

(11) EP 2 648 488 A1

(12) DEMANDE DE BREVET EUROPEEN

(43) Date de publication: 09.10.2013 Bulletin 2013/41

(21) Numéro de dépôt: **13162405.8**

(22) Date de dépôt: 04.04.2013

(51) Int Cl.: H05B 37/02^(2006.01) H05B 33/08^(2006.01)

H02J 9/00 (2006.01)

(84) Etats contractants désignés:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Etats d'extension désignés:

BA ME

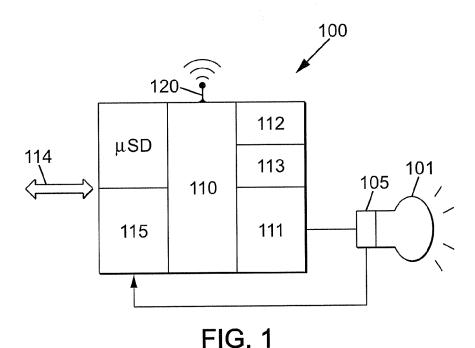
(30) Priorité: 06.04.2012 FR 1253220

(71) Demandeur: Electricité de France 75008 Paris (FR)

(72) Inventeurs:

Pignier, Daniel
 92340 Bourg la Reine (FR)

Menga, David
 91370 Verrières le Buisson (FR)


(74) Mandataire: Cabinet Plasseraud52, rue de la Victoire75440 Paris Cedex 09 (FR)

(54) Eclairage LED et procédé de contrôle d'une installation électrique comprenant un tel éclairage

- (57) L'invention concerne un éclairage LED (100), comprenant :
- au moins une diode électroluminescente (101);
- au moins une interface de communication avec un câble Ethernet (114) ;
- une unité de traitement électronique (110) adaptée à

recueillir des données relatives au fonctionnement de la diode électroluminescente, l'éclairage étant alimenté en courant par le câble Ethernet.

L'éclairage LED selon l'invention ne nécessite aucun convertisseur. En outre, l'éclairage LED selon l'invention peut échanger des données via le câble Ethernet.

EP 2 648 488 A1

5

30

35

40

50

Description

[0001] L'invention concerne le domaine de l'éclairage par diode électroluminescente, ou diode LED pour « Ligth Emitting Diode » en anglais.

1

[0002] L'énergie électrique distribuée dans un logement est en courant alternatif. Une LED doit être alimentée en courant continue ; ainsi les éclairages LED installés dans un logement comprennent typiquement un convertisseur AC/DC dans le culot de la lampe ou un convertisseur AC/DC déporté dans un boîtier alimentant une pluralité de LED. La présence du convertisseur vient augmenter le coût de l'éclairage LED par rapport à un éclairage conventionnel.

[0003] Il existe donc un besoin pour un éclairage LED qui puisse être alimenté sans convertisseur.

[0004] A cet effet, l'invention propose d'alimenter un éclairage LED en courant par un câble Ethernet déployé dans le logement en mode dit PoE (« Power over Ethernet »).

[0005] L'alimentation en courant de l'éclairage LED en PoE permet en outre de communiquer avec l'éclairage et d'échanger des données en sus de fournir une alimentation en courant.

[0006] Il existe aussi un besoin pour des systèmes installés chez un consommateur et contrôlés par ce dernier, qui permettent de collecter un ensemble d'informations relatives aux usages chez ce consommateur et de conserver ces informations à la disposition du consommateur. L'éclairage LED peut faire parti de tels systèmes de collecte d'informations.

[0007] Plus particulièrement, l'invention concerne un éclairage LED, comprenant :

- au moins une diode électroluminescente ;
- au moins une interface de communication avec un câble Ethernet;
- une unité de traitement électronique adaptée à recueillir des données relatives au fonctionnement de la diode électroluminescente,

[0008] l'éclairage étant alimenté en courant par le câble Ethernet.

