BACKGROUND OF THE INVENTION
Field of the Invention
[0001] The present invention relates to a purified cellulose fiber, a fiber-rubber composite,
and a tire.
Priority is claimed on Japanese Patent Application No.
2010-267898, filed on November 30, 2010, the content of which is incorporated herein by reference.
Description of Related Art
[0002] A cellulose fiber has advantages of good dimensional stability, high adhesiveness,
and low temperature dependence of its elastic modulus, and thus is generally used
for tires as a rayon fiber.
However, rayon discharges carbon disulfide in a manufacturing process and thus has
a problem that the environmental burden is very high. Therefore, rayon does not satisfy
the social requirement for manufacturing products with raw materials having a low
environmental burden.
[0003] The above-mentioned characteristics of good dimensional stability, high adhesiveness,
and low temperature dependence of the elastic modulus (a change in the elastic modulus
with respect to a temperature change) significantly depend on the use of cellulose
as the fiber material and its properties. Synthetic fibers such as polyester and nylon
are used as a tire reinforcing cord; however, it is difficult to obtain the same degree
of dimensional stability, adhesiveness, and elastic modulus as the cellulose fibers.
Therefore, in a current status, some tires use rayon even though the environmental
burden is heavy.
[0004] In recent years, environmental conservation for the earth is required. Particularly,
it is desirable to use cellulose that does not depend on fossil fuels as a raw material.
The need for using carbon disulfide which has a high environmental burden during manufacture
of rayon, which is the above-mentioned problem, is to melt or dissolve cellulose during
fiberization (spinning).
In order to melt or dissolve cellulose, there is a need to break hydrogen bonds within
molecules and between molecules in hydroxyl groups, which are present at three points
per repeating unit of cellulose. In the manufacture of rayon, cellulose can be dissolved
by chemically modifying the hydroxyl groups using carbon disulfide and breaking the
hydrogen bonds. The hydroxyl groups are chemically modified and spinned, and thereafter,
a cellulose fiber with the regenerated hydroxyl groups is generally called regenerated
cellulose. Currently, the reason that cellulose fibers other than rayon are not generally
used for reinforcing tires is that it is difficult to melt and dissolve cellulose
in an industrial method and it is difficult to find a method of obtaining high strength
and elongation at break during fiberization of cellulose.
[0005] Contrary to this, a method of manufacturing a purified cellulose fiber using N-methylmorpholine
N-oxide (NMMO) as a solvent has been reported. In this method, it is possible to dissolve
cellulose without chemical modification of cellulose itself and discharge of carbon
disulfide. In addition, the purified cellulose fiber obtained by dry-wet spinning
a cellulose-dissolved liquid manufactured in this method is superior in terms of a
low environmental burden and no residue of chemically modified hydroxyl groups (Patent
Literature 1).
PATENT DOCUMENTS
[0006]
[Patent Literature 1] Japanese Unexamined Patent Application, First Publication No.
2006-188806
[Patent Literature 2] United States Patent No. 1943176
[Patent Literature 3] Japanese Unexamined Patent Application, First Publication No.
S60-144322
[Patent Literature 4] Japanese Patent No. 4242768
[Patent Literature 5] United States Patent Application, Publication No. 2008/0269477
[Patent Literature 6] Chinese Patent No. 101328626
DISCLOSURE OF INVENTION
PROBLEMS TO BE SOLVED BY THE INVENTION
[0007] However, the purified cellulose fiber manufactured using NMMO as the solvent does
not have sufficient strength nor sufficient elongation at break, and is thus difficult
to be applied to the use for tires.
In general, there is a trade-off between strength and elongation at break. That is,
when sufficient strength is imparted to a fiber spinned using NMMO, elongation at
break is reduced. Conversely, when sufficient elongation at break is imparted, strength
is reduced. For example, the purified cellulose fiber manufactured using NMMO as the
solvent described in Patent Literature 1 did not have sufficient elongation at break.
Moreover, since NMMO has explosiveness, there are problems of low safety and a risk
of explosion during production.
Strength is a property determined by a combination of a plurality of complex factors
such as internal defects as well as molecular orientations but is not necessarily
a property determined in connection with the initial elastic modulus.
[0008] However, in recent years, performance required by car tires becomes stricter in cooperation
with vehicle performance. Therefore, steering stability is one of the most important
performances. Tires in which the above-mentioned rayon fibers are used in manufacturing
exhibit excellent steering stability.
[0009] When the initial elastic modulus of a fiber is insufficient, it has an adverse effect
on steering stability and cut resistance. In addition, when elongation at break is
low, tires are easily cut by an external input. Therefore, the purified cellulose
fiber is required to sufficiently have both initial elastic modulus and elongation
at break, and when any one of the initial elastic modulus and elongation at break
is significantly lower than that of the properties of rayon used in current tires,
this may affect tire performance.
[0010] On the other hand, efficiently dissolving cellulose in various types of ionic liquids
has been reported (Patent Literatures 2 to 4). Dissolving of cellulose in ionic solutions
is caused by solvation, and toxic substances such as carbon disulfide are not discharged
in the manufacturing process of a purified cellulose fiber. Manufacture of the purified
cellulose fiber is easily achieved by causing dissolved cellulose to pass through
a polar solvent such as water or alcohol, or an aqueous solution of a polar solvent
such as water or alcohol and an ionic liquid. Spinning of cellulose fibers using the
ionic liquid has been reported in Patent Literatures 5 and 6.
Ionic liquids do not have explosiveness and have high safety during production. In
addition, spinning of cellulose using the ionic liquids can be performed without the
addition of antioxidants or surfactants unlike the case of using NMMO. As a result,
materials and energy can be saved.
For the above-described reason, a method of manufacturing a purified cellulose fiber
in which both sufficient initial elastic modulus and sufficient elongation at break
are obtained using ionic liquids is preferable.
[0011] The present invention has been made taking the foregoing circumstances into consideration,
and an object thereof is to provide a purified cellulose fiber which is manufactured
by using raw materials with low environmental burdens, which suppresses discharge
of carbon disulfide, and is excellent in initial elastic modulus and elongation at
break, a fiber-rubber composite using the same, and a tire having excellent tire characteristics
using the same.
MEANS TO SOLVE THE PROBLEMS
[0012] The present invention provides a purified cellulose fiber having the following characteristics,
a fiber-rubber composite using the same, and a tire using the same.
(1) A purified cellulose fiber which has an initial elastic modulus of 2.30 cN/dtex
or higher in a region having an elongation of 0.5% to 0.7%, in which the purified
cellulose fiber is made by wet spinning or dry-wet spinning a cellulose-dissolved
liquid made by dissolving a cellulose raw material in an ionic liquid.
(2) The purified cellulose fiber, in which an elongation at break (EB) of the purified
cellulose is 10.0% or more.
(3) The purified cellulose fiber, in which the ionic liquid includes a cation portion
and an anion portion, and the cation portion is one selected from the group consisting
of an imidazolium ion, a pyridinium ion, an ammonium ion, and a phosphonium ion.
(4) The purified cellulose fiber, in which the cation portion is an imidazolium ion
expressed by the following general formula (C1):

