

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

(11)

EP 2 672 112 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
11.12.2013 Bulletin 2013/50

(51) Int Cl.:
F03D 11/00 (2006.01)

(21) Application number: 12170773.1

(22) Date of filing: 05.06.2012

(84) Designated Contracting States:
**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**
Designated Extension States:
BA ME

(71) Applicant: **ZF Wind Power Antwerpen NV
2550 Kontich (BE)**

(72) Inventor: **Leimann, Dirk-Olaf
2650 Edegem (BE)**

(74) Representative: **Gebhard, Wolfgang
ZF Friedrichshafen AG
Graf-von-Soden-Platz 1
88046 Friedrichshafen (DE)**

(54) Method for lubricating a gearbox for a wind turbine

(57) The present invention provides a method for lubricating a gearbox of a wind turbine. The gearbox comprises a plurality of gears and shafts supported by bearings of which at least one is a plain bearing. The gearbox furthermore comprises a lubrication system with a mechanical pump and an electrical pump for feeding the gears and bearings with lubricant, wherein a difference between volume capacity of the mechanical and electri-

cal pump is maximum 40%. The method comprises controlling at least one valve for during start-up of the gearbox feeding lubricant to the bearings by means of the electrical pump, during normal operation of the gearbox feeding lubricant to the bearings and the gears by means of the electrical pump and the mechanical pump, and during absence of electrical power supply feeding lubricant only the bearings by means of the mechanical pump.

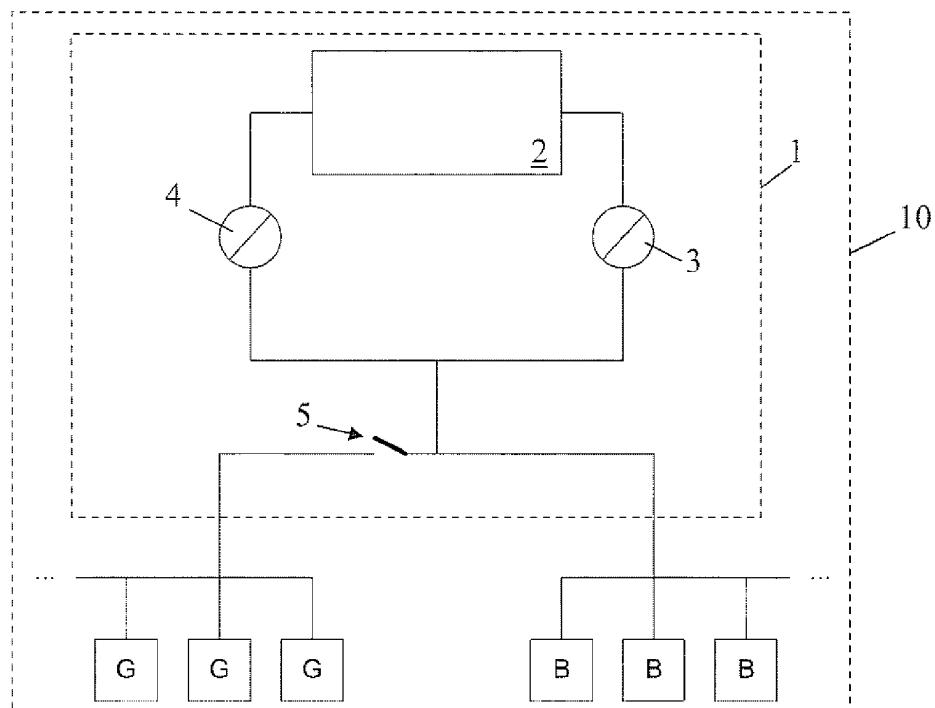


FIG. 1

DescriptionTechnical field of the invention

[0001] The present invention relates to a method for lubricating a gearbox for a wind turbine. More particular, the present invention relates to a method for lubricating a gearbox for a wind turbine in emergency situations such as for example grid loss or failure of the electrical pump.

Background of the invention

[0002] Lubrication of rotating parts such as gears and bearings in gearboxes for wind turbines during operation of the wind turbine is very important. No or not sufficient provision of lubricant to these parts can lead to damages and to failure of such parts. Especially bearings supporting gears and shafts in the gearbox, and more particularly plain bearings, are very sensitive to good lubrication and need at all times sufficiently be provided with lubricant in order not to fail.

[0003] During normal operation, in known wind turbine and gearbox designs, lubricant is continuously fed to the rotating parts by means of an electrical pump and usually this is sufficient for feeding the right amount of lubricant to the rotating parts. However, in case of emergency situations like, for example, grid loss or failure of the electrical pump, the lubricant feeding may not be sufficient anymore for the rotating parts in the gearbox, and especially the bearings, to continue working properly.