[0009] Selon les modes de réalisation, l'éclairage LED selon l'invention peut comprendre en outre une ou plusieurs des caractéristiques suivantes :

- au moins une interface de communication adaptée à recueillir des données d'un moins un capteur domestique, l'unité de traitement électronique étant en outre adaptée à collecter et archiver les données recueillies;
- un capteur de luminosité;
- une source de puissance autonome ;
- un élément Peltier agencé pour recueillir de la chaleur dégagée par la diode émettrice de lumière et pour fournir un courant à la source de puissance autonome;

- un microphone, l'unité de traitement électronique étant adaptée à recevoir et interpréter des commandes vocales ;
- un haut-parleur, l'unité de traitement électronique étant adaptée à commander la diffusion de données sonores;
- l'unité électronique est adaptée à transmettre, sur requête, les données collectées et archivées;
- l'unité de traitement électronique est paramétrée pour détecter des anomalies de fonctionnement à partir des données collectées et adaptée à émettre une alerte.

[0010] L'invention concerne aussi une installation électrique domestique, comprenant au moins un éclairage LED selon l'invention. Une telle installation peut comprendre en outre au moins un capteur domestique et/ou au moins un dispositif comprenant une application logicielle permettant de consulter l'ensemble des données collectées et archivées par l'unité de traitement électronique. L'installation peut comprendre une pluralité d'éclairages LED, l'unité de traitement électronique d'un des éclairages étant choisie comme unité maitre.

[0011] L'invention concerne en outre un procédé de contrôle d'une installation électrique domestique selon l'invention, le procédé comprenant les étapes de :

- collecte et archivage de données de fonctionnement de la diode électroluminescente et/ou de données de capteurs domestiques;
- transmission, sur requête, des données collectées et archivées;
- consultation, sur requête, des données collectées et archivées.

[0012] Selon un mode de réalisation, le procédé comprend en outre les étapes de:

- surveillance des données collectées pour détecter des anomalies de fonctionnement;
- émission d'une alerte en cas d'anomalie détectée.

[0013] D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée ci-après, et des figures annexées qui représentent :

- figure 1, un éclairage LED selon l'invention ;
- figure 2, un exemple d'installation comprenant un éclairage selon l'invention.

[0014] La figure 1 montre un éclairage LED 100 selon l'invention. Un tel éclairage comprend une diode électroluminescente101, une interface de communication avec un câble Ethernet 114 et une unité de traitement électronique 110. Le câble Ethernet 114 est déployé dans le logement en conformité avec les normes locales en vigueur. Le câble Ethernet 114 permet de transporter

un courant continu en 48V DC pour alimenter en courant un variateur 111 couplé à la diode électroluminescente 101.

3

[0015] L'éclairage LED 100 mesure sa propre consommation électrique et stocke ces données de consommation dans une mémoire μ SD associée à l'unité de traitement électronique 110 - par exemple une carte « microSD » (microcarte Digitale Sécurisée). Ces données de consommation peuvent alors être transmises via le câble Ethernet 114 vers un tableau électrique via un boîtier télécom du logement pour traitement ultérieur, comme cela sera décrit plus en détail plus loin.

[0016] La figure 1 montre aussi une interface de communication 120 qui peut être une connexion radio, une connexion WiFi ou toute autre interface permettant à éclairage LED 100 de recevoir des commandes et/ou de recueillir des informations complémentaires dans le logement, comme cela sera décrit en référence à la figure 2. L'interface de communication 120 peut aussi permettre au consommateur de consulter des informations collectées et archivées par l'unité de traitement électronique 110. Une telle consultation des données collectées et archivées par l'unité de traitement électronique 110 de l'éclairage LED peut être réalisée au moyen de dispositifs communiquant (tablette, PC, Smartphone ou autre) munis d'un logiciel adapté par exemple. L'interface de communication 120 peut aussi permettre au consommateur de commander le fonctionnement de l'éclairage 100, avec une télécommande par exemple, l'unité de traitement électronique 110 étant adaptée à piloter le fonctionnement de la diode 101.

[0017] La figure 1 montre également une source d'alimentation autonome 115 intégrée dans l'éclairage LED 100 pour assurer une procédure dégradée en cas de coupure d'alimentation sur le câble Ethernet 114. Une telle source d'alimentation autonome peut comprendre des cellules photovoltaïques et/ou une batterie rechargeable. On peut prévoir un élément Peltier 105 associé à la diode 101 afin d'utiliser la chaleur dégagée par la diode 101 lorsqu'elle éclaire pour recharger la batterie de la source autonome 115.