wherein in the formula, R1 represents an alkyl group having 1 to 4 carbon atoms or an alkenyl group having 2
to 4 carbon atoms, R2 represents a hydrogen atom or a methyl group, and R3 represents one of an alkyl group having 1 to 8 carbon atoms and an alkenyl group
having 2 to 8 carbon atoms.
(5) The purified cellulose fiber, in which the anion portion is formed from a compound
including phosphorus.
In this case, the ionic liquid which is a compound including phosphorus in the anion
portion is less likely to reduce the molecular weight of the fiber and has high heat
resistance (that is, is less likely to be pyrolyzed). Since heat resistance is high,
the spinning temperature can be set to be high, and thus the yield during recycling
is high. In general, in a case where the purified cellulose fiber is produced industrially,
an ionic liquid that flows out during fiberization with a dissolving liquid through
a mixed solution of a polar solvent such as water or alcohol and the ionic liquid
is recycled. During distillation or the like, heat is applied, and thus having thermal
stability becomes important. In a case where the ionic liquid is reused by vaporizing
liquid components other than the ionic liquid, heat is applied, and thus heat resistance
has an effect on the yield of recycling.
(6) The purified cellulose fiber, in which the compound including phosphorus of the
anion portion is any of a phosphate ion, a phosphonate ion, and a phosphinate ion
expressed by the following general formula (C2).

wherein in the formula, X1 and X2 are independent, X1 is a hydrogen atom, a hydroxyl group, or OR4, R4 represents an alkyl group having 1 to 4 carbon atoms, X2 is a hydrogen atom or OR5, and R5 represents an alkyl group having 1 to 4 carbon atoms.
(7) The purified cellulose fiber, in which a strength (TB) and the elongation at break
(EB) of the purified cellulose satisfy a relationship of the following general formula
(1):

(8) The purified cellulose fiber, in which the strength (TB) of the purified cellulose
is equal to or higher than 5.1 cN/dtex.
(9) The purified cellulose fiber, in which the strength (TB) of the purified cellulose
is equal to or higher than 5.4 cN/dtex.
(10) The purified cellulose fiber, in which the strength (TB) and the elongation at
break (EB) of the purified cellulose satisfy a relationship of the following general
formula (2):

(11) A fiber-rubber composite which is formed as a composite material with a rubber
material by using the purified cellulose.
(12) A tire which uses the fiber-rubber composite.
(13) The tire, in which the fiber-rubber composite is used as a carcass ply.
[0013] According to the present invention, the purified cellulose fiber can be produced
without generating toxic substances such as carbon disulfide, and thus environmental
burdens can be reduced.
In addition, since the fiber-rubber composite of the present invention uses the purified
cellulose fiber that is excellent in initial elastic modulus and elongation at break,
the utility value thereof is high.
Moreover, since the tire of the present invention uses the fiber-rubber composite
of the present invention, and thus has good tire performance.
EMBODIMENTS FOR CARRYING OUT THE INVENTION
[Purified Cellulose Fiber]
[0014] First, a purified cellulose fiber used in a fiber-rubber composite of the present
invention will be described.
The properties of the purified cellulose fiber used in the present invention has an
initial elastic modulus of 2.30 cN/dtex or higher in a region having an elongation
of 0.5% to 0.7%.
Hereinafter, a preferable manufacturing method of the purified cellulose fiber used
in the present invention will be described.
[0015] In the present invention, it is preferable that the purified cellulose fiber be obtained
by wet spinning or dry-wet spinning a cellulose-dissolved liquid made by dissolving
a cellulose raw material in an ionic liquid.
The wet spinning or dry-wet spinning method is not particularly limited, and the purified
cellulose fiber may be spinned by well-known spinning methods.
The cellulose-dissolved liquid may be produced by blending an ionic liquid and an
organic solvent.
[0016] In the present invention, the cellulose raw material is not particularly limited
as long as it contains cellulose, and may be a cellulose raw material derived from
plants, a cellulose raw material derived from animals, a cellulose raw material derived
from microbes, or a regenerated cellulose raw material.
Examples of the cellulose raw material derived from plants include cellulose raw materials
derived from unprocessed natural plants such as wood, cotton, linen, or other herbaceous
species, and processed cellulose raw materials derived from plants which are subjected
to a processing treatment in advance, such as pulp, wood powder, and paper products.
Examples of the cellulose raw material derived from animals include cellulose raw
materials derived from sea squirts.
Examples of the cellulose raw material derived from microbes include cellulose raw
materials produced by microbes that belong to the genera Aerobacter, Acetobacter,
Achromobacter, Agrobacterium, Alacaligenes, Azotobacter, Pseudomonas, Rhizobium, and
Sarcina.
Examples of the regenerated cellulose raw material include cellulose raw materials
made by regenerating the cellulose raw materials derived from plants, animals, or
microbes as described above using well-known methods such as the viscose method.
Particularly, as the cellulose raw material in the present invention, pulp that is
appropriately dissolved in an ionic liquid is preferable.
[0017] In the present invention, before dissolving the cellulose raw material in a liquid
including the ionic liquid, a pretreatment may be performed on the cellulose raw material
for the purpose of enhancing solubility in the ionic liquid. As the pretreatment,
specifically, a drying treatment, a physical pulverizing treatment such as pulverization
or trituration, a chemical modifying treatment using an acid or an alkali, and the
like may be performed. All of these may be performed by ordinary methods.
[0018] In the present invention, the ionic liquid is a liquid at 100°C or less, and is referred
to as a solvent which is formed from only ions and in which cation portions, anion
portions, or both thereof are formed from organic ions.
[0019] The cation portion of the ionic liquid is not particularly limited, and may use a
cation portion generally used in ionic liquids.
Preferable examples of the cation portion of the ionic liquid of the present invention
include a nitrogen-containing aromatic ion, an ammonium ion, and a phosphonium ion.
[0020] As the nitrogen-containing aromatic cation, specific examples thereof include a pyridinium
ion, a pyridazinium ion, a pyrimidinium ion, a pyrazinium ion, an imidazolium ion,
a pyrazonium ion, an oxazolium ion, a 1,2,3-triazolium ion, a 1,2,4-triazolium ion,
a thiazolium ion, a piperidinium ion, and a pyrrolidinium ion.
Particularly, as the nitrogen-containing aromatic cation, the imidazolium ion and
the pyrimidinium ion are preferable, and the imidazolium ion expressed by the following
General Formula (C3) is more preferable.
[0021]

