of the somatic cell to be the introduction target is desirably used, heterologous Raf can also be used.

[0037] Ras target factors such as PI3 kinase, RalGEF, Raf and the like are activated by being localized on the inner surface of the plasma membrane via binding to activated Ras, and activates signal transduction pathway in the downstream. Therefore, the level of activated Ras target factor can be efficiently increased by introducing constitutively active mutants of these target factors into somatic cells. For example, since Ras target factor is activated by being localized on the membrane, a constitutively active mutant of the target factor can be produced by adding a membrane localization signal sequence to the N-terminal or C-terminal of the target factor. For example, a membrane-localized constitutively active mutant can be obtained by adding a myristoylation signal sequence (e.g., c-Src-derived myristoylation signal sequence (MGSSKSKPKDPSQRRRRIRT; SEQ ID NO:30)) to the N-terminal of the target factor (e.g., Myr-PI3K of Example 3 etc.), or adding Caax motif to the C-terminal (e.g., PI3K-CaaX of Example 3, RalGDS-Caax and Raf-CaaX of Example 4, etc.). Examples of other constitutively active mutant include, but are not limited to, PI3 kinase mutant wherein 1047th histidine of p110 α is substituted by arginine, PI3 kinase mutant wherein 545th glutamic acid of p110 α is substituted by lysine, PI3 kinase mutant wherein 227th lysine of p110 α is substituted by glutamic acid, PI3 kinase mutant wherein 108 amino acids at the N-terminus (regulatory subunit binding domain) of p110 are deleted, Raf mutant wherein 305 amino acids at the N-terminus (including Ras binding domain) of c-Raf are deleted, Raf mutant wherein acid and the like

[0038] The Ras target factor in constitutively active form to be used in the present invention is preferably a constitutively

active mutant of PI3 kinase (p110) or RalGEF, which is specifically exemplified by Myr-PI3K, PI3K-CaaX, RalGDS-CaaX and the like used in the Examples to be described below.

[0039] PI3 kinase in constitutively active form to be used in the present invention constitutively activates the signal transduction pathway of AKT pathway.

[0040] The Ras target factor to be used in the present invention may be a protein containing an amino acid sequence which is the amino acid sequence of any of the above-mentioned Ras target factor wherein 1 or more, preferably 1 - 20, more preferably 1 - 10, still more preferably 1 - several (5, 4, 3, 2), amino acids are substituted, deleted, inserted or added, as long as the signal transduction pathway at the downstream of the target factor is not constitutively inactivated. Alternatively, it may be a protein containing an amino acid sequence having identity of not less than 80%, preferably not less than 90%, more preferably not less than 95%, still more preferably not less than 97%, particularly preferably not less than 98%, with the amino acid sequence of any of the above-mentioned Ras proteins.

(b3) Signaling factor downstream of Ras target factor (effector) and activator of the signaling

10

15

20

30

35

45

50

55

[0041] Examples of the "signaling factor downstream of Ras target factor (effector)" to be used in the present invention" include AKT family members, Rheb and S6K, and examples of the "activator of signaling downstream of Ras target factor (effector)" include TCL1.

[0042] The "AKT family member" in the present specification is a protein identified as a gene homologous to viral oncogene v-Akt, and capable of transmitting the signal for activation of mTOR at the downstream thereof. Preferable examples of AKT family members include, but are not limited to, AKT1, AKT2, AKT3 and the like. Preferable examples of AKT protein include mouse Aktl consisting of the amino acid sequence shown by SEQ ID NO:35 (RefSeq Accession No. NP_001159366), human AKT1 consisting of the amino acid sequence shown by SEQ ID NO:37 (RefSeq Accession No. NP_001014432), orthologs thereof in other mammals, natural allelic variants and polymorphic variants thereof, splicing variants thereof (e.g., RefSeq Accession No. NP_033782, RefSeq Accession No. NP_001014431, RefSeq Accession No. NP_005154 and the like), natural and artificial activated mutants thereof and the like. While AKT family members homologous to the animal species of the somatic cell to be the introduction target are desirably used, heterologous AKT family members can also be used.

[0043] Preferable examples of Rheb protein include mouse Rheb consisting of the amino acid sequence shown by SEQ ID NO:39 (RefSeq Accession No. NP_444305), human RHEB consisting of the amino acid sequence shown by SEQ ID NO:41 (RefSeq Accession No. NP_005605), orthologs thereof in other mammals, natural allelic variants and polymorphic variants thereof, splicing variants thereof, natural and artificial activated mutants thereof and the like. While Rheb homologous to the animal species of the somatic cell to be the introduction target is desirably used, heterologous Rheb can also be used.

[0044] Preferable examples of TCL1 protein include mouse Tcl1 consisting of the amino acid sequence shown by SEQ ID NO:43 (RefSeq Accession No. NP_033363), human TCL1A consisting of the amino acid sequence shown by SEQ ID NO:45 (RefSeq Accession No. NP_001092195), orthologs thereof in other mammals, natural allelic variants and polymorphic variants thereof, splicing variants thereof (e.g., RefSeq Accession No. NP_068801 and the like), natural and artificial activated mutants thereof and the like. While TCL1 homologous to the animal species of the somatic cell to be the introduction target is desirably used, heterologous TCL1 can also be used.

[0045] Preferable examples of S6K protein include S6K consisting of the amino acid sequence shown by SEQ ID NO: 47 (RefSeq Accession No. NP_001107806), human S6K1 consisting of the amino acid sequence shown by SEQ ID NO:49 (RefSeq Accession No. NP_003152), orthologs thereof in other mammals, natural allelic variants and polymorphic variants thereof, splicing variants thereof (e.g., RefSeq Accession No. NP_082535 and the like), natural and artificial activated mutants thereof and the like. While S6K homologous to the animal species of the somatic cell to be the introduction target is desirably used, heterologous S6K can also be used.

[0046] AKT family members are activated by being localized on the inner surface of the plasma membrane via binding to activated Ras, PI3 kinase etc., and activates signal transduction pathway in the downstream. Therefore, the level of downstream signaling factor can be efficiently increased by introducing constitutively active mutants of AKT family members into somatic cells. For example, since AKT family member is activated by being localized on the membrane, a constitutively active mutant of the target factor can be produced by adding a membrane localization signal sequence to the N- terminal or C- terminal of the target factor. For example, a membrane- localized constitutively active mutant can be obtained by adding a myristoylation signal sequence (e.g., c-Src-derived myristoylation signal sequence (MGSSK-SKPKDPSQRRRRIRT; SEQ ID NO: 30)) to the N- terminal of the target factor (e.g., Myr- AKT1 of Example 8 etc.) . Examples of other constitutively active mutant include, but are not limited to, PI3 kinase mutant wherein 40th glutamic acid of AKT1 is substituted by lysin (E40K- AKT1), PI3 kinase mutant wherein 17th glutamic acid of AKT1 is substituted by lysine (E17K- AKT1) and the like.

[0047] S6K protein is generally converted to an activated form by phosphorylation of 389th threonine, and has been reported to be constitutively activated by converting the 389th to glutamic acid. The level of S6K protein in activated

form can be efficiently increased by introducing such constitutively active mutant of S6K protein into a somatic cell.

[0048] The signaling factor downstream of Ras target factor (effector) and activator of the signaling to be used in the present invention may be a protein containing an amino acid sequence which is the amino acid sequence of any of the above-mentioned signaling factor downstream of Ras target factor (effector) and activator of the signaling wherein 1 or more, preferably 1 - 20, more preferably 1 - 10, still more preferably 1 - several (5, 4, 3, 2), amino acids are substituted, deleted, inserted or added, as long as the signal transduction pathway at the downstream of the target factor is not constitutively inactivated. Alternatively, it may be a protein containing an amino acid sequence having identity of not less than 80%, preferably not less than 90%, more preferably not less than 95%, still more preferably not less than 97%, particularly preferably not less than 98%, with the amino acid sequence of any of the above-mentioned AKT family members, Rheb, S6K and TCL1 protein.

[0049] The signaling factor downstream of the target factor (effector) of Ras in constitutively active form to be used in the present invention and the activator of the signaling are preferably constitutively active mutants of AKT family members or S6K. Specific examples thereof includes Myr-AKT1, Myr-AKT2, Myr-AKT3, S6K1 T389E and the like used in the Examples described later.

(b4) Ras activator

10

15

20

30

35

40

45

50

55

[0050] When receptor tyrosine kinase is activated by stimulation with an extracellular signal such as growth factor and the like, autophosphorylation occurs, and RasGEF (Sos, RasGRF, RasGRP, RasGRP, SmgGDS, Vav, C3G and the like) is recruited to the plasma membrane via an adapter protein that recognizes the autophosphorylated molecule such as Grb2, Shc and the like, whereby Ras protein localized in the plasma membrane is activated. Therefore, the iPS cell establishment efficiency can also be improved via activation of Ras protein by introduction of RasGEF and adapter protein into somatic cells.

[0051] Preferable examples of Sos protein include mouse Sos1 (RefSeq Accession No. NP_033257), human Sos1 (RefSeq Accession No. NP_05624), mouse Sos2 (RefSeq Accession No. XP_127051), human Sos2 (RefSeq Accession No. NP_08870), orthologs thereof in other mammals, natural allelic variants and polymorphic variants thereof, splicing variants thereof, natural and artificial activated mutants thereof and the like. While Sos homologous to the animal species of the somatic cell to be the introduction target is desirably used, heterologous Sos can also be used. Examples of the artificial activated mutant include membrane localized mutant wherein Caax motif is added to the aforementioned C-terminal or myristoylation signal is added to the N-terminal.

[0052] The amino acid sequences of other RasGEF proteins such as RasGRF, RasGRF2, RasGRP, SmgGDS, Vav, C3G and the like are known, and polymorphic variants and splicing variants thereof are also known. Examples of the activated mutant of these proteins include membrane localized mutant wherein Caax motif is added to the aforementioned C-terminal or myristoylation signal is added to the N-terminal.

[0053] Preferable examples of Grb2 protein include mouse Grb2 (RefSeq Accession No. NP_032189), human Grb2 (RefSeq Accession No. NP_002077), orthologs thereof in other mammals, natural allelic variants and polymorphic variants thereof, splicing variants thereof, natural and artificial activated mutants thereof and the like. While Grb2 homologous to the animal species of the somatic cell to be the introduction target is desirably used, heterologous Grb2 can also be used. Examples of the artificial activated mutant include membrane localized mutant wherein Caax motif is added to the aforementioned C-terminal or myristoylation signal is added to the N-terminal.

[0054] The proteins of (b1) - (b4) (sometimes to be referred to as "proteinous establishment efficiency improving factors of the present invention") may be isolated from, for example, a cell or tissue [e.g., cells and tissues of thymus, bone marrow, spleen, brain, spinal cord, heart, skeletal muscle, kidney, lung, liver, pancreas or prostate, progenitor cells, stem cells or cancer cells of these cells, and the like of a human or another mammal (e.g., mouse, rat, monkey, pig, dog and the like) by a protein separation and purification technique known per se. Preferably, it is prepared as a recombinant protein by cloning cDNA from the above-mentioned cell or tissue by a conventional method and expressing same in a suitable host cell. The above-mentioned various activated mutants can be produced by introduction of point mutation or addition of a membrane localization signal sequence to the terminus by a gene recombination technique known per se. [0055] Transfer of the proteinous establishment efficiency improving factor of the present invention to a somatic cell can be achieved using a method known per se for protein transfer into a cell. Such methods include, for example, the method using a protein transfer reagent, the method using a protein transfer domain (PTD)- or cell penetrating peptide (CPP)- fusion protein, the microinjection method and the like. Protein transfer reagents are commercially available, including those based on a cationic lipid, such as BioPOTER Protein Delivery Reagent (Gene Therapy Systems), Pro-Ject™ Protein Transfection Reagent (PIERCE) and ProVectin (IMGENEX); those based on a lipid, such as Profect-1 (Targeting Systems); those based on a membrane-permeable peptide, such as Penetrain Peptide (Q biogene) and Chariot Kit (Active Motif), GenomONE (ISHIHARA SANGYO KAISHA, LTD.) utilizing HVJ envelope (inactive hemagglutinating virus of Japan) and the like. The transfer can be achieved per the protocols attached to these reagents, a common procedure being as described below. The proteinous establishment efficiency improving factor of the present

invention is diluted in an appropriate solvent (e.g., a buffer solution such as PBS or HEPES), a transfer reagent is added, the mixture is incubated at room temperature for about 5 to 15 minutes to form a complex, this complex is added to cells after exchanging the medium with a serum-free medium, and the cells are incubated at 37°C for one to several hours. Thereafter, the medium is removed and replaced with a serum-containing medium.

[0056] Developed PTDs include those using transcellular domains of proteins such as drosophila-derived AntP, HIV-derived TAT (Frankel, A. et al, Cell 55, 1189-93 (1988) or Green, M. & Loewenstein, P. M. Cell 55, 1179-88 (1988)), Penetratin (Derossi, D. et al, J. Biol. Chem. 269, 10444-50 (1994)), Buforin II (Park, C. B. et al. Proc. Natl Acad. Sci. USA 97, 8245-50 (2000)), Transportan (Pooga, M. et al. FASEB J. 12, 67-77 (1998)), MAP (model amphipathic peptide) (Oehlke, J. et al. Biochim. Biophys. Acta. 1414, 127-39 (1998)), K-FGF (Lin, Y. Z. et al. J. Biol. Chem. 270, 14255-14258 (1995)), Ku70 (Sawada, M. et al. Nature Cell Biol. 5, 352-7 (2003)), Prion (Lundberg, P. et al. Biochem. Biophys. Res. Commun. 299, 85-90 (2002)), pVEC (Elmquist, A. et al. Exp. Cell Res. 269, 237-44 (2001)), Pep-1 (Morris, M. C. et al. Nature Biotechnol. 19, 1173-6 (2001)), Pep-7 (Gao, C. et al. Bioorg. Med. Chem. 10, 4057-65 (2002)), SynBI (Rousselle, C. et al. Mol. Pharmacol. 57, 679-86 (2000)), HN-I (Hong, F. D. & Clayman, G L. Cancer Res. 60, 6551-6 (2000)), and HSV-derived VP22. CPPs derived from the PTDs include polyarginines such as 11R (Cell Stem Cell, 4, 381-384 (2009)) and 9R (Cell Stem Cell, 4, 472-476 (2009)).

10

30

35

45

50

55

[0057] A fused protein expression vector incorporating cDNA encoding the proteinous establishment efficiency improving factor of the present invention and PTD sequence or CPP sequence is prepared, and recombination expression is performed using the vector. The fused protein is recovered and used for transfer. Transfer can be performed in the same manner as above except that a protein transfer reagent is not added.

[0058] Microinjection, a method of placing a protein solution in a glass needle having a tip diameter of about 1 μ m, and injecting the solution into a cell, ensures the transfer of the protein into the cell.

[0059] Other useful methods of protein transfer include the electroporation method, the semi- intact cell method [Kano, F. et al. Methods in Molecular Biology, Vol. 322, 357- 365 (2006)], and transfer using the Wr- t peptide [Kondo, E. et al., Mol. Cancer Ther. 3 (12), 1623- 1630 (2004)] and the like.

[0060] The protein transferring operation can be performed one or more optionally chosen times (e.g., once or more to 10 times or less, or once or more to 5 times or less and the like). Preferably, the transferring operation can be performed twice or more (e.g., 3 times or 4 times) repeatedly. The time interval for repeated transferring operation is, for example, 6 to 48 hours, preferably 12 to 24 hours.

(b5) Nucleic acid encoding the proteinous establishment efficiency improving factor of the present invention

[0061] The nucleic acid encoding the proteinous establishment efficiency improving factor of the present invention (Ras family members, Ras target factor (effector), signaling factor downstream of Ras target factor (effector), activator of the signaling and Ras activator) (sometimes to be referred to as "the nucleic acidic establishment efficiency improving factor of the present invention") is not particularly limited as long as it encodes the above-mentioned Ras family members (e.g., HRas, KRas, NRas, ERas etc.), Ras target factor (effector) (e.g., Pl3 kinase, RalGEF, Raf etc.), signaling factor downstream of Ras target factor (effector) (e.g., AKT1, AKT2, AKT3, Rheb, S6K etc.), activator of the signaling downstream of Ras target factor (effector) (e.g., TCL1 etc.) or Ras activator (e.g., RasGEF, receptor tyrosine kinase adapter protein etc.) in the present invention. The nucleic acid may be a DNA or an RNA, or a DNA/RNA chimera, with preference given to a DNA. The nucleic acid may be double- stranded or single- stranded. In the case of double strands, the nucleic acid may be a double- stranded DNA, a double- stranded RNA or a DNA: RNA hybrid.

[0062] The nucleic acidic establishment efficiency improving factor of the present invention can be cloned from a cDNA derived from a cell or tissue [e.g., cells and tissues of thymus, bone marrow, spleen, brain, spinal cord, heart, skeletal muscle, kidney, lung, liver, pancreas or prostate, progenitor cells, stem cells or cancer cells of these cells, and the like] of a human or another mammal (e.g., mice, rats, monkeys, pigs, dogs and the like) by a conventional method.

[0063] Examples of the nucleic acid encoding HRas include a nucleic acid comprising the nucleotide sequence shown by SEQ ID NO:1 or 3, and a nucleic acid containing a nucleotide sequence capable of hybridizing with a sequence complementary to the nucleotide sequence shown by SEQ ID NO:1 or 3 under stringent conditions, and encoding a protein capable of activating at least one of the 3 signal transduction pathways at the downstream of Ras, preferably PI3 kinase pathway and/or Ral pathway.

[0064] Examples of the nucleic acid encoding KRas include a nucleic acid comprising the nucleotide sequence shown by SEQ ID NO:5 or 7, and a nucleic acid containing a nucleotide sequence capable of hybridizing with a sequence complementary to the nucleotide sequence shown by SEQ ID NO:5 or 7 under stringent conditions, and encoding a protein capable of activating at least one of the 3 signal transduction pathways at the downstream of Ras, preferably PI3 kinase pathway and/or Ral pathway.

[0065] Examples of the nucleic acid encoding NRas include a nucleic acid comprising the nucleotide sequence shown by SEQ ID NO:9 or 11, and a nucleic acid containing a nucleotide sequence capable of hybridizing with a sequence complementary to the nucleotide sequence shown by SEQ ID NO:9 or 11 under stringent conditions, and encoding a

protein capable of activating at least one of the 3 signal transduction pathways at the downstream of Ras, preferably PI3 kinase pathway and/or Ral pathway.

[0066] Examples of the nucleic acid encoding ERas include a nucleic acid comprising the nucleotide sequence shown by SEQ ID NO:13 or 15, and a nucleic acid containing a nucleotide sequence capable of hybridizing with a sequence complementary to the nucleotide sequence shown by SEQ ID NO:13 or 15 under stringent conditions, and encoding a protein capable of activating at least one of the 3 signal transduction pathways at the downstream of Ras, preferably PI3 kinase pathway and/or Ral pathway.

[0067] Examples of the nucleic acid encoding catalytic subunit (p110) of Pl3 kinase include a nucleic acid encoding p110 α containing the nucleotide sequence shown by SEQ ID NO:18 or 20, and a nucleic acid containing a nucleotide sequence capable of hybridizing with a sequence complementary to the nucleotide sequence shown by SEQ ID NO:18 or 20 under stringent conditions, and encoding a protein capable of activating Pl3 kinase pathway. Alternatively, a nucleic acid containing the cDNA sequence of mouse p110 β (RefSeq Accession No. NM_029094), human p110 β (RefSeq Accession No. NM_006219), mouse p110 δ (RefSeq Accession No. NM_001029837), human p110 δ (RefSeq Accession No. NM_005026), and a nucleic acid containing a nucleotide sequence capable of hybridizing with a sequence complementary to the cDNA sequence and encoding a protein capable of activating Pl3 kinase pathway can be mentioned.

10

30

35

40

45

50

55

[0068] Examples of the nucleic acid encoding RalGEF include a nucleic acid encoding RalGDS containing the nucleotide sequence shown by SEQ ID NO:22 or 24, and a nucleic acid containing a nucleotide sequence capable of hybridizing with a sequence complementary to the nucleotide sequence shown by SEQ ID NO:22 or 24 under stringent conditions and encoding a protein capable of activating Ral pathway. Alternatively, a nucleic acid containing the cDNA sequence of mouse Rgl (RefSeq Accession No. NM_016846), human Rgl (RefSeq Accession No. NM_015149), mouse Rlf/Rgl2 (RefSeq Accession No. NM_009059), human Rlf/Rgl2 (RefSeq Accession No. NM_004761), and a nucleic acid containing a nucleotide sequence capable of hybridizing with a sequence complementary to the cDNA sequence and encoding a protein capable of activating Ral pathway can be mentioned.

[0069] Examples of the nucleic acid encoding RalGEF include a nucleic acid encoding c-Raf containing the nucleotide sequence shown by SEQ ID NO:26 or 28, and a nucleic acid containing a nucleotide sequence capable of hybridizing with a sequence complementary to the nucleotide sequence shown by SEQ ID NO:26 or 28 under stringent conditions and encoding a protein capable of activating MAP kinase pathway. Alternatively, a nucleic acid containing the cDNA sequence of mouse. A-Raf (RefSeq Accession No. NM_009703), human A-Raf (RefSeq Accession No. NM_001654), mouse B-Raf (RefSeq Accession No. NM_139294), human B-Raf (RefSeq Accession No. NM_004333), and a nucleic acid containing a nucleotide sequence capable of hybridizing with a sequence complementary to the cDNA sequence and encoding a protein capable of activating MAP kinase pathway can be mentioned.

[0070] Examples of the nucleic acid encoding Sos include a nucleic acid containing the cDNA sequence of mouse Sos1 (RefSeq Accession No. NM_009231), human Sos1 (RefSeq Accession No. NM_005633), mouse Sos2 (RefSeq Accession No. XM_127051), human Sos2 (RefSeq Accession No. NM_006939), and a nucleic acid containing a nucleotide sequence capable of hybridizing with a sequence complementary to the cDNA sequence and encoding a protein capable of activating Ras protein.

[0071] The cDNA sequences of other RasGEF proteins such as RasGRF, RasGRP, SmgGDS, Vav, C3G and the like are known, and polymorphic variants and splicing variants thereof are also known.

[0072] Examples of the nucleic acid encoding Grb2 include a nucleic acid containing the cDNA sequence of mouse Grb2 (RefSeq Accession No. NM_008163), human Grb2 (RefSeq Accession No. NM_002086), and a nucleic acid containing a nucleotide sequence capable of hybridizing with a sequence complementary to the cDNA sequence and encoding a protein capable of recognizing and binding to a receptor tyrosine kinase, and recruiting RasGEF to the plasma membrane to activate Ras protein.

[0073] Examples of the nucleic acid encoding AKT1 as one embodiment of the AKT family members include a nucleic acid containing the nucleotide sequence shown by SEQ ID NO:34 or 36, and a nucleic acid containing a nucleotide sequence capable of hybridizing with a sequence complementary to the nucleotide sequence shown by SEQ ID NO:34 or 36 under stringent conditions and encoding a protein capable of activating AKT pathway.

[0074] Examples of the nucleic acid encoding Rheb include a nucleic acid containing the nucleotide sequence shown by SEQ ID NO:38 or 40, and a nucleic acid containing a nucleotide sequence capable of hybridizing with a sequence complementary to the nucleotide sequence shown by SEQ ID NO:38 or 40 under stringent conditions and encoding a protein capable of activating mTOR pathway at the downstream.

[0075] Examples of the nucleic acid encoding TCL1 include a nucleic acid containing the nucleotide sequence shown by SEQ ID NO:42 or 44, and a nucleic acid containing a nucleotide sequence capable of hybridizing with a sequence complementary to the nucleotide sequence shown by SEQ ID NO:42 or 44 under stringent conditions and encoding a protein capable of activating AKT1 protein.

[0076] Examples of the nucleic acid encoding S6K include a nucleic acid containing the nucleotide sequence shown by SEQ ID NO:46 or 48, and a nucleic acid containing a nucleotide sequence capable of hybridizing with a sequence complementary to the nucleotide sequence shown by SEQ ID NO:46 or 48 under stringent conditions and encoding a

protein capable of activating S6K protein.

10

15

20

30

35

40

45

50

55

[0077] A useful nucleic acid capable of hybridizing with a sequence complementary to the nucleotide sequence shown by each SEQ ID NO under stringent conditions is a nucleic acid comprising a nucleotide sequence having an identity of about 80% or more, preferably about 90% or more, more preferably about 95% or more, to the nucleotide sequence shown by each SEQ ID NO. Examples of stringent conditions include conditions described in Current Protocols in Molecular Biology, John Wiley & Sons, 6.3.1-6.3.6, 1999, e.g., hybridization with 6×SSC (sodium chloride/sodium citrate) /45°C followed by not less than one time of washing with 0.2×SSC/0.1% SDS/50 to 65°C; those skilled art can choose as appropriate hybridization conditions that give equivalent stringency.

[0078] The proteinous establishment efficiency improving factor of the present invention is preferably a constitutively active molecule of Ras protein, a constitutively active molecule of Ras target factor (effector), a constitutively active molecule of signaling factor downstream of Ras target factor, an activated molecule of signaling downstream of Ras target factor or a constitutively active molecule of Ras activator. Accordingly, the nucleic acidic establishment efficiency improving factor of the present invention is preferably a nucleic acid encoding the above- mentioned constitutively active molecule. Said nucleic acid can be prepared by introducing the object amino acid substitution into a nucleic acid encoding a wild- type molecule obtained as mentioned above by site- directed mutagenesis, or adding an oligonucleotide encoding a membrane localization signal sequence to the terminus thereof by using ligase or PCR.

[0079] Transfer of the nucleic acidic establishment efficiency improving factor of the present invention to a somatic cell can be achieved using a method of gene transfer to cells known per se. A nucleic acid encoding Ras protein, Ras target factor, signaling factor downstream of Ras target factor, activator of the signaling or Ras activator is inserted into an appropriate expression vector comprising a promoter capable of functioning in a host somatic cell. Useful expression vectors include, for example, viral vectors such as retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes virus and Sendai virus, plasmids for the expression in animal cells (e.g., pA1-11, pXT1, pRc/CMV, pRc/RSV, pcDNAI/Neo) and the like

[0080] The type of a vector to be used can be chosen as appropriate according to the intended use of the iPS cell to be obtained. Useful vectors include adenoviral vector, plasmid vector, adeno-associated viral vector, retroviral vector, lentiviral vector, Sendai viral vector and the like.

[0081] Examples of promoters used in expression vectors include the EF1 α promoter, the CAG promoter, the SR α promoter, the SV40 promoter, the LTR promoter, the CMV (cytomegalovirus) promoter, the RSV (Rous sarcoma virus) promoter, the MoMuLV (Moloney mouse leukemia virus) LTR, the HSV-TK (herpes simplex virus thymidine kinase) promoter and the like, with preference given to the EF1 α promoter, the CAG promoter, the MoMuLV LTR, the CMV promoter, the SR α promoter and the like.

[0082] The expression vector may contain as desired, in addition to a promoter, an enhancer, a polyadenylation signal, a selectable marker gene, a SV40 replication origin and the like. Examples of selectable marker genes include the dihydrofolate reductase gene, the neomycin resistant gene, the puromycin resistant gene and the like.

[0083] A nucleic acid that encodes Ras protein, Ras target factor, signaling factor downstream of Ras target factor, activator of the signaling or Ras activator may be integrated alone into an expression vector, or along with one or more reprogramming genes into an expression vector. Preference is given to the former case when using a retroviral or lentiviral vector, which offer high gene transfer efficiency, and to the latter case when using a plasmid, adenoviral, or episomal vector and the like, but there are no particular limitations.

[0084] In the context above, when a nucleic acid encoding Ras protein, Ras target factor, signaling factor downstream of Ras target factor, activator of signal thereof or Ras activator and one or more reprogramming genes are integrated in one expression vector, these genes can preferably be integrated into the expression vector via a sequence enabling polycistronic expression. By using a sequence enabling polycistronic expression, it is possible to more efficiently express a plurality of genes integrated in one expression vector. Useful sequences enabling polycistronic expression include, for example, the 2A sequence of foot-and-mouth disease virus (PLoS ONE 3, e2532, 2008, Stem Cells 25, 1707, 2007), the IRES sequence (U.S. Patent No. 4,937,190) and the like, with preference given to the 2A sequence.

[0085] An expression vector harboring a nucleic acid encoding Ras protein, Ras target factor, signaling factor down-stream of Ras target factor, activator of the signaling or Ras activator can be introduced into a cell by a technique known per se according to the choice of the vector. In the case of a viral vector, for example, a plasmid containing the nucleic acid is introduced into an appropriate packaging cell (e.g., Plat- E cells) or a complementary cell line (e.g., 293- cells), the viral vector produced in the culture supernatant is recovered, and the vector is infected to a cell by a method suitable for the viral vector. For example, specific means using a retroviral vector are disclosed in WO2007/69666, Cell, 126, 663- 676 (2006) and Cell, 131, 861- 872 (2007). Specific means using a lentiviral vector is disclosed in Science, 318, 1917- 1920 (2007). When iPS cells are utilized as a source of cells for regenerative medicine, the expression (reactivation) of Ras protein, Ras target factor, signaling factor downstream of Ras target factor, activator of the signaling or Ras activator or the activation of a endogenous gene present in the vicinity of the site where exogeneous nucleic acid thereof is integrated potentially increases the risk of tumorigenesis in tissues regenerated from differentiated cells of iPS cell derivation; therefore, a nucleic acid that encodes Ras protein, Ras target factor or Ras activator is preferably expressed

transiently, without being integrated into the chromosome of the cells. From this viewpoint, it is preferable to use an adenoviral vector, which is unlikely to be integrated into the chromosome, is preferred. Specific means using an adenoviral vector is described in Science, 322, 945- 949 (2008). Adeno- associated virus is unlikely to be integrated into the chromosome, and is less cytotoxic and less phlogogenic than adenoviral vectors, so that it is another preferred vector. Sendai virus vectors are capable of being stably present outside of the chromosome, and can be degraded and removed using an siRNA as required, so that they are preferably utilized as well. Useful Sendai virus vectors are described in J. Biol. Chem., 282, 27383- 27391 (2007) or JP- B- 3602058.

[0086] When a retroviral vector or a lentiviral vector is used, even if silencing of the transgene has occurred, it possibly becomes reactive; therefore, for example, a method can be used preferably wherein a nucleic acid encoding Ras protein, Ras target factor or Ras activator is cut out using the Cre-loxP system, when becoming unnecessary. That is, with loxP sequences arranged on both ends of the nucleic acid in advance, iPS cells are induced, thereafter the Cre recombinase is allowed to act on the cells using a plasmid vector or adenoviral vector, and the region sandwiched by the loxP sequences can be cut out. Because the enhancer-promoter sequence of the LTR U3 region possibly upregulates a host gene in the vicinity thereof by insertion mutation, it is more preferable to avoid the expression regulation of the endogenous gene by the LTR outside of the loxP sequence remaining in the genome without being cut out, using a 3'-self-inactive (SIN) LTR prepared by deleting the sequence, or substituting the sequence with a polyadenylation sequence such as of SV40. Specific means using the Cre-loxP system and SIN LTR is disclosed in Soldner et al., Cell, 136: 964-977 (2009), Chang et al., Stem Cells, 27: 1042-1049 (2009).

10

30

35

40

45

50

[0087] Meanwhile, being a non-viral vector, a plasmid vector can be transferred into a cell using the lipofection method, liposome method, electroporation method, calcium phosphate co-precipitation method, DEAE dextran method, microinjection method, gene gun method and the like. Specific means using a plasmid as a vector are described in, for example, Science, 322, 949- 953 (2008) and the like.

[0088] When a plasmid vector, an adenovirus vector and the like are used, the transfection can be performed once or more optionally chosen times (e.g., once to 10 times, once to 5 times or the like). When two or more kinds of expression vectors are introduced into a somatic cell, it is preferable that these all kinds of expression vectors be concurrently introduced into a somatic cell; however, even in this case, the transfection can be performed once or more optionally chosen times (e.g., once to 10 times, once to 5 times or the like), preferably the transfection can be repeatedly performed twice or more (e.g., 3 times or 4 times).

[0089] Also when an adenovirus or a plasmid is used, the transgene can get integrated into chromosome; therefore, it is eventually necessary to confirm the absence of insertion of the gene into chromosome by Southern blotting or PCR. For this reason, like the aforementioned Cre-loxP system, it can be advantageous to use a means wherein the transgene is integrated into chromosome, thereafter the gene is removed. In another preferred mode of embodiment, a method can be used wherein the transgene is integrated into chromosome using a transposon, thereafter a transposase is allowed to act on the cell using a plasmid vector or adenoviral vector so as to completely eliminate the transgene from the chromosome. As examples of preferable transposons, piggyBac, a transposon derived from a lepidopterous insect, and the like can be mentioned. Specific means using the piggyBac transposon is disclosed in Kaji, K. et al., Nature, 458: 771-775 (2009), Woltjen et al., Nature, 458: 766-770 (2009).

[0090] Another preferable non-integration type vector is an episomal vector, which is capable of self-replication outside of the chromosome. Specific means using an episomal vector is disclosed by Yu et al., in Science, 324, 797-801 (2009). Where necessary, an expression vector may be constructed by inserting a nucleic acid that encodes Ras protein, Ras target factor or Ras activator into an episomal vector having loxP sequences placed in the same orientation on the 5' and 3' sides of a vector component essential for the replication of the episomal vector, and transferred to a somatic cell. [0091] Examples of the episomal vector include a vector comprising as a vector component a sequence derived from EBV, SV40 and the like necessary for self-replication. The vector component necessary for self-replication is specifically exemplified by a replication origin and a gene that encodes a protein that binds to the replication origin to control the replication; examples include the replication origin oriP and the EBNA-1 gene for EBV, and the replication origin ori and the SV40 large T antigen gene for SV40.

[0092] The episomal expression vector comprises a promoter that controls the transcription of a nucleic acid encoding Ras protein, Ras target factor, signaling factor downstream of Ras target factor, activator of the signaling or Ras activator. The promoter used may be as described above. The episomal expression vector may further contain as desired an enhancer, a polyadenylation signal, a selection marker gene and the like, as described above. Examples of the selection marker gene include the dihydrofolate reductase gene, the neomycin resistance gene and the like.

[0093] The loxP sequences useful in the present invention include, in addition to the bacteriophage P1-derived wild type loxP sequence (SEQ ID NO:31), optionally chosen mutant loxP sequences capable of deleting the sequence flanked by the loxP sequence by recombination when placed in the same orientation at positions flanking a vector component necessary for the replication of the transgene. Examples of such mutant loxP sequences include lox71 (SEQ ID NO:32), mutated in 5' repeat, lox66 (SEQ ID NO:33), mutated in 3' repeat, and lox2272 and lox511, mutated in spacer portion. Although the two loxP sequences placed on the 5' and 3' sides of the vector component may be identical or not,

the two mutant loxP sequences mutated in spacer portion must be identical (e.g., a pair of lox2272 sequences, a pair of lox511 sequences). Preference is given to a combination of a mutant loxP sequence mutated in 5' repeat (e.g., lox71) and a mutant loxP sequence mutated in 3' repeat (e.g., lox66). In this case, the loxP sequences remaining on the chromosome have double mutations in the repeats on the 5' side and 3' side as a result of recombination, and are therefore unlikely to be recognized by Cre recombinase, thus reducing the risk of causing a deletion mutation in the chromosome due to unwanted recombination. When the mutant loxP sequences lox71 and lox66 are used in combination, each may be placed on any of the 5' and 3' sides of the aforementioned vector component, but it is necessary that the mutant loxP sequences be inserted in an orientation such that the mutated sites would be located at the outer ends of the respective loxP sequences.

[0094] Each of the two loxP sequences is placed in the same orientation on the 5' and 3' sides of a vector constituent essential for the replication of the transgene (i.e., a replication origin, or a gene sequence that encodes a protein that binds to the replication origin to control the replication). The vector constituent flanked by the loxP sequences may be either a replication origin or a gene sequence that encodes a protein that binds to the replication origin to control the replication, or both.