[0018] La figure 1 montre un microphone 112 ainsi qu'un haut parleur 113 intégré dans l'éclairage LED 100 selon l'invention. Le microphone 112 peut recueillir des commandes vocales du consommateur et l'unité de traitement électronique 110 est adaptée à traiter ces commandes vocales, soit pour piloter le fonctionnement de la diode 101 via le variateur 111, soit pour accéder à des demandes du consommateur telles qu'une demande de transfert ou de consultation de données recueillies par exemple. Le haut parleur 113 peut émettre des données sonores à l'attention du consommateur, par exemple pour diffuser une alerte ou accuser réception d'une commande vocale reçue via le micro 112.

[0019] L'éclairage LED 100 selon l'invention peut aussi comprendre un capteur de luminosité relié à l'unité de traitement électronique 110 pour ajuter le variateur 111 en fonction d'une consigne de luminosité.

[0020] La figure 2 montre une installation comprenant l'éclairage LED 100 décrit en référence à la figure 1.

[0021] La figure 2 montre une pluralité de capteurs domestiques 150. Ces capteurs domestiques 150 peuvent être installés dans le logement à la discrétion du consommateur ; ils peuvent inclure des capteurs d'humidité, de fumé, de qualité de l'air, de luminosité, de mouvement ou autre. L'unité de traitement électronique de l'éclairage LED 100 collecte et archive en outre ces données recueillis par les capteurs domestiques 150. Un canal radio de l'interface de communication 120 de l'éclairage 100 peut par exemple être utilisé à cet effet.

[0022] Une installation peut comprendre une pluralité d'éclairages LED comme décrit en référence à la figure 1. Une des unités de traitement électroniques 110 d'un des éclairages 100 sera alors choisie comme unité maitre. Cette unité maitre peut collecter les données provenant des capteurs domestiques 150 et/ou rassembler l'ensemble des données collectées par les autres unités de traitement électroniques des autres éclairages. En cas de défaillance de l'unité maitre, une autre des unités de traitement électroniques opérationnelles peut être élue comme unité maitre selon des procédés de communication entre unités électroniques connus en soi.

[0023] Les données ainsi collectées des capteurs domestiques 150 sont également archivées dans la mémoire μSD, au même titre que les données collectées de consommation électrique, et peuvent être consultées par le consommateur et transmises vers l'extérieure sur requête du consommateur. Ces données collectées des capteurs domestiques 150 peuvent également être transmises via le câble Ethernet 114 vers un tableau électrique du logement via un boîtier télécom 20 pour traitement ultérieur. Le câble Ethernet 114 peut également être directement relié au tableau électrique du logement. Le tableau électrique comprend une unité de traitement électronique recueillant l'ensemble des données collectées par une pluralité d'éclairages LED selon l'invention et consolidant ces données pour archivage et transmission vers l'extérieur du logement.

[0024] Par exemple, les données collectées et archivées dans la mémoire µSD peuvent être transmises régulièrement vers le tableau électrique via le câble Ethernet 114 et dupliquées automatiquement dans un coffre fort électronique sécurisé 50 avec une fréquence déterminée selon un paramétrage du consommateur.

[0025] Selon un mode de réalisation, l'unité de traitement électronique 110 peut également être paramétrée pour détecter des anomalies de fonctionnement à partir des données collectées des capteurs domestiques 150, par exemple un défaut de qualité de l'air ou une détection d'intrusion. L'unité de traitement électronique 110 peut également détecter des anomalies électriques dans le fonctionnement de l'éclairage, par exemple un défaut d'alimentation électrique sur le câble Ethernet ou un défaut de l'ampoule de la diode électroluminescente 101. L'unité de traitement électronique 110 peut alors émettre une alerte à l'attention du consommateur ou d'un tiers

55

40

30

35

40

45

50

55

via l'interface 120 de communication et/ou émettre une alerte sonore via le haut parleur 113 et/ou transmettre une alerte sur le câble Ethernet vers le tableau électrique via le boîtier télécom 20.

[0026] Le tableau électrique auquel est relié le câble Ethernet 114 alimentant l'éclairage 100 selon l'invention peut présenter un port USB pour permettre une mise à jour et/ou une maintenance des logiciels de l'unité de traitement électronique 110 de l'éclairage 100. Une interface homme-machine (IHM) peut permettre une consultation in situ des données collectées et archivées par l'unité de traitement électronique 110 après authentification du consommateur (saisi d'un code et/ou d'une donnée biométrique par exemple) et/ou permettant un paramétrage de l'unité de traitement électronique 110 par le consommateur. Le paramétrage de l'unité électronique 110 peut également être réalisé par le consommateur à l'aide d'un dispositif communiquant en Ethernet, en Wifi ou par radio, via l'interface 120 de l'éclairage 100. Un tel dispositif peut être une tablette, un PC, un Smartphone ou autre, munis d'un logiciel adapté.