In the formula, R
6 and R
7 each independently are an alkyl group having 1 to 10 carbon atoms or an alkenyl group
having 2 to 10 carbon atoms, and R
8 to R
10 each independently are a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
[0022] In the formula (C3), R
6 and R
7 each independently are an alkyl group having 1 to 10 carbon atoms or an alkenyl group
having 2 to 10 carbon atoms.
The alkyl group having 1 to 10 carbon atoms may have any of linear, branched, and
cyclic types, the linear or branched type is preferable, and the linear type is more
preferable.
Specific examples of the linear alkyl group include a methyl group, an ethyl group,
a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl
group, a nonyl group, and a decyl group.
Specific examples of the branched alkyl group include a 1-methylethyl group, a 1,1-dimethylethyl
group, a 1-methylpropyl group, a 2-methylpropyl group, a 1,1-dimethylpropyl group,
a 2,2-dimethylpropyl group, a 1-methylbutyl group, a 2-methylbutyl group, a 3-methylbutyl
group, a 1-methylpentyl group, a 2-methylpentyl group, a 3-methylpentyl group, and
a 4-methylpentyl group.
The cyclic alkyl group may be a monocyclic group or a polycyclic group. Specific examples
thereof include a monocyclic group such as a cyclopropyl group, a cyclobutyl group,
a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group,
and a polycyclic group such as a norbornyl group, an adamantyl group, and an isobornyl
group.
In R
6 and R
7, the number of carbon atoms of the alkyl group is preferably 1 to 8, and more preferably
1 to 4.
As the alkenyl group having 2 to 10 carbon atoms, those obtained by substituting a
single bond between carbon atoms in an alkyl group having 2 to 10 carbon atoms with
a double bond may be exemplified, and preferable examples thereof include a vinyl
group and an allyl group. In addition, the position of the double bond is not particularly
limited.
In R
6 and R
7, the number of carbon atoms of the alkenyl group is preferably 2 to 8, and more preferably
2 to 4.
In addition, R
6 and R
7 may be the same or may be different from each other.
[0023] In the formula (C3), R
8 to R
10 each independently are a hydrogen atom, or an alkyl group having 1 to 10 carbon atoms.
The alkyl group having 1 to 10 carbon atoms may have any of linear, branched, and
cyclic types, the linear or branched type is preferable, and the linear type is more
preferable. Examples of the linear, branched, and cyclic alkyl groups include the
same group as the alkyl groups of R
5 and R
6.
In R
7 to R
9, the number of carbon atoms of the alkyl group is preferably 1 to 6, and more preferably
1 to 3. However, a hydrogen atom other than the alkyl group is even more preferable.
In addition, R
7 to R
9 may be the same or may be different from each other.
[0024] Preferable and specific examples of the imidazolium ion expressed by the formula
(C3) are expressed by the following formula (C1).
[0025]

In the formula, R
1 represents an alkyl group having 1 to 4 carbon atoms or an alkenyl group having 2
to 4 carbon atoms, R
2 represents a hydrogen atom or a methyl group, and R
3 represents an alkyl group having 1 to 8 carbon atoms or an alkenyl group having 2
to 8 carbon atoms.
[0026] In addition, preferable and specific examples of the imidazolium ion expressed by
the formula (C1) are expressed by the following formulas (C1-1) to (C1-3).
[0028] The phosphonium ion is not particularly limited as long as it has "P
+", and preferable and specific examples thereof include those expressed by the general
formula "R
4P
+ (a plurality of Rs each independently are a hydrogen atom or a hydrocarbon group
having 1 to 30 carbon atoms.)".
The hydrocarbon group having 1 to 30 carbon atoms may be an aliphatic hydrocarbon
group or an aromatic hydrocarbon group.
As the aliphatic hydrocarbon group, a saturated hydrocarbon group (alkyl group) is
preferable, and the alkyl group may have any of linear, branched, and cyclic types.
The linear alkyl group preferably has 1 to 20 carbon atoms, and more preferably has
1 to 16 carbon atoms. Specific examples of the linear alkyl group include a methyl
group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group,
a heptyl group, an octyl group, a nonyl group, a decyl group, a undecyl group, a dodecyl
group, a tridecyl group, a tetradecyl group, a pentadecyl group, and hexadecyl group.
The branched alkyl group has 3 to 30 carbon atoms, preferably has 3 to 20 carbon atoms,
and more preferably has 3 to 16 carbon atoms. Specific examples of the branched alkyl
group include a 1-methylethyl group, a 1,1-dimethylethyl group, a 1-methylpropyl group,
a 2-methylpropyl group, a 1,1-dimethylpropyl group, a 2,2-dimethylpropyl group, a
1-methylbutyl group, a 2-methylbutyl group, a 3-methylbutyl group, a 1-methylpentyl
group, a 2-methylpentyl group, a 3-methylpentyl group, and a 4-methylpentyl group.
The cyclic alkyl group has 3 to 30 carbon atoms, preferably has 3 to 20 carbon atoms,
more preferably has 3 to 16 carbon atoms, and may be a monocyclic group or a polycyclic
group. Specific examples of the cyclic alkyl group include a monocyclic group such
as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group,
a cycloheptyl group, and a cyclooctyl group, and a polycyclic group such as a norbornyl
group, an adamantyl group, and an isobornyl group.
The aromatic hydrocarbon group preferably has 6 to 30 carbon atoms. Specific examples
of the aromatic hydrocarbon group include an aryl group such as a phenyl group, a
1-naphthyl group, a 2-naphthyl group, a biphenyl group, and a tolyl group, and an
arylalkyl group such as a benzyl group, a phenethyl group, a naphthylmethyl group,
and a naphthylethyl group.
A plurality of Rs in the general formula "R
4P
+" may be the same or different from each other.
[0029] Particularly, as the phosphonium cation ion, a cation portion expressed by the following
formula (C4) is preferable.
[0030]

In the formula, R
11 to R
14 each independently are an alkyl group having 1 to 16 carbon atoms.
[0031] In the formula (C4), R
11 to R
14 each independently are an alkyl group having 1 to 16 carbon atoms. The alkyl group
having 1 to 16 carbon atoms may have any of linear, branched, and cyclic types, the
linear or branched type is preferable, and the linear type is more preferable. Examples
of the linear, branched, and cyclic alkyl groups include those described above.
In addition, R
11 to R
14 may be the same or may be different from each other. Particularly, in terms of easy
availability, it is preferable that three or more of R
11 to R
14 be the same.
[0032] In the present invention, as the alkyl group of the R
11 to R
14, a linear or branched alkyl group having 1 to 14 carbon atoms is preferable, a linear
or branched alkyl group having 1 to 10 carbon atoms is more preferable, a linear or
branched alkyl group having 1 to 8 carbon atoms is even more preferable, and a linear
or branched alkyl group having 1 to 4 carbon atoms is particularly preferable.
A preferable and specific example of the cation portion expressed by the formula (C4)
is expressed by the following formula (C5).
[0033]