Summary of the invention

[0004] The present invention provides a method for lubricating a gearbox of a wind turbine. The gearbox comprises a plurality of gears and shafts supported by bearings of which at least one is a plain bearing. The gearbox furthermore comprises a lubrication system with a mechanical pump and an electrical pump for feeding the gears and bearings with lubricant. A difference between volume capacity of the mechanical and electrical pump is maximum 40%. The method comprises controlling at least one valve for:

- during start-up of the gearbox feeding lubricant to the bearings by means of the electrical pump,
- during normal operation of the gearbox feeding lubricant to the bearings and the gears by means of the electrical pump and the mechanical pump, and
- during absence of electrical power supply feeding lubricant only to the bearings by means of the mechanical pump.

[0005] An advantage of a method according to embodiments of the invention is that whenever the electrical pump fails to work properly, e.g. by loss grid or simply by a failure of the electrical pump, sufficient lubricant is provided to the bearings, and more particularly to the at

least one plain bearing, for preventing them from being damaged because of a too low amount of lubricant.

[0006] According to embodiments of the invention, the method may furthermore comprise, during start-up of the gearbox, feeding lubricant to the gears by means of the mechanical pump.

[0007] According to embodiments of the invention, the lubrication system may comprise a plurality of valves and the method may comprise controlling a plurality of valves.

5 **[0008]** According to embodiments of the invention, controlling the at least one valve may be electrically driven.

[0009] According to other embodiments of the invention, controlling the at least one valve may be pressure-driven.

10 **[0010]** According to further embodiments of the invention, controlling the at least one valve may be electrical fail safe driven.

15 **[0011]** According to still further embodiments of the invention and in case the lubrication system comprises a plurality of valves, controlling the valves may partly be pressure-driven and partly be electrically driven.

Brief description of the drawings

25 **[0012]** It has to be noted that same reference signs in the different figures refer to same, similar or analogous elements.

30 Fig. 1 and Fig. 2 schematically illustrate examples of a lubrication system according to embodiments of the invention.

35 Fig. 3 to Fig. 5 schematically illustrates steps of a method for lubricating a gearbox for a wind turbine according to embodiments of the invention.

Fig. 6 and Fig. 7 schematically illustrate examples of a lubrication system according to further embodiments of the invention.

40 Fig. 8 to Fig. 11 schematically illustrates steps of a method for lubricating a gearbox for a wind turbine according to further embodiments of the invention.

Description of illustrative embodiments

45 **[0013]** In the description different embodiments will be used to describe the invention. Therefore reference will be made to different drawings. It has to be understood that these drawings are intended to be non-limiting, the invention is only limited by the claims. The drawings are thus for illustrative purposes, the size of some of the elements in the drawings may be exaggerated for clarity purposes.

50 **[0014]** The term "comprising" is not to be interpreted as limiting the invention in any way. The term "comprising", used in the claims, is not intended to be restricted to what means is described thereafter; it does not exclude other elements, parts or steps. The term "connected" as used in the claims and in the description has not to be interpreted as being restricted to direct connections, un-

less otherwise specified. Thus, part A being connected to part B is not limited to part A being in direct contact to part B, but also includes indirect contact between part A and part B, in other words also includes the case where intermediate parts are present in between part A and part B.

[0014] Not all embodiments of the invention comprise all features of the invention. In the following description and claims, any of the claimed embodiments can be used in any combination.

[0015] The present invention provides a method for lubricating a gearbox of a wind turbine. The gearbox comprises a plurality of gears and shafts supported by bearings of which at least one is a plain bearing, and a lubrication system with a mechanical pump and an electrical pump for feeding the gears and bearings with lubricant wherein a difference between volume capacity of the mechanical pump and the electrical pump is maximum 40%. The method comprises controlling at least one valves for:

- during start-up of the wind turbine gearbox feeding lubricant to the bearings by means of the electrical pump,
- during normal operation of the wind turbine gearbox feeding lubricant to the bearings and the gears by means of the electrical pump and the mechanical pump, and
- during absence of electrical power supply feeding lubricant only the bearings by means of the mechanical pump.

[0016] An advantage of a method according to embodiments of the invention is that whenever there is a problem with the electrical pump, e.g. when there is a grid loss or when the electrical pump fails, the bearings in the gearbox are still provided with enough lubricant so as to provide them from being damaged.

[0017] The present invention will hereinafter be described by means of different embodiments. It has to be understood that these embodiments are only for the ease of understanding the invention and are not intended to limit the invention in any way.