[0095] An episomal vector can be transferred into a cell using, for example, the lipofection method, liposome method, electroporation method, calcium phosphate co-precipitation method, DEAE dextran method, microinjection method, gene gun method and the like. Specifically, for example, methods described in Science, 324: 797-801 (2009) and elsewhere can be used.

[0096] Whether or not the vector component necessary for the replication of the transgene has been removed from the iPS cell can be confirmed by performing a Southern blot analysis or PCR analysis using a nucleic acid comprising a nucleotide sequence in the vector component and/or in the vicinity of the loxP sequence as a probe or primer, with the episome fraction isolated from the iPS cell as a template, and determining the presence or absence of a band or the length of the band detected. The episome fraction can be prepared by a method obvious in the art; for example, methods described in Science, 324: 797-801 (2009) and elsewhere can be used.

(c) Nuclear reprogramming substances

10

25

30

35

40

45

50

55

[0097] In the present invention, "a nuclear reprogramming substance" may be configured with any substance, such as a proteinous factor or a nucleic acid that encodes the same (including forms incorporated in a vector), or a low molecular compound, as far as it is a substance (substances) capable of inducing an iPS cell from a somatic cell when transferred alone to the somatic cell, or when contacted along with the establishment efficiency improving factor of the present invention to the somatic cell. When the nuclear reprogramming substance is a proteinous factor or a nucleic acid that encodes the same, preferable nuclear reprogramming substance is exemplified by the following combinations (hereinafter, only the names for proteinous factors are shown).

- (1) Oct3/4, Klf4, c-Myc
- (2) Oct3/4, Klf4, c-Myc, Sox2 (here, Sox2 is replaceable with Sox1, Sox3, Sox15, Sox17 or Sox18; Klf4 is replaceable with Klf1, Klf2 or Klf5; c-Myc is replaceable with T58A (activated mutant), or L-Myc)
- (3) Oct3/4, Klf4, c-Myc, Sox2, Fbx15, Nanog, Eras, Tcll
- (4) Oct3/4, Klf4, c-Myc, Sox2, TERT, SV40 Large T antigen (hereinafter, SV40LT)
- (5) Oct3/4, Klf4, c-Myc, Sox2, TERT, HPV16 E6
- (6) Oct3/4, KIf4, c-Myc, Sox2, TERT, HPV16 E7
- (7) Oct3/4, Klf4, c-Myc, Sox2, TERT, HPV6 E6, HPV16 E7
- (8) Oct3/4, Klf4, c-Myc, Sox2, TERT, Bmil

[For details of these combinations, see WO 2007/069666 (however, in the combination (2) above, for replacement of Sox2 with Sox18, and replacement of Klf4 with Klf1 or Klf5, see Nature Biotechnology, 26, 101-106 (2008)); for details of the combination "Oct3/4, Klf4, c-Myc, Sox2", see also Cell, 126, 663-676 (2006), Cell, 131, 861-872 (2007) and the like; for details of the combination "Oct3/4, Klf2 (or Klf5), c-Myc, Sox2", see also Nat. Cell Biol., 11, 197-203 (2009); for details of the combination "Oct3/4, Klf4, c-Myc, Sox2, hTERT, SV40LT", see also Nature, 451, 141-146 (2008)]

- (9) Oct3/4, Klf4, Sox2 [see Nature Biotechnology, 26, 101-106 (2008)]
- (10) Oct3/4, Sox2, Nanog, Lin28 [see Science, 318, 1917-1920 (2007)]
- (11) Oct3/4, Sox2, Nanog, Lin28, hTERT, SV40LT [see Stem Cells, 26, 1998-2005 (2008)]
- (12) Oct3/4, Klf4, c-Myc, Sox2, Nanog, Lin28 [see Cell Research (2008) 600-603]
- (13) Oct3/4, Klf4, c-Myc, Sox2, SV40LT [see Stem Cells, 26, 1998-2005 (2008)]
 - (14) Oct3/4, Klf4 [see Nature 454: 646- 650 (2008), Cell Stem Cell, 2: 525- 528 (2008)]
 - (15) Oct3/4, c-Myc [see Nature 454: 646-650 (2008)]
 - (16) Oct3/4, Sox2 [see Nature, 451, 141-146 (2008), WO2008/118820]

- (17) Oct3/4, Sox2, Nanog (see WO2008/118820)
- (18) Oct3/4, Sox2, Lin28 (see W02008/118820)
- (19) Oct3/4, Sox2, c-Myc, Esrrb [here, Esrrb is replaceable with Esrrg; see Nat. Cell Biol., 11, 197-203 (2009)]
- (20) Oct3/4, Sox2, Esrrb [see Nat. Cell Biol., 11, 197-203 (2009)]
- (21) Oct3/4, Klf4, L-Myc (see Proc. Natl. Acad. Sci. USA., 107, 14152-14157 (2010))
- (22) Oct3/4, Nanog

5

- (23) Oct3/4 [Cell 136: 411- 419 (2009), Nature, 08436, doi: 10.1038 published online (2009)]
- (24) Oct3/4, Klf4, c-Myc, Sox2, Nanog, Lin28, SV40LT [see Science, 324: 797-801 (2009)]

[0098] In (1)-(24) above, in place of Oct3/4, other Oct family members, for example, Oct1A, Oct6 and the like, can also be used. In place of Sox2 (or Sox1, Sox3, Sox15, Sox17, Sox18), other Sox family members, for example, Sox7 and the like, can also be used. Furthermore, in (1) to (24) above, when c-Myc or Lin28 is included as a nuclear reprogramming factor, L-Myc or Lin28B can be used in place of c-Myc or Lin28, respectively.

[0099] A combination which does not fall in any one of (1) to (24) above, but which comprises all the constituents of any one thereof and an optionally chosen other substance, can also be included in the scope of "nuclear reprogramming substances" in the present invention. Provided that the somatic cell to undergo nuclear reprogramming is endogenously expressing one or more of the constituents of any one of (1) to (24) above at a level sufficient to cause nuclear reprogramming, a combination of only the remaining constituents excluding the endogenously expressed constituents can also be included in the scope of "nuclear reprogramming substances" in the present invention.

[0100] Of these combinations, ones wherein at least one, preferably 2 or more, more preferably 3 or more, different nuclear reprogramming genes selected from among Oct3/4, Sox2, Klf4, c-Myc or L-Myc, Nanog, Lin28 or Lin28B and SV40LT, are preferred.

[0101] Particularly, if a use of the iPS cells obtained for therapeutic purposes is born in mind, a combination of reprogramming factors without using c- Myc is preferable. Examples thereof include a combination of the three factors of Oct3/4, Sox2 and Klf4 [combination (9) above], a combination of the four factors of Oct3/4, Sox2, Klf4 and L- Myc [combination (2) above], and a combination containing these combinations and free of c- Myc. If a use of the iPS cells obtained for therapeutic purposes is not born in mind (e.g., used as an investigational tool for drug discovery screening and the like), in addition to the three factors consisting of Oct3/4, Sox2 and Klf4 and the four factors consisting of Oct3/4, Sox2, Klf4 and L- Myc, four factors consisting of Oct3/4, Sox2, Klf4 and c- Myc/L- Myc as well as Nanog and/or Lin28/Lin28B, or six or seven factors consisting of the above five or six factors and additional SV40 Large T antigen are exemplified.

[0102] Information on the mouse and human cDNA sequences of the aforementioned proteinous factors is available with reference to the NCBI accession numbers mentioned in WO 2007/069666 (in the publication, Nanog, is described as ECAT4). Mouse and human cDNA sequence information on Lin28, Lin28B, Esrrb, Esrrg, and L-Myc can be acquired by referring to the following NCBI accession numbers, respectively); those skilled in the art are able to easily isolate these cDNAs.

[0103]

30

35

50

55

	Name of gene	Mouse	Human
40	Lin28	NM_145833	NM_024674
	Lin28b	NM_001031772	NM_001004317
	Esrrb	NM_011934	NM_004452
	Esrrg	NM_011935	NM_001438
45	L-Myc	NM_008506	NM_001033081

[0104] When a proteinous factor is used as it is as a nuclear reprogramming substance, it can be prepared by inserting the cDNA obtained into an appropriate expression vector, transferring it into a host cell, culturing the cell, and recovering the recombinant proteinous factor from the culture. Meanwhile, when a nucleic acid that encodes a proteinous factor is used as a nuclear reprogramming substance, the cDNA obtained is inserted into a viral vector, episomal vector or plasmid vector in the same manner as with the above-described case of the nucleic acidic establishment efficiency improving factor of the present invention to construct an expression vector, which is subjected to the nuclear reprogramming step. The aforementioned Cre-loxP system or piggyBac transposon system can also be utilized as required. When two or more nucleic acids that encodes two or more proteinous factors are transferred to a cell as nuclear reprogramming substances, the different nucleic acids may be carried by separate vectors, or the plurality of nucleic acids may be joined in tandem to obtain a polycistronic vector. In the latter case, to allow efficient polycistronic expression, it is desirable that the 2A self-cleaving peptide of foot-and-mouth disease virus be inserted between the nucleic acids [see Science, 322, 949-953 (2008) and the like].

[0105] A nuclear reprogramming substance can be contacted with a somatic cell (a) in the same manner as in the above-mentioned proteinous establishment efficiency improving factor of the present invention when the substance is a proteinous factor or (b) in the same manner as in the above-mentioned nucleic acidic establishment efficiency improving factor of the present invention when the substance is a nucleic acid encoding the proteinous factor of (a).

(d) other iPS cell establishment efficiency improvers

5

20

30

35

40

45

50

55

[0106] Since the iPS cell establishment efficiency has been low, various substances that improve the efficiency have recently been proposed one after another. It can be expected, therefore, that the iPS cell establishment efficiency will be increased by bringing another establishment efficiency improver, in addition to the establishment efficiency improving factor of the present invention described above, into contact with the transfer subject somatic cell.

[0107] Examples of iPS cell establishment efficiency improvers include, but are not limited to, histone deacetylase (HDAC) inhibitors [e.g., valproic acid (VPA), low-molecular inhibitors such as trichostatin A (TSA), sodium butyrate (Cell Stem Cell, 7: 651- 655 (2010)), MC 1293, and M344, nucleic acid- based expression inhibitors such as siRNAs and shRNAs against HDAC (e.g., HDAC1 siRNA Smartpool® (Millipore), HuSH 29mer shRNA Constructs against HDAC1 (OriGene) and the like), and the like], DNA methyltransferase inhibitors (e.g., 5'- azacytidine (5'azaC)) (Nat. Biotechnol., 26 (7): 795-797 (2008)), G9a histone methyltransferase inhibitors [e.g., low-molecular inhibitors such as BIX-01294 (Cell Stem Cell, 2: 525- 528 (2008)), nucleic acid- based expression inhibitors such as siRNAs and shRNAs against G9a (e.g., G9a siRNA (human) (Santa Cruz Biotechnology) and the like) and the like], L- channel calcium agonists (e.g., Bayk8644) (Cell Stem Cell, 3, 568-574 (2008)), p53 inhibitors (e.g., siRNA, shRNA, dominant negative form, etc. against p53 (Cell Stem Cell, 3, 475- 479 (2008)), Nature 460, 1132- 1135 (2009)), Wnt Signaling (e.g., soluble Wnt3a) (Cell Stem Cell, 3, 132-135 (2008)), 2i/LIF (2i is an inhibitor of mitogen-active protein kinase signalling and glycogen synthase kinase- 3, PloS Biology, 6 (10), 2237- 2247 (2008))], and ES cell- specific miRNAs [e.g., miR- 302- 367 cluster (Mol. Cell. Biol. doi: 10.1128/MCB. 00398- 08), miR- 302 (RNA (2008) 14: 1- 10), miR- 291- 3p, miR- 294 and miR- 295 (Nat. Biotechnol. 27: 459- 461 (2009), 3'- phosphoinositide- dependent kinase- 1 (PDK1) activator (e.g., PS48 (Cell Stem Cell, 7: 651- 655 (2010)) etc.), GLIS family members (e.g., GLIS1 (Nature, 474: 225- 229 (2011)), WO2010/098419 etc.)] . As mentioned above, the nucleic acid- based expression inhibitors may be in the form of expression vectors harboring a DNA that encodes an siRNA or shRNA.

[0108] Of the aforementioned constituents of nuclear reprogramming substances, SV40 large T, for example, can also be included in the scope of iPS cell establishment efficiency improvers because it is an auxiliary factor unessential for the nuclear reprogramming of somatic cells. While the mechanism of nuclear reprogramming remains unclear, it does not matter whether auxiliary factors, other than the factors essential for nuclear reprogramming, are deemed nuclear reprogramming substances or iPS cell establishment efficiency improvers. Hence, because the somatic cell nuclear reprogramming process is taken as an overall event resulting from contact of a nuclear reprogramming substance and an iPS cell establishment efficiency improver with a somatic cell, it does not always seems to be essential for those skilled in the art to distinguish between the two.

[0109] An iPS cell establishment efficiency improver can be contacted with a somatic cell by a method similar to the method mentioned above about the establishment efficiency improving factor of the present invention for each of (a) when the substance is a proteinous factor and (b) when the substance is a nucleic acid encoding the proteinous factor. On the other hand, when the substance is (c) a low-molecular-weight compound, the substance can be contacted with a somatic cell by dissolving the factor at a suitable concentration in an aqueous or nonaqueous solvent, adding the solution to a medium suitable for the culture of somatic cell isolated from human or other mammal (e.g., minimum essential medium (MEM), Dulbecco's modified Eagle medium (DMEM), RPMI1640 medium, 199 medium, F12 medium (when KSR is not used as an improving factor, it may contain about 5 - 20% fetal bovine serum) and the like) such that the factor concentration falls within the above-mentioned range, and cultivating the cells for a given period. While the contact period is not particularly limited as long as it is sufficient for achieving the nuclear reprogramming of the somatic cell, for example, they may be left copresent in the medium until a positive colony emerges.

[0110] An iPS cell establishment efficiency improver, including the establishment efficiency improving factor of the present invention, may be contacted with a somatic cell simultaneously with a nuclear reprogramming substance, and either one may be contacted in advance, as far as the iPS cell establishment efficiency from a somatic cell improves significantly compared with the efficiency obtained in the absence of the improver. In an embodiment, for example, when the nuclear reprogramming substance is a nucleic acid that encodes a proteinous factor and the iPS cell establishment efficiency improver is a chemical inhibitor, the iPS cell establishment efficiency improver can be added to the medium after the cell is cultured for a given length of time after the gene transfer treatment, because the nuclear reprogramming substance involves a given length of time lag from the gene transfer treatment to the mass-expression of the proteinous factor, whereas the iPS cell establishment efficiency improver is capable of rapidly acting on the cell. In another embodiment, for example, when the nuclear reprogramming substance and iPS cell establishment efficiency improver are both used in the form of a viral vector or plasmid vector, both may be simultaneously transferred into the cell.

(e) Improving the establishment efficiency by culture conditions

[0111] The iPS cell establishment efficiency can further be improved by culturing the cells under hypoxic conditions in the nuclear reprogramming process for somatic cells (see Cell Stem Cell., 5(3): 237-241 (2009); WO2010/013845). As mentioned herein, the term "hypoxic conditions" means that the ambient oxygen concentration as of the time of cell culture is significantly lower than that in the atmosphere. Specifically, conditions involving lower oxygen concentrations than the ambient oxygen concentrations in the 5-10% CO₂/95-90% air atmosphere, which is commonly used for ordinary cell culture, can be mentioned; examples include conditions involving an ambient oxygen concentration of 18% or less. Preferably, the ambient oxygen concentration is 15% or less (e.g., 14% or less, 13% or less, 12% or less, 11% or less and the like), 10% or less (e.g., 9% or less, 8% or less, 7% or less, 6% or less and the like), or 5% or less (e.g., 4% or less, 3% or less, 2% or less and the like). The ambient oxygen concentration is preferably 0.1% or more (e.g., 0.2% or more, 0.3% or more, 0.4% or more and the like), 0.5% or more (e.g., 0.6% or more, 0.7% or more, 0.8% or more, 0.95% or more and the like), or 1% or more (e.g., 1.1% or more, 1.2% or more, 1.3% or more, 1.4% or more and the like).

[0112] Although any method of creating a hypoxic state in a cellular environment can be used, the easiest way is to culture cells in a CO₂ incubator permitting adjustments of oxygen concentration, and this represents a suitable case. CO₂ incubators permitting adjustment of oxygen concentration are commercially available from various manufacturers (e.g., CO₂ incubators for hypoxic culture manufactured by Thermo scientific, Ikemoto Scientific Technology, Juji Field, Wakenyaku etc.).

[0113] The time of starting cell culture under hypoxic conditions is not particularly limited, as far as iPS cell establishment efficiency is not prevented from being improved compared with the normal oxygen concentration (20%). Although the culture may be started before the somatic cell is contacted with the establishment efficiency improving factor of the present invention and the nuclear reprogramming substance, or at the same time as the contact, or after the contact, it is preferable, for example, that the culture under hypoxic conditions be started just after the somatic cell is contacted with the establishment efficiency improving factor of the present invention and the nuclear reprogramming substance, or at a given time interval after the contact [e.g., 1 to 10 (e.g., 2, 3, 4, 5, 6, 7, 8 or 9) days].

[0114] The duration of cultivation of cells under hypoxic conditions is not particularly limited, as far as iPS cell establishment efficiency is not prevented from being improved compared with the normal oxygen concentration (20%); examples include, but are not limited to, periods of 3 days or more, 5 days or more, for 7 days or more or 10 days or more, and 50 days or less, 40 days or less, 35 days or less or 30 days or less and the like. Preferred duration of cultivation under hypoxic conditions varies depending on ambient oxygen concentration; those skilled in the art can adjust as appropriate the duration of cultivation according to the oxygen concentration used. In an embodiment of the present invention, if iPS cell candidate colonies are selected with drug resistance as an index, it is preferable that a normal oxygen concentration be restored from hypoxic conditions before starting drug selection.

[0115] Furthermore, preferred starting time and preferred duration of cultivation for cell culture under hypoxic conditions also vary depending on the choice of nuclear reprogramming substance used, iPS cell establishment efficiency at normal oxygen concentrations and the like.

(f) Selection and confirmation of iPS cell

10

20

30

35

50

55

40 [0116] After being contacted with the establishment efficiency improving factor of the present invention and a nuclear reprogramming substance (and other iPS cell establishment efficiency improver), the cell can, for example, be cultured under conditions suitable for cultivation of ES cells. In the case of mouse cells, generally, the cultivation is carried out with the addition of leukemia inhibitory factor (LIF) as a differentiation suppression factor to an ordinary medium. Meanwhile, in the case of human cells, it is desirable that basic fibroblast growth factor (bFGF) and/or stem cell factor (SCF) be added in place of LIF. However, when the establishment efficiency improving factor of the present invention is contacted with somatic cell, human iPS cell colony of the same level as in the presence of bFGF can be obtained even in the absence of bFGF.

[0117] Usually, the cell is cultured in the co- presence of mouse embryonic fibroblasts (MEFs) treated with radiation or an antibiotic to terminate the cell division, as feeder cells. Usually, STO cells and the like are commonly used as MEFs; for induction of an iPS cell, however, the SNL cell [McMahon, A.P. & Bradley, A. Cell 62, 1073- 1085 (1990)] and the like are commonly used. Co- culture with the feeder cells may be started before contact with the establishment efficiency improving factor of the present invention and a nuclear reprogramming substance, at the time of the contact, or after the contact (e.g., 1- 10 days later).

[0118] A candidate colony of iPS cells can be selected in two ways: methods with drug resistance and reporter activity as indicators, and methods based on macroscopic examination of morphology. As an example of the former, a colony positive for drug resistance and/or reporter activity is selected using a recombinant cell wherein a drug resistance gene and/or a reporter gene is targeted to the locus of a gene highly expressed specifically in pluripotent cells (e.g., Fbx15, Nanog, Oct3/4 and the like, preferably Nanog or Oct3/4). Examples of such recombinant cells include MEFs and TTFs

derived from a mouse having the β geo (which encodes a fusion protein of β -galactosidase and neomycin phosphotransferase) gene knocked in to the Fbx15 gene locus [Takahashi & Yamanaka, Cell, 126, 663-676 (2006)], and MEFs and TTFs derived from a transgenic mouse having the green fluorescent protein (GFP) gene and the puromycin resistance gene integrated in the Nanog gene locus [Okita et al., Nature, 448, 313-317 (2007)]. Meanwhile, methods for selecting a candidate colony by macroscopic examination of morphology include, for example, the method described by Takahashi et al. in Cell, 131, 861-872 (2007). Although the methods using reporter cells are convenient and efficient, colony selection by macroscopic examination is desirable from the viewpoint of safety when iPS cells are prepared for therapeutic purposes in humans.

[0119] The identity of the cells of the selected colony as iPS cells can be confirmed by positive responses to Nanog (or Oct3/4) reporters (puromycin resistance, GFP positivity and the like), as well as by the visible formation of an ES cell-like colony, as described above; however, to ensure greater accuracy, it is possible to perform tests such as alkaline phosphatase staining, analyzing the expression of various ES-cell-specific genes, and transplanting the selected cells to a mouse and confirming teratoma formation.

[0120] When a nucleic acid that encodes Ras protein, Ras target factor or Ras activator is transferred to a somatic cell, the iPS cell obtained is a novel cell distinct from conventionally known iPS cells in that the exogenous nucleic acid is contained. In particular, when the exogenous nucleic acid is introduced into a somatic cell using a retrovirus, lentivirus or the like, the exogenous nucleic acid is usually integrated in the genome of the iPS cell obtained, so that the phenotype of containing the exogenous nucleic acid is stably retained.

20 (g) Use of iPS cells

[0121] The iPS cells thus established can be used for various purposes. For example, by utilizing a method of differentiation induction reported with respect to ES cells (for example, the method described in JP 2002-291469 as a method for inducing differentiation into nerve stem cells, the method described in JP 2004-121165 as a method for inducing differentiation into pancreatic stem-like cells, the method described in JP 2003-505006 as a method for inducing differentiation into hematopoietic cells and the like. Additionally, the method described in JP 2003-523766 as a differentiation induction method via embryonic body formation and the like can be recited as examples), differentiation into various cells (e.g., myocardial cells, blood cells, nerve cells, vascular endothelial cells, insulin-secreting cells and the like) from iPS cells can be induced. Therefore, inducing iPS cells using a somatic cell collected from a patient or another person of the same or substantially the same HLA type would enable stem cell therapy by autogeneic or allogeneic transplantation, wherein the iPS cells are differentiated into desired cells (that is, cells of an affected organ of the patient, cells that have a therapeutic effect on disease, and the like), which are transplanted to the patient. Furthermore, because functional cells (e.g., hepatocytes) differentiated from iPS cells are thought to better reflect the actual state of the functional cells *in vivo* than do corresponding existing cell lines, they can also be suitably used for *in vitro* screening for the effectiveness and toxicity of pharmaceutical candidate compounds and the like.

Examples

30

35

40

45

50

55

[0122] The present invention is hereinafter described in further detail by means of the following examples, to which, however, the invention is not limited.

Example 1: Consideration of effect of Ras family on human iPS cell establishment

[0123] Whether or not Ras family (Nras, Hras, Kras and Eras) has an effect on iPS cell establishment was examined. [0124] Fibroblasts (HDF) derived from the skin of an adult (a 73- year- old female Caucasian, name of cell line 1503) were allowed to express the mouse ecotropic virus receptor Slc7a1 gene using a lentivirus (pLenti6/UbC- Slc7a1), as described by Takahashi, K. et al. in Cell, 131: 861- 872 (2007) . These cells (1x10⁵ cells/ well, 6- well plate) were transfected with the following genes using a retrovirus, as described by Takahashi, K. et al. in Cell, 131: 861- 872 (2007), and the number of the resultant iPS cell colonies was compared to that obtained by introduction of 4 genes (Oct3/4, Sox2, Klf4, c- Myc) .

[0125]

- 1) Human Oct3/4, Sox2, Klf4, c-Myc, Nras
- 2) Human Oct3/4, Sox2, Klf4, c-Myc, Hras
- 3) Human Oct3/4, Sox2, Klf4, c-Myc, Kras
- 4) Human Oct3/4, Sox2, Klf4, c-Myc, Eras
- 5) Human Oct3/4, Sox2, Klf4, c-Myc, V12
- 6) Human Oct3/4, Sox2, Klf4, c-Myc, SVLS

- 7) Human Oct3/4, Sox2, Klf4, c-Myc, SSVA
- 8) Human Oct3/4, Sox2, Klf4, c-Myc, N17

[0126] Here, the "V12" is a constitutively active mutant of HRas wherein the 12th glycine of HRas is substituted by valine. V12 is known to activate any pathways of MAP kinase pathway, PI3 kinase pathway and Ral pathway (RalGEF pathway) which are three signal transduction pathways of Ras.

[0127] The "SVLS" is an inactivated mutant incapable of localization in the plasma membrane due to the substitution of 4 amino acids CVLS at the C-terminus of H-Ras by SVLS, and "SSVA" is an inactivated mutant incapable of localization in the plasma membrane due to the substitution of 4 amino acids CSVA at the C-terminus of E-Ras by SSVA.

[0128] The "N17" is an inactivated mutant (dominant-negative mutant) wherein the 17th serine of H-Ras is substituted by asparagine.

[0129] The cells were collected on day 7 from the viral infection, and replated on feeder cells (2.5x10⁵ cells/100 mm dish). The feeder cells used were SNL cells treated with mitomycin C to terminate the cell division thereof [McMahon, A.P. & Bradley, A. Cell 62, 1073-1085 (1990)]. From day 10 after infection, the cells were cultured in a primate ES cell culture medium (ReproCELL) supplemented with 4 ng/ml recombinant human bFGF (WAKO). The iPS cell colonies were counted on day 24 from the infection, and the fold change when the number of the colonies obtained by 4 transgene is 1 (Red in Figure) is shown in Fig. 1. Fig. 1 shows the mean values of three experiments. By the addition of Eras to the 4 genes, the number of the human iPS cell colonies increased dramatically. Since Eras is known to activate the PI3 kinase pathway, of the Ras signal transduction pathways, activation of the PI3 kinase pathway was suggested to particularly contribute to the promotion of the iPS cell establishment. When other Ras (Nras, Hras, Kras) were added, the number of human iPS cell colonies also increased, though not as much as by Eras.

Example 2: Consideration of effect of Ras signal transduction pathway on human iPS cell establishment (1)

[0130] Among three pathways of the MAP kinase pathway, PI3 kinase pathway and Ral pathway (RalGEF pathway) which are Ras signal transduction pathways, whether or not the activation of any signal transduction pathways has an effect on iPS cell establishment was examined. The following combinations were used for the experiment which was performed in the same manner as in Example 1.

30

35

20

- 1) Human Oct3/4, Sox2, Klf4, c-Myc, Nras
- 2) Human Oct3/4, Sox2, Klf4, c-Myc, Hras
- 3) Human Oct3/4, Sox2, Klf4, c-Myc, Kras
- 4) Human Oct3/4, Sox2, Klf4, c-Myc, Eras
- 5) Human Oct3/4, Sox2, Klf4, c-Myc, V12
- 6) Human Oct3/4, Sox2, Klf4, c-Myc, V12T35S
- 7) Human Oct3/4, Sox2, Klf4, c-Myc, V12E37G
- 8) Human Oct3/4, Sox2, Klf4, c-Myc, V12Y40C
- [0132] Here, "V12T35S" is a mutant wherein the MAP kinase pathway is selectively and constitutively activated by the substitution of the 12th glycine of HRas by valine and the 35th threonine by serine.
 - **[0133]** The "V12E37G" is a mutant wherein the Ral pathway is selectively and constitutively activated by the substitution of the 12th glycine of HRas by valine and the 37th glutamic acid by glycine.
 - **[0134]** The "V12Y40C" is a mutant wherein the PI3 kinase pathway is selectively and constitutively activated by the substitution of the 12th glycine of HRas by valine and the 40th tyrosine by cysteine.
 - [0135] The cells were collected on day 7 from the viral infection, and replated on feeder cells (2.5x10⁵ cells/100 mm dish). From day 10 from the infection, the cells were cultured in a primate ES cell culture medium (ReproCELL) supplemented with 4 ng/ml recombinant human bFGF (WAKO). The iPS cell colonies were counted on day 24 from the infection, and the fold change when the number of the colonies obtained by 4 transgene is 1 (Red in Figure) is shown in Fig. 2. Fig. 2 shows mean values of three experiments. By adding Eras to 4 genes in the same manner as in Example 1, the number of the human iPS cell colonies increased dramatically. In addition, when V12E37G or V12Y40C was added, the number of human iPS cell colonies also increased dramatically. When V12T35S was added, the effect was low. From the above results, activation of the PI3 kinase pathway and Ral pathway was shown to contribute to the promotion of the iPS cell establishment.

55

50

Example 3: Consideration of effect on different cells

[0136] Using dermal fibroblasts of 6-year-old Japanese female (cell name: TIG120) and dermal fibroblasts of 68-year-

old Japanese female (cell name: 1616), an experiment similar to that in the aforementioned Example was performed in the following combinations.

[0137]

5

10

20

25

30

35

50

55

- 1) Human Oct3/4, Sox2, Klf4, c-Myc, Eras
 - 2) Human Oct3/4, Sox2, Klf4, c-Myc, V12Y40C (simply shown as "Y40C" in Fig. 3)
 - 3) Human Oct3/4, Sox2, Klf4, c-Myc, Myr-PI3K (simply shown as "M-PI3K" in Fig. 3)
 - 4) Human Oct3/4, Sox2, Klf4, c-Myc, PI3K-CaaX (simply shown as "C-PI3K" in Fig. 3)
 - 5) Human Oct3/4, Sox2, Klf4, c-Myc, V12E37G (simply shown as "E37G" in Fig. 3)

[0138] Here, "Myr- PI3K (M- PI3K)" is a constitutively active PI3 kinase localized in the membrane by the addition of a myristoylation signal sequence to the N- terminus.

[0139] The "PI3K-CaaX (C-PI3K)" is a constitutively active PI3 kinase catalytic subunit localized in the membrane by the addition of a Caax motif sequence to the C-terminus.

[0140] The cells were collected on day 7 from the viral infection, and replated on feeder cells (0.5×10⁵ cells/100 mm dish). From day 10 from the infection, the cells were cultured in a primate ES cell culture medium (ReproCELL) supplemented with 4 ng/ml recombinant human bFGF (WAKO). Fig. 3 shows the number of the iPS cell colonies on day 24 from the infection. Fig. 3 shows mean values of three experiments. By adding Eras, V12Y40C (Y40C) or V12E37G (E37G) to 4 genes in the same manner as in Example 2, the number of the human iPS cell colonies increased. In addition, when a constitutively active form of PI3 kinase was added, the number of colonies increased similarly. From the above results, the activation of the PI3 kinase pathway and Ral pathway was confirmed to contribute to the promotion of iPS cell establishment and to show a similar effect on cells other than HDF1503.

Example 4: Consideration of effect of Ras signal transduction pathway on human iPS cell establisment (2)

[0141] The effect of activation of each Ras signal transduction pathway on iPS cell establishment was examined by an experiment similar to that in the aforementioned Example and using the following combinations.

[0142]

- 1) Human Oct3/4, Sox2, Klf4, c-Myc, Nras
- 2) Human Oct3/4, Sox2, Klf4, c-Myc, Hras
- 3) Human Oct3/4, Sox2, Klf4, c-Myc, Kras
- 4) Human Oct3/4, Sox2, Klf4, c-Myc, Eras
- 5) Human Oct3/4, Sox2, Klf4, c-Myc, V12T35S
- 6) Human Oct3/4, Sox2, Klf4, c-Myc, V12E37G
- 7) Human Oct3/4, Sox2, Klf4, c-Myc, Raf-CaaX
- 8) Human Oct3/4, Sox2, Klf4, c-Myc, RalGDS-CaaX

[0143] Here, "Raf- CaaX" is a constitutively active form localized in the membrane by the addition of a Caax motif sequence to the C- terminus of MAP kinase kinase kinase (MAPKKK) present in the MAP kinase pathway.

[0144] The "RalGDS-Caax" is a constitutively active form localized in the membrane by the addition of a Caax motif sequence to the C-terminus of Ras target protein, which activates Ral which is a G protein belonging to the Ras subfamily. [0145] The cells were collected on day 7 from the viral infection, and replated on feeder cells (2.5x10⁵ cells/100 mm dish). From day 10 from the infection, the cells were cultured in a primate ES cell culture medium (ReproCELL) supplemented with 4 ng/ml recombinant human bFGF (WAKO). The iPS cell colonies were counted on day 24 from the infection, and the fold change when the number of the colonies obtained by 4 transgene is 1 (Red in Figure) is shown in Fig. 4. Fig. 4 shows mean values of three experiments.

[0146] By adding V12E37G to 4 genes in the same manner as in Examples 2 and 3, the number of human iPS cell colonies increased dramatically. In addition, since a similar effect was found when a constitutively active form of RalGDS which is a Ral activator was added, activation of the Ral pathway was confirmed to contribute to the promotion of iPS cell establishment. In contrast, when V12T35S and a constitutively active form of Raf were added, the effect was low. Therefore, the MAP kinase pathway was suggested to contribute not much to iPS cell establishment.

Example 5: Consideration of effect of Ras signal transduction pathway on human iPS cell establishment (3)

[0147] The effect of activation of each Ras signal transduction pathway on iPS cell establishment was examined in the same manner as in the aforementioned Examples and using the following combinations.
[0148]

- 1) Human Oct3/4, Sox2, Klf4, c-Myc, V12 (shown as "HRasV12" in Fig. 5)
- 2) Human Oct3/4, Sox2, Klf4, c-Myc, N17 (shown as "HRasN17" in Fig. 5)
- 3) Human Oct3/4, Sox2, Klf4, c-Myc, V12T35S (shown as "HRasV12/S35" in Fig. 5)
- 4) Human Oct3/4, Sox2, Klf4, c-Myc, V12E37G (shown as "HRasV12/G37" in Fig. 5)
- 5) Human Oct3/4, Sox2, Klf4, c-Myc, V12Y40C (shown as "HRasV12/C40" in Fig. 5)
- 6) Human Oct3/4, Sox2, Klf4, c-Myc, Raf-CaaX
- 7) Human Oct3/4, Sox2, Klf4, c-Myc, RalGDS-CaaX
- 8) Human Oct3/4, Sox2, Klf4, c-Myc, Pl3K-CaaX (shown as "p110-CaaX" in Fig. 5)
- [0149] The cells were collected on day 7 from the viral infection, and replated on feeder cells (2.5×10⁵ cells/100 mm dish). From day 8 from the infection, the cells were cultured in a primate ES cell culture medium (ReproCELL) supplemented with 4 ng/ml recombinant human bFGF (WAKO). Fig. 5 shows the number of the iPS cell colonies on day 24 from the infection. Fig. 5 shows mean values of three experiments. In the same manner as in Examples 1 4, by adding V12E37G, V12Y40C, RalGDS-CaaX or PI3K-CaaX to 4 genes, the number of the human iPS cell colonies increased remarkably. From the above results, the activation of the PI3 kinase pathway and Ral pathway was confirmed to contribute to the promotion of iPS cell establishment. In contrast, the MAP kinase pathway was suggested to contribute not much to iPS cell establishment.

Example 6: Consideration of relationship of each Ras signal transduction pathway

[0150] Whether the PI3 kinase pathway, Ral pathway and MAP kinase pathway are related to each other or independent pathways for iPS cell establishment was examined.

[0151] The experiment was performed in the same manner as in Example 5. The results are shown in Fig. 6. Fig. 6 shows mean values of three experiments. When V12Y40C was added to Eras (ERas+HRasV12/C40 in Fig. 6), an additive effect (enhancement effect) was not found since they are factors that activate the PI3 kinase pathway. In contrast, when V12E37G was added to Eras (ERas+HRasV12/G37 in Fig. 6) and V12Y40C was added to V12E37G (HrasV12/G37+C40 in Fig. 6), an additive effect (enhancement effect) was found, which indicates that the Ral pathway and PI3 kinase pathway are involved in the promotion of iPS cell establishment by different, independent actions.