[0034] In the present invention, the cation portion is more preferably one or more types
selected from the group consisting of an imidazolium ion, a pyridinium ion, an ammonium
ion, and a phosphonium ion.
[0035] In the present invention, examples of the anion portion include a halogen ion, a
carboxylate ion, a phosphate ion, a phosphonate ion, and a phosphinate ion.
Examples of the halogen ion include a chloride ion, a bromide ion, and an iodide ion,
and the chloride ion is preferable.
Examples of the carboxylate ion include a formate ion, an acetate ion, a propionate
ion, a butyrate ion, a hexanoate ion, a maleate ion, a fumarate ion, an oxalate ion,
a lactate ion, and a pyruvate ion. As the carboxylate ion, the formate ion, the acetate
ion, and the propionate ion are preferable.
Particularly, it is preferable that the anion portion have a compound including a
phosphorus atom, and any of a phosphate ion, a phosphonate ion, and a phosphinate
ion expressed by the following general formula (C2) is more preferable.
[0036]

In the formula, X
1 and X
2 are independent, X
1 is a hydrogen atom, a hydroxyl group, or OR
4, R
4 represents an alkyl group having 1 to 4 carbon atoms, X
2 is a hydrogen atom or OR
5, and R
5 represents an alkyl group having 1 to 4 carbon atoms.
Examples of the phosphonate ion include ions expressed by the following general formula
(A1).
[0037]

In the formula, R
15 and R
16 each independently are a hydrogen atom or an alkyl group.
[0038] In the formula (A1), R
15 and R
16 each independently are a hydrogen atom or an alkyl group, and the alkyl group may
have any of linear, branched, and cyclic types. Particularly, the linear or branched
alkyl group is preferable. The number of carbon atoms of the alkyl group in R
15 and R
16 is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4. In
addition, for the industrial reason, an alkyl group having 1 or 2 carbon atoms is
particularly preferable. R
15 and R
16 may be the same or different from each other.
[0039] Among the phosphonate ions, a dimethyl phosphonate ion and a diethyl phosphonate
ion are preferable.
[0040] Examples of the phosphinate ion include ions expressed by the following general formula
(A2).

In the formula, R
15 is as described above.
[0041] In the formula (A2), R
15 is the same as R
15 in the formula (A1).
[0042] Among the phosphinate ions, a methyl phosphinate ion is preferable.
[0043] The phosphate ion is expressed by the following general formula (A3).
[0044]