[0018] Fig. 1 and Fig. 2 illustrate a lubrication system 1 for a gearbox 10 according to embodiments of the present invention. The lubrication system 1 comprises a lubricant reservoir 2, a mechanical pump 3 and an electrical pump 4. A difference between volume capacity of the mechanical pump 3 and the electrical pump 4 is maximum 40%. This means that when the sum of the volume capacities of the mechanical pump 3 and the electrical pump 4 is, for example, 100L, then the volume capacity of the mechanical pump 3 may minimum be 30L and maximum 70L and the volume capacity of the electrical pump 4 may then respectively be maximum 70L and minimum 30L. Preferably, the volume capacity of the mechanical pump 3 and the electrical pump 4 may be equal and may, for example, be 50L. The lubricant reservoir 2 comprises lubricant for lubricating gears G and bearings

B in the gearbox 10. According to embodiments of the invention, at least one of the bearings B in the gearbox 10 may be a plain bearing. According to other embodiments, more than one of the bearings B in the gearbox

5 10 may be plain bearings and according to still further embodiments of the invention, all bearings B in the gearbox 10 may be plain bearings.

[0019] According to embodiments of the invention and as illustrated in Fig. 1, the lubrication system 1 may be 10 located inside the gearbox 10. According to other embodiments, however, and as illustrated in Fig. 2, the lubrication system 1 may also be located outside the gearbox 10, or in other words may be an external lubricant reservoir 2.

[0020] In the example given in Fig. 1 and Fig. 2, the lubrication system 1 furthermore comprises one valve 5 for controlling the flow of the lubricant and a control system (not shown) for controlling this valve 5.

[0021] During start-up of the wind turbine gearbox, the 20 electrical pump 4 feeds lubricant to the bearings B (see Fig. 3). During this step, according to embodiments of the invention, the mechanical pump 3 is not working. The valve 5 is controlled in such a way that only lubricant is provided to the bearings B. Flow of lubricant is indicated 25 by the bolt line in Fig. 3. According to embodiments of the invention, controlling the valve 5 may be pressure-driven. In that case, because only the electrical pump is providing lubricant, the pressure is not high enough to open the valve 5 and thus lubricant only flows to the bearings B. According to other embodiments of the invention, 30 controlling the valve 5 may be electrically driven. In that case, the valve 5 is controlled to stay closed such that lubricant can only flow to the bearings B and not to the gears G. According to still further embodiments of the invention, controlling the valve 5 may be electrical fail 35 safe driven. This means that, whenever there is no electricity, the valve 5 will take the right position so as only to allow flow of lubricant to the bearings B and not to the gears G.

[0022] During normal operation, lubricant is provided 40 to both the gears G and the bearings B by both the mechanical pump 3 and the electrical pump 4 (see Fig. 4). Therefore, the control system controls the valve 5 so as to open and to allow flow of lubricant also to the gears 5.

[0023] When, during normal operation, a grid loss occurs or for some other reason the electrical pump 4 fails 45 to work properly, it will take some time, e.g. a few seconds, for the turbine and thus also the gearbox to stand still. In this case, according to embodiments of the invention, the control system drives the valve 5 to close such as to allow flow of lubricant from the lubricant reservoir 2 through the mechanical pump 3 to the bearings B and not to the gears G (indicated by the bolt line in Fig. 5).

[0024] Fig. 6 and Fig. 7 illustrate another embodiment 50 55

of the present invention. According to this embodiment, the lubrication system 1 is similar to the one described in the previous embodiment but now comprises a plurality of valves 5a to 5f instead of only one valve 5 for controlling the flow of the lubricant. Similar as for the above embodiment, the lubrication system 1 may be located inside the gearbox 10 (see Fig. 6) or may be located outside the gearbox 10 (see Fig. 7).

[0025] During start-up of the wind turbine gearbox 10, according to embodiments of the invention, the electrical pump 4 provides lubricant to the bearings B (see Fig. 8). In this step, the control system controls the valves 5a to 5f such that valves 5a and 5b open to allow lubricant to flow from the lubricant reservoir 2 towards the bearings B through the electrical pump 4 (lubricant flow is indicated by the bolt line in Fig. 8). According to other embodiments, during start-up of the wind turbine gearbox 10, lubricant may furthermore be provided to the gears G by means of the mechanical pump 3. This is illustrated in Fig. 9. In this case, the control system controls the valves 5a to 5f such that valves 5a to 5c and 5e are open so as to allow lubricant flow to the bearings B and the gears G and that valves 5d and 5f are closed.