30 Example 7: Consideration of effect in the absence of bFGF

[0152] The effects of Raf-CaaX, RalGDS-CaaX and PI3K-CaaX in the absence of bFGF were examined. The experiment was performed in the same manner as in Examples 5 and 6. The results are shown in Fig. 7. When RalGDS-CaaX was added to 4 genes, the number of the colonies of the same level as in the presence of bFGF was observed even in the absence of bFGF.

Example 8: Consideration of effect of AKT on human iPS cell establishment

[0153] Whether or not AKT as a downstream signal of PI3K has an effect on iPS cell establishment, and whether or not c-MYC or GSK3β influences iPS cell establishment by AKT were examined.

[0154] The following genes were introduced into human dermal fibroblasts (HDF: cell name 1616, purchased from Cell applications, Inc.) in the same manner as in the aforementioned Example 1. **[0155]**

- 1) Human Oct3/4, Sox2, Klf4, Mock
- 2) Human Oct3/4, Sox2, Klf4, Myr-AKT1
- 3) Human Oct3/4, Sox2, Klf4, c-MYC shRNA
- 4) Human Oct3/4, Sox2, Klf4, Myr-AKT1, c-MYC shRNA
- 5) Human Oct3/4, Sox2, Klf4, Myr-AKT1, GSK3β S9A

[0156] Here, "Myr- AKT1" is a constitutively active AKT1 localized in the membrane by the addition of a myristoylation signal sequence to the N- terminus.

[0157] The "c-MYC shRNA" is shRNA targeting c-MYC, and used here was pRetrosuper Myc shRNA (Plasmid 15662) purchased from Addgene.

[0158] The "GSK3 β S9A" is a constitutively active mutant which is not degraded by protease, by the substitution of the 9th serine of GSK3 β by alanine.

[0159] On day 32 from the infection, the number of the iPS cell colonies was counted, and the results are shown in Fig. 8A.

23

50

45

5

20

[0160] By adding Myr-AKT1, the number of the human iPS cell colonies increased significantly. Since this effect disappeared when shRNA of c-MYC was added, c-MYC was shown to be essential for the promotion of iPS cell establishment by AKT1 activation. On the other hand, since GSK3 β S9A produced no influence, phosphorylation of GSK3 β was shown to be uninvolved as AKT1 downstream signal.

[0161] In addition, the culture condition was changed (5×10⁵ cells/well), and the following genes were introduced into human dermal fibroblasts (HDF: cell name 1616, purchased from Cell applications, Inc.) in the same manner. [0162]

- 1) Human Oct3/4, Sox2, Klf4, Mock
- 2) Human Oct3/4, Sox2, Klf4, p110-Caax
- 3) Human Oct3/4, Sox2, Klf4, p110-KD
- 4) Human Oct3/4, Sox2, Klf4, Myr-AKT1
- 5) Human Oct3/4, Sox2, Klf4, AKT1-KD
- 6) Human Oct3/4, Sox2, Klf4, PTEN shRNA
- 7) Human Oct3/4, Sox2, Klf4, TCL1
- [0163] Here, "p110- Caax" is equivalent to the aforementioned "PI3K- CaaX".
- [0164] The "p110-KD" is inactivated PI3K which is a mutant lacking the kinase domain.
- [0165] The "AKT1-KD" is inactivated AKT1 which is a mutant lacking the kinase domain.
- [0166] The "PTEN shRNA" is shRNA against PTEN (phosphatase and tensin homolog) that suppresses the PI3K pathway, and used here was pMK0.1 puro PTEN shRNA (Plasmid 10669) purchased from Addgene.
 - [0167] On day 7 from the infection, the number of the iPS cell colonies was counted, and the results are shown in Fig. 8B.
 - **[0168]** In the same manner as in the earlier experiment, the number of the human iPS cell colonies increased significantly by the addition of Myr-AKT1. Since a similar effect was found by the addition of TCL1 which is an AKT1 activator, the activation of AKT1 was suggested to be involved in the promotion of iPS cell establishment.

Example 9: Consideration of effect of AKT related signal on human iPS cell establishment

[0169] The influence of AKT-related signals (PDK1, GSK3 β , Wnt) on the iPS cell establishment efficiency was examined.

[0170] In the same manner as in the aforementioned Example 1, the following genes were introduced into dermal fibroblasts (HDF: cell name 1616) in the presence of each low-molecular-weight compound.
[0171]

- 1) Human Oct3/4, Sox2, Klf4, PS48
- 2) Human Oct3/4, Sox2, Klf4, CHIR99021
- 3) Human Oct3/4, Sox2, Klf4, Wnt3a
- [0172] Here, "PS48" is a drug that selectively binds to a PIF binding pocket site of PDK1 and activates PDK1. In this experiment, 10 μ M was added to the medium. It was available from Sigma and used.
- [0173] The "CHIR99021" is an inhibitor showing high selectivity to GSK3 β . In this experiment, 1 μ M was added to a medium. It was purchased from Stemgent and used.
- [0174] The "Wnt3a" was purchased from R&D systems Inc., and 10 ng/ml thereof was added to the medium.
- [0175] On day 32 from the infection, the number of the iPS cell colonies was counted, and the results are shown in Fig. 9.
- ⁵ **[0176]** By adding PS48 and Wnt3a, the number of the human iPS cell colonies increased significantly. On the other hand, when CHIR99021 was added, the number of the iPS cell colonies tended to decrease. From the above, it was shown that PDK1 and Wnt signals at the downstream of PI3K signal are involved in the promotion of iPS cell establishment, but inhibition of GSK3β phosphorylation is not involved in the iPS cell establishment.
- 50 Example 10: Consideration of effect of AKT family and mTOR signal on human iPS cell establishment
 - [0177] The following genes were introduced into dermal fibroblasts (HDF: cell name 1616) in the same manner as in the aforementioned Example 1.

 [0178]
 - 1) Human Oct3/4, Sox2, Klf4, Mock
 - 2) Human Oct3/4, Sox2, Klf4, p110-Caax
 - 3) Human Oct3/4, Sox2, Klf4, PTEN shRNA

55

10

15

30

35

- 4) Human Oct3/4, Sox2, Klf4, Myr-AKT1
- 5) Human Oct3/4, Sox2, Klf4, AKT1 K179M
- 6) Human Oct3/4, Sox2, Klf4, Myr-AKT1#2
- 7) Human Oct3/4, Sox2, Klf4, Myr-AKT2
- 8) Human Oct3/4, Sox2, Klf4, Myr-AKT3

5

10

15

30

35

- 9) Human Oct3/4, Sox2, Klf4, Myr-SGK1
- 10) Human Oct3/4, Sox2, Klf4, SGK1 K127M
- 11) Human Oct3/4, Sox2, Klf4, Myr-ILK
- 12) Human Oct3/4, Sox2, Klf4, ILK E359K
- 13) Human Oct3/4, Sox2, Klf4, Myr-PDK1
- 14) Human Oct3/4, Sox2, Klf4, GSK3 S9A
- 15) Human Oct3/4, Sox2, Klf4, Rheb
- 16) Human Oct3/4, Sox2, Klf4, S6K1 T389E
- 17) Human Oct3/4, Sox2, Klf4, FKBP12

[0179] Here, "p110- Caax" is equivalent to the aforementioned "PI3K- CaaX".

[0180] The "PTEN shRNA" is shRNA against PTEN (phosphatase and tensin homolog) that suppresses PI3K pathway, and used here was pMK0.1 puro PTEN shRNA (Plasmid 10669) purchased from Addgene.

[0181] The "Myr-AKT1#2" is a constitutively active AKT1 different from Myr-AKT1 in plasmid of a basic skeleton.

[0182] The "AKT1 K179M" is an inactive dominant negative AKT1 wherein the kinase region is mutated.

[0183] The "Myr-AKT2" is a constitutively active AKT2 localized in the membrane by the addition of a myristoylation signal sequence to the N-terminus.

[0184] The "Myr-AKT3" is a constitutively active AKT3 localized in the membrane by the addition of a myristoylation signal sequence to the N-terminus.

[0185] The "Myr-SGK1" is a constitutively active SGK1 localized in the membrane by the addition of a myristoylation signal sequence to the N-terminus of SGK1 (Serum/glucocorticoid regulated kinase) which is an important regulator in the mTORC2/SGK1 pathway and a protein kinase in the insulin signal transduction system.

[0186] The "SGK1 K127M" is a dominant negative SGK1 wherein the kinase region is mutated by the substitution of the 127th lysine of SGK1 by methionine.

[0187] The "Myr-ILK" is a constitutively active ILK localized in the membrane by the addition of a myristoylation signal sequence to the N-terminus of ILK (Integrin Linked Kinase) which is a serine/threonine kinase located in the upstream of the AKT in the PI3K signal. ILK inhibits the PI3K/AKT pathway by binding to PDK in the upstream of AKT.

[0188] The "ILK E359K" is a dominant negative ILK wherein the kinase region is mutated by the substitution of the 359th glutamic acid of ILK by lysine.

[0189] The "Myr-PDK1" is a constitutively active PDK1 localized in the membrane by the addition of a myristoylation signal sequence to the N-terminus of PDK1 included in the PDK subfamily.

[0190] The "S6K1 T389E" is a constitutively active S6K1 mutant by the substitution of the 389th threonine of S6K1 by glutamic acid.

[0191] On day 32 from the infection, the number of the iPS cell colonies was counted, and the results are shown in Fig. 10.

[0192] In the same manner as in Example 3, the number of the iPS cell colonies increased by the addition of p110-Caax. Similarly, the number of the iPS cell colonies increased with PTEN shRNA, which shows the important of PI3K for the promotion of iPS cell establishment. As in Example 8, the number of the iPS cell colonies increased with Myr-AKT1, and similar results were also obtained with AKT2 and AKT3 in the AKT family.

[0193] In addition, the number of the human iPS cell colonies increased dramatically by the addition of Rheb, S6K1 T389E. The Rheb is a factor that activates mTOR, and S6K1 is a downstream factor of mTOR, and therefore, the activation of the mTOR signal pathway was suggested to contribute to the promotion of iPS cell establishment.

Example 11: Consideration of c-MYC on human iPS cell establishment by mTOR signal related gene

[0194] The following genes were introduced into dermal fibroblasts (HDF: cell name 1616) in the same manner as in the aforementioned Example 1.

[0195]

- 1) Human Oct3/4, Sox2, Klf4, Mock
- 2) Human Oct3/4, Sox2, Klf4, Mock, c-MYC shRNA
- 3) Human Oct3/4, Sox2, Klf4, Myr-AKT1
- 4) Human Oct3/4, Sox2, Klf4, Myr-AKT1, c-MYC shRNA
- 5) Human Oct3/4, Sox2, Klf4, Rheb

- 6) Human Oct3/4, Sox2, Klf4, Rheb, c-MYC shRNA
- 7) Human Oct3/4, Sox2, Klf4, S6K1 T389E
- 8) Human Oct3/4, Sox2, Klf4, S6K1 T389E, c-MYC shRNA

[0196] On day 32 from the infection, the number of the iPS cell colonies was counted, and the results are shown in Fig. 11A. In all cases, the effect of promotion of the iPS cell establishment disappeared by the addition of c-MYC shRNA, which shows that c-MYC is essential for the promotion of iPS cell establishment by these genes.

[0197] Furthermore, Mock, Myr- AKT1, Rheb, S6K1 T389E and p53 shRNA were introduced into dermal fibroblasts (HDF: cell name 1616). On day 7 from the introduction, the intracellular protein was recovered by a conventional method, and the expression levels of c- MYC, p- AKT, AKT, p- S6K1, S6K1, p- TSC2 and TSC2 were confirmed by Western blotting. [0198] Here, "p53 shRNA" is shRNA against p53 and the sequence described in Hong H, et al., Nature. 460: 1132-1135 (2009) was used.

[0199] The results are shown in Fig. 11B.

10

20

25

30

35

45

50

Increase of the expression level of c-MYC by the introduction of Myr-AKT1, Rheb and S6K1 T389E was confirmed. From this, the mechanism of promotion of iPS cell establishment by Myr-AKT1, Rheb and S6K1 T389E via increased expression of c-MYC was suggested.

[0200] In addition, introduction of p53 shRNA increased phosphorylated AKT. Since Hong H et al. show promotion of iPS cell establishment by the inhibition of p53, the inhibition of p53 was suggested to promote iPS cell establishment via AKT phosphorylation.

Example 12: Consideration of effect of AKT1 on promotion of human iPS cell establishment by inhibition of p53 and introduction of GLIS1

[0201] The following genes were introduced into human dermal fibroblasts (HDF: cell name 1616) in the same manner as in the aforementioned Example 1.

[0202]

- 1) Human Oct3/4, Sox2, Klf4, Mock
- 2) Human Oct3/4, Sox2, Klf4, Mock, p53 shRNA
- 3) Human Oct3/4, Sox2, Klf4, Myr-AKT1
- 4) Human Oct3/4, Sox2, Klf4, Myr-AKT1, p53 shRNA
- 5) Human Oct3/4, Sox2, Klf4, c-MYC shRNA
- 6) Human Oct3/4, Sox2, Klf4, c-MYC shRNA, p53 shRNA
- 7) Human Oct3/4, Sox2, Klf4, Myr-AKT1, c-MYC shRNA
- 8) Human Oct3/4, Sox2, Klf4, Myr-AKT1, c-MYC shRNA, p53 shRNA

[0203] On day 32 from the infection, the number of the iPS cell colonies was counted, and the results are shown in Fig. 12A.

[0204] By simultaneous addition of Myr-AKT1 and p53 shRNA, increase of the number of iPS cell colonies was observed. Therefore, introduction of p53 shRNA and AKT1 was shown to have a synergistic effect on the promotion of iPS cell establishment. In addition, since the number of iPS cell colonies decreased by c-MYC shRNA in all cases, these effects were suggested to be actions via c-MYC.

[0205] Furthermore, the following genes were introduced into human dermal fibroblasts (HDF: cell name 1616) . [0206]

- 1) Human Oct3/4, Sox2, Klf4, Mock
- 2) Human Oct3/4, Sox2, Klf4, Mock, GLIS1
- 3) Human Oct3/4, Sox2, Klf4, Myr-AKT1
- 4) Human Oct3/4, Sox2, Klf4, Myr-AKT1, GLIS1
- 5) Human Oct3/4, Sox2, Klf4, c-MYC shRNA
- 6) Human Oct3/4, Sox2, Klf4, c-MYC shRNA, GLIS1
- 7) Human Oct3/4, Sox2, Klf4, Myr-AKT1, c-MYC shRNA
- 8) Human Oct3/4, Sox2, Klf4, Myr-AKT1, c-MYC shRNA, GLIS1

⁵⁵ **[0207]** On day 32 from the infection, the number of the iPS cell colonies was counted, and the results are shown in Fig. 12B.

By simultaneous addition of Myr-AKT1 and GLIS1, increase of the number of iPS cell colonies was observed. Therefore, introduction of GLIS1 and AKT1 was shown to have a synergistic effect on the promotion of iPS cell establishment. In

addition, since the number of iPS cell colonies decreased by c-MYC shRNA in all cases, these effects were suggested to be actions via c-MYC.

[0208] Furthermore, to examine similar effects in other cell lines, the following genes were introduced into human dental pulp cells (DP: cell name DP31).

⁵ [0209]

10

15

30

35

40

45

50

55

- 1) Human Oct3/4, Sox2, Klf4, Mock, Mock
- 2) Human Oct3/4, Sox2, Klf4, Mock, p53 shRNA
- 3) Human Oct3/4, Sox2, Klf4, Mock, GLIS1
- 4) Human Oct3/4, Sox2, Klf4, Myr-AKT1, Mock
- 5) Human Oct3/4, Sox2, Klf4, Myr-AKT1, p53 shRNA
- 6) Human Oct3/4, Sox2, Klf4, Myr-AKT1, GLIS1
- 7) Human Oct3/4, Sox2, Klf4, c-MYC shRNA, Mock
- 8) Human Oct3/4, Sox2, Klf4, c-MYC shRNA, p53 shRNA
- 9) Human Oct3/4, Sox2, Klf4, c-MYC shRNA, GLIS1
- 10) Human Oct3/4, Sox2, Klf4, Myr-AKT1, c-MYC shRNA, Mock
- 11) Human Oct3/4, Sox2, Klf4, Myr-AKT1, c-MYC shRNA, p53 shRNA
- 12) Human Oct3/4, Sox2, Klf4, Myr-AKT1, c-MYC shRNA, GLIS1

[0210] On day 32 from the infection, the number of the iPS cell colonies was counted, and the results are shown in Fig. 12C.

[0211] Similar to the above-mentioned results, the number of the iPS cell colonies increased by simultaneous addition of Myr-AKT1 and p53 shRNA or Myr-AKT1 and GLIS1. From this, it was shown that, regardless of the somatic cell type, introduction of AKT1 and inhibition of p53, or the introduction of AKT1 and GLIS1 have a synergistic effect on the promotion of iPS cell establishment.

[0212] The contents described in any publication cited herein, including patents and patent applications, are hereby incorporated in their entireties by reference, to the extent that they have been disclosed herein.

[0213] This application is based on U.S. provisional patent application No. 61/419,320, the contents of which are encompassed in full herein.

SEQUENCE LISTING

	<110> Kyoto University
5	<120> METHOD OF EFFICIENTLY ESTABLISHING INDUCED PLURIPOTENT STEM CELLS
	<130> 091784
10	<150> US 61/419,320 <151> 2010-12-03
70	<160> 49
	<170> PatentIn version 3.5
15	<210> 1 <211> 570 <212> DNA <213> Mus musculus
20	<220> <221> CDS <222> (1)(570)
	<400> 1
25	atg aca gaa tac aag ctt gtg gtg gtg ggc gct gga ggc gtg gga aag 48 Met Thr Glu Tyr Lys Leu Val Val Gly Ala Gly Gly Val Gly Lys 1 5 10 15
	agt gcc ctg acc atc cag ctg atc cag aac cac ttt gtg gac gag tat 96 Ser Ala Leu Thr Ile Gln Leu Ile Gln Asn His Phe Val Asp Glu Tyr 20 25 30
30	gat ccc act ata gag gac tcc tac cgg aaa cag gtg gtc att gat ggg 144
	Asp Pro Thr Ile Glu Asp Ser Tyr Arg Lys Gln Val Val Ile Asp Gly 35 40 45
35	gag aca tgt cta ctg gac atc tta gac aca gca ggt caa gaa gag tat 192 Glu Thr Cys Leu Leu Asp Ile Leu Asp Thr Ala Gly Glu Glu Tyr 50 55 60
40	agt gcc atg cgg gac cag tac atg cgc aca ggg gag ggc ttc ctc tgt Ser Ala Met Arg Asp Gln Tyr Met Arg Thr Gly Glu Gly Phe Leu Cys 75 80
	gta ttt gcc atc aac acc aag tcc ttc gag gac atc cat cag tac Val Phe Ala Ile Asn Asn Thr Lys Ser Phe Glu Asp Ile His Gln Tyr 85 90 95
45	agg gag cag atc aag cgg gtg aaa gat tca gat gat gtg cca atg gtg 336 Arg Glu Gln Ile Lys Arg Val Lys Asp Ser Asp Asp Val Pro Met Val 100 105 110
50	ctg gtg ggc aac aag tgt gac ctg gct cgc act gtt gag tct cgg Leu Val Gly Asn Lys Cys Asp Leu Ala Ala Arg Thr Val Glu Ser Arg 115 120 125
55	cag gcc cag gac ctt gct cgc agc tat ggc atc ccc tac att gaa aca Gln Ala Gln Asp Leu Ala Arg Ser Tyr Gly Ile Pro Tyr Ile Glu Thr 130 135 140
	tca gcc aag acc cgg cag ggc gtg gag gat gcc ttc tat aca cta gtc 480

	Ser 145	Ala	Lys	Thr	Arg	Gln 150	Gly	Val	Glu	Asp	Ala 155	Phe	Tyr	Thr	Leu	Val 160	
5			att Ile														528
10	_		cct Pro		_	_	_	_		_		_		tga			570
15	<210 <211 <211 <211	L> : 2> :	2 189 PRT Mus n	nusci	ılus												
	<400	0> 2	2														
20	Met 1	Thr	Glu	Tyr	Lys 5	Leu	Val	Val	Val	Gly 10	Ala	Gly	Gly	Val	Gly 15	Lys	
	Ser	Ala	Leu	Thr 20	Ile	Gln	Leu	Ile	Gln 25	Asn	His	Phe	Val	Asp 30	Glu	Tyr	
25	Asp	Pro	Thr 35	Ile	Glu	Asp	Ser	Tyr 40	Arg	Lys	Gln	Val	Val 45	Ile	Asp	Gly	
30	Glu	Thr 50	Cys	Leu	Leu	Asp	Ile 55	Leu	Asp	Thr	Ala	Gly 60	Gln	Glu	Glu	Tyr	
35	Ser 65	Ala	Met	Arg	Asp	Gln 70	Tyr	Met	Arg	Thr	Gly 75	Glu	Gly	Phe	Leu	Cys 80	
	Val	Phe	Ala	Ile	Asn 85	Asn	Thr	Lys	Ser	Phe 90	Glu	Asp	Ile	His	Gln 95	Tyr	
40	Arg	Glu	Gln	Ile 100	Lys	Arg	Val	Lys	Asp 105	Ser	Asp	Asp	Val	Pro 110	Met	Val	
45	Leu	Val	Gly 115	Asn	Lys	Cys	Asp	Leu 120	Ala	Ala	Arg	Thr	Val 125	Glu	Ser	Arg	
50	Gln	Ala 130	Gln	Asp	Leu	Ala	Arg 135	Ser	Tyr	Gly	Ile	Pro 140	Tyr	Ile	Glu	Thr	
	Ser 145	Ala	Lys	Thr	Arg	Gln 150	Gly	Val	Glu	Asp	Ala 155	Phe	Tyr	Thr	Leu	Val 160	
55	Arg	Glu	Ile	Arg	Gln 165	His	Lys	Leu	Arg	Lys 170	Leu	Asn	Pro	Pro	Asp 175	Glu	

5	<210> <211> <212> <213>	3 570 DNA Homo	sapi	ens								
10	<220> <221> <222>	CDS (1).	. (570))								
15	<400> atg acg Met Thr 1											48
20	agt gco Ser Ala											96
25	gac ccc Asp Pro											144
25	gag acq Glu Thr 50											192
30	agc gcc Ser Ala 65											240
35	gtg ttt Val Phe											288
	agg gag Arg Glu											336
40	ctg gtg Leu Val											384
45	cag gct Gln Ala 130	Gln										432
50	tcg gcc Ser Ala 145											480
	cgt gag Arg Glu	-		_	_	_	 _	_			_	 528
55	agt ggd Ser Gly									tga		570

	<210 <211 <212 <213	L> : 2> 1	4 189 PRT Homo	sapi	iens											
5	<400)> 4	4													
	Met 1	Thr	Glu	Tyr	Lys 5	Leu	Val	Val	Val	Gly 10	Ala	Gly	Gly	Val	Gly 15	Lys
10	Ser	Ala	Leu	Thr 20	Ile	Gln	Leu	Ile	Gln 25	Asn	His	Phe	Val	Asp 30	Glu	Tyr
15	Asp	Pro	Thr 35	Ile	Glu	Asp	Ser	Tyr 40	Arg	Lys	Gln	Val	Val 45	Ile	Asp	Gly
20	Glu	Thr 50	Cys	Leu	Leu	Asp	Ile 55	Leu	Asp	Thr	Ala	Gly 60	Gln	Glu	Glu	Tyr
	Ser 65	Ala	Met	Arg	Asp	Gln 70	Tyr	Met	Arg	Thr	Gly 75	Glu	Gly	Phe	Leu	Cys 80
25	Val	Phe	Ala	Ile	Asn 85	Asn	Thr	Lys	Ser	Phe 90	Glu	Asp	Ile	His	Gln 95	Tyr
30	Arg	Glu	Gln	Ile 100	Lys	Arg	Val	Lys	Asp 105	Ser	Asp	Asp	Val	Pro 110	Met	Val
35	Leu	Val	Gly 115	Asn	Lys	Cys	Asp	Leu 120	Ala	Ala	Arg	Thr	Val 125	Glu	Ser	Arg
	Gln	Ala 130	Gln	Asp	Leu	Ala	A rg 135	Ser	Tyr	Gly	Ile	Pro 140	Tyr	Ile	Glu	Thr
40	Ser 145	Ala	Lys	Thr	Arg	Gln 150	Gly	Val	Glu	Asp	Ala 155	Phe	Tyr	Thr	Leu	Val 160
45	Arg	Glu	Ile	Arg	Gln 165	His	Lys	Leu	Arg	Lys 170	Leu	Asn	Pro	Pro	Asp 175	Glu
	Ser	Gly	Pro	Gly 180	Cys	Met	Ser	Cys	Lys 185	Cys	Val	Leu	Ser			
50	<210 <211 <212 <213	L> ! 2> 1	5 567 DNA Mus 1	nusci	ılus											
55	<220)>														
	-															

	<222 <222		CDS (1)	. (567	7)												
5		act	5 gag Glu														48
10			ttg Leu														96
			acg Thr 35														144
15	_		tgt Cys		_	_			_		_						192
20			atg Met														240
25	_		gcc Ala								_	_					288
			caa Gln														336
30			ggg Gly 115														384
35			cag Gln														432
40			aag Lys														480
	_	_	att Ile	_				_	_	_	_		_		_	_	528
45			aag Lys										tga				567
50	<210 <211 <211 <211	L> : 2> 1	6 188 PRT Mus n	nuscu	ılus												
55	<400		6		_	_										_	
	Met 1	Thr	Glu	Tyr	Lys 5	Leu	Val	Val	Val	Gly 10	Ala	Gly	Gly	Val	Gly 15	Lys	

	Ser	Ala	Leu	Thr 20	Ile	Gln	Leu	Ile	Gln 25	Asn	His	Phe	Val	Asp 30	Glu	Tyr	
5	Asp	Pro	Thr 35	Ile	Glu	Asp	Ser	Tyr 40	Arg	Lys	Gln	Val	Val 45	Ile	Asp	Gly	
10	Glu	Thr 50	Cys	Leu	Leu	Asp	Ile 55	Leu	Asp	Thr	Ala	Gly 60	Gln	Glu	Glu	Tyr	
	Ser 65	Ala	Met	Arg	Asp	Gln 70	Tyr	Met	Arg	Thr	Gly 75	Glu	Gly	Phe	Leu	Cys 80	
15	Val	Phe	Ala	Ile	Asn 85	Asn	Thr	Lys	Ser	Phe 90	Glu	Asp	Ile	His	His 95	Tyr	
20	Arg	Glu	Gln	Ile 100	Lys	Arg	Val	Lys	Asp 105	Ser	Glu	Asp	Val	Pro 110	Met	Val	
25	Leu	Val	Gly 115	Asn	Lys	Cys	Asp	Leu 120	Pro	Ser	Arg	Thr	Val 125	Asp	Thr	Lys	
	Gln	Ala 130	Gln	Glu	Leu	Ala	Arg 135	Ser	Tyr	Gly	Ile	Pro 140	Phe	Ile	Glu	Thr	
30	Ser 145	Ala	Lys	Thr	Arg	Gln 150	Gly	Val	Asp	Asp	Ala 155	Phe	Tyr	Thr	Leu	Val 160	
35	Arg	Glu	Ile	Arg	Lys 165	His	Lys	Glu	Lys	Met 170	Ser	Lys	Asp	Gly	Lys 175	Lys	
	Lys	Lys	Lys	Lys 180	Ser	Arg	Thr	Arg	Cys 185	Thr	Val	Met					
40	<210 <211 <212 <213	L> 5 2> I	7 570 ONA Homo	gani	ens												
45	121		101110	oup.													
	<220 <221 <222	L> (DS (1)	(570))												
50)> 7 act Thr	gaa														48
55		gcc Ala															96

	_		aca Thr 35			_				_		_	_		_		14	4
5			tgt Cys														19	2
10	_	_	atg Met		-	_		_								_	24	0
15	_		gcc Ala								_	_					28	8
			caa Gln														33	6
20		-	gga Gly 115			_	_	_			_		-	_			38	4
25			cag Gln														43	2
			aag Lys														48	0
30			atc Ile	_			_	_				_		_	_	_	52	8
35			ggc Gly											taa			57	0
40	<210 <211 <212 <213	.> 1 ?> I	3 L89 PRT Homo	sapi	ens													
	<400		-	M	T	T	17-1	17-1	17-1	G1	71-	G1	G1	17-1	G1	T		
45	Met 1	rnr	Glu	Tyr	ту ѕ 5	Leu	vai	vai	vai	10	АТА	GTÀ	GTÀ	vai	15	туs		
50	Ser	Ala	Leu	Thr 20	Ile	Gln	Leu	Ile	Gln 25	Asn	His	Phe	Val	Asp 30	Glu	Tyr		
	Asp	Pro	Thr 35	Ile	Glu	Asp	Ser	Tyr 40	Arg	Lys	Gln	Val	Val 45	Ile	Asp	Gly		
55	Glu	Thr 50	Cys	Leu	Leu	Asp	Ile 55	Leu	Asp	Thr	Ala	Gly 60	Gln	Glu	Glu	Tyr		

	65	АІА	Met	Arg	Asp	70	Tyr	Met	Arg	rnr	75	GIU	стА	Pne	ьeu	80	
5	Val	Phe	Ala	Ile	Asn 85	Asn	Thr	Lys	Ser	Phe 90	Glu	Asp	Ile	His	His 95	Tyr	
10	Arg	Glu	Gln	Ile 100	Lys	Arg	Val	Lys	Asp 105	Ser	Glu	Asp	Val	Pro 110	Met	Val	
	Leu	Val	Gly 115	Asn	Lys	Cys	Asp	Leu 120	Pro	Ser	Arg	Thr	Val 125	Asp	Thr	Lys	
15	Gln	Ala 130	Gln	Asp	Leu	Ala	Arg 135	Ser	Tyr	Gly	Ile	Pro 140	Phe	Ile	Glu	Thr	
20	Ser 145	Ala	Lys	Thr	Arg	Gln 150	Arg	Val	Glu	Asp	Ala 155	Phe	Tyr	Thr	Leu	Val 160	
25	Arg	Glu	Ile	Arg	Gln 165	Tyr	Arg	Leu	Lys	Lys 170	Ile	Ser	Lys	Glu	Glu 175	Lys	
	Thr	Pro	Gly	Cys 180	Val	Lys	Ile	Lys	Lys 185	Cys	Ile	Ile	Met				
30	<210 <211 <211 <211	1> ! 2> I	9 570 DNA Mus 1	nusci	ılus												
35	<220 <221 <222	1> (CDS (1).	. (570	0)												
40		act	9 gag Glu														48
45			ttg Leu														96
50			acc Thr 35														144
			tgc Cys	_	_	-		_	_		-						192
55			atg Met														240

	65	70	75	80
5			gca gat att aac ctc Ala Asp Ile Asn Leu 95	
			gat gat gtc ccc atg Asp Asp Val Pro Met 110	
10	2 2 22 2	2 2 2	a agg aca gtt gac aca r Arg Thr Val Asp Thr 125	_
15			a att cca ttc att gag 7 Ile Pro Phe Ile Glu 140	
20			gcc ttt tac aca ctg Ala Phe Tyr Thr Leu 155	
20			g ctc aac agc agt gac s Leu Asn Ser Ser Asp) 175	_
25	ggc act caa ggt tgt Gly Thr Gln Gly Cys 180			570
30	<210> 10 <211> 189 <212> PRT <213> Mus musculus			
35	<400> 10 Met Thr Glu Tyr Lys 1 5	Leu Val Val Val Gly	y Ala Gly Gly Val Gly 15	Lys
40	Ser Ala Leu Thr Ile 20	Gln Leu Ile Gln Asr 25	n His Phe Val Asp Glu 30	Tyr
	Asp Pro Thr Ile Glu 35	Asp Ser Tyr Arg Lys	s Gln Val Val Ile Asp 45	Gly
45	Glu Thr Cys Leu Leu 50	Asp Ile Leu Asp Thr 55	r Ala Gly Gln Glu Glu 60	Tyr
50	Ser Ala Met Arg Asp 65	Gln Tyr Met Arg Thr	Gly Glu Gly Phe Leu 75	Cys 80
55	Val Phe Ala Ile Asn 85	Asn Ser Lys Ser Phe 90	e Ala Asp Ile Asn Leu 95	Tyr
	Arg Glu Gln Ile Lys	Arg Val Lys Asp Ser	r Asp Asp Val Pro Met	Val

5	Leu Val	Gly 115	Asn	Lys	Cys	Asp	Leu 120	Pro	Thr	Arg	Thr	Val 125	Asp	Thr	Lys	
	Gln Ala 130	His	Glu	Leu	Ala	Lys 135	Ser	Tyr	Gly	Ile	Pro 140	Phe	Ile	Glu	Thr	
10	Ser Ala 145	Lys	Thr	Arg	Gln 150	Gly	Val	Glu	Asp	Ala 155	Phe	Tyr	Thr	Leu	Val 160	
15	Arg Glu	Ile	Arg	Gln 165	Tyr	Arg	Met	Lys	Lys 170	Leu	Asn	Ser	Ser	Asp 175	Asp	
20	Gly Thr	Gln	Gly 180	Cys	Met	Gly	Leu	Pro 185	Cys	Val	Leu	Met				
	<211>	11 570 DNA														
25	<213>	Homo	sapi	iens												
		CDS (1).	. (570))												
30	<400> atg act Met Thr 1															48
35	agc gca Ser Ala	_			_			_				_	_	_		96
40	gat ccc Asp Pro															144
	gaa acc Glu Thr 50	_	_	_	_		_	_		_			_			192
45	agt gcc Ser Ala 65															240
50	gta ttt Val Phe															288
	agg gag Arg Glu	_		_	_	_		Asp	_	_	_	_	Pro	_		336
55			100					105					110			

	Leu	Val	Gly 115	Asn	Lys	Cys	Asp	Leu 120	Pro	Thr	Arg	Thr	Val 125	Asp	Thr	Lys	
5		gcc Ala 130															432
10		gcc Ala															480
	_	gaa Glu		_	_		_	_					_	_	_	_	528
15		act Thr												taa			570
20	<21 <21 <21 <21	1> : 2> :	12 189 PRT Homo	sapi	iens												
25	<40	0> :	12														
	Met 1	Thr	Glu	Tyr	Lys 5	Leu	Val	Val	Val	Gly 10	Ala	Gly	Gly	Val	Gly 15	Lys	
30	Ser	Ala	Leu	Thr 20	Ile	Gln	Leu	Ile	Gln 25	Asn	His	Phe	Val	Asp 30	Glu	Tyr	
35	Asp	Pro	Thr 35	Ile	Glu	Asp	Ser	Tyr 40	Arg	Lys	Gln	Val	Val 45	Ile	Asp	Gly	
		Thr 50	_			_			_	Thr		_		Glu	Glu	Tyr	
40	Ser 65	Ala	Met	Arg	Asp	Gln 70	Tyr	Met	Arg	Thr	Gly 75	Glu	Gly	Phe	Leu	Cys 80	
45	Val	Phe	Ala	Ile	Asn 85	Asn	Ser	Lys	Ser	Phe 90	Ala	Asp	Ile	Asn	Leu 95	Tyr	
50	Arg	Glu	Gln	Ile 100	Lys	Arg	Val	Lys	Asp 105	Ser	Asp	Asp	Val	Pro 110	Met	Val	
	Leu	Val	Gly 115	Asn	Lys	Cys	Asp	Leu 120	Pro	Thr	Arg	Thr	Val 125	Asp	Thr	Lys	
55	Gln	Ala 130	His	Glu	Leu	Ala	Lys 135	Ser	Tyr	Gly	Ile	Pro 140	Phe	Ile	Glu	Thr	