[0045] In addition, other anion portions include pseudohalogen ions. The pseudohalogen ion
has similar properties to those of halogen ions. Examples of the pseudohalogen ion
include a cyanate ion, an oxocyanate ion, a thiocyanate ion, and a selenocyanate ion.
[0046] In the present invention, it is preferable that the anion portion be formed from
a compound including phosphorus described above. In addition, as the compound including
phosphorus as the anion portion, a phosphate ion, a phosphonate ion, and a phosphinate
ion are particularly preferable.
[0047] An ionic liquid that contains the compound including phosphorus as the anion portion
has low viscosity and melting point compared to a case where the anion portion is
a halogen ion. Therefore, a purified cellulose fiber using the ionic liquid is superior
in terms of being easily spinned.
In addition, the ionic liquid that contains the compound including phosphorus as the
anion portion is less likely to reduce the molecular weight of a fiber and has high
heat resistance (that is, is less likely to be pyrolyzed at a high temperature) compared
to a case where the anion portion is a carboxylate ion. Therefore, when the purified
cellulose fiber using the ionic liquid is spinned, the spinning temperature can be
set to be high. As a result, the productivity of the purified cellulose fiber at a
higher spinning temperature can be ensured. For example, in the case where the anion
portion is carboxylate, under the condition in which the spinning temperature is equal
to or higher than 130°C, productivity in spinning purified cellulose is reduced. However,
in the case where the anion portion is the compound containing phosphorus, even under
the high heat condition in which the spinning temperature is 150°C, productivity in
spinning purified cellulose can be maintained.
Moreover, in a case where the ionic liquid is reused, the yield of the reuse is high.
Therefore, increases in the amount of the ionic liquid needed to continuously produce
the purified cellulose fiber, and materials and energy needed to produce the ionic
liquid can be prevented.
[0048] The ionic liquid in the present invention is formed from the cation portion and the
anion portion described above. The combination of the cation portion and the anion
portion is not particularly limited, and may be appropriately selected to appropriately
dissolve a cellulose raw material.
As the ionic liquid in the present invention, 1-butyl-3-methylimidazolium acetate
(C4AmimAc), 1-ethyl-3-methylimidazolium acetate (C2AmimAc), 1-allyl-3-methylimidazolium
chloride (AminCl), and 1-ethyl-3-methylimidazolium diethylphosphate (C2mimDEP) are
preferable. In addition, as the ionic liquid in the present invention, 1-ethyl-3-methylimidazolium
methylphosphonate (C2mimMEP) and 1-ethyl-3-methylimidazolium phosphinate (C2mimHPO)
are more preferable.
In the case where the above-mentioned ionic liquid is used, compared to a case where,
for example, 1-butyl-3-imidazolium chloride is used as the ionic liquid, reduction
in the molecular weight of the fiber can be prevented.
[0049] It is preferable that the viscosity of the ionic liquid be low. In a case where an
ionic liquid having a high viscosity is used, it becomes difficult to dissolve the
cellulose raw material in the ionic liquid. In a case where dissolving the cellulose
raw material is difficult, a large amount of the undissolved and remained cellulose
raw material is generated, and thus clogging of a filter occurs during spinning. As
a result, productivity is reduced. In addition, when the undissolved and remained
cellulose raw material is incorporated in the fiber, they become the fracture nucleus
of the fiber. As a result, the quality of the fiber is degraded. On the other hand,
in the case where the ionic liquid having a low viscosity is used, when the cellulose
raw material is dissolved in the ionic liquid, the cellulose raw material appropriately
permeates into the ionic liquid. Therefore, cellulose can be easily dissolved in the
ionic liquid.
[0050] In the present invention, a liquid in which the cellulose raw material is dissolved
includes the ionic liquid.
The liquid may contain or may not contain liquid components other than the ionic liquid.
Specific examples of the liquid components other than the ionic liquid include an
organic solvent.
[0051] The organic solvent is not particularly limited as long as it is not the ionic liquid,
and may be appropriately selected considering the compatibility with the ionic liquid,
viscosity, and the like.
Particularly, it is preferable that the organic solvent be one or more types selected
from the group consisting of an amide-based solvent, a sulfoxide-based solvent, a
nitrile-based solvent, a cyclic ether-based solvent, and an aromatic amine-based solvent.
[0052] Examples of the amide-based solvent include N,N-dimethylformamide, N,N-dimethylacetamide,
1-methyl-2-pyrrolidone, and 1-vinyl-2-pyrrolidone. Examples of the sulfoxide-based
solvent include dimethylsulfoxide and hexamethylene sulfoxide.
Examples of the nitrile-based solvent include acetonitrile, propionitrile, and benzonitrile.
Examples of the cyclic ether-based solvent include 1,3-dioxolan, tetrahydrofuran,
tetrahydropyran, 1,3-dioxane, 1,4-dioxane, and 1,3,5-trioxane.
Examples of the aromatic amine-based solvent include pyridine.
[0053] In the case where the above-described organic solvent is used, the mixing mass ratio
between the ionic liquid and the organic solvent is preferably 6:1 1 to 0.1:1, more
preferably 5:1 to 0.2:1, and even more preferably 4:1 to 0.5:1. At the mixing mass
ratio in the above-described ranges, a solvent that causes the cellulose raw material
to easily swell can be obtained.
In addition, the use amount of the organic solvent is not particularly limited, and
is preferably 1 to 30 parts by mass with respect to 1 part by mass of the cellulose
raw material, preferably 1 to 25 parts by mass, and more preferably 3 to 20 parts
by mass. At the use amount in the above range, a cellulose-dissolved liquid having
an appropriate viscosity can be obtained.
By using the organic solvent in combination with the ionic liquid, the solubility
of the cellulose raw material is further enhanced.
[0054] In the present invention, a method of dissolving the cellulose raw material in the
liquid that contains the ionic liquid is not particularly limited, and for example,
a cellulose-dissolved liquid can be obtained by causing the liquid that contains the
ionic liquid to come into contact with the cellulose raw material, and heating or
stirring the resultant as necessary.
The method of causing the liquid that contains the ionic liquid to come into contact
with the cellulose raw material is not particularly limited, and for example, the
cellulose raw material may be added to the liquid that contains the ionic liquid or
the liquid that contains the ionic liquid may be added to the cellulose raw material.
In a case where heating is performed during dissolving, the heating temperature is
preferably 30°C to 200°C, more preferably 70°C to 180°C, and even more preferably
80°C to 150°C. By performing heating, the solubility of the cellulose raw material
is further enhanced.
The stirring method is not particularly limited, and the liquid that contains the
ionic liquid and the cellulose raw material may be mechanically stirred using a stirrer,
a stirring blade, a stirring rod, or the like, or the liquid that contains the ionic
liquid and the cellulose raw material may be sealed in an airtight container and stirred
by shaking the container. The stirring time is not particularly limited, and it is
preferable that stirring be performed until the cellulose raw material is appropriately
dissolved. Otherwise, the liquid that contains the ionic liquid and the cellulose
raw material may be dissolved by an extruder having a single shaft or a plurality
of shafts, a kneader, or the like.
[0055] In addition, in the case where the liquid that contains the ionic liquid of the present
invention contains the organic solvent as well as the ionic liquid, the organic solvent
and the ionic liquid may be mixed with each other in advance, the organic solvent
may be added to be dissolved after the ionic liquid and the cellulose raw material
are mixed with each other, or the ionic liquid may be added to be dissolved after
the organic solvent and the cellulose raw material are mixed with each other.
Particularly, it is preferable that a mixed liquid be prepared by mixing the organic
solvent and the ionic liquid with each other in advance. Here, it is preferable that
the organic solvent and the ionic liquid be heated and stirred at 70°C to 180°C for
5 to 30 minutes and mixed until the liquid that contains the ionic liquid is uniformized,
so as to be uniformly mixed with each other.
[0056] By using the cellulose-dissolved liquid obtained by the above method, a purified
cellulose fiber can be spinned by the well-known spinning methods such as the dry-wet
spinning or wet spinning mentioned above.
[0057] The purified cellulose fiber obtained by the above method has an initial elastic
modulus of 2.30 cN/dtex or higher in a region having an elongation of 0.5% to 0.7%.
Regarding the purified cellulose fiber obtained by the above method, the relationship
between the strength TB (cN/dtex) and the elongation at break EB (%) at 25°C satisfies
the following formulas (1) and (2), and a strength holding ratio (HT/TB) assuming
that the strength is HT (cN/dtex) at 150°C is 70 to 100 (%).
[0058]

[0059] The strength (TB) is more preferably 5.1 cN/dtex or higher, and even more preferably
5.4 cN/dtex or higher.
The breaking strength (EB) is preferably in a range of 10% to 30%, more preferably
in a range of 10% to 25%, and even more preferably 10% to 20%.
The initial elastic modulus is preferably in a range of 2.30 cN/dtex to 8.0 cN/dtex,
more preferably in a range of 2.30 cN/dtex to 6.0 cN/dtex, and even more preferably
in a range of 2.30 cN/dtex to 5.0 cN/dtex. In a case where the initial elastic modulus
is below the above ranges, steering stability and cut resistance are degraded. In
a case where the initial elastic modulus is above the above ranges, molding a tire
using the purified cellulose is difficult, which has an adverse effect on the vibration
characteristics of the tire. In addition, there is an adverse effect that results
in bad ride quality for a person who rides in the car.
[0060] By using the fiber-rubber composite of the present invention which uses the purified
cellulose fiber that is excellent in initial elastic modulus and elongation at break
for a carcass ply, a belt ply, or a belt protecting layer, a tire having high performance
can be obtained. Particularly, it is preferable that the fiber-rubber composite of
the present invention be used for a carcass ply. Accordingly, a tire having excellent
steering stability can be obtained.
In addition, the fiber-rubber composite may be used for at least one of the carcass
ply, the belt ply, and the belt protecting layer. However, the fiber-rubber composite
may also be used for all the carcass ply, the belt ply, and the belt protecting layer.
[0061] A cord produced from the cellulose fiber employs a single twisted structure having
a single twisted filament bundle, or a double twisted structure made by finally twisting
a plurality of lines of primarily twisted filament bundles. The fineness per single
cord is preferably 1400 to 6000 dtex, and more preferably 1400 to 4000 dtex. When
a cord having a fineness of less than 1400 dtex is used, the number of carcasses needs
to be increased in order to maintain tire strength, resulting in increase in tire
weight. In a case where a cord having a fineness of higher than 6000 dtex is used,
the thickness of the carcass layer is unnecessarily increased, resulting in an increase
in tire weight.
[0062] The twisting coefficient of the cord is preferably 0.30 to 0.80, and more preferably
0.50 to 0.70.
The twisting coefficient tanθ is obtained by following formula (3).