[0027] L'éclairage LED 100 selon l'invention peut être utilisé pour contrôler une installation électrique domestique.

[0028] Un tel contrôle comprend la collecte de données relatives au fonctionnement de la diode 101 et depuis les capteurs domestiques 150 le cas échéant. Les données collectées peuvent être horodatées par l'unité de traitement électronique 110 avant archivage dans la mémoire μSD.

[0029] Les solutions existantes, limitées en points de mesure de consommation d'usages, ne permettent pas de traiter la consommation spécifique du poste éclairage, ni le confort et la qualité de bien être des occupants d'un logement.

[0030] Si plusieurs unités de traitement électroniques 110 sont impliquées dans la collecte et l'archivage des données des capteurs, une étape de choix d'une unité maitre peut être réalisée pour coordonner la collecte et l'archivage des données, ainsi que la consultation des données archivées et leur transmission vers l'extérieur. L'élection d'une unité de traitement électronique comme unité maitre peut être faite de toute manière connue en soi. Si l'unité maitre choisie venait à être défaillante, une nouvelle élection d'une unité maitre parmi les unités électroniques opérationnelles interviendrait, de manière connue en soi.

[0031] Le contrôle d'une installation électrique selon l'invention comprend également la transmission et/ou la consultation, sur requête, des données collectées et archivées.

[0032] Par exemple, les données collectées sont stockées sur une carte μ SD directement dans chacune des mémoires des unités de traitement électroniques de chaque éclairage LED, pour une durée glissante prédéterminée (quelques semaines ou quelques mois selon les paramétrages). Ces données peuvent alors être cycliquement dupliquées dans un coffre fort électronique sé-

curisé 50, extérieur au logement, sans limitation de durée. Le transfert de ces données est réalisé sur le câble Ethernet 114 et/ou par liaison radio ou Wifi via un boîtier télécom 20 et/ou via un tableau électrique. Le transfert des données vers le coffre fort électronique sécurisé 50 peut être crypté.

[0033] Dans le cas d'une coupure électrique dans le câble Ethernet, l'unité de traitement électronique peut posséder une autonomie suffisante pour sauvegarder les données et envoyer une alerte au consommateur ou à un tiers. Un dispositif automatique peut alors mettre en sommeil les capteurs et interrompre la collecte de données. Par ailleurs, la source de puissance autonome 115 permet s'assurer un fonctionnement dégradé.

[0034] Le consommateur peut aussi requérir, au moyen d'un dispositif communiquant muni d'un logiciel adapté (Smartphone 30 par exemple, PC ou autre), de consulter les données archivées dans la mémoire de l'éclairage ou dans la mémoire du tableau électrique qui centralise un ensemble de données collectées par plusieurs éclairages selon l'invention. Les données collectées par chaque éclairage LED selon l'invention peuvent être traitées et mises en forme afin de permettre la mise en place de services à valeurs ajoutées personnalisés.

[0035] Les mesures de courant de chaque diode 101 permettent de recueillir des informations de consommation détaillée. Ces informations permettent au consommateur de se sensibiliser, de gérer et d'optimiser sa consommation d'énergie dans son logement et d'avoir accès à un bilan détaillé de sa consommation électrique (au même titre qu'une facture de télécommunication ou d'un relevé bancaire mensuel de ses transactions).

[0036] Les solutions existantes centralisent les informations sur des serveurs externes contrôlés par les fournisseurs d'énergie pour créer les plateformes de services : ce sont des solutions intrusives où le consommateur n'a pas la maitrise de ses données.

[0037] Le contrôle d'une installation électrique selon l'invention comprend également la surveillance des données collectées pour détecter des anomalies de fonctionnement et l'émission d'une alerte en cas d'anomalie détectée.