	Ser A 145	Ala	Lys	Thr	Arg	Gln 150	Gly	Val	Glu	Asp	Ala 155	Phe	Tyr	Thr	Leu	Val 160	
5	Arg G	lu	Ile	Arg	Gln 165	Tyr	Arg	Met	Lys	Lys 170	Leu	Asn	Ser	Ser	Asp 175	Asp	
10	Gly T	hr.	Gln	Gly 180	Cys	Met	Gly	Leu	Pro 185	Cys	Val	Val	Met				
15	<210><211><211><212><213>	- 6	.3 584 ONA fus n	nuscı	ılus												
20	<220> <221> <222>		DS (1)	. (684	1)												
	<400> atg g Met A	jct															48
25	cca t Pro C																96
30	aaa g Lys A																144
35	gca a Ala S																192
	tgc t Cys P 65																240
40	gaa g Glu V																288
45	tct g Ser G																336
50	ggt g Gly A																384
	gac c Asp G	_	_	_	_										_	_	432
55	cct c Pro I 145																480

			cat His														528
5			aag Lys														576
10			ctt Leu 195														624
15			aag Lys														672
70		gta Val	gcc Ala	tga													684
20		L> 2 2> 1	14 227 PRT Mus r	nusci	ılus												
25	<40	0> :	14														
	Met 1	Ala	Leu	Pro	Thr 5	Lys	Ser	Ser	Ile	Leu 10	Asp	Leu	Ser	Ser	Gly 15	Thr	
30	Pro	Cys	Thr	Arg 20	Ser	Pro	Glu	Glu	Ser 25	His	Glu	Ala	Trp	Ala 30	Gln	Cys	
35	Lys	Asp	Ala 35	Gly	Arg	Gln	Leu	Pro 40	Glu	Tyr	Lys	Ala	Val 45	Val	Val	Gly	
40	Ala	Ser 50	Gly	Val	Gly	Lys	Ser 55	Ala	Leu	Thr	Ile	Gln 60	Met	Thr	His	Gln	
40	Cys 65	Phe	Val	Lys	Asp	His 70	Asp	Pro	Thr	Ile	Gln 75	Asp	Ser	Tyr	Trp	Lys 80	
45	Glu	Val	Ala	Arg	Asp 85	Asn	Gly	Gly	Tyr	Ile 90	Leu	Asn	Val	Leu	Asp 95	Thr	
50	Ser	Gly	Gln	Asp 100	Ile	His	Arg	Ala	Leu 105	Arg	Asp	Gln	Cys	Leu 110	Ala	Ser	
	Gly	Asp	Gly 115	Val	Leu	Gly	Val	Phe 120	Ala	Leu	Asp	Asp	Pro 125	Ser	Ser	Leu	
55	Asp	Gln 130	Leu	Gln	Gln	Ile	Trp 135	Ser	Thr	Trp	Thr	Pro 140	His	His	Lys	Gln	

	Pro Lei 145	ı Val	Leu	Val	Gly 150	Asn	Lys	Cys	Asp	Leu 155	Val	Thr	Thr	Ala	Gly 160	
5	Asp Ala	n His	Ala	Ala 165	Ala	Ala	Leu	Leu	Ala 170	His	Lys	Leu	Gly	Ala 175	Pro	
10	Leu Val	. Lys	Thr 180	Ser	Ala	Lys	Thr	Arg 185	Gln	Gly	Val	Glu	Glu 190	Ala	Phe	
	Ala Le	195	Val	His	Glu	Ile	Gln 200	Arg	Ala	Gln	Glu	Ala 205	Val	Ala	Glu	
15	Ser Sei 210		Lys	Thr	Arg	His 215	Gln	Lys	Ala	Val	Cys 220	Ser	Cys	Gly	Cys	
20	Ser Val	. Ala														
25	<210> <211> <212> <213>	15 702 DNA Homo	sapi	iens												
30	<220> <221> <222>	CDS (1).	. (702	2)												
35	<400> atg gaq Met Glu															48
	tgg ago Trp Sei			Phe		Gly	Glu	Thr		Arg	Ala	Gln		Arg		96
40	agg gat Arg Asi															144
45	gcc agt Ala Sei 50															192
50	tgc ttc Cys Phe 65			_		_				_	_				-	240
	gag tto Glu Leo		_	_	_		_	_		_			_	_		288
55	gca ggg				ast	~~~	acc	cta	cat	a a a	cac	tac	cta	act	at c	336

			ggt Gly 115														384
5			ctg Leu														432
10			gtc Val														480
15			cat His														528
. •			gag Glu														576
20			ctg Leu 195														624
25			atg Met														672
			cac His							tga							702
30	<210 <211 <212 <213	> 2 >	L6 233 PRT Homo	sapi	ens.												
30 35	<211 <212	L> 2 2> I 3> I	233 PRT	sapi	ens												
	<211 <212 <213 <400	L> 2 2> I 3> I)> 1	233 PRT Iomo			Lys	Pro	Gly	Thr	Phe 10	Asp	Leu	Gly	Leu	Ala 15	Thr	
35	<211 <212 <213 <400 Met 1	l> 2 2> I 3> I 3> I Glu	233 PRT Homo	Pro	Thr 5	_				10					15		
35	<211 <212 <213 <400 Met 1 Trp	> 2 > 8> 0> Glu	233 PRT Homo L6 Leu	Pro Ser 20	Thr 5 Phe	Gln	Gly	Glu	Thr 25	10 His	Arg	Ala	Gln	Ala 30	15 Arg	Arg	
35 40	<211 <212 <213 <400 Met 1 Trp	2> 1 2> 1 3> 1 3> 1 Glu Ser	233 PRT Homo L6 Leu Pro	Pro Ser 20	Thr 5 Phe Arg	Gln	Gly Leu	Glu Pro 40	Thr 25 Glu	10 His	Arg Lys	Ala Ala	Gln Val 45	Ala 30 Val	15 Arg Val	Arg Gly	
35 40 45	<211 <212 <213 <400 Met 1 Trp Arg	2> 1 3> 1 3> 1 3> 1 3> 1 50 Glu Ser 50	233 PRT Homo L6 Leu Pro Val 35	Pro Ser 20 Gly Val	Thr 5 Phe Arg	Gln Gln Lys	Gly Leu Ser 55	Glu Pro 40	Thr 25 Glu Leu	10 His Tyr	Arg Lys Ile	Ala Ala Gln 60	Gln Val 45 Leu	Ala 30 Val Asn	15 Arg Val	Arg Gly Gln	

	Ala Gly	y Gln Ala 100		s Arg	Ala	Leu 105	Arg	Asp	Gln	Cys	Leu 110	Ala	Val
5	Cys Asr	Gly Val	Leu Gl	y Val	Phe 120	Ala	Leu	Asp	Asp	Pro 125	Ser	Ser	Leu
10	Ile Glr 130	n Leu Gln)	Gln Il	e Trp 135	Ala	Thr	Trp	Gly	Pro 140	His	Pro	Ala	Gln
	Pro Leu 145	ı Val Leu	Val Gl 15		Lys	Cys	Asp	Leu 155	Val	Thr	Thr	Ala	Gly 160
15	Asp Ala	a His Ala	Ala Al 165	a Ala	Ala	Leu	Ala 170	His	Ser	Trp	Gly	Ala 175	His
20	Phe Val	l Glu Thr 180		a Lys	Thr	Arg 185	Gln	Gly	Val	Glu	Glu 190	Ala	Phe
25	Ser Leu	ı Leu Val 195	His Gl	u Ile	Gln 200	Arg	Val	Gln	Glu	Ala 205	Met	Ala	Lys
	Glu Pro 210	Met Ala	Arg Se	r Cys 215	Arg	Glu	Lys	Thr	Arg 220	His	Gln	Lys	Ala
30	Thr Cys	s His Cys	Gly Cy 23		Val	Ala							
35	<210><211><211><212><213>	17 4 PRT Artifici	al Sequ	ence									
40	<220> <223>	C-termin	al farn	esylat	tion	sigr	nal s	seque	ence				
45	<222>	MISC_FEA (2)(2) Aliphati		acid									
50		MISC_FEA (3)(3) Aliphati		acid									
55	<222>	MISC_FEA (4)(4) Any amin											
	<400>	17											

	Cys Xaa Xaa Xaa 1	
5	<210> 18 <211> 3207 <212> DNA <213> Mus musculus	
10	<220> <221> CDS <222> (1)(3207)	
15	<pre><400> 18 atg cct cca cga cca tct tcg ggt gaa ctg tgg ggc atc cac ttg atg</pre>	
20	ccc cca cga atc cta gtg gaa tgt tta ctc ccc aat gga atg ata gtg 96 Pro Pro Arg Ile Leu Val Glu Cys Leu Leu Pro Asn Gly Met Ile Val 20 25 30	
	act tta gaa tgc ctc cgt gag gcc aca ctc gtc acc atc aaa cat gaa 144 Thr Leu Glu Cys Leu Arg Glu Ala Thr Leu Val Thr Ile Lys His Glu 35 40 45	
25	ctg ttc aga gag gcc agg aaa tac cct ctc cat cag ctt ctg caa gac 192 Leu Phe Arg Glu Ala Arg Lys Tyr Pro Leu His Gln Leu Leu Gln Asp 50 55 60	
30	gaa act tct tac att ttc gta agt gtc acc caa gaa gca gaa agg gaa 240 Glu Thr Ser Tyr Ile Phe Val Ser Val Thr Gln Glu Ala Glu Arg Glu 65 70 75 80	
35	gaa ttt ttt gat gaa aca aga cga ctt tgt gac ctt cgg ctt ttt caa 288 Glu Phe Phe Asp Glu Thr Arg Arg Leu Cys Asp Leu Arg Leu Phe Gln 85 90 95	
	ccc ttt tta aaa gtt att gaa cca gta ggc aac cgt gaa gaa aag atc 336 Pro Phe Leu Lys Val Ile Glu Pro Val Gly Asn Arg Glu Glu Lys Ile 100 105 110	
40	ctc aat cga gaa att ggt ttt gtt att ggc atg cca gtg tgt gaa ttt 384 Leu Asn Arg Glu Ile Gly Phe Val Ile Gly Met Pro Val Cys Glu Phe 115 120 125	
45	gat atg gtt aaa gat cca gaa gtc caa gac ttt cga agg aac att ctg Asp Met Val Lys Asp Pro Glu Val Gln Asp Phe Arg Arg Asn Ile Leu 130 135 140	
50	aat gtt tgc aaa gaa gct gtg gac ctg cgg gat ctc aac tcg cct cat 480 Asn Val Cys Lys Glu Ala Val Asp Leu Arg Asp Leu Asn Ser Pro His 145 150 155 160	
	agc aga gca atg tat gtc tac cct cca aat gtc gag tct tcc cca gaa 528 Ser Arg Ala Met Tyr Val Tyr Pro Pro Asn Val Glu Ser Ser Pro Glu 165 170 175	
55	ctg cca aag cac atc tac aac aag tta gat aaa gga caa atc ata gtg 576 Leu Pro Lys His Ile Tyr Asn Lys Leu Asp Lys Gly Gln Ile Ile Val 180 185 190	

		att Ile		_	_					_	_	_	_			624
5		aag Lys 210														672
10		agg Arg		_		_	_	_	_				_	_		720
		tgt Cys														768
15		gac Asp														816
20		aga Arg														864
25	_	aaa Lys 290	_	_			_	_	_		_	_			_	912
	_	tca Ser			 _				-				_			960
30		aca Thr		_				_			_			_		1008
35		att Ile														1056
40		atc Ile														1104
	_	aat Asn 370				_	_		_							1152
45		tgg Trp														1200
50		ctt Leu														1248
		gag Glu														1296
55		gac Asp														1344

			435					440					445				
5					gaa Glu												1392
					gaa Glu												1440
10	_	_			aag Lys 485			_	_				_	_		_	1488
15					tcc Ser												1536
20					cta Leu												1584
	_	_		_	gca Ala		_			-				_			1632
25	_				gac Asp				_		_			_	_		1680
30					cta Leu 565												1728
	_	_	_		gcc Ala	_	_		_		_		_				1776
35					caa Gln												1824
40		_	_		agt Ser		_	_		_		_					1872
45	_	_			tct Ser	_						_	_	_			1920
70		_	_		ttg Leu 645	_		_			_				_		1968
50					caa Gln												2016
55	tct Ser	gag Glu	atg Met 675	cac His	aat Asn	aag Lys	act Thr	gtc Val 680	agt Ser	cag Gln	agg Arg	ttt Phe	ggc Gly 685	ctg Leu	cta Leu	ttg Leu	2064
	gag	tcc	tac	tgc	cgt	gcc	tgt	ggg	atg	tat	ctg	aag	cac	ctg	aac	aga	2112

	Glu	Ser 690	Tyr	Cys	Arg	Ala	Cys 695	Gly	Met	Tyr	Leu	Lys 700	His	Leu	Asn	Arg	
5		gta Val															2160
10		gag Glu															2208
	_	cag Gln	_	_	_		_		_	_	_	_	_			_	2256
15		cct Pro															2304
20		cga Arg 770															2352
		cca Pro															2400
25		aaa Lys			_	_				_	_				_		2448
30		cga Arg		_										-		_	2496
35		cta Leu															2544
		gtg Val 850		_						_			_	_			2592
40		ctg Leu	_			_	_			_			_				2640
45		aag Lys															2688
50		act Thr															2736
		gga Gly	_				_			_			_	_		_	2784
55	_	ttt Phe 930			_					_	_		_	_			2832

	ttt ggc tat aag cgg gaa cgt gtg cca ttt gtg ttg aca cag gat ttc Phe Gly Tyr Lys Arg Glu Arg Val Pro Phe Val Leu Thr Gln Asp Phe 945 950 955 960	2880
5	ttg att gtg att agt aag gga gca caa gag tac acc aag acc aga gag Leu Ile Val Ile Ser Lys Gly Ala Gln Glu Tyr Thr Lys Thr Arg Glu 965 970 975	2928
10	ttt gag agg ttt cag gag atg tgt tac aag gct tac cta gca att cgg Phe Glu Arg Phe Gln Glu Met Cys Tyr Lys Ala Tyr Leu Ala Ile Arg 980 985 990	2976
	cag cat gcc aat ctc ttc atc aac ctt ttt tca atg atg ctt ggc tct Gln His Ala Asn Leu Phe Ile Asn Leu Phe Ser Met Met Leu Gly Ser 995 1000 1005	3024
15	gga atg cca gaa cta caa tct ttt gat gac att gca tat atc cga Gly Met Pro Glu Leu Gln Ser Phe Asp Asp Ile Ala Tyr Ile Arg 1010 1015 1020	3069
20	aag act cta gcc ttg gac aaa act gag caa gaa gct ttg gaa tat Lys Thr Leu Ala Leu Asp Lys Thr Glu Gln Glu Ala Leu Glu Tyr 1025 1030 1035	3114
25	ttc aca aag caa atg aat gat gca cat cat ggt gga tgg acg aca Phe Thr Lys Gln Met Asn Asp Ala His His Gly Gly Trp Thr Thr 1040 1045 1050	3159
	aaa atg gat tgg atc ttc cac acc atc aag cag cat gct ttg aac Lys Met Asp Trp Ile Phe His Thr Ile Lys Gln His Ala Leu Asn 1055 1060 1065	3204
30	tga	3207
35	<210> 19 <211> 1068 <212> PRT <213> Mus musculus	
	<400> 19	
40	Met Pro Pro Arg Pro Ser Ser Gly Glu Leu Trp Gly Ile His Leu Met 1 5 10 15	
	Pro Pro Arg Ile Leu Val Glu Cys Leu Leu Pro Asn Gly Met Ile Val 20 25 30	
45	Thr Leu Glu Cys Leu Arg Glu Ala Thr Leu Val Thr Ile Lys His Glu	
	35 40 45	
50		
50	35 40 45 Leu Phe Arg Glu Ala Arg Lys Tyr Pro Leu His Gln Leu Leu Gln Asp	

					65					90					95	
5	Pro	Phe	Leu	Lys 100	Val	Ile	Glu	Pro	Val 105	Gly	Asn	Arg	Glu	Glu 110	Lys	Ile
10	Leu	Asn	Arg 115	Glu	Ile	Gly	Phe	Val 120	Ile	Gly	Met	Pro	Val 125	Cys	Glu	Phe
10	Asp	Met 130	Val	Lys	Asp	Pro	Glu 135	Val	Gln	Asp	Phe	Arg 140	Arg	Asn	Ile	Leu
15	Asn 145	Val	Cys	Lys	Glu	Ala 150	Val	Asp	Leu	Arg	Asp 155	Leu	Asn	Ser	Pro	His 160
20	Ser	Arg	Ala	Met	Tyr 165	Val	Tyr	Pro	Pro	Asn 170	Val	Glu	Ser	Ser	Pro 175	Glu
	Leu	Pro	Lys	His 180	Ile	Tyr	Asn	Lys	Leu 185	Asp	Lys	Gly	Gln	Ile 190	Ile	Val
25	Val	Ile	Trp 195	Val	Ile	Val	Ser	Pro 200	Asn	Asn	Asp	Lys	Gln 205	Lys	Tyr	Thr
30	Leu	Lys 210	Ile	Asn	His	Asp	Cys 215	Val	Pro	Glu	Gln	Val 220	Ile	Ala	Glu	Ala
35	Ile 225	Arg	Lys	Lys	Thr	Arg 230	Ser	Met	Leu	Leu	Ser 235	Ser	Glu	Gln	Leu	Lys 240
	Leu	Cys	Val	Leu	Glu 245	Tyr	Gln	Gly	Lys	Tyr 250	Ile	Leu	Lys	Val	Cys 255	Gly
40	Cys	Asp	Glu	Tyr 260	Phe	Leu	Glu	Lys	Tyr 265	Pro	Leu	Ser	Gln	Tyr 270	Lys	Tyr
45	Ile	Arg	Ser 275	Cys	Ile	Met	Leu	Gly 280	Arg	Met	Pro	Asn	Leu 285	Met	Leu	Met
50	Ala	Lys 290	Glu	Ser	Leu	Tyr	Ser 295	Gln	Leu	Pro	Ile	Asp 300	Ser	Phe	Thr	Met
	Pro 305	Ser	Tyr	Ser	Arg	Arg 310	Ile	Ser	Thr	Ala	Thr 315	Pro	Tyr	Met	Asn	Gly 320
55	Glu	Thr	Ser	Thr	Lys 325	Ser	Leu	Trp	Val	Ile 330	Asn	Ser	Ala	Leu	Arg 335	Ile

	Lys	Ile	Leu	Cys 340	Ala	Thr	Tyr	Val	Asn 345	Val	Asn	Ile	Arg	Asp 350	Ile	Asp
5	Lys	Ile	Tyr 355	Val	Arg	Thr	Gly	Ile 360	Tyr	His	Gly	Gly	Glu 365	Pro	Leu	Cys
10	Asp	Asn 370	Val	Asn	Thr	Gln	A rg 375	Val	Pro	Cys	Ser	Asn 380	Pro	Arg	Trp	Asn
	Glu 385	Trp	Leu	Asn	Tyr	Asp 390	Ile	Tyr	Ile	Pro	Asp 395	Leu	Pro	Arg	Ala	Ala 400
15	Arg	Leu	Cys	Leu	Ser 405	Ile	Cys	Ser	Val	Lys 410	Gly	Arg	Lys	Gly	Ala 415	Lys
20	Glu	Glu	His	Cys 420	Pro	Leu	Ala	Trp	Gly 425	Asn	Ile	Asn	Leu	Phe 430	Asp	Tyr
25	Thr	Asp	Thr 435	Leu	Val	Ser	Gly	Lys 440	Met	Ala	Leu	Asn	Leu 445	Trp	Pro	Val
	Pro	His 450	Gly	Leu	Glu	Asp	Leu 455	Leu	Asn	Pro	Ile	Gly 460	Val	Thr	Gly	Ser
30	Asn 465	Pro	Asn	Lys	Glu	Thr 470	Pro	Cys	Leu	Glu	Leu 475	Glu	Phe	Asp	Trp	Phe 480
35	Ser	Ser	Val	Val	Lys 485	Phe	Pro	Asp	Met	Ser 490	Val	Ile	Glu	Glu	His 495	Ala
	Asn	Trp	Ser	Val 500	Ser	Arg	Glu	Ala	Gly 505	Phe	Ser	Tyr	Ser	His 510	Thr	Gly
40	Leu	Ser	Asn 515	Arg	Leu	Ala	Arg	Asp 520	Asn	Glu	Leu	Arg	Glu 525	Asn	Asp	Lys
45	Glu	Gln 530	Leu	Arg	Ala	Leu	Cys 535	Thr	Arg	Asp	Pro	Leu 540	Ser	Glu	Ile	Thr
50	Glu 545	Gln	Glu	Lys	Asp	Phe 550	Leu	Trp	Ser	His	Arg 555	His	Tyr	Cys	Val	Thr 560
	Ile	Pro	Glu	Ile	Leu 565	Pro	Lys	Leu	Leu	Leu 570	Ser	Val	Lys	Trp	A sn 575	Ser
55	Arg	Asp	Glu	Val 580	Ala	Gln	Met	Tyr	Cys 585	Leu	Val	Lys	Asp	Trp 590	Pro	Pro

	Ile	Lys	Pro 595	Glu	Gln	Ala	Met	Glu 600	Leu	Leu	Asp	Cys	Asn 605	Tyr	Pro	Asp
5	Pro	Met 610	Val	Arg	Ser	Phe	Ala 615	Val	Arg	Cys	Leu	Glu 620	Lys	Tyr	Leu	Thr
10	Asp 625	Asp	Lys	Leu	Ser	Gln 630	Tyr	Leu	Ile	Gln	Leu 635	Val	Gln	Val	Leu	Lys 640
	Tyr	Glu	Gln	Tyr	Leu 645	Asp	Asn	Leu	Leu	Val 650	Arg	Phe	Leu	Leu	Lys 655	Lys
15	Ala	Leu	Thr	Asn 660	Gln	Arg	Ile	Gly	His 665	Phe	Phe	Phe	Trp	His 670	Leu	Lys
20	Ser	Glu	Met 675	His	Asn	Lys	Thr	Val 680	Ser	Gln	Arg	Phe	Gly 685	Leu	Leu	Leu
25	Glu	Ser 690	Tyr	Cys	Arg	Ala	Cys 695	Gly	Met	Tyr	Leu	Lys 700	His	Leu	Asn	Arg
	Gln 705	Val	Glu	Ala	Met	Glu 710	Lys	Leu	Ile	Asn	Leu 715	Thr	Asp	Ile	Leu	Lys 720
30	Gln	Glu	Lys	Lys	Asp 725	Glu	Thr	Gln	Lys	Val 730	Gln	Met	Lys	Phe	Leu 735	Val
35	Glu	Gln	Met	Arg 740	Gln	Pro	Asp	Phe	Met 745	Asp	Ala	Leu	Gln	Gly 750	Phe	Leu
	Ser	Pro	Leu 755	Asn	Pro	Ala	His	Gln 760		Gly	Asn	Leu	Arg 765	Leu	Glu	Glu
40	Cys	Arg 770	Ile	Met	Ser	Ser	Ala 775	Lys	Arg	Pro	Leu	Trp 780	Leu	Asn	Trp	Glu
45	Asn 785	Pro	Asp	Ile	Met	Ser 790	Glu	Leu	Leu	Phe	Gln 795	Asn	Asn	Glu	Ile	Ile 800
50	Phe	Lys	Asn	Gly	Asp 805	Asp	Leu	Arg	Gln	Asp 810	Met	Leu	Thr	Leu	Gln 815	Ile
	Ile	Arg	Ile	Met 820	Glu	Asn	Ile	Trp	Gln 825	Asn	Gln	Gly	Leu	Asp 830	Leu	Arg
55	Met	Leu	Pro 835	Tyr	Gly	Cys	Leu	Ser 840	Ile	Gly	Asp	Cys	Val 845	Gly	Leu	Ile

	Glu Val Val Arg Asn Ser His Thr Ile Met Gln Ile Gln Cys Lys Gly 850 855 860
5	Gly Leu Lys Gly Ala Leu Gln Phe Asn Ser His Thr Leu His Gln Trp 865 870 875 880
10	Leu Lys Asp Lys Asn Lys Gly Glu Ile Tyr Asp Ala Ala Ile Asp Leu 885 890 895
15	Phe Thr Arg Ser Cys Ala Gly Tyr Cys Val Ala Thr Phe Ile Leu Gly 900 905 910
	Ile Gly Asp Arg His Asn Ser Asn Ile Met Val Lys Asp Asp Gly Gln 915 920 925
20	Leu Phe His Ile Asp Phe Gly His Phe Leu Asp His Lys Lys Lys 930 935 940
25	Phe Gly Tyr Lys Arg Glu Arg Val Pro Phe Val Leu Thr Gln Asp Phe 945 950 955 960
30	Leu Ile Val Ile Ser Lys Gly Ala Gln Glu Tyr Thr Lys Thr Arg Glu 965 970 975
	Phe Glu Arg Phe Gln Glu Met Cys Tyr Lys Ala Tyr Leu Ala Ile Arg 980 985 990
35	Gln His Ala Asn Leu Phe Ile Asn Leu Phe Ser Met Met Leu Gly Ser 995 1000 1005
40	Gly Met Pro Glu Leu Gln Ser Phe Asp Asp Ile Ala Tyr Ile Arg 1010 1015 1020
45	Lys Thr Leu Ala Leu Asp Lys Thr Glu Gln Glu Ala Leu Glu Tyr 1025 1030 1035
	Phe Thr Lys Gln Met Asn Asp Ala His His Gly Gly Trp Thr Thr 1040 1045 1050
50	Lys Met Asp Trp Ile Phe His Thr Ile Lys Gln His Ala Leu Asn 1055 1060 1065
55	<210> 20 <211> 3207 <212> DNA <213> Homo sapiens

	<220 <221 <222	L> (CDS (1)	. (320	07)												
5		cct	20 cca Pro														48
10			aga Arg														96
15			gaa Glu 35	_		_		_						_		_	144
			aaa Lys														192
20	_		tct Ser				-	_	_			_	_	_		_	240
25			ttt Phe														288
30			tta Leu														336
			cga Arg 115														384
35			gtt Val														432
40			tgt Cys														480
	_	_	gca Ala	_		_					_	_				_	528
45			aag Lys														576
50			tgg Trp 195	_		_					_	_	_	_			624
55	_		atc Ile			-	_	_		_		_		_	_	_	672
	atc	agg	aaa	aaa	act	cga	agt	atg	ttg	cta	tcc	tct	gaa	caa	cta	aaa	720

	Ile 225	Arg	Lys	Lys	Thr	Arg 230	Ser	Met	Leu	Leu	Ser 235	Ser	Glu	Gln	Leu	Lys 240	
5		tgt Cys															768
10	_	gat Asp	_				-				_	_	_		_		816
		aga Arg															864
15	_	aaa Lys 290	_	_					_		_	_	_			_	912
20		tct Ser			-	_				-				-			960
	_	aca Thr							-			_	_		_		1008
25		att Ile		_	-					_			_	_		-	1056
30	_	atc Ile		-	_								_			-	1104
35		aat Asn 370															1152
	Glu	tgg Trp	Leu	Asn	Tyr	Asp	Ile	Tyr	Ile	Pro	Asp	Leu	Pro	Arg	Ala	Ala	1200
40		ctt Leu															1248
45		gaa Glu															1296
50		gac Asp															1344
50		cat His 450			_	_	_	_					_				1392
55		cca Pro															1440

		agt Ser															1488
5		tgg Trp															1536
10		agt Ser															1584
	-	cag Gln 530			_				_	-				_			1632
15		cag Gln			_				_		_			_	_		1680
20		ccc Pro	-					_		_		_					1728
25	_	gat Asp	-	_	_	_	_		_	_	_		_				1776
		aaa Lys															1824
30		atg Met 610	-	_			_	-		_	_	-					1872
35		gac Asp															1920
		gaa Glu			_	_		_			_			_	_		1968
40	-	ttg Leu															2016
45		gag Glu	-					-	-	_				_		-	2064
50		tcc Ser 690															2112
		gtc Val		_	_	_	_						_				2160
55	_	gag Glu	_	_	_	_			_	_	_	_	_			_	2208

							atg Met 745						2256
5					_		cta Leu					_	 2304
10	_	_	_			-	agg Arg		_	 _			 2352
15							ctg Leu						2400
15				_	_		 caa Gln	_	_				2448
20							caa Gln 825						2496
25							atc Ile						2544
							att Ile						2592
30		_		_	_	_	aac Asn	_				_	 2640
35							ata Ile						2688
40							tgt Cys 905						2736
							atc Ile						2784
45	_			_			ttt Phe	_	_	_	_		2832
50							cca Pro						2880
							caa Gln						2928
55							tac Tyr						2976

	980	985	990	
5	cag cat gcc aat ctc ttc Gln His Ala Asn Leu Phe 995			3024
	gga atg cca gaa cta caa Gly Met Pro Glu Leu Gln 1010			3069
10	aag acc cta gcc tta gat Lys Thr Leu Ala Leu Asp 1025	aaa act gag caa ga Lys Thr Glu Gln Gl 1030		3114
15	ttc atg aaa caa atg aat Phe Met Lys Gln Met Asn 1040	gat gca cat cat gg Asp Ala His His Gl 1045		3159
20	aaa atg gat tgg atc ttc Lys Met Asp Trp Ile Phe 1055			3204
20	tga			3207
25	<210> 21 <211> 1068 <212> PRT <213> Homo sapiens			
	<400> 21			
30	Met Pro Pro Arg Pro Ser 1 5	Ser Gly Glu Leu Trp 10	Gly Ile His Leu Met 15	
35	Pro Pro Arg Ile Leu Val (20	Glu Cys Leu Leu Pro 25	Asn Gly Met Ile Val 30	
	Thr Leu Glu Cys Leu Arg	Glu Ala Thr Leu Ile 40	Thr Ile Lys His Glu 45	
40	Leu Phe Lys Glu Ala Arg		Gln Leu Leu Gln Asp 60	
45	Glu Ser Ser Tyr Ile Phe 65 70	Val Ser Val Thr Gln 75	Glu Ala Glu Arg Glu 80	
50	Glu Phe Phe Asp Glu Thr 8	Arg Arg Leu Cys Asp 90	Leu Arg Leu Phe Gln 95	
	Pro Phe Leu Lys Val Ile (Glu Pro Val Gly Asn 105	Arg Glu Glu Lys Ile 110	
55	Leu Asn Arg Glu Ile Gly :	Phe Ala Ile Gly Met 120	Pro Val Cys Glu Phe 125	

	Asp	Met 130	Val	Lys	Asp	Pro	Glu 135	Val	Gln	Asp	Phe	Arg 140	Arg	Asn	Ile	Leu
5	Asn 145	Val	Cys	Lys	Glu	Ala 150	Val	Asp	Leu	Arg	Asp 155	Leu	Asn	Ser	Pro	His 160
10	Ser	Arg	Ala	Met	Tyr 165	Val	Tyr	Pro	Pro	Asn 170	Val	Glu	Ser	Ser	Pro 175	Glu
	Leu	Pro	Lys	His 180	Ile	Tyr	Asn	Lys	Leu 185	Asp	Lys	Gly	Gln	Ile 190	Ile	Val
15	Val	Ile	Trp 195	Val	Ile	Val	Ser	Pro 200	Asn	Asn	Asp	Lys	Gln 205	Lys	Tyr	Thr
20	Leu	Lys 210	Ile	Asn	His	Asp	Cys 215	Val	Pro	Glu	Gln	Val 220	Ile	Ala	Glu	Ala
25	Ile 225	Arg	Lys	Lys	Thr	Arg 230	Ser	Met	Leu	Leu	Ser 235	Ser	Glu	Gln	Leu	Lys 240
	Leu	Cys	Val	Leu	Glu 245	Tyr	Gln	Gly	Lys	Tyr 250	Ile	Leu	Lys	Val	Cys 255	Gly
30	Cys	Asp	Glu	Tyr 260	Phe	Leu	Glu	Lys	Tyr 265	Pro	Leu	Ser	Gln	Tyr 270	Lys	Tyr
35	Ile	Arg	Ser 275	Cys	Ile	Met	Leu	Gly 280	Arg	Met	Pro	Asn	Leu 285	Met	Leu	Met
40	Ala	Lys 290			Leu	_	Ser 295					Asp 300	_	Phe	Thr	Met
40	Pro 305	Ser	Tyr	Ser	Arg	Arg 310	Ile	Ser	Thr	Ala	Thr 315	Pro	Tyr	Met	Asn	Gly 320
45	Glu	Thr	Ser	Thr	Lys 325	Ser	Leu	Trp	Val	Ile 330	Asn	Ser	Ala	Leu	Arg 335	Ile
50	Lys	Ile	Leu	Cys 340	Ala	Thr	Tyr	Val	Asn 345	Val	Asn	Ile	Arg	Asp 350	Ile	Asp
	Lys	Ile	Tyr 355	Val	Arg	Thr	Gly	Ile 360	Tyr	His	Gly	Gly	Glu 365	Pro	Leu	Cys
55	Asp	Asn 370	Val	Asn	Thr	Gln	A rg 375	Val	Pro	Cys	Ser	Asn 380	Pro	Arg	Trp	Asn

	Glu 385	Trp	Leu	Asn	Tyr	Asp 390	Ile	Tyr	Ile	Pro	Asp 395	Leu	Pro	Arg	Ala	Ala 400
5	Arg	Leu	Cys	Leu	Ser 405	Ile	Cys	Ser	Val	Lys 410	Gly	Arg	Lys	Gly	Ala 415	Lys
10	Glu	Glu	His	Cys 420	Pro	Leu	Ala	Trp	Gly 425	Asn	Ile	Asn	Leu	Phe 430	Asp	Tyr
	Thr	Asp	Thr 435	Leu	Val	Ser	Gly	Lys 440	Met	Ala	Leu	Asn	Leu 445	Trp	Pro	Val
15	Pro	His 450	Gly	Leu	Glu	Asp	Leu 455	Leu	Asn	Pro	Ile	Gly 460	Val	Thr	Gly	Ser
20	Asn 465	Pro	Asn	Lys	Glu	Thr 470	Pro	Cys	Leu	Glu	Leu 475	Glu	Phe	Asp	Trp	Phe 480
25	Ser	Ser	Val	Val	Lys 485	Phe	Pro	Asp	Met	Ser 490	Val	Ile	Glu	Glu	His 495	Ala
	Asn	Trp	Ser	Val 500	Ser	Arg	Glu	Ala	Gly 505	Phe	Ser	Tyr	Ser	His 510	Ala	Gly
30	Leu	Ser	Asn 515	Arg	Leu	Ala	Arg	Asp 520	Asn	Glu	Leu	Arg	Glu 525	Asn	Asp	Lys
35	Glu	Gln 530	Leu	Lys	Ala	Ile	Ser 535	Thr	Arg	Asp	Pro	Leu 540	Ser	Glu	Ile	Thr
40	Glu 545	Gln	Glu	Lys	Asp	Phe 550	Leu	Trp	Ser	His	A rg 555	His	Tyr	Cys	Val	Thr 560
	Ile	Pro	Glu	Ile	Leu 565	Pro	Lys	Leu	Leu	Leu 570	Ser	Val	Lys	Trp	Asn 575	Ser
45	Arg	Asp	Glu	Val 580	Ala	Gln	Met	Tyr	Cys 585	Leu	Val	Lys	Asp	Trp 590	Pro	Pro
50	Ile	Lys	Pro 595	Glu	Gln	Ala	Met	Glu 600	Leu	Leu	Asp	Cys	Asn 605	Tyr	Pro	Asp
55	Pro	Met 610	Val	Arg	Gly	Phe	Ala 615	Val	Arg	Cys	Leu	Glu 620	Lys	Tyr	Leu	Thr
55	Asp	Asp	Lys	Leu	Ser	Gln	Tyr	Leu	Ile	Gln	Leu	Val	Gln	Val	Leu	Lys