D: total decitex value
P: cord specific gravity
T: the number of twists (twists/cm)
[0063] The cord is dipped into a general adhesive such as RFL (resolein-formalin-latex)
to be subjected to a dipping treatment, and is subjected to heat treatments including
a drying process and a baking process. The dipped cord produced by the above method
is topped with a coating rubber, thereby producing a fiber-rubber composite.
[0064] As a rubber composition used in the fiber-rubber composite of the present invention,
for example, a natural rubber (NR) and a synthetic rubber having a carbon-carbon double
bond may be singly or in a combination of two or more thereof.
Examples of the synthetic rubber include: a polyisoprene rubber (IR), a polybutadiene
rubber (BR), a polychloroprene rubber, and the like which are homopolymers of a conjugated
diene compound such as isoprene, butadiene, and chloroprene; a styrene-butadiene copolymer
rubber (SBR), a vinylpyridine-butadiene-styrene copolymer rubber, an acrylonitrile-butadiene
copolymer rubber, an acrylic acid-butadiene copolymer rubber, a methacrylic acid-butadiene
copolymer rubber, a methyl acrylate-butadiene copolymer rubber, a methyl methacrylate-butadiene
copolymer rubber, and the like which are copolymers of the conjugated diene compound
and a vinyl compound such as styrene, acrylonitrile, vinylpyridine, acrylic acid,
methacrylic acid, alkyl acrylates, and alkyl methacrylates; copolymers (for example,
an isobutylene-isoprene copolymer rubber (IIR)) of olefins such as ethylene, propylene,
and isobutylene and a diene compound; copolymers (EPDM) (for example, an ethylene-propylene-cyclopentadiene
ternary copolymer, an ethylene-propylene-5-ethylidene-2-norbornene ternary copolymer,
and an ethylene-propylene-1,4-hexadiene ternary copolymer) of olefins and unconjugated
dienes; and halides of the above various rubbers, for example, a chlorinated isobutylene-isoprene
copolymer rubber (Cl-IIR), a brominated isobutylene-isoprene copolymer rubber (Br-IIR),
and a ring-opening polymer of norbornene.
The above synthetic rubbers may be blended with a saturated elastic body such as a
polyalkenamer (for example, polypentenamer) obtained by ring-opening polymerization
of a cycloolefin, a rubber (for example, a polyepichlorohydrin rubber which can be
subjected to sulfur vulcanization) obtained by ring-opening polymerization of an oxirane
ring, or a polypropylene oxide rubber.
[0065] In the rubber composition used in the present invention, sulfur, organic sulfur compounds,
and other cross-linking agents may be blended at a ratio of preferably 0.01 to 10
parts by mass, and more preferably 1 to 5 parts by mass with respect to 100 parts
by mass of the rubber component. In addition, in the rubber composition, a vulcanization
accelerator may be blended at a ratio of preferably 0.01 to 10 parts by mass, and
more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the rubber
component. In this case, the type of the vulcanization accelerator is not limited,
but by using dibenzothiazyl sulfide (DM), diphenylguanidine (D), and the like, the
vulcanizing time can be shortened.
In addition, the rubber composition used in the present invention may be blended with,
for example, oils such as mineral oils including paraffin-based, naphthene-based,
and aromatic process oils, a co-oligomer of ethylene-α-olefin, paraffin wax, and liquid
paraffin, and vegetable oils including castor oil, cottonseed oil, linseed oil, rapeseed
oil, soybean oil, palm oil, coconut oil, and peanut oil.
Moreover, blending agents used in typical rubber industries such as fillers including
carbon black, silica, calcium carbonate, calcium sulfate, clay, and mica; vulcanization
accelerator assistants including zinc oxide and stearic acid; and antioxidants may
be added to the rubber composition used in the present invention according to routine
methods depending on the purposes and applications.
[0066] The tire of the present invention can be manufactured by performing typical molding
and vulcanization processes using the fiber-rubber composite of the present invention.
Examples
[0067] Next, the present invention will be described in more detail by showing Examples,
but the present invention is not limited to the following Examples.
[Production of Multifilament]
[0068] A cellulose-dissolved liquid in which pulp is dissolved in 1-butyl-3-methylimidazolium
acetate (C4AmimAc), 1-ethyl-3-methylimidazolium acetate (C2AmimAc), 1-allyl-3-methylimidazolium
chloride (AminCl), 1-ethyl-3-methylimidazolium diethylphosphate (C2mimDEP), 1-ethyl-3-methylimidazolium
methylphosphonate (C2mimMEP), 1-ethyl-3-methylimidazolium phosphinate (C2mimHPO),
or N-methylmorpholine N-oxide (NMMO) was heated to a spinning temperature. Thereafter,
the heated solution was extruded in a coagulating bath by an extruder and was subjected
to washing and drying processes, thereby obtaining multifilaments of Examples 1 to
23 and Comparative Examples 1 to 6 shown in Tables 1 to 4.
[0069] The properties of the multifilament (fiber) in each of the Examples and the Comparative
Examples were measured by the following test methods, and the results are shown in
Tables 1 to 4. In addition, in the item regarding "Productivity" of Tables 1 to 4,
symbol O indicates that the amount of fiber for producing a tire can be produced,
and symbol X indicates that it is difficult to produce the amount of fiber for producing
a tire.
(1) Fineness Evaluation
[0070] 100 m of the fiber was taken, dried at 130°C for 30 minutes, and was left in a dry
desiccator to cool until the temperature becomes the room temperature. Thereafter,
the weight thereof was measured. Since 1 g per 10,000 m becomes 1 dtex, the fineness
was calculated from the weight of 100 m of the fiber.
(2) Method of Measuring Initial Elastic Modulus and Elongation at Break
[0071] A fiber that was false-twisted four times per 10 cm was subjected to a tensile test
using a tensile tester under the conditions of 25°C and 55%RH. The elongation at break
is an elongation at the time of breaking, and the initial elastic modulus was obtained
from the gradient of a tangential line of a stress-strain curve at an elongation of
0.5 to 0.7%.
In addition, although the unit of initial elastic modulus is [cN/dtex·%], the unit
of initial elastic modulus in the present invention was defined as the notation [cN/dtex].
[Production of Cord]
[0072] After the obtained multifilament is primarily twisted, two pieces of the multifilament
were combined and finally twisted, thereby producing a cord.
[Production of Dipped Cord]
[0073] The cord was dipped in the RFL (resolcin-formalin-latex) adhesive to be subjected
to a dipping treatment, and was subjected to heat treatments including a drying process
and a baking process. The drying process was performed under the conditions of 150°C×150
seconds and a tension of 1×10
-3 N/dtex. The baking process was performed after the drying process under the conditions
of the same temperature, same time, and same tension as those of the drying process.
As a result, a dipped cord was produced.
[Production of Carcass Ply Material]
[0074] By calendering the dipped cord with a coating rubber, a carcass ply material was
produced.
[Production of Tire]
[0075] Using the dipped cord topped with the coating rubber, typical molding and vulcanization
processes were performed, thereby producing a tire 225/45R17.
(1) Steering Stability
[0076] The tire in each of the Examples and the Comparative Examples was mounted in a car,
a real car feeling test was performed at a speed of 60 to 200 km/h. The items including
(i) straight-running stability, (ii) turning stability, (iii) feeling of rigidity,
(iv) handling, and the like were graded 1 to 10 points, and the points of each of
the items were averaged to measure the steering stability.
In addition, the evaluation was performed by two expert drivers, the grades of the
two drivers were averaged to index a control tire of the Comparative Example 1 as
100. A larger index indicates good steering stability.
(2) Side Plunger Index
[0077] The tire was rim-assembled at a pneumatic pressure of 2.0 kgf/cm
2, and was fixed to a tester under the unloaded condition. In addition, a plunger pin
having a hemispherical surface (diameter: 19 mm) at the tip end was pressed to reach
the maximum width position of a tire side portion under the condition of 50±2.5 mm/min.
At this time, a plunger energy (PE) was calculated by the following formula (4) from
a plunger movement amount Y(cm) until a plunger comes into contact with the tire and
is broken, and a plunger pressing force F (kg) at break of the tire, and the control
tire of the Comparative Example 1 was indexed as 100.