[0026] During normal operation, lubricant is provided to both the gears G and the bearings B. Therefore, the control system controls the valves 5a to 5f such that these valves 5a to 5f are all opened such that lubricant can flow from the lubricant reservoir 2 through the mechanical pump 3 and the electrical pump 4 to the gears G and the bearings B. This is illustrated in Fig. 10 in which the flow of lubricant is indicated by bolt line. As long as the wind turbine gearbox operates in a normal way these valves 5a to 5f stay open such that at all times the gears G and the bearings B are provided with sufficient lubricant in order to work properly.

[0027] When, during normal operation, a grid loss occurs or for some other reason the electrical pump 4 fails to work properly, it will take some time, e.g. a few seconds, for the turbine and thus also the gearbox 10 to stand still. In this case, according to embodiments of the invention, the control system drives the valves 5a to 5f such that valves 5c and 5d are opened to allow flow of lubricant from the lubricant reservoir 2 through the mechanical pump 3 to the bearings B and that the other valves 5a, 5b, 5e and 5f stay closed (see Fig. 11). This is because it is very important that the bearings B, and especially the at least one plain bearing B, are provided with sufficient lubricant until the wind turbine and thus also the gearbox 10 stand still or, in other words, do no longer rotate. If this would not be the case, or in other words, if no sufficient lubrication would be provided to the bearings B while the gearbox 10 was still working, this could severely damage the bearings B.

[0028] According to embodiments of the invention, controlling the valves 5a to 5f may be electrically driven, electrical fail safe driven or electrically and pressure-driven.

[0029] Hereinafter, the case of the valves 5a to 5f being

electrically and pressure-driven will be described in more detail. According to these embodiments, during start-up of the wind turbine, the electrical pump 4 is working and allows lubricant to flow towards valve 5a. Because of the pressure caused by the lubricant flow, the valve 5a will open and further allow flow of the lubricant. Similar, because of the lubricant pressure valve 5b will close and allow lubricant to flow to the bearings B. Valve 5f is thereby electrically controlled such that it stays closed and substantially no lubricant flows to the gears G at that time. During normal operation of the gearbox 10 both the mechanical pump 3 and the electrical pump 4 work and allow lubricant to flow from the lubricant reservoir 2 through respectively valves 5a and 5c. Because of the pressure exerted by the lubricant, these valves 5a and 5c will open and allow further flow of the lubricant. Similarly, because of the lubricant flow, respectively valves 5b and 5f and valves 5d and 5e will open and allow lubricant to be provided to respectively the gears G and the bearings B. Summarized, during normal operation the lubricant pressure will be high enough to make all the valves 5a to 5f open such that the lubricant can flow towards the gears G and the bearings B. When the electrical pump 4 stops working, only the mechanical pump 3 will be left to provide lubricant to components of the gearbox 10. In that case, lubricant pressure will cause valve 5c to stay open and to allow further flow of lubricant. Similarly, valve 5d will also stay open to allow lubricant to be provided to the bearings B. Valve 5e will then electrically be controlled so as to close to not further allow lubricant flow to the gears G. Valves 5a, 5b and 5f will close because of a too low pressure of the lubricant.

35 Claims

1. A method for lubricating a gearbox of a wind turbine, the gearbox comprising a plurality of gears and shafts supported by bearings of which at least one is a plain bearing, and a lubrication system with a mechanical pump and an electrical pump for feeding the gears and bearings with lubricant, wherein a difference between volume capacity of the mechanical and electrical pump is maximum 40%, **characterised in that** the method comprises controlling at least one valve for:

- during start-up of the gearbox feeding lubricant to the bearings by means of the electrical pump,
- during normal operation of the gearbox feeding lubricant to the bearings and the gears by means of the electrical pump and the mechanical pump, and
- during absence of electrical power supply feeding lubricant only the bearings by means of the mechanical pump.