	625		6	530			635					640
5	Tyr Glu	ı Gln Tyr	Leu A 645	Asp Asn	Leu 1	Leu Vai 650	_	Phe	Leu	Leu	Lys 655	Lys
10	Ala Let	Thr Asn 660		Arg Ile		His Pho	e Phe	Phe	Trp	His 670	Leu	Lys
	Ser Glu	Met His 675	Asn L	ys Thr	Val 8 680	Ser Gl	n Arg	Phe	Gly 685	Leu	Leu	Leu
15	Glu Sei 690	r Tyr Cys)	Arg A	Ala Cys 695	Gly 1	Met Ty:	c Leu	Lys 700	His	Leu	Asn	Arg
20	Gln Val	l Glu Ala		Glu Lys 710	Leu :	Ile Ası	1 Leu 715	Thr	Asp	Ile	Leu	Lys 720
0F	Gln Glı	ı Lys Lys	Asp G 725	Glu Thr	Gln 1	Lys Vai		Met	Lys	Phe	Leu 735	Val
25	Glu Glr	n Met Arg 740	_	Pro Asp		Met As _l 745	Ala	Leu	Gln	Gly 750	Phe	Leu
30	Ser Pro	Leu Asn 755	Pro A	Ala His	Gln 1760	Leu Gly	y Asn	Leu	Arg 765	Leu	Glu	Glu
35	Cys Arc	g Ile Met)	Ser S	Ser Ala 775	Lys 1	Arg Pro	Leu	Trp 780	Leu	Asn	Trp	Glu
	Asn Pro	Asp Ile	Met S		Leu 1		e Gln 795		Asn	Glu	Ile	Ile 800
40	Phe Lys	s Asn Gly	Asp A 805	Asp Leu	Arg (Gln As _l 81	_	Leu	Thr	Leu	Gln 815	Ile
45	Ile Arc	g Ile Met 820		Asn Ile	_	Gln Ası 825	n Gln	Gly	Leu	Asp 830	Leu	Arg
50	Met Le	Pro Tyr 835	Gly C	Cys Leu	Ser :	Ile Gl	y Asp	Cys	Val 845	Gly	Leu	Ile
	Glu Val	L Val Arg	Asn S	Ser His 855	Thr :	Ile Me	: Gln	Ile 860	Gln	Cys	Lys	Gly
55	Gly Let 865	ı Lys Gly		Geu Gln 370	Phe i	Asn Se	875	Thr	Leu	His	Gln	Trp 880

	Leu	Lys	Asp	Lys	Asn 885	Lys	Gly	Glu	Ile	Tyr 890	Asp	Ala	Ala	Ile	Asp 895	Leu	
5	Phe	Thr	Arg	Ser 900	Cys	Ala	Gly	Tyr	Cys 905	Val	Ala	Thr	Phe	Ile 910	Leu	Gly	
10	Ile	Gly	Asp 915	Arg	His	Asn	Ser	Asn 920	Ile	Met	Val	Lys	Asp 925	Asp	Gly	Gln	
	Leu	Phe 930	His	Ile	Asp	Phe	Gly 935	His	Phe	Leu	Asp	His 940	Lys	Lys	Lys	Lys	
15	Phe 945	Gly	Tyr	Lys	Arg	Glu 950	Arg	Val	Pro	Phe	Val 955	Leu	Thr	Gln	Asp	Phe 960	
20	Leu	Ile	Val	Ile	Ser 965	Lys	Gly	Ala	Gln	Glu 970	Cys	Thr	Lys	Thr	A rg 975	Glu	
25	Phe	Glu	Arg	Phe 980	Gln	Glu	Met	Cys	Tyr 985	Lys	Ala	Tyr	Leu	Ala 990	Ile	Arg	
	Gln	His	Ala 995	Asn	Leu	Phe	Ile	Asn 1000		ı Phe	e Sei	. Met	. Met 100		eu Gl	ly Ser	
30	Gly	Met 1010		Glu	ı Lev	ı Gln	Ser 101		ne As	sp As	sp Il		La 1	Tyr :	[le <i>]</i>	Arg	
35	Lys	Thr 1025		ı Ala	ı Lev	ı Asp	103		nr Gl	Lu Gl	Ln Gl		La I)35	Leu (Glu 1	ſyr	
	Phe	Met 1040		Glr	Met	. Asn	Asp 104		a Hi	ls Hi	is Gl		Ly 7 050	rp '	Chr T	[hr	
40	Lys	Met 1055		Trp) Ile	Phe	His		nr Il	Le Ly	/s Gl		ls <i>1</i> 065	Ala 1	Leu <i>I</i>	Asn	
45	<210 <211 <212 <213	> 2	22 2559 2000 NA Tus n	nuscu	ılus												
50	<220 <221 <222		DS (1)	(255	59)												
55)> 2 atg Met															48

		aac Asn															96
5		gga Gly															144
10		ctg Leu 50															192
45		ctg Leu															240
15		ctt Leu															288
20		acc Thr															336
25		gcc Ala															384
	_	gag Glu 130	_			_	_	_					-				432
30		ctg Leu				_	_					_		_			480
35		gac Asp															528
40		cct Pro	Gly	Ser		Leu	Glu	Arg	Arg	Ala	His	Leu	Leu	Leu			576
40		gag Glu															624
45	_	cca Pro 210		_		_	_		_		_		_		_	_	672
50		ctg Leu															720
	_	gcg Ala	_					_	_		_				-		768
55	_	cct Pro			_		_										816

									cag Gln		864
5									cct Pro		912
10									cct Pro		960
									ctg Leu		1008
15									ggc Gly 350		1056
20									cct Pro		1104
25									gtc Val		1152
									gcc Ala		1200
30									ctc Leu		1248
35									aat Asn 430		1296
40									agc Ser		1344
40		_	-	-			-		aac Asn		1392
45									ttt Phe		1440
50									gag Glu		1488
									act Thr 510		1536
55									aga Arg		1584

			515					520					525				
5						agg Arg											1632
						tgc Cys 550											1680
						cga Arg	_	_		_		_		_		-	1728
15						gag Glu											1776
20						aaa Lys											1824
20	-	-	-		-	acg Thr			-		-	-	-	-			1872
25	_		_	_	_	ctt Leu 630		_	_					_		_	1920
30						agt Ser											1968
						atg Met											2016
35						gag Glu											2064
40						tcc Ser											2112
45	-					acg Thr 710	_			_	-		-			-	2160
45	_	_		_		tca Ser	_					_	_			_	2208
50	_	_				gtc Val	_	_	_		_				_		2256
55	_	_		_		acc Thr	_	_	_	_	_	_		_		_	2304
																	0050

aaa gcc atg gac aaa cac aac cta gat gag gac gag ccg gag gat tat 2352

	Lys	A la 770	Met	Asp	Lys	His	As n 775	Leu	Asp	Glu	Asp	Glu 780	Pro	Glu	Asp	Tyr	
5		ctg Leu															2400
10		gcc Ala					-	_				_			_		2448
		cta Leu															2496
15		agc Ser															2544
20		ggc Gly 850			taa												2559
25	<210 <210 <210 <210	1> { 2> I	23 352 PRT Mus 1	nusci	ılus												
	<40	0> 2	23														
30	Met 1	Met	Val	Asp	Cys 5	Gln	Ser	Ser	Thr	Gln 10	Glu	Ile	Gly	Glu	Glu 15	Leu	
35	Ile	Asn	Gly	Val 20	Ile	Tyr	Ser	Ile	Ser 25	Leu	Arg	Lys	Val	Gln 30	Leu	His	
	Gln	Gly	Ala 35	Thr	Lys	Gly	Gln	Arg 40	Trp	Leu	Gly	Cys	Glu 45	Asn	Glu	Ser	
40	Ala	Leu 50	Asn	Leu	Tyr	Glu	Thr 55	Cys	Lys	Val	Arg	Thr 60	Val	Lys	Ala	Gly	
45	Thr 65	Leu	Glu	Lys	Leu	Val 70	Glu	His	Leu	Val	Pro 75	Ala	Phe	Gln	Gly	Ser 80	
50	Asp	Leu	Ser	Tyr	Val 85	Thr	Val	Phe	Leu	Cys 90	Thr	Tyr	Arg	Ala	Phe 95	Thr	
	Thr	Thr	Gln	Gln 100	Val	Leu	Asp	Leu	Leu 105	Phe	Lys	Arg	Tyr	Gly 110	Arg	Cys	
55	Asp	Ala	Leu 115	Thr	Ala	Ser	Ser	Arg 120	Tyr	Gly	Cys	Ile	Leu 125	Pro	Tyr	Ser	

	Ser	Glu 130	Asp	Gly	Gly	Pro	Gln 135	Asp	Gln	Leu	Lys	Asn 140	Ala	Ile	Ser	Ser
5	Ile 145	Leu	Gly	Thr	Trp	Leu 150	Asp	Gln	Tyr	Ser	Glu 155	Asp	Phe	Cys	Gln	Pro 160
10	Pro	Asp	Phe	Pro	Cys 165	Leu	Lys	Gln	Leu	Val 170	Ala	Tyr	Val	Gln	Leu 175	Asn
	Met	Pro	Gly	Ser 180	Asp	Leu	Glu	Arg	A rg 185	Ala	His	Leu	Leu	Leu 190	Ala	Gln
15	Leu	Glu	Asp 195	Leu	Glu	Pro	Ser	Glu 200	Ala	Glu	Ser	Glu	Ala 205	Leu	Ser	Pro
20	Ala	Pro 210	Val	Leu	Ser	Leu	Lys 215	Pro	Ala	Ser	Gln	Leu 220	Glu	Pro	Ala	Leu
25	Leu 225	Leu	Thr	Pro	Ser	Gln 230	Val	Val	Thr	Ser	Thr 235	Pro	Val	Arg	Glu	Pro 240
	Ala	Ala	Ala	Pro	Val 245	Pro	Val	Leu	Ala	Ser 250	Ser	Pro	Val	Val	Ala 255	Pro
30	Ala	Pro	Glu	Leu 260	Glu	Pro	Val	Pro	Glu 265	Pro	Pro	Gln	Glu	Pro 270	Glu	Pro
35	Ser	Leu	Ala 275	Leu	Ala	Pro	Glu	Leu 280	Glu	Pro	Ala	Val	Ser 285	Gln	Ser	Leu
40	Glu	Leu 290	Glu	Ser	Ala	Pro	Val 295	Pro	Thr	Pro	Ala	Leu 300	Glu	Pro	Ser	Trp
	Ser 305	Leu	Pro	Glu	Ala	Thr 310	Glu	Asn	Gly	Leu	Thr 315	Glu	Lys	Pro	His	Leu 320
45	Leu	Leu	Phe	Pro	Pro 325	Asp	Leu	Val	Ala	Glu 330	Gln	Phe	Thr	Leu	Met 335	Asp
50	Ala	Glu	Leu	Phe 340	Lys	Lys	Val	Val	Pro 345	Tyr	His	Cys	Leu	Gly 350	Ser	Ile
	Trp	Ser	Gln 355	Arg	Asp	Lys	Lys	Gly 360	Lys	Glu	His	Leu	Ala 365	Pro	Thr	Ile
55	Arg	Ala 370	Thr	Val	Ala	Gln	Phe 375	Asn	Asn	Val	Ala	As n 380	Cys	Val	Ile	Thr

	Thr 385	Cys	Leu	Gly	Asp	Gln 390	Ser	Met	Lys	Ala	Pro 395	Asp	Arg	Ala	Arg	Val 400
5	Val	Glu	His	Trp	Ile 405	Glu	Val	Ala	Arg	Glu 410	Cys	Arg	Ala	Leu	Lys 415	Asn
10	Phe	Ser	Ser	Leu 420	Tyr	Ala	Ile	Leu	Ser 425	Ala	Leu	Gln	Ser	Asn 430	Ala	Ile
	His	Arg	Leu 435	Lys	Lys	Thr	Trp	Glu 440	Glu	Val	Ser	Arg	Asp 445	Ser	Phe	Arg
15	Val	Phe 450	Gln	Lys	Leu	Ser	Glu 455	Ile	Phe	Ser	Asp	Glu 460	Asn	Asn	Tyr	Ser
20	Leu 465	Ser	Arg	Glu	Leu	Leu 470	Ile	Lys	Glu	Gly	Thr 475	Ser	Lys	Phe	Ala	Thr 480
25	Leu	Glu	Met	Asn	Pro 485	Arg	Arg	Ala	Gln	Arg 490	Arg	Gln	Lys	Glu	Thr 495	Gly
	Val	Ile	Gln	Gly 500	Thr	Val	Pro	Tyr	Leu 505	Gly	Thr	Phe	Leu	Thr 510	Asp	Leu
30	Val	Met	Leu 515	Asp	Thr	Ala	Met	Lys 520	Asp	Tyr	Leu	Tyr	Gly 525	Arg	Leu	Ile
35	Asn	Phe 530	Glu	Lys	Arg	Arg	Lys 535	Glu	Phe	Glu	Val	Ile 540	Ala	Gln	Ile	Lys
40	Leu 545	Leu	Gln	Ser	Ala	Cys 550	Asn	Asn	Tyr	Ser	Ile 555	Ala	Pro	Glu	Glu	His 560
40	Phe	Gly	Thr	Trp	Phe 565	Arg	Ala	Met	Glu	Arg 570	Leu	Ser	Glu	Ala	Glu 575	Ser
45	Tyr	Thr	Leu	Ser 580	Cys	Glu	Leu	Glu	Pro 585	Pro	Ser	Glu	Ser	Ala 590	Ser	Asn
50	Thr	Leu	Arg 595	Ser	Lys	Lys	Ser	Thr 600	Ala	Ile	Val	Lys	Arg 605	Trp	Ser	Asp
	Arg	Gln 610	Ala	Pro	Ser	Thr	Glu 615	Leu	Ser	Thr	Ser	Ser 620	Ser	Ala	His	Ser
55	Lys 625	Ser	Cys	Asp	Gln	Leu 630	Arg	Cys	Ser	Pro	Tyr 635	Leu	Gly	Ser	Gly	Asp 640

	Ile Thr Asp	Ala Leu Ser 645	Val His Ser	Ala Gly Ser Se 650	er Ser Ser Asp 655
5	Val Glu Glu	Ile Asn Met 660	Ser Phe Val 665	Pro Glu Ser Pr	ro Asp Gly Gln 670
10	Glu Lys Lys 675	_	Ser Ala Ser 680		ro Glu Thr Ser 35
15	Gly Ile Ser 690	Ser Ala Ser	Ser Ser Thr 695	Ser Ser Ser Se 700	er Ala Ser Thr
	Thr Pro Val	Ser Thr Thr 710	_	Lys Arg Ser Va 715	al Ser Gly Val 720
20	Cys Ser Tyr	Ser Ser Ser 725	Leu Pro Leu	Tyr Asn Gln G	In Val Gly Asp 735
25	Cys Cys Ile	Ile Arg Val 740	Ser Leu Asp 745	Val Asp Asn G	Ly Asn Met Tyr 750
30	Lys Ser Ile 755		Ser Gln Asp 760	Lys Ala Pro Ti	nr Val Ile Arg 55
	Lys Ala Met 770	Asp Lys His	Asn Leu Asp 775	Glu Asp Glu Pr 780	ro Glu Asp Tyr
35	Glu Leu Val 785	Gln Ile Ile 790		His Lys Leu Ly 795	ys Ile Pro Glu 800
40	Asn Ala Asn	Val Phe Tyr 805	Ala Met Asn	Ser Thr Ala As 810	sn Tyr Asp Phe 815
45	Ile Leu Lys	Lys Arg Thr 820	Phe Thr Lys 825	Gly Ala Lys Va	al Lys His Gly 830
	Ala Ser Ser 835		Arg Met Lys 840	Gln Lys Gly Le 84	eu Arg Ile Ala 45
50	Lys Gly Ile 850	Phe			
55	<210> 24 <211> 2745 <212> DNA <213> Homo	sapiens			

	<220 <221 <222	L> (CDS (1)	. (274	15)													
5		gtg										cct Pro						48
10												agc Ser						96
15												ccg Pro					1	144
												ccg Pro 60					1	192
20												atc Ile					2	240
25	_	_	_		_	_						aag Lys		_	_		2	288
30												tat Tyr					3	336
												ctg Leu					3	384
35												gtc Val 140					4	432
40												gtc Val					4	480
						_	_	_	_		_	gcc Ala			_		5	528
45												gga Gly					Ę	576
50												tgg Trp					•	624
55												tgc Cys 220					•	672
	gtg	gcc	tac	gtg	cag	ctc	aac	atg	cca	ggc	tca	gac	ctg	gag	cgc	cgt	7	720

	Val 225	Ala	Tyr	Val	Gln	Leu 230	Asn	Met	Pro	Gly	Ser 235	Asp	Leu	Glu	Arg	Arg 240	
5		cac His															768
10		cct Pro															816
		gag Glu															864
15		gcc Ala 290															912
20		gaa Glu															960
		gct Ala				_	_	_				_	_	_			1008
25		gct Ala															1056
30		gct Ala		-		_				_							1104
35		gtt Val 370															1152
		cct Pro	${\tt Pro}$		Leu	Val	Ala	Glu	Gln	Phe	Thr		Met	Asp	Ala	Glu	1200
40		ttc Phe															1248
45	-	cgg Arg	-	-	-		_			-					-	-	1296
50		gtc Val															1344
		ggg Gly 450		_	_	_		_		_		_					1392
55		tgg Trp															1440

		ctg Leu															1488
5		aag Lys															1536
10		aag Lys															1584
		gag Glu 530	_			_					_		_		_		1632
15	_	aac Asn		_	_	_	_			_	_		_				1680
20		ggc Gly															1728
25	_	gac Asp		-	_	_	_		_			_					1776
		aag Lys															1824
30	_	tcg Ser 610	-	_				_				_					1872
35		tgg Trp															1920
	_	tcg Ser	_		_							_	_				1968
40		acc Thr	_	_			_		_	_	_		_	_	_	_	2016
45	_	ccc Pro	_				_		_		_				_		2064
50		gac Asp 690															2112
	_	gcg Ala		_			_	_				_		_			2160
55		atc Ile			_		_	_				_		_	_	_	2208

		ttc Phe															2256
5	_	tca Ser	_		_	_		_				_			_		2304
10		gct Ala 770															2352
		agc Ser															2400
15		atc Ile															2448
20		ctg Leu															2496
25		gac Asp															2544
	_	cag Gln 850				-	_		_	_	_			-		_	2592
30		gtc Val			_	_				_			-		_		2640
35	_	aag Lys					_			_	_	_			_	_	2688
40		acc Thr															2736
70		ttc Phe	tga														2745
45	<210 <211 <212 <213	1> 9 2> 1	25 914 PRT Homo	sapi	lens												
50	<400	0> 2	25														
	Met 1	Val	Gln	Arg	Met 5	Trp	Ala	Glu	Ala	Ala 10	Gly	Pro	Ala	Gly	Gly 15	Ala	
55	Glu	Pro	Leu	Phe 20	Pro	Gly	Ser	Arg	Arg 25	Ser	Arg	Ser	Val	Trp 30	Asp	Ala	

	Val	Arg	Leu 35	Glu	Val	Gly	Val	Pro 40	Asp	Ser	Cys	Pro	Val 45	Val	Leu	His
5	Ser	Phe 50	Thr	Gln	Leu	Asp	Pro 55	Asp	Leu	Pro	Arg	Pro 60	Glu	Ser	Ser	Thr
10	Gln 65	Glu	Ile	Gly	Glu	Glu 70	Leu	Ile	Asn	Gly	Val 75	Ile	Tyr	Ser	Ile	Ser 80
	Leu	Arg	Lys	Val	Gln 85	Leu	His	His	Gly	Gly 90	Asn	Lys	Gly	Gln	Arg 95	Trp
15	Leu	Gly	Tyr	Glu 100	Asn	Glu	Ser	Ala	Leu 105	Asn	Leu	Tyr	Glu	Thr 110	Cys	Lys
20	Val	Arg	Thr 115	Val	Lys	Ala	Gly	Thr 120	Leu	Glu	Lys	Leu	Val 125	Glu	His	Leu
25	Val	Pro 130	Ala	Phe	Gln	Gly	Ser 135	Asp	Leu	Ser	Tyr	Val 140	Thr	Ile	Phe	Leu
	Cys 145	Thr	Tyr	Arg	Ala	Phe 150	Thr	Thr	Thr	Gln	Gln 155	Val	Leu	Asp	Leu	Leu 160
30	Phe	Lys	Arg	Tyr	Gly 165	Arg	Cys	Asp	Ala	Leu 170	Thr	Ala	Ser	Ser	A rg 175	Tyr
35	Gly	Cys	Ile	Leu 180	Pro	Tyr	Ser	Asp	Glu 185	Asp	Gly	Gly	Pro	Gln 190	Asp	Gln
40	Leu	Lys	Asn 195	Ala	Ile	Ser	Ser	Ile 200	Leu	Gly	Thr	Trp	Leu 205	Asp	Gln	Tyr
	Ser	Glu 210	Asp	Phe	Cys	Gln	Pro 215	Pro	Asp	Phe	Pro	Cys 220	Leu	Lys	Gln	Leu
45	Val 225	Ala	Tyr	Val	Gln	Leu 230	Asn	Met	Pro	Gly	Ser 235	Asp	Leu	Glu	Arg	Arg 240
50	Ala	His	Leu	Leu	Leu 245	Ala	Gln	Leu	Glu	His 250	Ser	Glu	Pro	Ile	Glu 255	Ala
55	Glu	Pro	Glu	Ala 260	Leu	Ser	Pro	Val	Pro 265	Ala	Leu	Lys	Pro	Thr 270	Pro	Glu
	Leu	Glu	Leu	Ala	Leu	Thr	Pro	Ala	Arg	Ala	Pro	Ser	Pro	Val	Pro	Ala

5	Pro	Ala 290	Pro	Glu	Pro	Glu	Pro 295	Ala	Pro	Thr	Pro	Ala 300	Pro	Gly	Ser	Glu
10	Leu 305	Glu	Val	Ala	Pro	Ala 310	Pro	Ala	Pro	Glu	Leu 315	Gln	Gln	Ala	Pro	Glu 320
	Pro	Ala	Val	Gly	Leu 325	Glu	Ser	Ala	Pro	Ala 330	Pro	Ala	Leu	Glu	Leu 335	Glu
15	Pro	Ala	Pro	Glu 340	Gln	Asp	Pro	Ala	Pro 345	Ser	Gln	Thr	Leu	Glu 350	Leu	Glu
20	Pro	Ala	Pro 355	Ala	Pro	Val	Pro	Ser 360	Leu	Gln	Pro	Ser	Trp 365	Pro	Ser	Pro
25	Val	Val 370	Ala	Glu	Asn	Gly	Leu 375	Ser	Glu	Glu	Lys	Pro 380	His	Leu	Leu	Val
23	Phe 385	Pro	Pro	Asp	Leu	Val 390	Ala	Glu	Gln	Phe	Thr 395	Leu	Met	Asp	Ala	Glu 400
30	Leu	Phe	Lys	Lys	Val 405	Val	Pro	Tyr	His	Cys 410	Leu	Gly	Ser	Ile	Trp 415	Ser
35	Gln	Arg	Asp	Lys 420	Lys	Gly	Lys	Glu	His 425	Leu	Ala	Pro	Thr	Ile 430	Arg	Ala
	Thr	Val	Thr 435	Gln	Phe	Asn	Ser	Val 440	Ala	Asn	Cys	Val	Ile 445	Thr	Thr	Cys
40	Leu	Gly 450	Asn	Arg	Ser	Thr	Lys 455	Ala	Pro	Asp	Arg	Ala 460	Arg	Val	Val	Glu
45	His 465	Trp	Ile	Glu	Val	Ala 470	Arg	Glu	Cys	Arg	Ile 475	Leu	Lys	Asn	Phe	Ser 480
50	Ser	Leu	Tyr	Ala	Ile 485	Leu	Ser	Ala	Leu	Gln 490	Ser	Asn	Ser	Ile	His 495	Arg
	Leu	Lys	Lys	Thr 500	Trp	Glu	Asp	Val	Ser 505	Arg	Asp	Ser	Phe	Arg 510	Ile	Phe
55	Gln	Lys	Leu 515	Ser	Glu	Ile	Phe	Ser 520	Asp	Glu	Asn	Asn	Tyr 525	Ser	Leu	Ser

	Arg	Glu 530	Leu	Leu	Ile	Lys	Glu 535	Gly	Thr	Ser	Lys	Phe 540	Ala	Thr	Leu	Glu
5	Met 545	Asn	Pro	Lys	Arg	Ala 550	Gln	Lys	Arg	Pro	Lys 555	Glu	Thr	Gly	Ile	Ile 560
10	Gln	Gly	Thr	Val	Pro 565	Tyr	Leu	Gly	Thr	Phe 570	Leu	Thr	Asp	Leu	Val 575	Met
	Leu	Asp	Thr	Ala 580	Met	Lys	Asp	Tyr	Leu 585	Tyr	Gly	Arg	Leu	Ile 590	Asn	Phe
15	Glu	Lys	A rg 595	Arg	Lys	Glu	Phe	Glu 600	Val	Ile	Ala	Gln	Ile 605	Lys	Leu	Leu
20	Gln	Ser 610	Ala	Cys	Asn	Asn	Tyr 615	Ser	Ile	Ala	Pro	Asp 620	Glu	Gln	Phe	Gly
25	Ala 625	Trp	Phe	Arg	Ala	Val 630	Glu	Arg	Leu	Ser	Glu 635	Thr	Glu	Ser	Tyr	Asn 640
	Leu	Ser	Cys	Glu	Leu 645	Glu	Pro	Pro	Ser	Glu 650	Ser	Ala	Ser	Asn	Thr 655	Leu
30	Arg	Thr	Lys	Lys 660	Asn	Thr	Ala	Ile	Val 665	Lys	Arg	Trp	Ser	Asp 670	Arg	Gln
35	Ala	Pro	Ser 675	Thr	Glu	Leu	Ser	Thr 680	Ser	Gly	Ser	Ser	His 685	Ser	Lys	Ser
40	Cys	Asp 690	Gln	Leu	Arg	Cys	Gly 695	Pro	Tyr	Leu	Ser	Ser 700	Gly	Asp	Ile	Ala
40	Asp 705	Ala	Leu	Ser	Val	His 710	Ser	Ala	Gly	Ser	Ser 715	Ser	Ser	Asp	Val	Glu 720
45	Glu	Ile	Asn	Ile	Ser 725	Phe	Val	Pro	Glu	Ser 730	Pro	Asp	Gly	Gln	Glu 735	Lys
50	Lys	Phe	Trp	Glu 740	Ser	Ala	Ser	Gln	Ser 745	Ser	Pro	Glu	Thr	Ser 750	Gly	Ile
	Ser	Ser	A la 755	Ser	Ser	Ser	Thr	Ser 760	Ser	Ser	Ser	Ala	Ser 765	Thr	Thr	Pro
55	Val	Ala 770	Ala	Thr	Arg	Thr	His 775	Lys	Arg	Ser	Val	Ser 780	Gly	Leu	Cys	Asn

	Ser Ser Ser Ala : 785	Leu Pro Leu Tyr 790	Asn Gln Gln Val Gly 795	Asp Cys Cys 800
5	=	Ser Leu Asp Val 805	Asp Asn Gly Asn Met 810	Tyr Lys Ser 815
10	Ile Leu Val Thr 820	Ser Gln Asp Lys	Ala Pro Ala Val Ile 825	Arg Lys Ala 830
45	Met Asp Lys His . 835	Asn Leu Glu Glu 840	Glu Glu Pro Glu Asp 845	_
15	Leu Gln Ile Leu 850	Ser Asp Asp Arg 855	Lys Leu Lys Ile Pro 860	Glu Asn Ala
20	Asn Val Phe Tyr . 865	Ala Met Asn Ser 870	Thr Ala Asn Tyr Asp 875	Phe Val Leu 880
25		Phe Thr Lys Gly 885	Val Lys Val Lys His 890	Gly Ala Ser 895
	Ser Thr Leu Pro . 900	Arg Met Lys Gln	Lys Gly Leu Lys Ile 905	Ala Lys Gly 910
30	Ile Phe			
35	<210> 26 <211> 1947 <212> DNA <213> Mus muscu	lus		
40	<220> <221> CDS <222> (1)(194	7)		
45	Met Glu His Ile		aag acg atc agc aat Lys Thr Ile Ser Asn 10	
50			tcc agc tgc atc tcc Ser Ser Cys Ile Ser 25	
	= = =		cgg gcc tca gat gat Arg Ala Ser Asp Asp 45	= = =
55			act atc cgg gtt ttc Thr Ile Arg Val Phe 60	

											atg Met					240
5	_		_		_	_	_		_	 _	cag Gln			_	_	288
10	_			_			_	_			aag Lys		_	_		336
											gaa Glu					384
15											aac Asn 140					432
20	_		_	_		_		_	_	_	cag Gln	_		_		480
25				_	_	_		_		_	ttt Phe				_	528
											agt Ser					576
30		_	_						_	 _	agt Ser		_		_	624
35											tct Ser 220					672
40											cat His					720
				_				-		-	tcc Ser	_		-		768
45											acc Thr					816
50											cac His					864
											ctg Leu 300					912
55											aga Arg					960

	305					310					315					320	
5						gaa Glu											1008
						tgg Trp											1056
10						ggt Gly							_		_		1104
15			_	-	_	gta Val	_			_		_	_				1152
00						ttc Phe 390											1200
20						ctg Leu											1248
25	_					cag Gln		_	_		_	_					1296
30						acc Thr											1344
						cag Gln											1392
35			_	-	_	aaa Lys 470								_			1440
40	_					gat Asp			_	_			_		_		1488
						gtt Val											1536
45						cgg Arg											1584
50						tac Tyr											1632
55					_	cac His 550				_	_	_				_	1680
	gta	ggc	cgt	ggg	tat	gca	tcc	cct	gat	ctc	agc	agg	ctc	tac	aag	aac	1728

	Val	Gly	Arg	Gly	Tyr 565	Ala	Ser	Pro	Asp	Leu 570	Ser	Arg	Leu	Tyr	Lys 575	Asn	
5		ccc Pro															1776
10		gaa Glu															1824
		cag Gln 610															1872
15		cat His															1920
20		tcc Ser					_		tag								1947
25	<21 <21 <21 <21	1> (2> 1	27 648 PRT Mus 1	nusci	ılus												
	<40	0> 2	27														
30	Met 1	Glu	His	Ile	Gln 5	Gly	Ala	Trp	Lys	Thr 10	Ile	Ser	Asn	Gly	Phe 15	Gly	
35	Leu	Lys	Asp	Ala 20	Val	Phe	Asp	Gly	Ser 25	Ser	Cys	Ile	Ser	Pro 30	Thr	Ile	
	Val	Gln	Gln 35	Phe	Gly	Tyr	Gln	Arg 40	Arg	Ala	Ser	Asp	Asp 45	Gly	Lys	Leu	
40	Thr	Asp 50	Ser	Ser	Lys	Thr	Ser 55	Asn	Thr	Ile	Arg	Val 60	Phe	Leu	Pro	Asn	
45	Lys 65	Gln	Arg	Thr	Val	Val 70	Asn	Val	Arg	Asn	Gly 75	Met	Ser	Leu	His	Asp 80	
50	Cys	Leu	Met	Lys	Ala 85	Leu	Lys	Val	Arg	Gly 90	Leu	Gln	Pro	Glu	Cys 95	Cys	
	Ala	Val	Phe	Arg 100	Leu	Leu	Gln	Glu	His 105	Lys	Gly	Lys	Lys	Ala 110	Arg	Leu	
55	Asp	Trp	Asn 115	Thr	Asp	Ala	Ala	Ser 120	Leu	Ile	Gly	Glu	Glu 125	Leu	Gln	Val	

	Asp	Phe 130	Leu	Asp	His	Val	Pro 135	Leu	Thr	Thr	His	Asn 140	Phe	Ala	Arg	Lys
5	Thr 145	Phe	Leu	Lys	Leu	Ala 150	Phe	Cys	Asp	Ile	Cys 155	Gln	Lys	Phe	Leu	Leu 160
10	Asn	Gly	Phe	Arg	Cys 165	Gln	Thr	Cys	Gly	Tyr 170	Lys	Phe	His	Glu	His 175	Cys
	Ser	Thr	Lys	Val 180	Pro	Thr	Met	Cys	Val 185	Asp	Trp	Ser	Asn	Ile 190	Arg	Gln
15	Leu	Leu	Leu 195	Phe	Pro	Asn	Ser	Thr 200	Val	Gly	Asp	Ser	Gly 205	Val	Pro	Ala
20	Pro	Pro 210	Ser	Phe	Pro	Met	Arg 215	Arg	Met	Arg	Glu	Ser 220	Val	Ser	Arg	Met
25	Pro 225	Ala	Ser	Ser	Gln	His 230	Arg	Tyr	Ser	Thr	Pro 235	His	Ala	Phe	Thr	Phe 240
	Asn	Thr	Ser	Ser	Pro 245	Ser	Ser	Glu	Gly	Ser 250	Leu	Ser	Gln	Arg	Gln 255	Arg
30	Ser	Thr	Ser	Thr 260	Pro	Asn	Val	His	Met 265	Val	Ser	Thr	Thr	Leu 270	His	Val
35	Asp	Ser	A rg 275	Met	Ile	Glu	Asp	Ala 280	Ile	Arg	Ser	His	Ser 285	Glu	Ser	Ala
	Ser	Pro 290	Ser	Ala	Leu	Ser	Ser 295	Ser	Pro	Asn	Asn	Leu 300	Ser	Pro	Thr	Gly
40	Trp 305	Ser	Gln	Pro	Lys	Thr 310	Pro	Val	Pro	Ala	Gln 315	Arg	Glu	Arg	Ala	Pro 320
45	Gly	Ser	Gly	Thr	Gln 325	Glu	Lys	Asn	Lys	Ile 330	Arg	Pro	Arg	Gly	Gln 335	Arg
50	Asp	Ser	Ser	Tyr 340	Tyr	Trp	Glu	Ile	Glu 345	Ala	Ser	Glu	Val	Met 350	Leu	Ser
	Thr	Arg	Ile 355	Gly	Ser	Gly	Ser	Phe 360	Gly	Thr	Val	Tyr	Lys 365	Gly	Lys	Trp
55	His	Gly 370	Asp	Val	Ala	Val	Lys 375	Ile	Leu	Lys	Val	Val 380	Asp	Pro	Thr	Pro

	Glu 385	Gln	Leu	Gln	Ala	Phe 390	Arg	Asn	Glu	Val	Ala 395	Val	Leu	Arg	Lys	Thr 400
5	Arg	His	Val	Asn	Ile 405	Leu	Leu	Phe	Met	Gly 410	Tyr	Met	Thr	Lys	Asp 415	Asn
10	Leu	Ala	Ile	Val 420	Thr	Gln	Trp	Cys	Glu 425	Gly	Ser	Ser	Leu	Tyr 430	Lys	His
	Leu	His	Val 435	Gln	Glu	Thr	Lys	Phe 440	Gln	Met	Phe	Gln	Leu 445	Ile	Asp	Ile
15	Ala	Arg 450	Gln	Thr	Ala	Gln	Gly 455	Met	Asp	Tyr	Leu	His 460	Ala	Lys	Asn	Ile
20	Ile 465	His	Arg	Asp	Met	Lys 470	Ser	Asn	Asn	Ile	Phe 475	Leu	His	Glu	Gly	Leu 480
25	Thr	Val	Lys	Ile	Gly 485	Asp	Phe	Gly	Leu	Ala 490	Thr	Val	Lys	Ser	Arg 495	Trp
	Ser	Gly	Ser	Gln 500	Gln	Val	Glu	Gln	Pro 505	Thr	Gly	Ser	Val	Leu 510	Trp	Met
30	Ala	Pro	Glu 515	Val	Ile	Arg	Met	Gln 520	Asp	Asp	Asn	Pro	Phe 525	Ser	Phe	Gln
35	Ser	Asp 530	Val	Tyr	Ser	Tyr	Gly 535	Ile	Val	Leu	Tyr	Glu 540	Leu	Met	Ala	Gly
	Glu 545	Leu	Pro	Tyr	Ala	His 550	Ile	Asn	Asn	Arg	Asp 555	Gln	Ile	Ile	Phe	Me t 560
40	Val	Gly	Arg	Gly	Tyr 565	Ala	Ser	Pro	Asp	Leu 570	Ser	Arg	Leu	Tyr	Lys 575	Asn
45	Cys	Pro	Lys	A la 580	Met	Lys	Arg	Leu	Val 585	Ala	Asp	Cys	Val	Lys 590	Lys	Val
50	Lys	Glu	Glu 595	Arg	Pro	Leu	Phe	Pro 600	Gln	Ile	Leu	Ser	Ser 605	Ile	Glu	Leu
	Leu	Gln 610	His	Ser	Leu	Pro	Lys 615	Ile	Asn	Arg	Ser	Ala 620	Ser	Glu	Pro	Ser
55	Leu 625	His	Arg	Ala	Ala	His 630	Thr	Glu	Asp	Ile	Asn 635	Ala	Cys	Thr	Leu	Thr 640