(3) Side Cut Resistance Index (As)
[0078] The tire was mounted to a vehicle, and was caused to ride on a vertically steep curbstone
having a height of 120 mm and a radius of curvature at the corner of 20 mm under the
condition of a speed of 15 km/h in a direction in which the approach angle is 15 degrees.
The same test was performed on the same test tire while reducing the internal pressure
from 3 kg/cm
2 by 0.1 kg/cm
2, and an internal pressure p (kg/cm
2) at which the side portion has a cur burst was obtained. At the internal pressure
p or less, the side portion is likely to be bent, and cut bursts occur in all the
cases. Therefore, it was determined that the side cut resistance was good as the internal
pressure p was reduced, whereas cut bursts had easily occurred and the side cut resistance
was poor as the internal pressure p was increased. When it is assumed that the internal
pressure of the tire of the Comparative Examples 1 was p
0 and the internal pressure of the test tire with respect to the internal pressure
p
0 was p
1, the side cut resistance index (As) can be expressed as the formula As=p
0÷p
1×100. The above test was performed on each of the three same tires, and on the basis
of the average internal pressure p of the three values, the side cut resistance index
(As) was obtained.
[0079] As can be seen from Tables 1 to 4, in the Examples 1 to 23, the balance between the
initial elastic modulus and the elongation at break of the purified cellulose fiber
used was good, and consequently, good tire performance was obtained.
On the other hand, in the Comparative Example 1, the elongation at break of the purified
cellulose fiber used was low, and the energy until the cord was cut was low, so that
good tire performance could not be obtained. In the Comparative Example 2, the initial
elastic modulus of the purified cellulose fiber used was low, and good tire performance
was not obtained. In the Comparative Examples 3 to 6, stability (productivity) to
such a degree that the amount of fiber at which a fiber-rubber composite can be produced
was produced could not be obtained, and the fiber-rubber composite and a tire using
this could not be produced.
[0080]
[Table 1]
|
Example 1 |
Example 2 |
Example 3 |
Example 4 |
Example 5 |
Example 6 |
Example 7 |
Example 8 |
Solvent |
C4mimAc |
C2mimAc |
AmimCl |
C2mimDEP |
C2mimDEP |
C2mimDEP |
C2mimDEP |
C2mimDEP |
Cellulose concentration [wt%] |
10 |
15 |
12.5 |
13.8 |
8 |
14.3 |
15.7 |
15.0 |
Air-gap [mm] |
60 |
67 |
63 |
55 |
70 |
54 |
84 |
89 |
Coagulating bath |
Water |
Water |
Water |
Water |
Water |
Water |
Water |
Water |
Spinning Temperature [°C] |
110 |
110 |
120 |
130 |
140 |
130 |
140 |
140 |
Strength [cN/dtex] |
5.3 |
5.1 |
5.5 |
4.6 |
4.9 |
5.1 |
5.7 |
5.5 |
Elongation at break [%] |
10.5 |
12.9 |
10.1 |
13.4 |
7.9 |
6.2 |
5.1 |
14.3 |
TB/EB-0.52 |
18.0 |
19.3 |
18.3 |
17.7 |
14.4 |
13.2 |
13.3 |
21.9 |
TB×EB |
55.7 |
65.8 |
55.6 |
61.6 |
38.7 |
31.6 |
29.1 |
78.7 |
Initial elastic modulus |
2.74 |
2.45 |
2.83 |
2.31 |
3.74 |
4.57 |
4.98 |
2.32 |
Fineness [dtex] |
1842 |
1856 |
1847 |
1798 |
1837 |
1866 |
1812 |
1843 |
Structure |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
1840dex/2 |
1840 dtex/2 |
Number of primary twists [twists/10 cm] |
47 |
47 |
47 |
47 |
47 |
47 |
47 |
47 |
Number of final twists [twists/10 cm] |
47 |
47 |
47 |
47 |
47 |
47 |
47 |
47 |
Steering stability [index |
107 |
105 |
110 |
102 |
116 |
125 |
124 |
101 |
Plunger energy [index] |
190 |
230 |
190 |
190 |
140 |
110 |
100 |
170 |
Side cut resistance index] |
180 |
190 |
170 |
160 |
130 |
105 |
100 |
190 |
Productivity |
○ |
○ |
○ |
○ |
○ |
○ |
○ |
○ |
* Regarding productivity, O indicates that the amount of fiber at which a tire can
be produced can be produced, and X indicates that it is difficult to produce the amount
of fiber at which a tire can be produced.
* Abbreviations of solvents are shown as follows:
C4mimAc: 1-butyl-3-methylimidazolium acetate
C2mimAc: 1-ethyl-3-methylimidazolium acetate
AmimCl: 1-allyl-3-methylimidazolium chloride
C2mimDEP: 1-ethyl-3-methylimidazolium diethylphosphate
C2mimMEP: 1-ethyl-3-methylimidazolium methylphosphonate
C2mimHPO: 1-ethyl-3-methylimidazolium phosphinate
NMMP: N-methylmorpholine N-oxide |
[0081]
[Table 2]
|
Example 9 |
Example 10 |
Example 11 |
Example 12 |
Example 13 |
Example 14 |
Example 15 |
Example 16 |
Solvent |
C2mim DEP |
C2mimDEP |
C2mimDEP |
C2mimDEP |
C2mimDEP |
C2mimHPO |
C2mimDEP |