[0038] L'unité de traitement électronique peut être paramétrée pour détecter des anomalies dans les données récoltées des capteurs domestiques ou des anomalies dans le fonctionnement de la diode électroluminescente. Elle peut alors envoyer des alertes au consommateur ou à un tiers paramétré sur déclenchement d'événements qui peuvent être :

- un défaut d'alimentation PoE,
- un défaut de l'ampoule LED,
- le déclenchement d'une alarme d'intrusion,
- un défaut de qualité de l'air, de température, d'humidité, de fuite d'eau ...
- alerte d'inactivité (surveillance d'une personne âgée par exemple).

5

20

[0039] Les solutions existantes ne permettent pas de traiter la sécurité électrique et sont encore limitées sur le traitement de la qualité de l'environnement d'un logement.

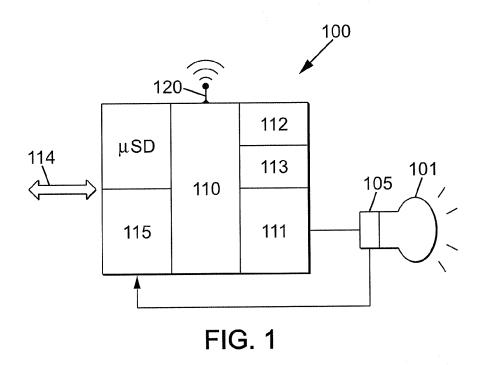
[0040] En cas de perte totale de l'alimentation PoE avec passage sur batterie, un premier message peut être envoyé sur l'une des interfaces du consommateur et un second message peut être envoyé au tableau électrique du logement et/ou aux autres éclairages selon l'invention si présents dans le logement.

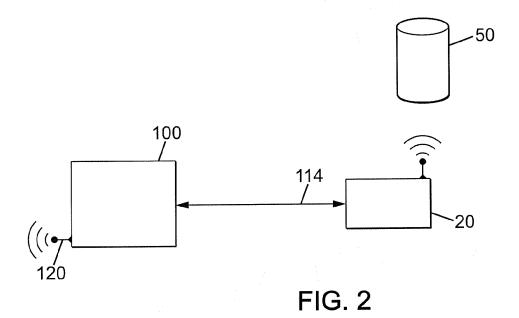
[0041] Le consommateur peut ainsi gérer de manière personnalisée ses usages d'éclairage électriques et conserver de manière sécurisée un historique de données liées à l'éclairage dans son logement.

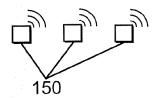
[0042] L'invention a été décrite en référence à des modes de réalisations particuliers qui ne sont pas limitatifs. Notamment, le nombre et la nature des capteurs peuvent varier selon les applications, ainsi que les modes de transmission et de consultation des données collectées.

Revendications

- 1. Eclairage LED (100), comprenant :
 - au moins une diode électroluminescente (101);
 - au moins une interface de communication avec un câble Ethernet (114);
 - une unité de traitement électronique (110) adaptée à recueillir des données relatives au fonctionnement de la diode électroluminescente,


l'éclairage étant alimenté en courant par le câble Ethernet (PoE) et comprend en outre une source de puissance autonome (115).


- 2. Eclairage LED la revendication 1, comprenant en outre au moins une interface de communication (120) adaptée à recueillir des données d'un moins un capteur domestique (150), et dans lequel l'unité de traitement électronique est en outre adaptée à collecter et archiver les données recueillies.
- Eclairage LED selon l'une quelconque des revendications précédentes, comprenant en outre un capteur de luminosité.
- 4. Eclairage LED selon la revendication 1, comprenant en outre un élément Peltier (105) agencé pour recueillir de la chaleur dégagée par la diode émettrice de lumière et pour fournir un courant à la source de puissance autonome.
- Eclairage LED selon l'une quelconque des revendications précédentes, comprenant en outre un microphone (112), l'unité de traitement électronique étant


adaptée à recevoir et interpréter des commandes vocales.