Thr Ser Pro Arg Leu Pro Val Phe 645

5	<210><211><212><213>	1947 DNA		iens										
10	<220> <221> <222>	CDS	. (19	47)										
15		28 ag cac lu His												48
20		aa gat ys Asp	_			_			_	_				96
25		ag cag In Gln 35												144
20	Thr A	at cct sp Pro												192
30		aa aga In Arg												240
35		tt atg eu Met												288
		tg tto al Phe												336
40		gg aat rp Asn 115	Thr											384
45	Asp P	tc ctg he Leu 30												432
50	_	tc ctg he Leu	_		_		_	_		_	_		_	480
		ga ttt ly Phe												528
55		cc aaa hr Lys												576

				180					185					190				
5		tta Leu															6	24
		cct Pro 210		_		_	-	-	_	-			_			_	6	72
10		gtt Val															7	20
15		acc Thr															7	68
00	-	aca Thr					-		_	-	-			-			8	16
20		agc Ser															8	64
25		cct Pro 290															9	12
30		tca Ser	_	_						-		_			-		9	60
		tct Ser															10	800
35		tca Ser															10	56
40		cgg Arg															11	.04
		gga Gly 370															11	.52
45		caa Gln															12	00
50		cat His															12	48
55		gca Ala															12	96
	ctg	cat	gtc	cag	gag	acc	aag	ttt	cag	atg	ttc	cag	cta	att	gac	att	13	44

	Leu	His	Val 435	Gln	Glu	Thr	Lys	Phe 440	Gln	Met	Phe	Gln	Leu 445	Ile	Asp	Ile	
5	_		cag Gln	_	_	_		_	_		_		_	_			1392
10			aga Arg	_	_									_			1440
			aaa Lys														1488
15	_		tct Ser	_	_	_	_						_			_	1536
20			gag Glu 515														1584
			gtc Val														1632
25			cct Pro							_	-	_				_	1680
30			cga Arg														1728
35	_		aaa Lys	_	_	_		_	_	_	_	_		_		_	1776
			gag Glu 595	Arg	Pro	Leu	Phe	Pro	Gln	Ile	Leu	Ser		Ile			1824
40			cac His														1872
45			cgg Arg														1920
50			ccg Pro						tag								1947
	<210	0> 2	29														
		2> I		<u> </u>													
55	<213 <400		Homo 29	sapı	Lens												

	Met 1	Glu	His	Ile	Gln 5	Gly	Ala	Trp	Lys	Thr 10	Ile	Ser	Asn	Gly	Phe 15	Gly
5	Phe	Lys	Asp	Ala 20	Val	Phe	Asp	Gly	Ser 25	Ser	Cys	Ile	Ser	Pro 30	Thr	Ile
10	Val	Gln	Gln 35	Phe	Gly	Tyr	Gln	Arg 40	Arg	Ala	Ser	Asp	Asp 45	Gly	Lys	Leu
	Thr	Asp 50	Pro	Ser	Lys	Thr	Ser 55	Asn	Thr	Ile	Arg	Val 60	Phe	Leu	Pro	Asn
15	Lys 65	Gln	Arg	Thr	Val	Val 70	Asn	Val	Arg	Asn	Gly 75	Met	Ser	Leu	His	Asp 80
20	Cys	Leu	Met	Lys	Ala 85	Leu	Lys	Val	Arg	Gly 90	Leu	Gln	Pro	Glu	Cys 95	Cys
25	Ala	Val	Phe	Arg 100	Leu	Leu	His	Glu	His 105	Lys	Gly	Lys	Lys	Ala 110	Arg	Leu
	Asp	Trp	Asn 115	Thr	Asp	Ala	Ala	Ser 120	Leu	Ile	Gly	Glu	Glu 125	Leu	Gln	Val
30	Asp	Phe 130	Leu	Asp	His	Val	Pro 135	Leu	Thr	Thr	His	Asn 140	Phe	Ala	Arg	Lys
35	Thr 145	Phe	Leu	Lys	Leu	Ala 150	Phe	Cys	Asp	Ile	Cys 155	Gln	Lys	Phe	Leu	Leu 160
40	Asn	Gly	Phe	Arg	Cys 165	Gln	Thr	Cys	Gly	Tyr 170	Lys	Phe	His	Glu	His 175	Cys
40	Ser	Thr	Lys	Val 180	Pro	Thr	Met	Cys	Val 185	Asp	Trp	Ser	Asn	Ile 190	Arg	Gln
45	Leu	Leu	Leu 195	Phe	Pro	Asn	Ser	Thr 200	Ile	Gly	Asp	Ser	Gly 205	Val	Pro	Ala
50	Leu	Pro 210	Ser	Leu	Thr	Met	Arg 215	Arg	Met	Arg	Glu	Ser 220	Val	Ser	Arg	Met
	Pro 225	Val	Ser	Ser	Gln	His 230	Arg	Tyr	Ser	Thr	Pro 235	His	Ala	Phe	Thr	Phe 240
55	Asn	Thr	Ser	Ser	Pro 245	Ser	Ser	Glu	Gly	Ser 250	Leu	Ser	Gln	Arg	Gln 255	Arg

	Ser	Thr	Ser	Thr 260	Pro	Asn	Val	His	Met 265	Val	Ser	Thr	Thr	Leu 270	Pro	Val
5	Asp	Ser	Arg 275	Met	Ile	Glu	Asp	Ala 280	Ile	Arg	Ser	His	Ser 285	Glu	Ser	Ala
10	Ser	Pro 290	Ser	Ala	Leu	Ser	Ser 295	Ser	Pro	Asn	Asn	Leu 300	Ser	Pro	Thr	Gly
45	Trp 305	Ser	Gln	Pro	Lys	Thr 310	Pro	Val	Pro	Ala	Gln 315	Arg	Glu	Arg	Ala	Pro 320
15	Val	Ser	Gly	Thr	Gln 325	Glu	Lys	Asn	Lys	Ile 330	Arg	Pro	Arg	Gly	Gln 335	Arg
20	Asp	Ser	Ser	Tyr 340	Tyr	Trp	Glu	Ile	Glu 345	Ala	Ser	Glu	Val	Met 350	Leu	Ser
25	Thr	Arg	Ile 355	Gly	Ser	Gly	Ser	Phe 360	Gly	Thr	Val	Tyr	Lys 365	Gly	Lys	Trp
	His	Gly 370	Asp	Val	Ala	Val	Lys 375	Ile	Leu	Lys	Val	Val 380	Asp	Pro	Thr	Pro
30	Glu 385	Gln	Phe	Gln	Ala	Phe 390	Arg	Asn	Glu	Val	Ala 395	Val	Leu	Arg	Lys	Thr 400
35	Arg	His	Val	Asn	Ile 405	Leu	Leu	Phe	Met	Gly 410	Tyr	Met	Thr	Lys	Asp 415	Asn
40	Leu	Ala		Val 420			_	_	Glu 425	_				_	_	His
	Leu	His	Val 435	Gln	Glu	Thr	Lys	Phe 440	Gln	Met	Phe	Gln	Leu 445	Ile	Asp	Ile
45	Ala	Arg 450	Gln	Thr	Ala	Gln	Gly 455	Met	Asp	Tyr	Leu	His 460	Ala	Lys	Asn	Ile
50	Ile 465	His	Arg	Asp	Met	Lys 470	Ser	Asn	Asn	Ile	Phe 475	Leu	His	Glu	Gly	Leu 480
	Thr	Val	Lys	Ile	Gly 485	Asp	Phe	Gly	Leu	Ala 490	Thr	Val	Lys	Ser	Arg 495	Trp
55	Ser	Gly	Ser	Gln 500	Gln	Val	Glu	Gln	Pro 505	Thr	Gly	Ser	Val	Leu 510	Trp	Met

	Ala	Pro	Glu 515	Val	Ile	Arg	Met	Gln 520	Asp	Asn	Asn	Pro	Phe 525	Ser	Phe	Gln	
5	Ser	Asp 530	Val	Tyr	Ser	Tyr	Gly 535	Ile	Val	Leu	Tyr	Glu 540	Leu	Met	Thr	Gly	
10	Glu 5 4 5	Leu	Pro	Tyr	Ser	His 550	Ile	Asn	Asn	Arg	Asp 555	Gln	Ile	Ile	Phe	Met 560	
	Val	Gly	Arg	Gly	Tyr 565	Ala	Ser	Pro	Asp	Leu 570	Ser	Lys	Leu	Tyr	Lys 575	Asn	
15	Cys	Pro	Lys	Ala 580	Met	Lys	Arg	Leu	Val 585	Ala	Asp	Cys	Val	Lys 590	Lys	Val	
20	Lys	Glu	Glu 595	Arg	Pro	Leu	Phe	Pro 600	Gln	Ile	Leu	Ser	Ser 605	Ile	Glu	Leu	
25	Leu	Gln 610	His	Ser	Leu	Pro	Lys 615	Ile	Asn	Arg	Ser	Ala 620	Ser	Glu	Pro	Ser	
	Leu 625	His	Arg	Ala	Ala	His 630	Thr	Glu	Asp	Ile	Asn 635	Ala	Cys	Thr	Leu	Thr 640	
30	Thr	Ser	Pro	Arg	Leu 645	Pro	Val	Phe									
35	<210 <211 <212 <213	L> 2 2> E	30 20 PRT Artii	ficia	al Se	equer	nce										
40	<220 <223		N-tei	rmina	al my	yrist	coyla	ation	n siç	gnal	sequ	ience	e				
			30 Ser	Ser	_	Ser	Lys	Pro	Lys		Pro	Ser	Gln	Arg		Arg	
45	1 Arg	Ile	Arg	Thr 20	5					10					15		
50	<210 <211 <212 <213	L> 3 2> I	31 34 ONA Bacte		ohage	e P1											
55	<400 ataa		31 egt a	atago	catao	ca tt	tatad	cgaaq	g tta	at							34

	<210> 32	
	<211> 34	
	<212> DNA	
	<213> Artificial Sequence	
	1213/ Artificial Sequence	
5		
	<220>	
	<223> mutant loxP (lox71) sequence	
	<400> 32	
	taccgttcgt atagcataca ttatacgaag ttat	34
10	casegorege aragearaca rearranguag coar	٠.
	.010. 22	
	<210> 33	
	<211> 34	
	<212> DNA	
15	<213> Artificial Sequence	
	<220>	
	<223> mutant loxP (lox66) sequence	
	,	
	<400> 33	
20		34
	ataacttcgt atagcataca ttatacgaac ggta	34
	<210> 34	
	<211> 2657	
25	<212> DNA	
	<213> Mus musculus	
	<220>	
	<221> CDS	
30		
	<222> (371)(1837)	
	400	
	<400> 34	
	geggggeggg gagaaggegg geeggeggeg geggeggeag caeegagteg gegggeggee	60
35	ggcccagcgc ggcagcgcac gcgagtccgg gaccagcgga gcggaccgag cagcgtcctg	120
	tggccggcac cgcggcggcc cagatccggc cagcagcgcg cgcccggacg ccgctgcctt	180
	620000000 0000020000 000000000 02±0000200 00000000	240
	cageeggeee egeecagege eegeeegegg gatgeggage ggegggegee egaggeegeg	240
40		200
	gcccggctag gcccagtcgc ccgcacgcgg cggcccgacg ctgcggccag gccggctggg	300
	ctcagcctac cgagaagaga ctctgagcat catccctggg ttacccctgt ctctgggggc	360
	cacggatacc atg aac gac gta gcc att gtg aag gag ggc tgg ctg cac	409
45	Met Asn Asp Val Ala Ile Val Lys Glu Gly Trp Leu His	
	1 5 10	
	aaa cga ggg gaa tat att aaa acc tgg cgg cca cgc tac ttc ctc ctc	457
	Lys Arg Gly Glu Tyr Ile Lys Thr Trp Arg Pro Arg Tyr Phe Leu Leu	407
50	15 20 25	
	aag aac gat ggc acc ttt att ggc tac aag gaa cgg cct cag gat gtg	505
	Lys Asn Asp Gly Thr Phe Ile Gly Tyr Lys Glu Arg Pro Gln Asp Val	
	30 35 40 45	
55	gat cag cga gag tee eea ete aac aac tte tea gtg gea caa tge cag	553
	Asp Gln Arg Glu Ser Pro Leu Asn Asn Phe Ser Val Ala Gln Cys Gln	

					50					55					60			
5	_	atg Met	_												_	_		601
		cag Gln																649
10		gag Glu 95		_	_		_		_		_			_	_			697
15		aag Lys		_	_	_		_	_	_		_						745
20		gac Asp																793
20	_	cac His	_			_						_	_		_			841
25		ggc Gly																889
30		tac Tyr 175																937
		gag Glu																985
35		cat His															:	1033
40		ctc Leu															:	1081
45		ctg Leu															:	1129
45		gcg Ala 255					_	_	_		_				_		:	1177
50		gtg Val															:	1225
55		cac His															:	1273
	gac	ggt	gcc	act	atg	aag	aca	ttc	tgc	gga	acg	ccg	gag	tac	ctg	gcc	:	1321

	Asp	Gly	Ala	Thr 305	Met	Lys	Thr	Phe	Cys 310	Gly	Thr	Pro	Glu	Tyr 315	Leu	Ala	
5		gag Glu															1369
10		ctg Leu 335															1417
		aac Asn	_	_			_	_			_			_			1465
15		cgc Arg															1513
20		ctg Leu															1561
		gcc Ala															1609
25	_	gat Asp 415				_	_	_	_				_		_	-	1657
30		tct Ser															1705
35		atc Ile															1753
		agc Ser			Pro	Gly		Ala	Ala		Ser	Ser	Thr				1801
40		gcc Ala			_	_		_				tga	acct	gato	gtt		1847
	ttgt	tttct	cg q	gatgo	gato	gg gg	gagga	acct	t tg	ccago	cctc	cag	gacca	agg (ggag	gatgtt	1907
45	tcta	actgt	egg (gcago	cagco	ct ac	cata	ccago	caq	ggtca	agga	ggaa	aaact	at o	cctg	gggttt	1967
	ttc	ttaat	tt a	attt	catco	ca gt	ttga	agaco	c aca	acato	gtgg	cct	cagto	gaa d	cagaa	acaatt	2027
50	agat	ttcat	tgt a	agaaa	aacta	at ta	aagga	actga	a cgo	cgaco	catg	tgca	aatgi	gg (gctca	atgggt	2087
50	ctg	ggtg	ggt (cccgt	cact	g co	ccca	attg	g cct	gtco	cacc	ctg	gccg	cca d	cctgt	ctcta	a 2147
	gggt	tcca	ggg (ccaa	agtco	ca go	caaga	aaggo	c acc	cagaa	agca	ccc	ccct	gtg q	gtate	gctaad	2207
55	tgg	ccct	ctc o	catat	ggg	g gg	ggaga	aggto	c aca	agcto	gctt	cago	cccta	agg (gctg	gatggg	2267
	atg	gccaç	ggg (ctcaa	agtga	ag gt	tgad	cagaç	g gaa	acaaç	gaat	ccaç	gttt	gtt q	gctgt	tgtcc	2327

	atgctgttca gagacattta ggggatttta atcttggtga caggagagcc cctgccctcc	2387
	cgcacccgct cccgcgtggt ggctcttagc gggtaccctg ggagcgcctg cctcacgtga	2447
5	gcccttctcc tagcacttgt ccttttagat gctttccctc tcccgctgtc cgtcaccctg	2507
	gcctgtcccc tcccggccag acgctggcca ttgctgcacc atgtcgtttt ttacaacatt	2567
	cagcttcagc atttttacta ttataataag aaactgtccc tccaaattca ataaaaattg	2627
10	cttttcaagc ttgaaaaaaa aaaaaaaaa	2657
15	<210> 35 <211> 488 <212> PRT <213> Mus musculus	
	<400> 35	
20	Met Asn Asp Val Ala Ile Val Lys Glu Gly Trp Leu His Lys Arg Gly 1 10 15	
25	Glu Tyr Ile Lys Thr Trp Arg Pro Arg Tyr Phe Leu Leu Lys Asn Asp 20 25 30	
20	Gly Thr Phe Ile Gly Tyr Lys Glu Arg Pro Gln Asp Val Asp Gln Arg 35 40 45	
30	Glu Ser Pro Leu Asn Asn Phe Ser Val Ala Gln Cys Gln Leu Met Lys 50 55 60	
35	Thr Glu Arg Pro Arg Pro Asn Thr Phe Ile Ile Arg Cys Leu Gln Trp 65 70 75 80	
	Thr Thr Val Ile Glu Arg Thr Phe His Val Glu Thr Pro Glu Glu Arg 85 90 95	
40	Glu Glu Trp Ala Thr Ala Ile Gln Thr Val Ala Asp Gly Leu Lys Arg 100 105 110	
45	Gln Glu Glu Glu Thr Met Asp Phe Arg Ser Gly Ser Pro Ser Asp Asn 115 120 125	
50	Ser Gly Ala Glu Glu Met Glu Val Ser Leu Ala Lys Pro Lys His Arg 130 135 140	
	Val Thr Met Asn Glu Phe Glu Tyr Leu Lys Leu Leu Gly Lys Gly Thr 145 150 155 160	
55	Phe Gly Lys Val Ile Leu Val Lys Glu Lys Ala Thr Gly Arg Tyr Tyr 165 170 175	

	Ala	Met	Lys	Ile 180	Leu	Lys	Lys	Glu	Val 185	Ile	Val	Ala	Lys	Asp 190	Glu	Val
5	Ala	His	Thr 195	Leu	Thr	Glu	Asn	Arg 200	Val	Leu	Gln	Asn	Ser 205	Arg	His	Pro
10	Phe	Leu 210	Thr	Ala	Leu	Lys	Tyr 215	Ser	Phe	Gln	Thr	His 220	Asp	Arg	Leu	Cys
	Phe 225	Val	Met	Glu	Tyr	Ala 230	Asn	Gly	Gly	Glu	Leu 235	Phe	Phe	His	Leu	Ser 240
15	Arg	Glu	Arg	Val	Phe 245	Ser	Glu	Asp	Arg	A la 250	Arg	Phe	Tyr	Gly	Ala 255	Glu
20	Ile	Val	Ser	Ala 260	Leu	Asp	Tyr	Leu	His 265	Ser	Glu	Lys	Asn	Val 270	Val	Tyr
25	Arg	Asp	Leu 275	Lys	Leu	Glu	Asn	Leu 280	Met	Leu	Asp	Lys	Asp 285	Gly	His	Ile
	Lys	Ile 290	Thr	Asp	Phe	Gly	Leu 295	Cys	Lys	Glu	Gly	Ile 300	Lys	Asp	Gly	Ala
30	Thr 305	Met	Lys	Thr	Phe	Cys 310	Gly	Thr	Pro	Glu	Tyr 315	Leu	Ala	Pro	Glu	Val 320
35	Leu	Glu	Asp	Asn	Asp 325	Tyr	Gly	Arg	Ala	Val 330	Asp	Trp	Trp	Gly	Leu 335	Gly
40	Val	Val	Met	Tyr 340	Glu	Met	Met	Cys	Gly 345	Arg	Leu	Pro	Phe	Tyr 350	Asn	Gln
40	Asp	His	Glu 355	Lys	Leu	Phe	Glu	Leu 360	Ile	Leu	Met	Glu	Glu 365	Ile	Arg	Phe
45	Pro	Arg 370	Thr	Leu	Gly	Pro	Glu 375	Ala	Lys	Ser	Leu	Leu 380	Ser	Gly	Leu	Leu
50	Lys 385	Lys	Asp	Pro	Thr	Gln 390	Arg	Leu	Gly	Gly	Gly 395	Ser	Glu	Asp	Ala	Lys 400
	Glu	Ile	Met	Gln	His 405	Arg	Phe	Phe	Ala	Asn 410	Ile	Val	Trp	Gln	Asp 415	Val
55	Tyr	Glu	Lys	Lys 420	Leu	Ser	Pro	Pro	Phe 425	Lys	Pro	Gln	Val	Thr 430	Ser	Glu

Thr Asp Thr Arg Tyr Phe Asp Glu Glu Phe Thr Ala Gln Met Ile Thr

	435 440 445	
5	Ile Thr Pro Pro Asp Gln Val Leu Leu Ser Gln Trp His Ser Leu 450 455 460	
10	Arg Pro Gly Ala Ala Gly Ser Ser Thr Leu Leu Cys Ile Ala Glu 465 470 475 480	
	Ser Arg Ser Pro Ala Trp Ile Ile 485	
15 20	<210> 36 <211> 2878 <212> DNA <213> Homo sapiens	
	<220> <221> CDS <222> (425)(1867)	
25	<400> 36 cggcaggacc gagcgcggca ggcggctggc ccagcgcagc cagcgcggcc cgaaggacgg	60
	gagcaggegg cegagcaceg agegetggge acegggeace gageggegge ggcaegegag	120
30	geceggeeee gageagegee eeegeeegee geggeeteea geeeggeeee geeeagegee	180
	ggcccgcggg gatgcggagc ggcgggcgcc ggaggccgcg gcccggctag gcccgcgctc	240
	gcgcccggac gcggcgccc ggggcttagg gaaggccgag ccagcctggg tcaaagaagt	300
35	caaaggggct gcctggagga ggcagcctgt cagctggtgc atcagaggct gtggccaggc	360
	cagctgggct cggggagcgc cagcctgaga ggagcgcgtg agcgtcgcgg gagcctcggg	420
40	cacc atg agc gac gtg gct att gtg aag gag ggt tgg ctg cac aaa cga Met Ser Asp Val Ala Ile Val Lys Glu Gly Trp Leu His Lys Arg 1 5 10 15	469
45	ggg gag tac atc aag acc tgg cgg cca cgc tac ttc ctc ctc aag aat Gly Glu Tyr Ile Lys Thr Trp Arg Pro Arg Tyr Phe Leu Leu Lys Asn 20 25 30	517
	gat ggc acc ttc att ggc tac aag gag cgg ccg cag gat gtg gac caa Asp Gly Thr Phe Ile Gly Tyr Lys Glu Arg Pro Gln Asp Val Asp Gln 35 40 45	565
50	cgt gag gct ccc ctc aac aac ttc tct gtg gcg cag tgc cag ctg atg Arg Glu Ala Pro Leu Asn Asn Phe Ser Val Ala Gln Cys Gln Leu Met 50 55 60	613
55	aag acg gag cgg ccc cgg ccc aac acc ttc atc atc cgc tgc ctg cag Lys Thr Glu Arg Pro Arg Pro Asn Thr Phe Ile Ile Arg Cys Leu Gln 65 70 75	661

	acc Thr										709
5	gag Glu										757
10	cag Gln										805
	tca Ser										853
15	gtg Val 145										901
20	ttc Phe										949
25	gcc Ala										997
	gcc Ala										1045
30	ttc Phe										1093
35	ttt Phe 225										1141
	cgg Arg										1189
40	att Ile										1237
45	cgg Arg										1285
50	aag Lys		_		_	_	_	 	_	_	 1333
	acc Thr 305										1381
55	ctg Leu										1429

	ggc gtg gtc atg tac gag atg atg tgc ggt cgc ctg ccc ttc tac aac Gly Val Val Met Tyr Glu Met Met Cys Gly Arg Leu Pro Phe Tyr Asn 340 345 350	L 4 77
5	cag gac cat gag aag ctt ttt gag ctc atc ctc atg gag gag atc cgc 1 Gln Asp His Glu Lys Leu Phe Glu Leu Ile Leu Met Glu Glu Ile Arg 355 360 365	L525
10	ttc ccg cgc acg ctt ggt ccc gag gcc aag tcc ttg ctt tca ggg ctg Phe Pro Arg Thr Leu Gly Pro Glu Ala Lys Ser Leu Leu Ser Gly Leu 370 375 380	L573
15	ctc aag aag gac ccc aag cag agg ctt ggc ggg ggc tcc gag gac gcc 1 Leu Lys Lys Asp Pro Lys Gln Arg Leu Gly Gly Ser Glu Asp Ala 385 390 395	L621
	aag gag atc atg cag cat cgc ttc ttt gcc ggt atc gtg tgg cag cac Lys Glu Ile Met Gln His Arg Phe Phe Ala Gly Ile Val Trp Gln His 400 405 410 415	L669
20	gtg tac gag aag ctc agc cca ccc ttc aag ccc cag gtc acg tcg Val Tyr Glu Lys Lys Leu Ser Pro Pro Phe Lys Pro Gln Val Thr Ser 420 425 430	L717
25	gag act gac acc agg tat ttt gat gag gag ttc acg gcc cag atg atc Glu Thr Asp Thr Arg Tyr Phe Asp Glu Glu Phe Thr Ala Gln Met Ile 435 440 445	L765
00	acc atc aca cca cct gac caa gat gac agc atg gag tgt gtg gac agc 1 Thr Ile Thr Pro Pro Asp Gln Asp Asp Ser Met Glu Cys Val Asp Ser 450 455 460	L813
30	gag cgc agg ccc cac ttc ccc cag ttc tcc tac tcg gcc agc ggc acg Glu Arg Arg Pro His Phe Pro Gln Phe Ser Tyr Ser Ala Ser Gly Thr 465 470 475	L861
35	gcc tga ggcggcggtg gactgcgctg gacgatagct tggagggatg gagaggcggc 1 Ala 480	L917
	ctcgtgccat gatctgtatt taatggtttt tatttctcgg gtgcatttga gagaagccac 1	L977
40	gctgtcctct cgagcccaga tggaaagacg tttttgtgct gtgggcagca ccctcccccg 2	2037
	cagcggggta gggaagaaaa ctatcctgcg ggttttaatt tatttcatcc agtttgttct 2	2097
	ccgggtgtgg cctcagccct cagaacaatc cgattcacgt agggaaatgt taaggacttc 2	2157
45	tgcagctatg cgcaatgtgg cattgggggg ccgggcaggt cctgcccatg tgtcccctca 2	2217
		2277
50		2337
		2397 2457
		2517
55		2577

	acagttettg gtgaetgtee cacegggage etececetea gatgate	tct ccacggtage 2637
	acttgacctt ttcgacgctt aacctttccg ctgtcgcccc aggccct	ccc tgactccctg 2697
5	tgggggtggc catccctggg cccctccacg cctcctggcc agacgct	gcc gctgccgctg 2757
	caccacggcg tttttttaca acattcaact ttagtatttt tactatt	ata atataatatg 2817
	gaaccttccc tccaaattct tcaataaaag ttgcttttca aaaaaaa	aaa aaaaaaaaa 2877
10	a	2878
15	<210> 37 <211> 480 <212> PRT <213> Homo sapiens	
	<400> 37	
20	Met Ser Asp Val Ala Ile Val Lys Glu Gly Trp Leu His 1 5 10	Lys Arg Gly 15
25	Glu Tyr Ile Lys Thr Trp Arg Pro Arg Tyr Phe Leu Leu 20 25	Lys Asn Asp 30
	Gly Thr Phe Ile Gly Tyr Lys Glu Arg Pro Gln Asp Val 35 40 45	Asp Gln Arg
30	Glu Ala Pro Leu Asn Asn Phe Ser Val Ala Gln Cys Gln 50 55 60	Leu Met Lys
35	Thr Glu Arg Pro Arg Pro Asn Thr Phe Ile Ile Arg Cys 65 70 75	Leu Gln Trp 80
	Thr Thr Val Ile Glu Arg Thr Phe His Val Glu Thr Pro 85 90	Glu Glu Arg 95
40	Glu Glu Trp Thr Thr Ala Ile Gln Thr Val Ala Asp Gly 100 105	Leu Lys Lys 110
45	Gln Glu Glu Glu Met Asp Phe Arg Ser Gly Ser Pro 115 120 125	
50	Ser Gly Ala Glu Glu Met Glu Val Ser Leu Ala Lys Pro 130 135 140	Lys His Arg
	Val Thr Met Asn Glu Phe Glu Tyr Leu Lys Leu Leu Gly 145 150 155	Lys Gly Thr 160
55	Phe Gly Lys Val Ile Leu Val Lys Glu Lys Ala Thr Gly 165 170	Arg Tyr Tyr 175

	Ala	Met	Lys	Ile 180	Leu	Lys	Lys	Glu	Val 185	Ile	Val	Ala	Lys	Asp 190	Glu	Val
5	Ala	His	Thr 195	Leu	Thr	Glu	Asn	Arg 200	Val	Leu	Gln	Asn	Ser 205	Arg	His	Pro
10	Phe	Leu 210	Thr	Ala	Leu	Lys	Tyr 215	Ser	Phe	Gln	Thr	His 220	Asp	Arg	Leu	Cys
	Phe 225	Val	Met	Glu	Tyr	Ala 230	Asn	Gly	Gly	Glu	Leu 235	Phe	Phe	His	Leu	Ser 240
15	Arg	Glu	Arg	Val	Phe 245	Ser	Glu	Asp	Arg	Ala 250	Arg	Phe	Tyr	Gly	Ala 255	Glu
20	Ile	Val	Ser	Ala 260	Leu	Asp	Tyr	Leu	His 265	Ser	Glu	Lys	Asn	Val 270	Val	Tyr
25	Arg	Asp	Leu 275	Lys	Leu	Glu	Asn	Leu 280	Met	Leu	Asp	Lys	Asp 285	Gly	His	Ile
	Lys	Ile 290	Thr	Asp	Phe	Gly	Leu 295	Cys	Lys	Glu	Gly	Ile 300	Lys	Asp	Gly	Ala
30	Thr 305	Met	Lys	Thr	Phe	Cys 310	Gly	Thr	Pro	Glu	Tyr 315	Leu	Ala	Pro	Glu	Val 320
35	Leu	Glu	Asp	Asn	Asp 325	Tyr	Gly	Arg	Ala	Val 330	Asp	Trp	Trp	Gly	Leu 335	Gly
	Val	Val	Met	Tyr 340	Glu	Met	Met	Cys	Gly 345	Arg	Leu	Pro	Phe	Tyr 350	Asn	Gln
40	Asp	His	Glu 355	Lys	Leu	Phe	Glu	Leu 360	Ile	Leu	Met	Glu	Glu 365	Ile	Arg	Phe
45	Pro	A rg 370	Thr	Leu	Gly	Pro	Glu 375	Ala	Lys	Ser	Leu	Leu 380	Ser	Gly	Leu	Leu
50	Lys 385	Lys	Asp	Pro	Lys	Gln 390	Arg	Leu	Gly	Gly	Gly 395	Ser	Glu	Asp	Ala	Lys 400
	Glu	Ile	Met	Gln	His 405	Arg	Phe	Phe	Ala	Gly 410	Ile	Val	Trp	Gln	His 415	Val
55	Tyr	Glu	Lys	Lys 420	Leu	Ser	Pro	Pro	Phe 425	Lys	Pro	Gln	Val	Thr 430	Ser	Glu

	Thr Asp Thr Arg Tyr Phe Asp Glu Glu Phe Thr Ala Gln Met Ile Thr 435 440 445	
5	Ile Thr Pro Pro Asp Gln Asp Asp Ser Met Glu Cys Val Asp Ser Glu 450 455 460	
10	Arg Arg Pro His Phe Pro Gln Phe Ser Tyr Ser Ala Ser Gly Thr Ala 465 470 475 480	
15	<210> 38 <211> 1521 <212> DNA <213> Mus musculus	
20	<220> <221> CDS <222> (126)(680)	
	<400> 38 ccgcgcccgc cgccgtgctc tgtatgccgc gttctcccgg cgcagccgcc gccgatagtc	60
25	tgagccggag gagccgccgc cgccgcggtt aatgtggttg ggtcggggct gagcaggcca	120
20	ccaag atg cct cag tcc aag tcc cgg aag atc gcc atc ctg ggc tac cgg Met Pro Gln Ser Lys Ser Arg Lys Ile Ala Ile Leu Gly Tyr Arg 1 5 10 15	170
30	tct gtg gga aag tcc tca ttg aca att cag ttt gtt gaa ggc caa ttt Ser Val Gly Lys Ser Ser Leu Thr Ile Gln Phe Val Glu Gly Gln Phe 20 25 30	218
35	gtt gat tcc tac gat cca acc ata gag aac acg ttc acc aag ttg atc Val Asp Ser Tyr Asp Pro Thr Ile Glu Asn Thr Phe Thr Lys Leu Ile 35 40 45	266
	acg gta aat ggt caa gag tat cat ctt cag ctt gta gac aca gcg ggg Thr Val Asn Gly Gln Glu Tyr His Leu Gln Leu Val Asp Thr Ala Gly 50 55 60	314
40	cag gat gaa tat tcc att ttt cct cag aca tac tcc ata gat att aat Gln Asp Glu Tyr Ser Ile Phe Pro Gln Thr Tyr Ser Ile Asp Ile Asn 65 70 75	362
45	ggt tat att ctt gtg tat tct gtt aca tca atc aaa agt ttt gaa gta Gly Tyr Ile Leu Val Tyr Ser Val Thr Ser Ile Lys Ser Phe Glu Val 80 85 90 95	410
50	att aaa gtt atc cat ggc aag ttg ttg gat atg gtg ggg aaa gtg cag Ile Lys Val Ile His Gly Lys Leu Leu Asp Met Val Gly Lys Val Gln 100 105 110	458
	ata cct att atg ttg gtt gga aat aag aag gac ctg cat atg gaa agg Ile Pro Ile Met Leu Val Gly Asn Lys Lys Asp Leu His Met Glu Arg 115 120 125	506
55	gtg atc agc tat gaa gaa gga aag gct ttg gca gaa tct tgg aat gca Val Ile Ser Tyr Glu Glu Gly Lys Ala Leu Ala Glu Ser Trp Asn Ala	554

	130 135	140	
5	gct ttt ttg gaa tct tct gct aaa Ala Phe Leu Glu Ser Ser Ala Lys 145		602
	ttt aaa agg ata att ttg gaa gca Phe Lys Arg Ile Ile Leu Glu Ala 160 165		650
10	caa gga aag tct tcg tgc tcg gtg Gln Gly Lys Ser Ser Cys Ser Val 180		700
	cggacactgg ggatatattc cacctgagga	a agcaaactgc ccgtcatcct tgaagataaa	760
15	actatgette tgttttette tgttaacetg	g aaagatgtca tttgggtcag gggtcctccc	820
	ctttcagatt atgttaacgt ctgactctgt	ccaaatgagt tcacctccat tttcaaattt	880
20	taaacaatca tattttcaat ttatatattg	g tatttettaa tattatgaee aagaatttta	940
20	tcggcattaa ttttttcagt gtagtttgtt	gtttaaaata atgtaatcat caaaatgata	1000
	cacatgttac actactatta actaggette	aatatatcag tgtttatttc attgtgttaa	1060
25	atgtatactt gtaaataaaa tagctgcaaa	a cettaageet ttgagetaet tggtgtggtt	1120
	tttaaaccag gaaccatgtt aggatggggc	atgggcgtgc acatcgtttg tttttgtttt	1180
	gtttgctttt tcgagacagg gtttctctat	gtaacagcac tggctgtcct ggaacccact	1240
30	ctgtagacca ggctgtcctc gaactcgaga	a tttgcctgcc tctgcctccc aagtgctggg	1300
	attaaaggcg tgcaccacca ctgcctggct	gtacagtgtt ccctggttct attaaccccg	1360
	gctcttttac ctcacttggc cccaacacct	ccctcttaca ttttcacatt ctctcctgca	1420
35	tccagttatt gcctcctgtt ggcatgttag	ttcatctggt ctctatcttc cgtgttaact	1480
	gcagtggcca tgtcatgcct agtaaacagt	attttactgc a	1521
40	<210> 39 <211> 184 <212> PRT <213> Mus musculus		
	<400> 39		
45	Met Pro Gln Ser Lys Ser Arg Lys 1 5	Ile Ala Ile Leu Gly Tyr Arg Ser 10 15	
50	Val Gly Lys Ser Ser Leu Thr Ile 20	Gln Phe Val Glu Gly Gln Phe Val 25 30	
55	Asp Ser Tyr Asp Pro Thr Ile Glu 35 40	Asn Thr Phe Thr Lys Leu Ile Thr 45	
	Val Asn Gly Gln Glu Tyr His Leu	Gln Leu Val Asp Thr Ala Gly Gln	