C2mimDEP |
Cellulose concentration [wt%] |
12.4 |
12.8 |
13.4 |
13.2 |
16.5 |
16.8 |
14.2 |
15.8 |
Air-gap [mm] |
52 |
49 |
69 |
65 |
60 |
59 |
73 |
67 |
Coagulating bath |
Water |
Water |
Water |
Water |
Water |
Water |
Water |
Water |
Spinning Temperature [°C] |
140 |
140 |
140 |
140 |
130 |
140 |
140 |
130 |
Strength [cN/dtex] |
6.8 |
5.4 |
3.9 |
8.2 |
6.1 |
4.7 |
7.8 |
7.9 |
Elongation at break [%] |
10.2 |
13.4 |
10.2 |
9.4 |
12.7 |
7.4 |
10.0 |
7.2 |
TB/EB-0.52 |
22.7 |
20.8 |
13.0 |
26.3 |
22.9 |
13.3 |
25.8 |
22.1 |
TB×EB |
69.4 |
72.4 |
39.8 |
77.1 |
77.5 |
34.8 |
78.0 |
56.9 |
Initial elastic modulus |
2.96 |
2.35 |
2.87 |
3.17 |
2.34 |
3.97 |
3.03 |
4.08 |
Fineness [dtex] |
1807 |
1831 |
1851 |
1874 |
1803 |
1844 |
1842 |
1889 |
Structure |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
Number of primary twists [twists/10 cm] |
47 |
47 |
47 |
47 |
47 |
47 |
47 |
47 |
Number or final twists [twists/10 cm] |
47 |
47 |
47 |
47 |
47 |
47 |
47 |
47 |
Steering stability [index] |
106 |
102 |
106 |
107 |
103 |
117 |
108 |
119 |
Plunger energy [index] |
190 |
190 |
120 |
190 |
170 |
120 |
180 |
190 |
Side cut resistance [index] |
180 |
190 |
160 |
150 |
190 |
130 |
140 |
110 |
Productivity |
○ |
○ |
○ |
○ |
○ |
○ |
○ |
○ |
[0082]
[Table 3]
|
Example 17 |
Example 18 |
Example 19 |
Example 20 |
Example 21 |
Example 22 |
Example 23 |
Solvent |
C2mimDEP |
C2mimDEP |
C2mimMEP |
C2mimMEP |
C2mimDEP |
C2mimMEP |
C2mimDEP |
Cellulose concentration [wt%] |
15.8 |
13.6 |
16.7 |
13.0 |
14.4 |
15.0 |
13.7 |
Air-gap [mm] |
67 |
68 |
58 |
55 |
59 |
61 |
46 |
Coagulating bath |
Water |
Water |
Water |
Water |
Water |
Water |
Water |
Spinning Temperature [°C] |
140 |
140 |
140 |
140 |
130 |
140 |
140 |
Strength [cN/dtex] |
5.4 |
5.2 |
4.2 |
5.1 |
5.4 |
5.5 |
7.4 |
Elongation at break [%] |
11.9 |
15.1 |
17.4 |
10.0 |
11.7 |
10.5 |
10.6 |
TB/EB-0.52 |
19.6 |
21.3 |
18.5 |
16.9 |
19.4 |
18.7 |
25.3 |
TB×EB |
64.3 |
78.5 |
73.1 |
51.0 |
63.2 |
57.8 |
78.4 |
Initial elastic modulus |
2.53 |
2.31 |
2.30 |
2.94 |
2.47 |
2.83 |
2.78 |
Fineness [dtex] |
1865 |
1891 |
1808 |
1812 |
1890 |
1792 |
1872 |
Structure |
1840 dtexl2 |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
Number of primary twists [twists/10 cm] |
47 |
47 |
47 |
47 |
47 |
47 |
47 |
Number of final twists [twists/10 cm] |
47 |
47 |
47 |
47 |
47 |
47 |
47 |
Steering stability [index] |
104 |
102 |
102 |
109 |
104 |
109 |
108 |
Plunger energy [index] |
170 |
190 |
190 |
170 |
180 |
180 |
190 |
Side cut resistance [index] |
190 |
160 |
170 |
170 |
180 |
170 |
180 |
Productivity |
○ |
○ |
○ |
○ |
○ |
○ |
○ |
[0083]
[Table 4]
|
Comparative Example 1 |
Comparative Example 2 |
Comparative Example 3 |
Comparative Example 4 |
Comparative Example 5 |
Comparative Example 6 |
Solvent |
NMMO |
NMMO |
C2mimAc |
C2mimDEP |
C2mimMEP |
C2mimDEP |
Cellulose concentration [wt%] |
10 |
13.5 |
16.2 |
18.4 |
17.7 |
17.7 |
Air-gap [mm] |
73 |
26 |
71 |
78 |
64 |
64 |
Coagulating bath |
Water |
Water |
Water |
Water |
Water |
Water |
Spinning Temperature [°C] |
100 |
90 |
150 |
90 |
160 |
170 |
Strength [cN/dtex] |
5.0 |
3.3 |
9.2 |
6.6 |
6.6 |
6 |
Elongation at break [%] |
5.8 |
13.2 |
8.8 |
3.4 |
12.4 |
13.5 |
TB/EB-0.52 |
12.5 |
12.6 |
28.5 |
12.5 |
24.4 |
23.2 |
TB×EB |
29.0 |
43.6 |
81.0 |
22.4 |
81.8 |
81.0 |
Initial elastic modulus |
2.25 |
1.35 |
2.29 |
2.28 |
2.26 |
2.15 |
Fineness [dtex] |
1863 |
1861 |
1728 |
1842 |
1842 |
1867 |
Structure |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
1840 dtex/2 |
Number of primary twists [twists/10 cm] |
47 |
47 |
47 |
47 |
47 |
47 |
Number of final twists [twists/10 cm] |
47 |
47 |
47 |
47 |
47 |
47 |
Steering stability [index] |
100 |
89 |
- |
100 |
- |
- |
Plunger energy [index] |
100 |
100 |
- |
70 |
- |
- |
Side cut resistance [index] |
100 |
100 |
- |
60 |
- |
- |
Productivity |
○ |
○ |
X |
X |
X |
X |
INDUSTRIAL APPLICABILITY
[0084] According to the present invention, the purified cellulose fiber can be produced
without generating toxic substances such as carbon disulfide. Therefore, environmental
burdens can be reduced. In addition, the purified cellulose fiber that is excellent
in initial elastic modulus and elongation at break is used in the fiber-rubber composite
of the present invention. Therefore, the utility value thereof is high. Moreover,
the fiber-rubber composite of the present invention is used in the tire of the present
invention. Therefore, good tire performance is provided.