- 6. Eclairage LED selon l'une quelconque des revendications précédentes, comprenant en outre un hautparleur (113), l'unité de traitement électronique étant adaptée à commander la diffusion de données sonores.
- 7. Eclairage LED selon l'une quelconque des revendications précédentes, dans lequel l'unité électronique est adaptée à transmettre, sur requête, les données collectées et archivées.
- 15 8. Eclairage LED selon l'une quelconque des revendications précédentes, dans lequel l'unité de traitement électronique est paramétrée pour détecter des anomalies de fonctionnement à partir des données collectées et adaptée à émettre une alerte.
 - Installation électrique domestique, comprenant au moins un éclairage LED (100) selon l'une quelconque des revendications 1 à 8.
- 25 10. L'installation électrique selon la revendication 9, comprenant en outre au moins un capteur domestique (150).
 - 11. L'installation électrique selon l'une des revendications 9 ou 10, comprenant en outre au moins un dispositif comprenant une application logicielle permettant de consulter l'ensemble des données collectées et archivées par l'unité de traitement électronique.
- 35 12. L'installation électrique selon l'une des revendications 9 à 11, comprenant une pluralité d'éclairages LED, l'unité de traitement électronique d'un des éclairages étant choisie comme unité maitre.
- 40 13. Procédé de contrôle d'une installation électrique domestique selon l'une des revendications 10 à 12, le procédé comprenant les étapes de :
 - collecte et archivage de données de fonctionnement de la diode électroluminescente et/ou de données de capteurs domestiques;
 - transmission, sur requête, des données collectées et archivées ;
 - consultation, sur requête, des données collectées et archivées.
 - **14.** Procédé de contrôle la revendication 13, comprenant en outre les étapes de:
 - surveillance des données collectées pour détecter des anomalies de fonctionnement;
 - émission d'une alerte en cas d'anomalie détectée.

55

RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande EP 13 16 2405

ВО	CUMENTS CONSIDER	RES COMME PERTINENTS				
atégorie	Citation du document avec des parties perti	Revendication concernée	CLASSEMENT DE LA DEMANDE (IPC)			
X Y A	US 8 011 794 B1 (S [US]) 6 septembre 7 * le document en en		1-3,5,6, 13 7-12,14	H05B37/02		
Y	WO 2008/134433 A1 INNOVATIONS [US]; I MANGIARACINA AN) 6 novembre 2008 (20 * le document en en	NIELSON LYMAN O [US]; 908-11-06)	7-12,14			
Υ	US 6 502 044 B1 (L/AL) 31 décembre 200 * le document en en		8,14			
A]; PHILIPS INTELLECTUAL rs 2012 (2012-03-08)	1-14			
A	US 2010/026215 A1 4 février 2010 (202 * le document en en		1-14	DOMAINES TECHNIQUES RECHERCHES (IPC) H05B H02J		
A	WO 2004/023849 A1 ELECTRONICS NV [NL 18 mars 2004 (2004 * le document en en]; LING WANG [US]) -03-18)	1-14			
A		D [DE]; LIESS UWE [DE]; Ot 2009 (2009-08-20)	1-14			
A		 A1 (ABB PATENT GMBH [DE ût 2007 (2007-08-23) ntier *] 1-14			
•	ésent rapport a été établi pour to					
Lieu de la recherche Munich		Date d'achèvement de la recherche 1 août 2013	Hun	Examinateur Hunckler, José		

EPO FORM 1503 03.82 (P04C02)

X : particulièrement pertinent à lui seul
 Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
 A : arrière-plan technologique
 O : divulgation non-écrite
 P : document intercalaire

date de dépôt ou après cette date
D : cité dans la demande
L : cité pour d'autres raisons

[&]amp; : membre de la même famille, document correspondant

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 13 16 2405

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé ci-dessus.

Les dits members sont contenus au fichier informatique de l'Office européen des brevets à la date du Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

01-08-2013

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(Date de publication
US 8011794	B1	06-09-2011	US US	8011794 2011273108		06-09-201 10-11-201
WO 2008134433	A1	06-11-2008	US WO	2008197790 2008134433		21-08-200 06-11-200
US 6502044	B1	31-12-2002	CA US	2288918 6502044		12-01-200 31-12-200
WO 2012028981	A1	08-03-2012	CN EP US WO	103081572 2612542 2013151025 2012028981	A1 A1	01-05-201 10-07-201 13-06-201 08-03-201
US 2010026215	A1	04-02-2010	US US	2010026215 2012119682		04-02-20 17-05-20
WO 2004023849	A1	18-03-2004	AT AU CN EP JP US WO	1679376 1537764	A1 A A1	15-11-200 29-03-200 05-10-200 08-06-200 15-12-200 02-03-200 18-03-200
WO 2009100762	A1	20-08-2009	AUCI	JN		
DE 102006006140	9 A1	23-08-2007	AUCI	 JN		

EPO FORM P0460

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82