5	Asp Glu Tyr Ser Ile Phe Pro Gln Thr Tyr Ser Ile Asp Ile Asn Gly 65 70 75 80	
	Tyr Ile Leu Val Tyr Ser Val Thr Ser Ile Lys Ser Phe Glu Val Ile 85 90 95	
10	Lys Val Ile His Gly Lys Leu Leu Asp Met Val Gly Lys Val Gln Ile 100 105 110	
15	Pro Ile Met Leu Val Gly Asn Lys Lys Asp Leu His Met Glu Arg Val 115 120 125	
20	Ile Ser Tyr Glu Glu Gly Lys Ala Leu Ala Glu Ser Trp Asn Ala Ala 130 135 140	
20	Phe Leu Glu Ser Ser Ala Lys Glu Asn Gln Thr Ala Val Asp Val Phe 145 150 155 160	
25	Lys Arg Ile Ile Leu Glu Ala Glu Lys Ile Asp Gly Ala Ala Ser Gln 165 170 175	
30	Gly Lys Ser Ser Cys Ser Val Met 180	
35	<210> 40 <211> 2092 <212> DNA <213> Homo sapiens	
40	<220> <221> CDS <222> (414)(968) <400> 40	
	ggcgtaatta aaaagcggcg gaagaaggtg ggagggtcat gacgcagcga gtttcagtcg	60
45	tgacttttct gggggcatcg cggcgtcccc tttttttgcc tttaaagtaa aacgtcgccc	120
40	cgacgcaccc cccgcgtatt tcggggggcg gaggcggcgg gccacggcgc gaagaggggc	180
	ggtgctgacg ccggccggtc acgtgggcgt gttgtggggg ggaggggcgc cgccgcgcgg	240
50	teggtteegg geggttggga gegegegage tagegagega gaggeageeg egeeegeege	300
	cgcccctgct ctgtatgccg ctctctcccg gcgcggccgc cgccgatcac agcagcagga	360
55	gccaccgccg ccgcggttga tgtggttggg ccggggctga ggaggccgcc aag atg Met 1	416
	ccg cag tcc aag tcc cgg aag atc gcg atc ctg ggc tac cgg tct gtg	464

	Pro	Gln	Ser	Lys 5	Ser	Arg	Lys	Ile	Ala 10	Ile	Leu	Gly	Tyr	Arg 15	Ser	Val	
5				tca Ser													512
10			_	cca Pro			_					_	_			_	560
				gaa Glu													608
15	_			atc Ile			_					_					656
20				tat Tyr 85		_					_		_				704
				ggc Gly													752
25		_	_	gtt Val			_		-	_		_	_				800
30				gaa Glu													848
35	_	_		tct Ser	_		-		_		_		_	_		_	896
				ttg Leu 165	Glu	Ala	Glu	Lys	Met	Asp	Gly		Ala	Ser	Gln		944
40				tgc Cys				tga	ttct	gcto	gca a	aagc	ctga	gg a	cacto	gggaa	998
	tata	attct	cac o	ctgaa	agaaq	gc aa	acto	gaaag	g tto	ctcct	tga	agat	taaa	cta 1	tgctt	ctttt	1058
45	ttct	tate	gtt a	aacct	gaaa	ig at	atca	atttç	g ggt	caga	agct	ccc	ctcc	ctt d	cagat	tatgt	1118
	taad	ctcto	gag t	tctgt	ccaa	aa to	gagtt	cact	tec	cattt	tca	aati	ttaa	agc a	aatca	atattt	1178
50	tcaa	attta	ata t	tatto	gtatt	t ct	taat	atta	a tga	accaa	agaa	tttt	tatc	ggc a	attaa	atttt	1238
50	cagt	gtag	gtt t	tgtto	gttta	aa aa	ataat	gtaa	a tca	atcaa	aaat	gate	gcata	att q	gttad	cactac	1298
	tatt	aact	cag q	gatta	cagta	at at	cagt	gttt	att	tcat	tgt	gtta	aaatq	gta 1	tactt	gtaaa	1358
55	taaa	aataq	gat (gcaaa	accto	a gt	cctt	tgto	g cta	actto	gatg	tgg	cttt	caa a	agaaq	gagaag	1418
	cctt	gtco	ctg a	agttt	ctca	ac tt	ggct	tcaç	g gaa	aggco	ccca	ggti	tggat	tc o	cagaa	aaccag	1478

	tgaagatgtg gccacaggag gaggtgtgct gaggtggctg ctgaccgtgg actccctgcg	1538
	cagtggcctg cagatgttgg ggctgggtta cagctgattg aagctgagtg gccctggggg	1598
5	gtctgtgagg ggagttcctc cccagtgatg aaattctctc cttccaccct caaatcccta	1658
	gaccttgact gaaatgctcc gtggtcggga gcctggtcaa ggaggaggag ctgctgagag	1718
	gcattgttcg cccttgctca tagcttagct cgatgtccgt gtcagacagg agatgattga	1778
10	gaacagcett geetgteact gteetagaac accetggagt ttagtgttet gtgteagagt	1838
	cttgggagcc tccttcagac ccagatgacg ggcctccctc tgtccaagga gcagctgtaa	1898
	aggagaagag ggatttcatt tgtttggtgg ctgttacctt gtctgtaagt caaacttgga	1958
15	gttgagcagt gctttttaaa cgattccctt ttgcagctaa aatttcacag ggctatttct	2018
	aatacgtaag caaatgttac cattgacttt attaataaaa tatagttttg ctttgcaaaa	2078
20	aaaaaaaaaa aaaa	2092
20	<210> 41	
	<211> 184 <212> PRT	
25	<213> Homo sapiens	
	<400> 41	
	Met Pro Gln Ser Lys Ser Arg Lys Ile Ala Ile Leu Gly Tyr Arg Ser 1 5 10 15	
30		
	Val Gly Lys Ser Ser Leu Thr Ile Gln Phe Val Glu Gly Gln Phe Val 20 25 30	
35	Asp Ser Tyr Asp Pro Thr Ile Glu Asn Thr Phe Thr Lys Leu Ile Thr 35 40 45	
40	Val Asn Gly Gln Glu Tyr His Leu Gln Leu Val Asp Thr Ala Gly Gln 50 55 60	
40		
	Asp Glu Tyr Ser Ile Phe Pro Gln Thr Tyr Ser Ile Asp Ile Asn Gly 65 70 75 80	
45		
	Tyr Ile Leu Val Tyr Ser Val Thr Ser Ile Lys Ser Phe Glu Val Ile 85 90 95	
50	Lys Val Ile His Gly Lys Leu Leu Asp Met Val Gly Lys Val Gln Ile 100 105 110	
	Pro Ile Met Leu Val Gly Asn Lys Lys Asp Leu His Met Glu Arg Val 115 120 125	
55		
	Ile Ser Tyr Glu Glu Gly Lys Ala Leu Ala Glu Ser Trp Asn Ala Ala	

5	Phe : 145	Leu	Glu	Ser	Ser	Ala 150	Lys	Glu	Asn	Gln	Thr 155	Ala	Val	Asp	Val	Phe 160	
	Arg i	Arg	Ile	Ile	Leu 165	Glu	Ala	Glu	Lys	Met 170	Asp	Gly	Ala	Ala	Ser 175	Gln	
10	Gly :	Lys	Ser	Ser 180	Cys	Ser	Val	Met									
15	<210: <211: <212: <213:	> 1 > I	12 1410 NA Mus r	nuscı	ılus												
20	<220: <221: <222:	> (CDS (86)	(43	36)												
25	<400:		12 etc a	atgct	caco	eg to	gtago	gaago	agt	ttta	atca	cgga	actgo	gca t	tgca	aatttt	60
	ctgc	ttct	tg (etett	atco	gg at	gcc						gca Ala				112
30	gag a Glu ! 10			_				_	_					_			160
35	tac (208
	aat (Asn (_			_			_	_	_	-	_	_		_		256
40	gaa (Glu i																304
45	tgg (Trp (352
50	tgg (Trp (400
	ctt (Leu (-	_		_	_				_	_	taa	ccca	agaco	ccg		446
55	gtcc	tgca	agc t	cato	gtata	gc ct	tgco	ccago	g cct	ggco	ccca	cago	gggag	gat q	gttg	gtactt	506
	atgti	tctç	gtc t	gtto	gcta	ag to	catgt	cctt	ttt:	ccto	ctac	acto	gggct	ccc a	aagaa	agaaaa	566

	EP 2 647 699 A1	
	ctctggccag acgctgcccc ttcccatgct gctgttgcct gctcggctgc cttggttggt	626
	ccctcagctc tgctgactcc ctggcaaggg gctccagaga agatcccagt tctcctcacc	686
5	tcctctaggt gctcagtggt gtctgtgcct ctgatgatct tagctgattg actcttccgt	746
	ctttcccttt ggcctcacaa gacaactagt gtctctgact tatgaacttg ccttcttcct	806
	cacgggtccc tcagcagtac atacaccatg agggacaaga cctcgtcatt ggaatctggc	866
10	caggccccag atcagccatc actcaaggtg ttgtgcctgt acccacctga cctgtgaagc	926
	cccacctacc cagcaaacat aggctttgat tgcagagcgg tgtaagacct gagagctctc	986
15	ttgcccttcc ttagaaccta ggtgcttgca gccagggata tgcaaacctg gggcctatgg	1046
	cctcactaga acaagaggcc aggcagtggg cctggttcag atgggccctc tgattgcctg	1106
	tgtgcaggct tcctctctgg gtgttcaggt tctgtattta gtgtaaacac gtcctgtcgc	1166
20	tgattaaata tttcactcac ctaagttggg ccaaatcggc ttccatcctt gaccgagatg	1226
	ccaataaatg agggagagaa gactgctccg gggtctccca gagaagccag ggtcacccag	1286
	ggaagccttg gtctcctagt aagaatgttg aaagggaatg tgtgggattt tatgtggttc	1346
25	tattttagag atacggctgg atttaataaa gctttgtaga actttaaaaa aaaaaaaaa	1406
	aaaa	1410
30 35	<210> 43 <211> 116 <212> PRT <213> Mus musculus <400> 43	
	Met Ala Thr Gln Arg Ala His Arg Ala Glu Thr Pro Ala His Pro Asn	
	1 5 10 15	

50

10 5 15

- 40 Arg Leu Trp Ile Trp Glu Lys His Val Tyr Leu Asp Glu Phe Arg Arg 25
- Ser Trp Leu Pro Val Val Ile Lys Ser Asn Glu Lys Phe Gln Val Ile 40
 - Leu Arg Gln Glu Asp Val Thr Leu Gly Glu Ala Met Ser Pro Ser Gln

Leu Val Pro Tyr Glu Leu Pro Leu Met Trp Gln Leu Tyr Pro Lys Asp 65 70

Arg Tyr Arg Ser Cys Asp Ser Met Tyr Trp Gln Ile Leu Tyr His Ile 90

Lys Phe Arg Asp Val Glu Asp Met Leu Leu Glu Leu Ile Asp Ser Glu

105

100

5	Ser Asn Asp Glu 115	
10	<210> 44 <211> 1405 <212> DNA <213> Homo sapiens	
15	<220> <221> CDS <222> (131)(475)	
	<400> 44 gtcctcccgc cccgccgctt ggtggcggcc gcatgctgcc cggatataaa gggtcggccc	60
20	cacatcccag ggaccagcga gcggccttga gaggctctgg ctcttgcttc ttaggcggcc	120
	cgaggacgcc atg gcc gag tgc ccg aca ctc ggg gag gca gtc acc gac Met Ala Glu Cys Pro Thr Leu Gly Glu Ala Val Thr Asp 1 5 10	169
25	cac ccg gac cgc ctg tgg gcc tgg gag aag ttc gtg tat ttg gac gag His Pro Asp Arg Leu Trp Ala Trp Glu Lys Phe Val Tyr Leu Asp Glu 15 20 25	217
30	aag cag cac gcc tgg ctg ccc tta acc atc gag ata aag gat agg tta Lys Gln His Ala Trp Leu Pro Leu Thr Ile Glu Ile Lys Asp Arg Leu 30 35 40 45	265
35	cag tta cgg gtg ctc ttg cgt cgg gaa gac gtc gtc ctg ggg agg cct Gln Leu Arg Val Leu Leu Arg Arg Glu Asp Val Val Leu Gly Arg Pro 50 55 60	313
	atg acc ccc acc cag ata ggc cca agc ctg ctg cct atc atg tgg cag Met Thr Pro Thr Gln Ile Gly Pro Ser Leu Leu Pro Ile Met Trp Gln 65 70 75	361
40	ctc tac cct gat gga cga tac cga tcc tca gac tcc agt ttc tgg cgc Leu Tyr Pro Asp Gly Arg Tyr Arg Ser Ser Asp Ser Ser Phe Trp Arg 80 85 90	409
45	tta gtg tac cac atc aag att gac ggc gtg gag gac atg ctt ctc gag Leu Val Tyr His Ile Lys Ile Asp Gly Val Glu Asp Met Leu Leu Glu 95 100 105	457
	ctg ctg cca gat gac tga tgtcttggca gcacctgtct cctttcaccc Leu Leu Pro Asp Asp 110	505
50	cagggcctga gcctggccag cctacaatgg ggatgttgtg tttctgttca ccttcgttta	565
	ctatgcctgt gtcttctcca ccacgctggg gtctgggagg aatggacaga cagaggatga	625
55	gctctaccca gggcctgcag gacctgcctg tagcccactc tgctcgcctt agcactacca	685
	ataataaaaa aaaaaattaa atttaaaaaa aattatt	745

	cctcggcttt tctcagctgg atgatggtct tcagcctctt tctgtccctt ctgtccctca 805
	cagcactagt atttcatgtt gcacacccac tcagctccgt gaacttgtga gaacacagcc 865
5	gattcacctg agcaggacct ctgaaaccct ggaccagtgg tctcacatgg tgctacgcct 925
	gcatgtaaac acgcctgcaa acgctgcctg ccggtaaaca cgcctgcaaa cgctgcctgc 985
	ccgtaaacac gcctgcaaac gctgcctgcc cacacaggtt cacgtgcagc tcaaggaaag 1045
10	gcctgaaagg agcccttatc tgtgctcagg actcagaagc ctctgggtca gtggtccaca 1105
	tcccgggacg cagcaggagg ccaggccggc gagccctgtg gatgagccct cagaaccctt 1165
	ggcttgccca cgtggaaaag ggatagaggt tgggtttccc cccttttata gatggtcacg 1225
15	cacctgggtg ttacaaagtt gtatgtggca tgaatacttt ttgtaatgat tgattaaatg 1285
	caagatagtt tatctaactt cgtgcggaat cagcttctat ccttgactta gattctggtg 1345
00	gagagaagtg agaataggca gcccccaaat aaaaaatatt catggaaaaa aaaaaaaaaa
20	<210> 45
	<210 45 <211 114 <212 PRT
25	<213> Homo sapiens
	<400> 45
	Met Ala Glu Cys Pro Thr Leu Gly Glu Ala Val Thr Asp His Pro Asp 1 5 10 15
30	
	Arg Leu Trp Ala Trp Glu Lys Phe Val Tyr Leu Asp Glu Lys Gln His 20 25 30
	20 25 30
35	Ala Trp Leu Pro Leu Thr Ile Glu Ile Lys Asp Arg Leu Gln Leu Arg 35 40 45
	33 40 43
	Val Leu Leu Arg Arg Glu Asp Val Val Leu Gly Arg Pro Met Thr Pro 50 55 60
40	
	Thr Gln Ile Gly Pro Ser Leu Leu Pro Ile Met Trp Gln Leu Tyr Pro 65 70 75 80
45	75 70 75
45	Asp Gly Arg Tyr Arg Ser Ser Asp Ser Ser Phe Trp Arg Leu Val Tyr 85 90 95
50	His Ile Lys Ile Asp Gly Val Glu Asp Met Leu Leu Glu Leu Leu Pro
	100 103 110
	Asp Asp
55	
	<210> 46

	<211 <212 <213	2> 1	5395 ONA Mus n	nusci	ılus												
5	<220 <221 <222	L> (CDS (102)) (1	L679)	•											
10	<400 tgaa		46 gag q	gagco	cagto	ct go	gggco	ctago	g cgc	cagad	egca	ttga	agctt	aa q	gcago	ccggtg	60
	atg	gegge	cag o	cagco	cgtgo	ga gt	ctgo	egge	g ggt	cago	ggcc		-		-	ga cgg cg Arg 5	116
15			gac Asp							_		_			_	_	164
20		_	atg Met	_				_		_	_	_	_		_	_	212
25			tct Ser 40														260
	_	-	cat His			_				_			_	_		_	308
30			ttt Phe														356
35			cca Pro														404
			aag Lys														452
40	_		ttt Phe 120	_	_	_				_	_	_					500
45	_	_	gac Asp	_	_		_		_					_		_	548
50			cac His														596
			ctc Leu														644
55			tta Leu														692

		ttg Leu														740
5		atc Ile 215														788
10		cac His														836
45		gga Gly														884
15		gaa Glu														932
20		ttg Leu														980
25		ggg Gly 295			_	_			_					_		1028
		aat Asn	_						-	-	_	-	_			1076
30	_	ctg Leu	_		_		_	_	_			_				1124
35	-	gct Ala		_	_		-				_					1172
40		gaa Glu														1220
		tct Ser 375	_		-		_	_	_		_			_	_	1268
45		cct Pro														1316
50		gtc Val														1364
		aaa Lys														1412
55		att Ile														1460

	440	445	450
5	ggg gat ttc tgg gga cga ggt Gly Asp Phe Trp Gly Arg Gly 455 460		
	acc cct gtg gaa tac cca atg Thr Pro Val Glu Tyr Pro Met 470 475		
10	gtg aca gtg agc ggg gaa gca Val Thr Val Ser Gly Glu Ala 490		
15	aac tcc ggg ccg tac aaa aaa Asn Ser Gly Pro Tyr Lys Lys 505		
20	cca gag cac ctg cgg atg aat Pro Glu His Leu Arg Met Asn 520		ettttattaa 1699
20	tgcaaaatca aaaaggaaac aaatc	eggga aggggatgtg tga	gcatcct gcaatataaa 1759
	aacaagaata aaatggcagt ctcaa	agagt cagtgtcatt acc	tggaatg ctttcgatgg 1819
25	aggaaaaaat aaacatggat tttaa	aaaat caatcaaaaa tgg	tgcaaaa aaaaaaataa 1879
	acccacaaaa aactcaagca aaata	gtatt gtggaatcca caga	acacatc agctgactgg 1939
	ttcctatcct agcaacatct cggcg	ttcgc aagggttctc atg	ctgatgg ctgcaaactg 1999
30	acagtattaa gggtaggatg ttgct	tegga ateacegttg aaa	cctgatg atgtcaaata 2059
	agggttatcc taataggcaa agttt	gagat tgcctgtaat act	tgcaact aaggacaaat 2119
	tagcatgcaa gctttgtcaa acttt	ttcca gcaacacaga atca	aaagaca aaagaaactt 2179
35	tatcgattga tgttttacgt gcaaa	caacc tgaatctttt ttt	tatataa atatatattt 2239
	ttcaaataga tttttgattc agctc	attat gaaaaacatc ccaa	aacttta aaatgcgaag 2299
	ttattggttg gtgtgaagaa agcca	gette tgtettetet tga	tgaaata aaatgcaaat 2359
40	gatcattgtt aaccacagct gtggc	ttgtc tgagggcctg ggg	tggacct ggggtgtttt 2419
	tttaatcttt ttgttttagt aacct	agctg caatacttgt ctg	taatact aggggggaaa 2479
45	agtctgttta atcattttta cttgc	agtac tgctgtgtgt ttg	gcgtaac tgcaagcctt 2539
45	gggacaggca gaagttgtat gatct	acatt gcatccttgt cct	gggcctg cactacactg 2599
	gaaacagtat caccacctgt tctta	tacca gtatttgagt caa	gccttgg tcgaggaggg 2659
50	acagaagaga atcaggctaa agtgc	ataaa gagggcagta agc	gggggag atagacctgc 2719
	aggggagagg gtgttgccac gggcg	tetet etegaetett taea	agcacat tggtgtggtt 2779
	ctaggtttac tttgtactgt tatgc	tgttt accttcctta acaa	attttct tttttgagaa 2839
55	tctaaaaaag aaaaaaatgg tgttt	ttttc ccctcctgca ctg	gggctac atttttcact 2899
	tataaaaata tttgatggcc ttttg	atgaa tgtcttccat aac	gaataag aaaacctagt 2959

	ggcttaattt	aggaaacatg	ttaacaagac	actgtttttg	aaattgtaac	aaagtcaaca	3019
	taagtgattt	acaggtacaa	agaataaaaa	taaaggtaac	tttacctttc	ttaaatactt	3079
5	cctgccttaa	ggagcatttc	catgactagc	tggtgaaagg	gtttaatatc	tgcagagctt	3139
	tataaaatat	actgcagtgc	atactggtct	aggtagatgg	tcacacagtg	agtcctgtca	3199
	cgccactctg	ttggtctttt	ttgtcttggt	aatagttgca	gcccttgggt	ttctttatgc	3259
10	agatgctctt	gctgtgttcc	tcaaaggatc	caagccataa	aattctttat	gcatgtcaca	3319
	gtcaggattg	acccagacct	tgcttattca	aattgtaatt	gaagtgagat	gggaagaaat	3379
15	gttaacagtg	agcaaaaata	gaaccttgag	aggctggaga	gatgactcag	cagttaagaa	3439
15	ctctggctac	ttttccagag	gtcctgagtt	caatcccagc	acccacatga	tagcttacat	3499
	ctataaactg	tagtctcgtt	ggatcaaatg	ttctcttaca	tgcacatgtg	cagacaaaac	3559
20	atccacatac	ataaaaatct	taaaaaaaa	aaacaaaaa	aaaaaaccag	agccatggca	3619
	gatgactgga	aatactgccc	ttcaattgtg	gcagcaaacg	tccatctgga	cagagaattt	3679
	ctttttttat	catttaaatg	gtcattcctg	attctcttga	ctgtagcagc	attttgagaa	3739
25	cttcataatt	gtagcagtaa	attaggagct	gcagtaatga	ttaagaatgt	tcttcattct	3799
	ttgagagttt	gtggtatctt	aaaaaataga	acccctcaaa	aaacctatgg	caatgcatta	3859
	taggaatcat	ttcagactgc	aaatggcttg	tgctactctg	atatctgttt	ctaaatgtgt	3919
30	ttactaacta	tagcgttgac	tgcctggcca	aattccaata	aaacttttac	actaaatgat	3979
	tcctccttag	ccctagttgc	tagtaatatg	tgcactgtga	ccaccccata	aactgttaat	4039
35	aaactgttca	tagaattact	gccagcaata	gtggcaaata	tcgcaacgtt	tttgtgtaga	4099
	acgcattaat	tgtacacctt	ctgtcgactt	ccatctacac	aaatatatag	cttttctatc	4159
	acaacattaa	gtgaaattga	tgctgtggca	agtttattga	gaaactttca	taaatggata	4219
40	tccctactat	gactgtgaaa	acatgtcagg	tgtcacatga	gtgtcacaga	cagaaagcac	4279
	atgcctatgc	aatatggcct	actctgtatt	tatttgtaaa	aactgaagca	taatttaaag	4339
	tgtatatcaa	tactactctg	agtttctaag	agaggtgttc	atgcttgtac	caggtaagtg	4399
45	aataaaaaa	aagattaagt	gctttttctt	tcattacttg	attattttct	ttaaaatcag	4459
	ctattacagg	atatttttt	attttctaca	ttctgttttt	taattaatat	gtactcactg	4519
50	aactgaaatt	tactaaattt	gttttataag	gtttgtagtg	ttacagaata	actaaactgg	4579
50	gatttataaa	ccagctgtga	ttaacaatgt	attaattatt	tgaacttgaa	ccagaccatt	4639
	aggaaaatta	tgttatttgt	tccccttgta	tgctcttaac	ttaaagaatt	ttcccacata	4699
55	ccgtttttga	gatagtttga	gatttgagga	taggatgcat	gtgagagact	ccataaattc	4759
	aacattctgt	actatagctg	acaactataa	acaaaatgta	tcttagcatt	aatatcttga	4819

	gccttgaaca tcatatttaa tacaggacca ttttagaaat attcagttag ttgtatattt	4879
	cctaggttac aagggctaga tctaagatta ttctcatgag aaatgttgaa tttatgagaa	4939
5	atggattttg aggctttgaa aatgaaaatg gctagtatct caaagatgtc agtatccata	4999
	catctatggt ttcatcccag gagcagacat tagctagctg gacaaacagt tgtgacaata	5059
	tttgtcacat aggggcctat ggtttgttgc tcaacaatat agtacttttc tcatgtgact	5119
10	caacactata gcacaagtat tatttccctg gattctctga aggagcatct aaaagacggg	5179
	tttctgacag tgtttgctct ttaaactatg ttttctccta ccccaagttg gctttgcatc	5239
15	tattaaataa gttcttcagc tgccttacta ggagttctac gagggcaaca tcttttctgc	5299
15	atttcacctt gtatttagtt tactgtgtta agatatttga tttcagattg aatgaatgta	5359
	aatagaaatt aaatgcaaat ttgaatgaac ataaaa	5395
20	<210> 47 <211> 525 <212> PRT <213> Mus musculus	
25	<400> 47	
	Met Arg Arg Arg Arg Arg Asp Gly Phe Tyr Leu Ala Pro Asp Phe 1 5 10 15	
30	Arg His Arg Glu Ala Glu Asp Met Ala Gly Val Phe Asp Ile Asp Leu 20 25 30	
35	Asp Gln Pro Glu Asp Ala Gly Ser Glu Asp Glu Leu Glu Glu Gly Gly 35 40 45	
	Gln Leu Asn Glu Ser Met Asp His Gly Gly Val Gly Pro Tyr Glu Leu 50 55 60	
40	Gly Met Glu His Cys Glu Lys Phe Glu Ile Ser Glu Thr Ser Val Asn 65 70 75 80	
45	Arg Gly Pro Glu Lys Ile Arg Pro Glu Cys Phe Glu Leu Leu Arg Val 85 90 95	
50	Leu Gly Lys Gly Gly Tyr Gly Lys Val Phe Gln Val Arg Lys Val Thr 100 105 110	
	Gly Ala Asn Thr Gly Lys Ile Phe Ala Met Lys Val Leu Lys Lys Ala 115 120 125	
55	Met Ile Val Arg Asn Ala Lys Asp Thr Ala His Thr Lys Ala Glu Arg 130 135 140	

	Asn 145	Ile	Leu	Glu	Glu	Val 150	Lys	His	Pro	Phe	Ile 155	Val	Asp	Leu	Ile	Tyr 160
5	Ala	Phe	Gln	Thr	Gly 165	Gly	Lys	Leu	Tyr	Leu 170	Ile	Leu	Glu	Tyr	Leu 175	Ser
10	Gly	Gly	Glu	Leu 180	Phe	Met	Gln	Leu	Glu 185	Arg	Glu	Gly	Ile	Phe 190	Met	Glu
	Asp	Thr	Ala 195	Cys	Phe	Tyr	Leu	Ala 200	Glu	Ile	Ser	Met	Ala 205	Leu	Gly	His
15	Leu	His 210	Gln	Lys	Gly	Ile	Ile 215	Tyr	Arg	Asp	Leu	Lys 220	Pro	Glu	Asn	Ile
20	Met 225	Leu	Asn	His	Gln	Gly 230	His	Val	Lys	Leu	Thr 235	Asp	Phe	Gly	Leu	Cys 240
25	Lys	Glu	Ser	Ile	His 245	Asp	Gly	Thr	Val	Thr 250	His	Thr	Phe	Cys	Gly 255	Thr
	Ile	Glu	Tyr	Met 260	Ala	Pro	Glu	Ile	Leu 265	Met	Arg	Ser	Gly	His 270	Asn	Arg
30	Ala	Val	Asp 275	Trp	Trp	Ser	Leu	Gly 280	Ala	Leu	Met	Tyr	Asp 285	Met	Leu	Thr
35	Gly	Ala 290	Pro	Pro	Phe	Thr	Gly 295	Glu	Asn	Arg	Lys	Lys 300	Thr	Ile	Asp	Lys
	Ile 305	Leu	Lys	Cys	Lys	Leu 310	Asn	Leu	Pro	Pro	Tyr 315	Leu	Thr	Gln	Glu	Ala 320
40	Arg	Asp	Leu	Leu	Lys 325	Lys	Leu	Leu	Lys	A rg 330	Asn	Ala	Ala	Ser	Arg 335	Leu
45	Gly	Ala	Gly	Pro 340	Gly	Asp	Ala	Gly	Glu 345	Val	Gln	Ala	His	Pro 350	Phe	Phe
50	Arg	His	Ile 355	Asn	Trp	Glu	Glu	Leu 360	Leu	Ala	Arg	Lys	Val 365	Glu	Pro	Pro
	Phe	Lys 370	Pro	Leu	Leu	Gln	Ser 375	Glu	Glu	Asp	Val	Ser 380	Gln	Phe	Asp	Ser
55	Lys 385	Phe	Thr	Arg	Gln	Thr 390	Pro	Val	Asp	Ser	Pro 395	Asp	Asp	Ser	Thr	Leu 400

	Ser	Glu	Ser	Ala	Asn 405	Gln	Val	Phe	Leu	Gly 410	Phe	Thr	Tyr	Val	Ala 415	Pro	
5	Ser	Val	Leu	Glu 420	Ser	Val	Lys	Glu	Lys 425	Phe	Ser	Phe	Glu	Pro 430	Lys	Ile	
10	Arg	Ser	Pro 435	Arg	Arg	Phe	Ile	Gly 440	Ser	Pro	Arg	Thr	Pro 445	Val	Ser	Pro	
15	Val	Lys 450	Phe	Ser	Pro	Gly	Asp 455	Phe	Trp	Gly	Arg	Gly 460	Ala	Ser	Ala	Ser	
73	Thr 465	Ala	Asn	Pro	Gln	Thr 470	Pro	Val	Glu	Tyr	Pro 475	Met	Glu	Thr	Ser	Gly 480	
20	Ile	Glu	Gln	Met	Asp 485	Val	Thr	Val	Ser	Gly 490	Glu	Ala	Ser	Ala	Pro 495	Leu	
25	Pro	Ile	Arg	Gln 500	Pro	Asn	Ser	Gly	Pro 505	Tyr	Lys	Lys	Gln	Ala 510	Phe	Pro	
	Met	Ile	Ser 515	Lys	Arg	Pro	Glu	His 520	Leu	Arg	Met	Asn	Leu 525				
30	<210 <211 <212 <213	L> 2> :	48 5332 DNA Homo	sapi	iens												
35																	
	<220 <221 <222	L> •	CDS (104)) (1	L681)	ı											
40	<400		_	aggag	rccac	at ct	aago	accta	a gad	cocac	таса	cact	caaa	ect a	aagca	agccgg	60
			ggc a								_		atg Met	agg	_	cga	115
45													1				
			cgg Arg	_					_	_	_		_	_		_	163
50			gac Asp														211
55			ggc Gly														259

	atg Met														307
5	gag Glu 70														355
10	atc Ile														403
45	tat Tyr														451
15	aaa Lys														499
20	gct Ala		_		_			_	_				_		547
25	gta Val 150														595
	gga Gly														643
30	atg Met	_		-	_				_	-	_		-	_	691
35	tac Tyr														739
	atc Ile														787
40	ggt Gly 230														835
45	gat Asp			_				_				_		_	883
50	cct Pro														931
	 agt Ser	_		_		_	_	_	_			_			979
55	act Thr														1027

		ctc Leu 310															1075
5		aag Lys															1123
10		gac Asp															1171
15		gaa Glu															1219
73		caa Gln															1267
20	_	aca Thr 390		_	_	_		_	-				_	_	_	_	1315
25		cag Gln															1363
		gtg Val															1411
30		ttt Phe															1459
35		Gly	_				_		_	_	_	_		_			1507
40	_	aca Thr 470			_			_	_		_				_	_	1555
		gtg Val															1603
45		aac Asn															1651
50		cca Pro			_	_	_			tga	caga	agcaa	atg (ettt	taato	ga	1701
	atti	taago	gca a	aaaa	aggto	gg ag	gaggo	gagat	gto	gtgag	gcat	cct	gcaa	ggt (gaaad	egactc	1761
55	aaaa	atgad	cag t	tttca	agaga	ag to	caato	gtcat	tac	cataç	gaac	acti	caga	aca d	cagga	aaaat	1821
	aaa	cgtg	gat t	ttaa	aaaa	at ca	aatca	aatg	g tgo	caaaa	aaaa	aact	taaa	agc a	aaaat	tagtat	1881

	tgctgaactc	ttaggcacat	caattaattg	attcctcgcg	acatcttctc	aaccttatca	1941
	aggattttca	tgttgatgac	tcgaaactga	cagtattaag	ggtaggatgt	tgcttctgaa	2001
5	tcactgttga	gttctgattg	tgttgaagaa	gggttatcct	ttcattaggc	aaagtacaaa	2061
	attgcctata	atacttgcaa	ctaaggacaa	attagcatgc	aagcttggtc	aaacttttc	2121
	cagcaaaatg	gaagcaaaga	caaaagaaac	ttaccaattg	atgttttacg	tgcaaacaac	2181
10	ctgaatcttt	tttttatata	aatatatatt	tttcaaatag	atttttgatt	cagctcatta	2241
	tgaaaaacat	cccaaacttt	aaaatgcgaa	attattggtt	ggtgtgaaga	aagccagaca	2301
	acttctgttt	cttctcttgg	tgaaataata	aaatgcaaat	gaatcattgt	taaccacagc	2361
15	tgtggctcgt	ttgagggatt	ggggtggacc	tggggtttat	tttcagtaac	ccagctgcaa	2421
	tacctgtctg	taatatgaga	aaaaaaaat	gaatctattt	aatcatttct	acttgcagta	2481
	ctgctatgtg	ctaagcttaa	ctggaagcct	tggaatgggc	ataagttgta	tgtcctacat	2541
20	ttcatcattg	tcccgggcct	gcattgcact	ggaaaaaaaa	atcgccacct	gttcttacac	2601
	cagtatttgg	ttcaagacac	caaatgtctt	cagcccatgg	ctgaagaaca	acagaagaga	2661
25	gtcaggataa	aaaatacata	ctgtggtcgg	caaggtgagg	gagataggga	tatccagggg	2721
	aagagggtgt	tgctgtggcc	cactctctgt	ctaatctctt	tacagcaaat	tggtaagatt	2781
	ttcagtttta	cttctttcta	ctgtttctgc	tgtctacctt	ccttatattt	ttttcctcaa	2841
30	cagttttaaa	aagaaaaaa	ggtctatttt	tttttctcct	atacttgggc	tacatttttt	2901
	gattgtaaaa	atatttgatg	gccttttgat	gaatgtcttc	cacagtaaag	aaaacttagt	2961
	ggcttaattt	aggaaacatg	ttaacaggac	actatgtttt	tgaaattgta	acaaaatcta	3021
35	cataaatgat	ttacaggtta	aaagaataaa	aataaaggta	actttacctt	tcttaaatat	3081
	ttcctgcctt	aaagagagca	tttccatgac	tttagctggt	gaaagggttt	aatatctgca	3141
	gagctttata	aaaatatatt	tcagtgcata	ctggtataat	agatgatcat	gcagttgcag	3201
10	ttgagttgta	tcaccttttt	tgtttgtctt	ttataatgtc	ttcagtctga	gtgtgcaaag	3261
	tcaatttgta	atattttgca	accctaggat	ttttttaaat	agatgctgct	tgctatgttt	3321
	tcaaaccttt	ttgagccata	ggatccaagc	cataaaattc	tttatgcatg	ttgaattcag	3381
1 5	tcagaaaaga	gcaaggcttt	gctttttgaa	attgcaactc	aaatgagatg	ggatgaaatc	3441
	ctatgacagt	aagcaaaaac	agaaccatga	aaaatgattg	gacatacacc	ttttcaattg	3501
50	tggcaataat	tgaaagaatc	gataaaagtt	catctttgga	cagaaagcct	ttaaaaaaaa	3561
,,,	aatcactccc	tcttccccct	cctcccttat	tgcagcagcc	tactgagaac	tttgactgtt	3621
	gctggtaaat	tagaagctac	aataataatt	aagggcagaa	attatactta	aaaagtgcag	3681
55	atccttgttc	tttgacaatt	tgtgatgtct	gaaaaaacag	aacccgaaaa	gctatggtga	3741
	tatgtacagg	cattatttca	gactgtaaat	ggcttgtgat	actcttgata	cttgttttca	3801

	aatatgttta	ctaactgtag	tgttgactgc	ctgaccaaat	tccagtgaaa	cttatacacc	386:
	aaaatattct	tcctaggtcc	tatttgctag	taacatgagc	actgtgattg	gctggctata	392
5	accaccccag	ttaaaccatt	ttcataatta	gtagtgccag	caatagtggc	aaacactgca	3983
	acttttctgc	ataaaaagca	ttaattgcac	agctaccatc	cacacaaata	catagttttt	404
	ctgacttcac	atttattaag	tgaaatttat	ttcccatgct	gtggaaagtt	tattgagaac	410
10	ttgtttcata	aatggatatc	cctactatga	ctgtgaaaac	atgtcaagtg	tcacattagt	416
	gtcacagaca	gaaagcacac	acctatgcaa	tatggcttat	ctatatttat	ttgtaaaaat	422
	ccaagcatag	tttaaaatat	gatgtcgata	ttactagtct	tgagtttcta	agagggttct	4283
15	ttatgttata	ccaggtaagt	gtataaaaga	gattaagtgc	tttttttca	tcacttgatt	434
	attttcttta	aaatcagcta	ttacaggata	tttttttatt	ttatacatgc	tgttttttaa	440
20	ttaaaatata	atcactgaag	tttactaatt	tgattttata	aggtttgtag	cattacagaa	446
	taactaaact	gggatttata	aaccagctgt	gattaacaat	gtaaagtatt	aattattgaa	452
	ctttgaacca	gatttttagg	aaaattatgt	tcttttccc	cctttatggt	cttaactaat	4583
25	ttgaatcctt	caagaaggat	ttttccatac	tattttttaa	gatagaagat	aatttgtggg	464
	caggggtgga	ggatgcatgt	atgatactcc	ataaattcaa	cattctttac	tataggtaat	470
	gaatgattat	aaacaagatg	catcttagat	agtattaata	tactgagcct	tggattatat	476
30	atttaatata	ggacctattt	tgaatattca	gttaatcata	tggttcctag	cttacaaggg	482
	ctagatctaa	gattattccc	atgagaaatg	ttgaatttat	gaagaataga	ttttaaggct	4883
	ttgaaaatgg	ttaatttctc	aaaaacatca	atgtccaaac	atctaccttt	tttcatagga	494
35	gtagacacta	gcaagctgga	caaactatca	caaaagtatt	tgtcacacat	aacctgtggt	500
	ctgttgctga	ttaatacagt	actttttctt	gtgtgattct	taacattata	gcacaagtat	506
40	tatctcagtg	gattatccgg	aataacatct	gaaagatggg	ttcatctatg	tttgtgtttg	512
	ctctttaaac	tattgtttct	cctatcccaa	gttcgctttg	catctatcag	taaataaaat	518:
	tcttcagctg	ccttattagg	agtgctatga	gggtaacacc	tgttctgctt	ttcatcttgt	524
45	atttagttga	ctgtattatt	tgatttcgga	ttgaatgaat	gtaaatagaa	attaaatgca	530:
	aatttgaatg	aacataaaaa	aaaaaaaaa	a			5332
50	<210> 49 <211> 525 <212> PRT						
	010 ==						

<213> Homo sapiens

<400> 49

55

Met Arg Arg Arg Arg Arg Asp Gly Phe Tyr Pro Ala Pro Asp Phe 1 5 10 15

	Arg	Asp	Arg	Glu 20	Ala	Glu	Asp	Met	Ala 25	Gly	Val	Phe	Asp	Ile 30	Asp	Leu
5	Asp	Gln	Pro 35	Glu	Asp	Ala	Gly	Ser 40	Glu	Asp	Glu	Leu	Glu 45	Glu	Gly	Gly
10	Gln	Leu 50	Asn	Glu	Ser	Met	Asp 55	His	Gly	Gly	Val	Gly 60	Pro	Tyr	Glu	Leu
	Gly 65	Met	Glu	His	Cys	Glu 70	Lys	Phe	Glu	Ile	Ser 75	Glu	Thr	Ser	Val	Asn 80
15	Arg	Gly	Pro	Glu	Lys 85	Ile	Arg	Pro	Glu	Cys 90	Phe	Glu	Leu	Leu	Arg 95	Val
20	Leu	Gly	Lys	Gly 100	Gly	Tyr	Gly	Lys	Val 105	Phe	Gln	Val	Arg	Lys 110	Val	Thr
25	Gly	Ala	As n 115	Thr	Gly	Lys	Ile	Phe 120	Ala	Met	Lys	Val	Leu 125	Lys	Lys	Ala
	Met	Ile 130	Val	Arg	Asn	Ala	Lys 135	Asp	Thr	Ala	His	Thr 140	Lys	Ala	Glu	Arg
30	Asn 145	Ile	Leu	Glu	Glu	Val 150	Lys	His	Pro	Phe	Ile 155	Val	Asp	Leu	Ile	Tyr 160
35	Ala	Phe	Gln	Thr	Gly 165	Gly	Lys	Leu	Tyr	Leu 170	Ile	Leu	Glu	Tyr	Leu 175	Ser
40	Gly	Gly		Leu 180	Phe	Met			Glu 185	_		_	Ile	Phe 190	Met	Glu
	Asp	Thr	Ala 195	Cys	Phe	Tyr	Leu	Ala 200	Glu	Ile	Ser	Met	Ala 205	Leu	Gly	His
45	Leu	His 210	Gln	Lys	Gly	Ile	Ile 215	Tyr	Arg	Asp	Leu	Lys 220	Pro	Glu	Asn	Ile
50	Met 225	Leu	Asn	His	Gln	Gly 230	His	Val	Lys	Leu	Thr 235	Asp	Phe	Gly	Leu	Cys 240
55	Lys	Glu	Ser	Ile	His 245	Asp	Gly	Thr	Val	Thr 250	His	Thr	Phe	Cys	Gly 255	Thr
55	Ile	Glu	Tyr	Met	Ala	Pro	Glu	Ile	Leu	Met	Arg	Ser	Gly	His	Asn	Arg

5	Ala	Val	Asp 275	Trp	Trp	Ser	Leu	Gly 280	Ala	Leu	Met	Tyr	Asp 285	Met	Leu	Thr
10	Gly	Ala 290	Pro	Pro	Phe	Thr	Gly 295	Glu	Asn	Arg	Lys	Lys 300	Thr	Ile	Asp	Lys
	Ile 305	Leu	Lys	Cys	Lys	Leu 310	Asn	Leu	Pro	Pro	Tyr 315	Leu	Thr	Gln	Glu	Ala 320
15	Arg	Asp	Leu	Leu	Lys 325	Lys	Leu	Leu	Lys	Arg 330	Asn	Ala	Ala	Ser	Arg 335	Leu
20	Gly	Ala	Gly	Pro 340	Gly	Asp	Ala	Gly	Glu 345	Val	Gln	Ala	His	Pro 350	Phe	Phe
	Arg	His	Ile 355	Asn	Trp	Glu	Glu	Leu 360	Leu	Ala	Arg	Lys	Val 365	Glu	Pro	Pro
25	Phe	Lys 370	Pro	Leu	Leu	Gln	Ser 375	Glu	Glu	Asp	Val	Ser 380	Gln	Phe	Asp	Ser
30	Lys 385	Phe	Thr	Arg	Gln	Thr 390	Pro	Val	Asp	Ser	Pro 395	Asp	Asp	Ser	Thr	Leu 400
35	Ser	Glu	Ser	Ala	Asn 405	Gln	Val	Phe	Leu	Gly 410	Phe	Thr	Tyr	Val	Ala 415	Pro
	Ser	Val	Leu	Glu 420	Ser	Val	Lys	Glu	Lys 425	Phe	Ser	Phe	Glu	Pro 430	Lys	Ile
40	Arg	Ser	Pro 435	Arg	Arg	Phe	Ile	Gly 440	Ser	Pro	Arg	Thr	Pro 445	Val	Ser	Pro
45	Val	Lys 450	Phe	Ser	Pro	Gly	Asp 4 55	Phe	Trp	Gly	Arg	Gly 460	Ala	Ser	Ala	Ser
50	Thr 465	Ala	Asn	Pro	Gln	Thr 470	Pro	Val	Glu	Tyr	Pro 475	Met	Glu	Thr	Ser	Gly 480
	Ile	Glu	Gln	Met	Asp 485	Val	Thr	Met	Ser	Gly 490	Glu	Ala	Ser	Ala	Pro 495	Leu
55	Pro	Ile	Arg	Gln 500	Pro	Asn	Ser	Gly	Pro 505	Tyr	Lys	Lys	Gln	Ala 510	Phe	Pro

Met Ile Ser Lys Arg Pro Glu His Leu Arg Met Asn Leu 515 520 525

5 Claims

10

15

20

30

- 1. A method of improving the efficiency of establishment of induced pluripotent stem cell, comprising the step of increasing the level of activated form of one or more proteins selected from the group consisting of Ras family members, PI3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 and S6K in a nuclear reprogramming step of somatic cell.
- 2. The method according to claim 1, comprising contacting one or more factors selected from the group consisting of Ras family members, PI3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 and S6K, and nucleic acids that encode the same with a somatic cell.
- 3. The method according to claim 2, wherein the Ras family members, PI3 kinase, RalGEF, Raf, AKT family members and S6K are constitutively active forms.
- **4.** The method according to claim 2 or 3, wherein the Ras family members are selected from the group consisting of ERas, HRas, NRas and KRas.
- 5. The method according to claim 3 or 4, wherein the Ras family members constitutively activate one or more signal transduction pathways selected from PI3 kinase pathway, Ral pathway and MAP kinase pathway.
- ²⁵ **6.** The method according to claim 3 or 4, wherein the Ras family members constitutively activate PI3 kinase pathway and/or Ral pathway.
 - 7. The method according to claim 3, wherein the PI3 kinase constitutively activates signal transduction pathway of AKT pathway.
 - **8.** The method according to claim 2 or 3, wherein the AKT family members are selected from the group consisting of AKT1, AKT2 and AKT3.
- **9.** The method according to claim 3 or 8, wherein the AKT family members constitutively activate signal transduction pathway of mTOR pathway.
 - **10.** The method according to claim 2, further comprising contacting one or more factors selected from the group consisting of p53 inhibitor, GLIS family members, and nucleic acids that encode the same with the somatic cell.
- 40 11. An agent for improving the efficiency of establishment of induced pluripotent stem cell, comprising a factor selected from the group consisting of Ras family members, PI3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 and S6K, and nucleic acids that encode the same.
- **12.** The agent according to claim 11, wherein the Ras family members, PI3 kinase, RalGEF, Raf, AKT family members and S6K are constitutively active forms.
 - **13.** The agent according to claim 11 or 12, wherein the Ras family members are selected from the group consisting of ERas, HRas, NRas and KRas.
- ⁵⁰ **14.** The agent according to claim 12 or 13, wherein the Ras family members constitutively activate one or more signal transduction pathways selected from PI3 kinase pathway, Ral pathway and MAP kinase pathway.
 - **15.** The agent according to claim 12 or 13, wherein the Ras family members constitutively activate PI3 kinase pathway and/or Ral pathway.
 - **16.** The agent according to claim 12, wherein the PI3 kinase constitutively activates signal transduction pathway of AKT pathway.

- **17.** The agent according to claim 11 or 12, wherein the AKT family members are selected from the group consisting of AKT1, AKT2 and AKT3.
- **18.** The agent according to claim 12 or 17, wherein the AKT members constitutively activate signal transduction pathway of mTOR pathway.
 - **19.** The agent according to claim 11, further comprising one or more factors selected from the group consisting of p53 inhibitor, GLIS family members, and nucleic acids that encode the same.
- **20.** A method of producing induced pluripotent stem cells, comprising contacting a somatic cell with a nuclear reprogramming substance(s) and one or more factors selected from the group consisting of Ras family members, PI3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 and S6K, and nucleic acids that encode the same.
- **21.** The method according to claim 20, wherein the Ras family members, PI3 kinase, RalGEF, Raf, AKT family members and S6K are constitutively active forms.
 - 22. The method according to claim 20 or 21, wherein the Ras family members are selected from the group consisting of ERas, HRas, NRas and KRas.
- 20 **23.** The method according to claim 21 or 22, wherein the Ras family members constitutively activate one or more signal transduction pathways selected from PI3 kinase pathway, Ral pathway and MAP kinase pathway.

25

40

- **24.** The method according to claim 21 or 22, wherein the Ras family members constitutively activate PI3 kinase pathway and/or Ral pathway.
- **25.** The method according to claim 21, wherein the PI3 kinase constitutively activates signal transduction pathway of AKT pathway.
- **26.** The method according to claim 20 or 21, wherein the AKT family members are selected from the group consisting of AKT1, AKT2 and AKT3.
 - **27.** The method according to claim 21 or 26, wherein the AKT family members constitutively activate signal transduction pathway of mTOR pathway.
- 28. The method according to claim 20, further comprising contacting one or more factors selected from the group consisting of p53 inhibitor, GLIS family members, and nucleic acids that encode the same with the somatic cell.
 - 29. The method according to claim 20, wherein the nuclear reprogramming substance(s) is(are) selected from the group consisting of Oct family members, Sox family members, Klf4 family members, Myc family members, Lin family members, Nanog, and nucleic acids that encode the same.
 - **30.** The method according to claim 20, wherein the nuclear reprogramming substances are Oct3/4, Klf4 and Sox2, or nucleic acids that encode the same.
- **31.** The method according to claim 20, wherein the nuclear reprogramming substances are Oct3/4, Klf4, Sox2, as well as c-Myc or L-Myc and/or Nanog and/or Lin28 or Lin28B, or nucleic acids that encode the same.
 - **32.** An agent for inducing an induced pluripotent stem cell, comprising a factor selected from the group consisting of Ras family members, PI3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 and S6K, and nucleic acids that encode the same, as well as nuclear reprogramming substance(s).
 - **33.** The agent according to claim 32, Ras family members, PI3 kinase, RalGEF, Raf, AKT family members and S6K are constitutively active forms.
- 34. The agent according to claim 32 or 33, wherein the Ras family members are selected from the group consisting of ERas, HRas, NRas and KRas.
 - 35. The agent according to claim 33 or 34, wherein the Ras family members constitutively activate one or more signal

transduction pathways selected from PI3 kinase pathway, Ral pathway and MAP kinase pathway.

- **36.** The agent according to claim 33 or 34, wherein the Ras family members constitutively activate PI3 kinase pathway and/or Ral pathway.
- 37. The agent according to claim 32, wherein the nuclear reprogramming substance is selected from the group consisting of Oct family members, Sox family members, Klf4 family members, Myc family members, members of the Lin family, Nanog, and nucleic acids that encode the same.
- **38.** The agent according to claim 33, wherein the PI3 kinase constitutively activates signal transduction pathway of AKT pathway.
 - **39.** The agent according to claim 32 or 33, wherein the AKT family members are selected from the group consisting of AKT1, AKT2 and AKT3.
 - **40.** The agent according to claim 33 or 38, wherein the AKT family members constitutively activate signal transduction pathway of mTOR pathway.
 - **41.** The agent according to claim 32, further comprising one or more factors selected from the group consisting of p53 inhibitor, GLIS family members, and nucleic acids that encode the same.
 - **42.** The agent according to claim 32, wherein the nuclear reprogramming substance includes Oct3/4, Klf4 and Sox2, or nucleic acids that encode the same.
- 43. The agent according to claim 32, wherein the nuclear reprogramming substance includes Oct3/4, Klf4, Sox2 and c-Myc or L-Myc and/or Nanog and/or Lin28 or Lin28B, or nucleic acids that encode the same.
 - **44.** An induced pluripotent stem cell, comprising an exogeneous nucleic acid encoding Ras family members, Pl3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 or S6K.
 - 45. The cell according to claim 44, wherein the aforementioned exogenous nucleic acid is integrated in the genome.
 - **46.** A method of producing a somatic cell, comprising the steps of:
 - (1) producing an induced pluripotent stem cell by the method according to any one of claims 20 to 31, and (2) performing a differentiation induction treatment on the iPS cell obtained through the step (1) to cause the induced pluripotent stem cell to differentiate into a somatic cell.
- **47.** A use of one or more factors selected from the group consisting of Ras family members, PI3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 and S6K, and nucleic acids that encode the same for improving the iPS cell establishment efficiency.
 - **48.** A use of one or more factors selected from the group consisting of Ras family members, PI3 kinase, RalGEF, Raf, AKT family members, Rheb, TCL1 and S6K, and nucleic acids that encode the same, for producing an iPS cell, wherein the factor(s) is(are) contacted with a somatic cell along with nuclear reprogramming substance(s).
 - 49. A use of the induced pluripotent stem cell according to claim 44 or 45 in producing a somatic cell.
- **50.** The induced pluripotent stem cell according to claim 44 or 45, wherein the induced pluripotent stem cell serves as a cell source in producing a somatic cell.

55

5

15

20

30

35

Fig. 1

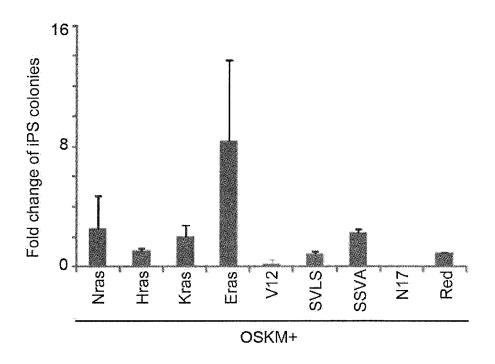


Fig. 2

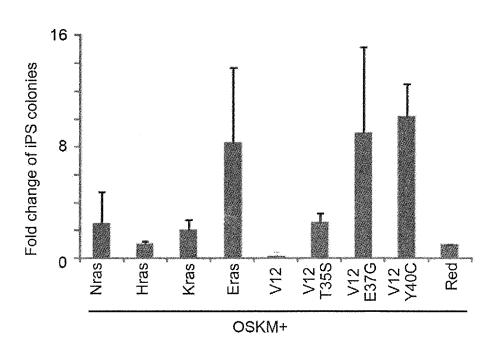


Fig. 3

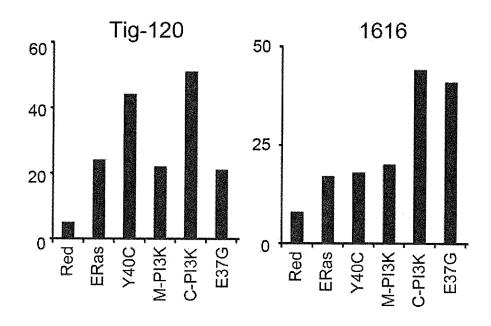


Fig. 4

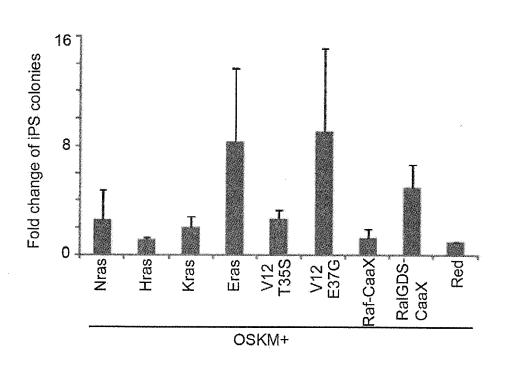


Fig. 5

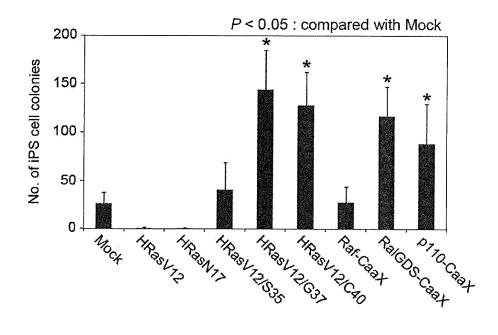


Fig. 6

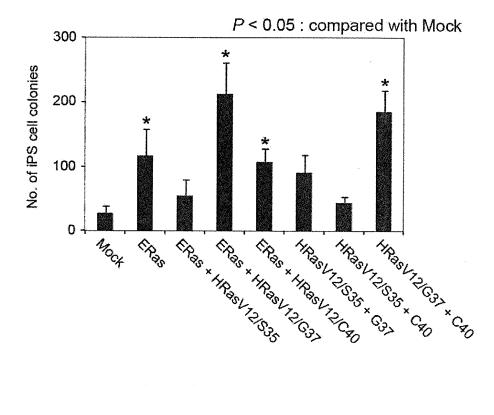


Fig. 7

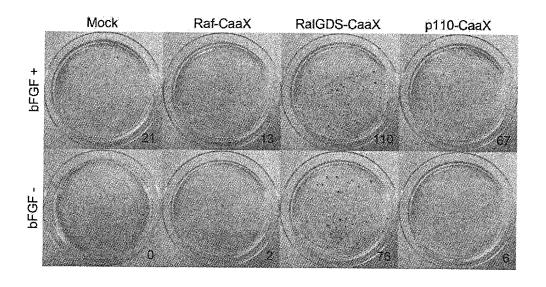


Fig. 8A

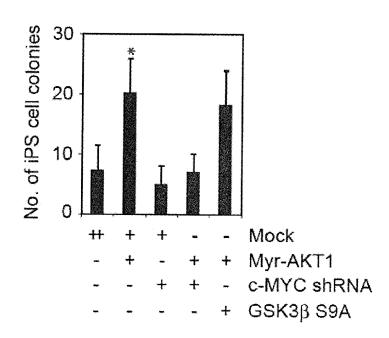


Fig. 8B

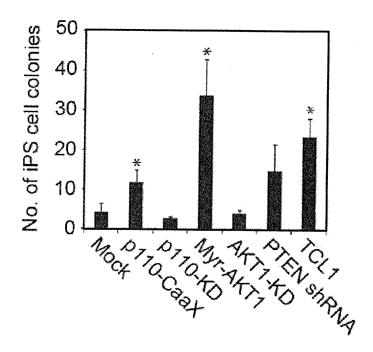


Fig. 9

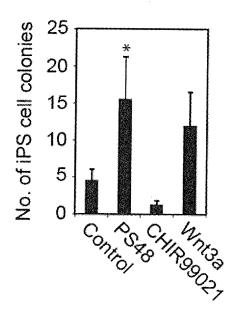


Fig. 10

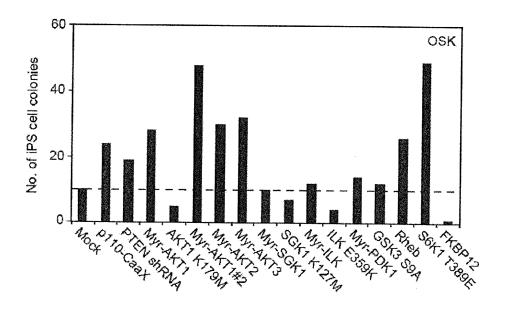


Fig. 11A

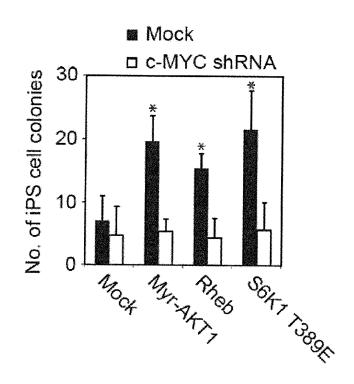


Fig. 11B

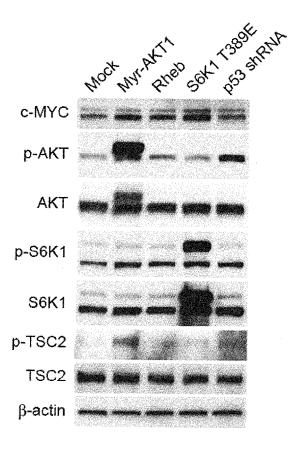


Fig. 12A

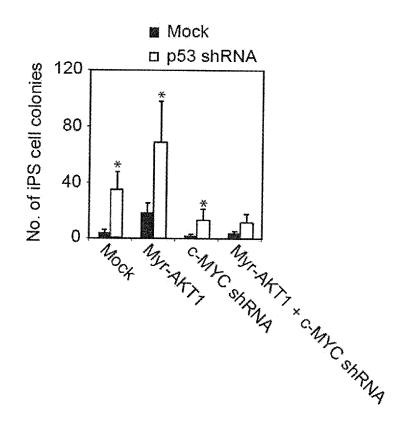


Fig. 12B

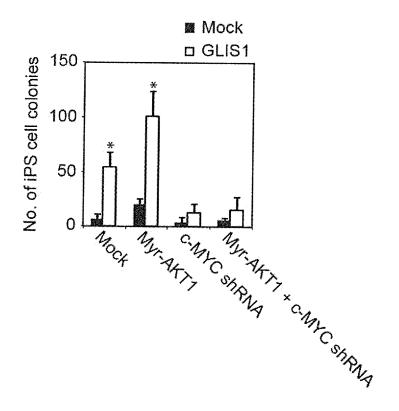
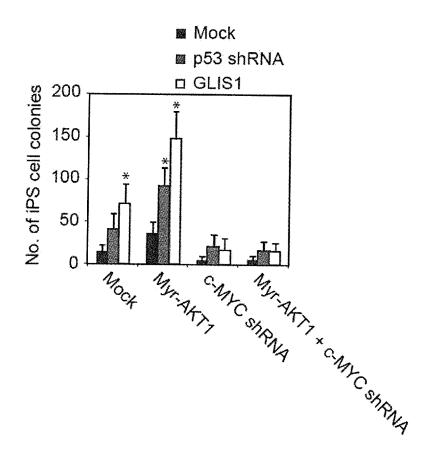



Fig. 12C

International application No. INTERNATIONAL SEARCH REPORT PCT/JP2011/077992 A. CLASSIFICATION OF SUBJECT MATTER C12N5/10(2006.01)i, C12N15/09(2006.01)i According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N5/10, C12N15/09 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2012 Kokai Jitsuyo Shinan Koho 1971-2012 Toroku Jitsuyo Shinan Koho 1994-2012 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAplus/BIOSIS/MEDLINE(STN), JSTPlus/JMEDPlus/JST7580(JDreamII), PubMed, DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. TAKAHASHI K.et al., Induction of pluripotent 1-9,11-18, Χ 20-27, 29-40, stem cells from mouse embryonic and adult 42-50 fibroblast cultures by defined factors, Cell, Υ 2006, 126(4), p.663-76 10,19,28,41 Υ ZHAO Y.et al., Two supporting factors greatly 10,19,28,41 improve the efficiency of human iPSC generation, Cell Stem Cell, 2008, 3(5), p.475-9 WO 2010/098419 A1 (Kyoto University, NATIONAL Υ 10,19,28,41 INSTITUTE OF ADVANCED INDUSTRIAL SICENCE AND TECHNOLOGY, JAPAN BIOLOGICAL INFORMATICS CONSORTIUM), 02 September 2010 (02.09.2010), (Family: none) Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document defining the general state of the art which is not considered "E" earlier application or patent but published on or after the international document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive "L" document which may throw doubts on priority $\operatorname{claim}(s)$ or which is cited to establish the publication date of another citation or other special reason (as specified) step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report 06 March, 2012 (06.03.12) Date of the actual completion of the international search 23 February, 2012 (23.02.12) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office

Form PCT/ISA/210 (second sheet) (July 2009)

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2011/077992

		PCT/JP2(011/077992
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	1 0	Relevant to claim No.
A	REBOLLO A.et al., Ras proteins: recent adva and new functions, Blood, 1999, 94(9), p.29		1-50
А	YAMNIK R.L.et al., mTOR/S6K1 and MAPK/RSK signaling pathways coordinately regulate estrogen receptor alpha serine 167 phosphorylation, FEBS Lett., 2010-JAN, 584 p.124-8	(1),	1-50
А	NOGUCHI M.et al., Proto-oncogene TCL1: more than just a coactivator for Akt, FASEB J., 21(10), p.2273-84		1-50
A	TAKAHASHI K.et al., Differential membrane localization of ERas and Rheb, two Ras-relaproteins involved in the phosphatidylinosishkinase/mTOR pathway, J.Biol.Chem., 2005, 280(38), p.32768-74		1-50
A	MARSON A.et al., Wnt signaling promotes reprogramming of somatic cells to pluripote Cell Stem Cell, 2008, 3(2), p.132-5	ency,	1-50

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2011/077992

Box No. II	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)	
1. Claims	al search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: Nos.: e they relate to subject matter not required to be searched by this Authority, namely:	
	Nos.: e they relate to parts of the international application that do not comply with the prescribed requirements to such an that no meaningful international search can be carried out, specifically:	
3. Claims because	Nos.: e they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)		
Claim 1 "a method pluripote increasi: as stated nucleus in the efficient feature of the claims. 2. As all saddition	searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of nal fees.	
only the	y some of the required additional search fees were timely paid by the applicant, this international search report covers ose claims for which fees were paid, specifically claims Nos.: uired additional search fees were timely paid by the applicant. Consequently, this international search report is ed to the invention first mentioned in the claims; it is covered by claims Nos.:	
Remark on Pro	The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee. The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation. No protest accompanied the payment of additional search fees.	

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2011/077992

	Continuation of Box No.III of continuation of first sheet(2)
	concernation of box wo.iii of concernation of first sheet(2)
as	a special technical feature. Similar comments apply to claims 2-50.
	Document 1: Cell, 2006, 126(4), p.663-76

Form PCT/ISA/210 (extra sheet) (July 2009)

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 4937190 A [0084]
- WO 200769666 A [0085]
- JP 3602058 B [0085]
- WO 2007069666 A [0097] [0102]
- WO 2008118820 A [0097]
- WO 2010098419 A [0107]

- WO 2010013845 A [0111]
- JP 2002291469 A **[0121]**
- JP 2004121165 A [0121]
- JP 2003505006 A [0121]
- JP 2003523766 A [0121]
- US 61419320 A [0213]

Non-patent literature cited in the description

- TAKAHASHI, K.; YAMANAKA, S. Cell, 2006, vol. 126, 663-676 [0007]
- OKITA, K. et al. Nature, 2007, vol. 448, 313-317 [0007]
- NAKAGAWA, M. et al. Nat. Biotethnol., 2008, vol. 26, 101-106 [0007]
- TAKAHASHI, K. et al. Cell, 2007, vol. 131, 861-872 [0007] [0124]
- YU, J. et al. Science, 2007, vol. 318, 1917-1920
 [0007]
- TAKAHASHI, K. et al. *Nature*, 2003, vol. 423, 541-545 [0007]
- FRANKEL, A. et al. Cell, 1988, vol. 55, 1189-93
 [0056]
- GREEN, M.; LOEWENSTEIN, P. M. Cell, 1988, vol. 55, 1179-88 [0056]
- DEROSSI, D. et al. J. Biol. Chem., 1994, vol. 269, 10444-50 [0056]
- PARK, C. B. et al. Proc. Natl Acad. Sci. USA, 2000, vol. 97, 8245-50 [0056]
- POOGA, M. et al. FASEB J., 1998, vol. 12, 67-77 [0056]
- OEHLKE, J. et al. Biochim. Biophys. Acta., 1998, vol. 1414, 127-39 [0056]
- **LIN, Y. Z. et al.** *J. Biol. Chem.,* 1995, vol. 270, 14255-14258 [0056]
- SAWADA, M. et al. Nature Cell Biol., 2003, vol. 5, 352-7 [0056]
- LUNDBERG, P. et al. Biochem. Biophys. Res. Commun., 2002, vol. 299, 85-90 [0056]
- ELMQUIST, A. et al. Exp. Cell Res., 2001, vol. 269, 237-44 [0056]
- MORRIS, M. C. et al. Nature Biotechnol., 2001, vol. 19, 1173-6 [0056]
- **GAO, C. et al.** *Bioorg. Med. Chem.,* 2002, vol. 10, 4057-65 [0056]
- ROUSSELLE, C. et al. Mol. Pharmacol., 2000, vol. 57, 679-86 [0056]

- HONG, F. D.; CLAYMAN, G L. Cancer Res., 2000, vol. 60, 6551-6 [0056]
- Cell Stem Cell, 2009, vol. 4, 381-384 [0056]
- Cell Stem Cell, 2009, vol. 4, 472-476 [0056]
- KANO, F. et al. Methods in Molecular Biology, 2006, vol. 322, 357-365 [0059]
- **KONDO, E. et al.** *Mol. Cancer Ther.*, 2004, vol. 3 (12), 1623-1630 [0059]
- Current Protocols in Molecular Biology. John Wiley & Sons, 1999, 6.3.1-6.3.6 [0077]
- PLoS ONE, 2008, vol. 3, 2532 [0084]
- Stem Cells, 2007, vol. 25, 1707 [0084]
- Cell, 2006, vol. 126, 663-676 [0085] [0097]
- Cell, 2007, vol. 131, 861-872 [0085] [0097]
- Science, 2007, vol. 318, 1917-1920 [0085] [0097]
- Science, 2008, vol. 322, 945-949 [0085]
- J. Biol. Chem., 2007, vol. 282, 27383-27391 [0085]
- SOLDNER et al. Cell, 2009, vol. 136, 964-977 [0086]
- CHANG et al. Stem Cells, 2009, vol. 27, 1042-1049 [0086]
- Science, 2008, vol. 322, 949-953 [0087] [0104]
- KAJI, K. et al. Nature, 2009, vol. 458, 771-775 [0089]
- WOLTJEN et al. Nature, 2009, vol. 458, 766-770
 [0089]
- YU et al. Science, 2009, vol. 324, 797-801 [0090]
- Science, 2009, vol. 324, 797-801 [0095] [0096] [0097]
- Nature Biotechnology, 2008, vol. 26, 101-106 [0097]
- Nat. Cell Biol., 2009, vol. 11, 197-203 [0097]
- Nature, 2008, vol. 451, 141-146 [0097]
- Stem Cells, 2008, vol. 26, 1998-2005 [0097]
- Cell Research, 2008, 600-603 [0097]
- Nature, 2008, vol. 454, 646-650 [0097]
- Cell Stem Cell, 2008, vol. 2, 525-528 [0097] [0107]
- Proc. Natl. Acad. Sci. USA., 2010, vol. 107, 14152-14157 [0097]
- Cell, 2009, vol. 136, 411-419 [0097]
- Nature, 2009, 08436 [0097]
- Cell Stem Cell, 2010, vol. 7, 651-655 [0107]

- Nat. Biotechnol., 2008, vol. 26 (7), 795-797 [0107]
- Cell Stem Cell, 2008, vol. 3, 568-574 [0107]
- Cell Stem Cell, 2008, vol. 3, 475-479 [0107]
- Nature, 2009, vol. 460, 1132-1135 [0107]
- Cell Stem Cell, 2008, vol. 3, 132-135 [0107]
- PloS Biology, 2008, vol. 6 (10), 2237-2247 [0107]
- RNA, 2008, vol. 14, 1-10 [0107]
- Nat. Biotechnol., 2009, vol. 27, 459-461 [0107]
- Nature, 2011, vol. 474, 225-229 [0107]
- Cell Stem Cell., 2009, vol. 5 (3), 237-241 [0111]

- MCMAHON, A.P.; BRADLEY, A. Cell, 1990, vol. 62, 1073-1085 [0117] [0129]
- TAKAHASHI; YAMANAKA. *Cell*, 2006, vol. 126, 663-676 [0118]
- OKITA et al. Nature, 2007, vol. 448, 313-317 [0118]
- TAKAHASHI et al. Cell, 2007, vol. 131, 861-872 [0118]
- HONG H et al. Nature, 2009, vol. 460, 1132-1135
 [0198]