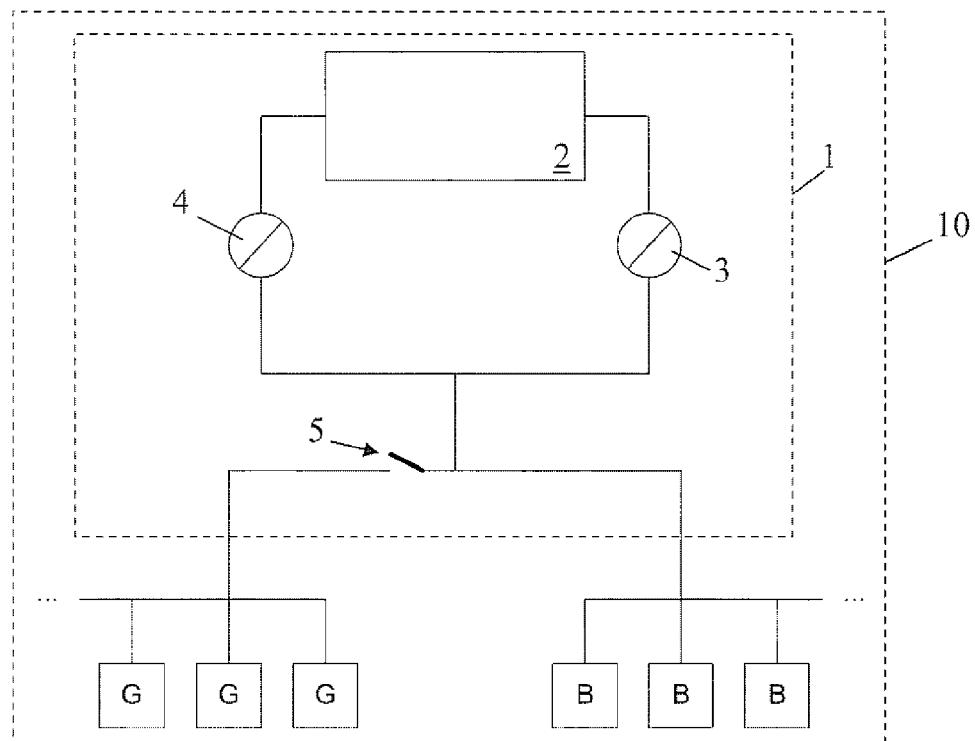
2. A method according to claim 1, furthermore comprising

ing, during start-up of the gearbox, feeding lubricant to the gears by means of the mechanical pump.

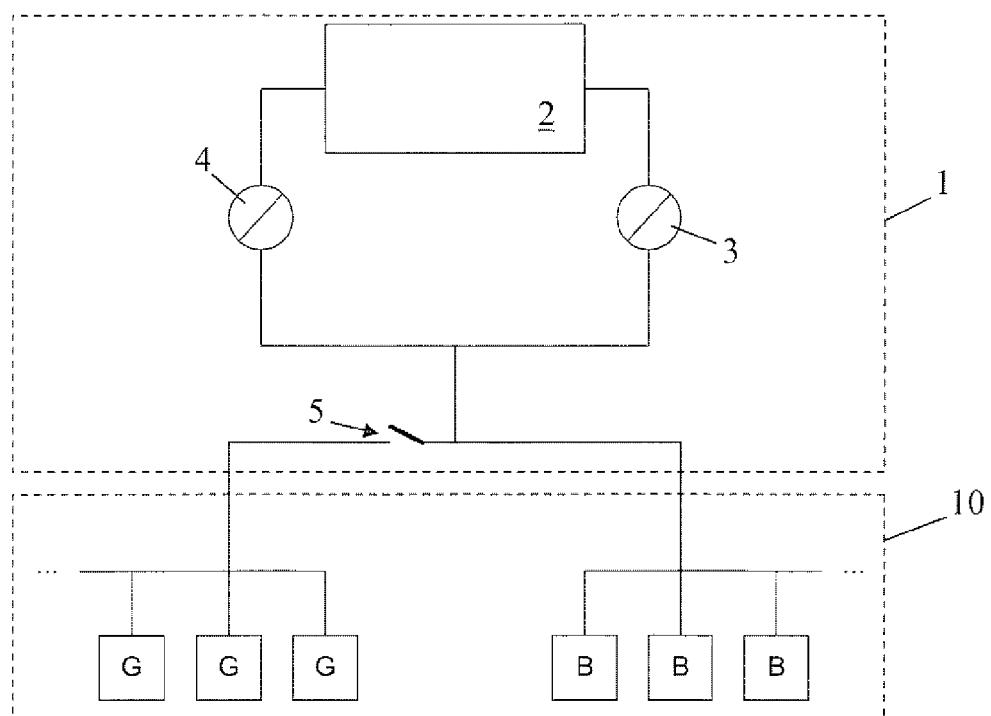
3. A method according to any of claims 1 to 3, wherein the method comprises controlling a plurality of valves. 5
4. A method according to any of claims 1 to 3, wherein controlling the valves is electrically driven. 10
5. A method according to any of claims 1 to 3, wherein controlling the valves is pressure-driven.
6. A method according to any of claims 1 to 3, wherein controlling the valves is electrical fail safe driven. 15
7. A method according to claim 3, wherein controlling the valves is partly pressure-driven and partly electrically driven. 20

25

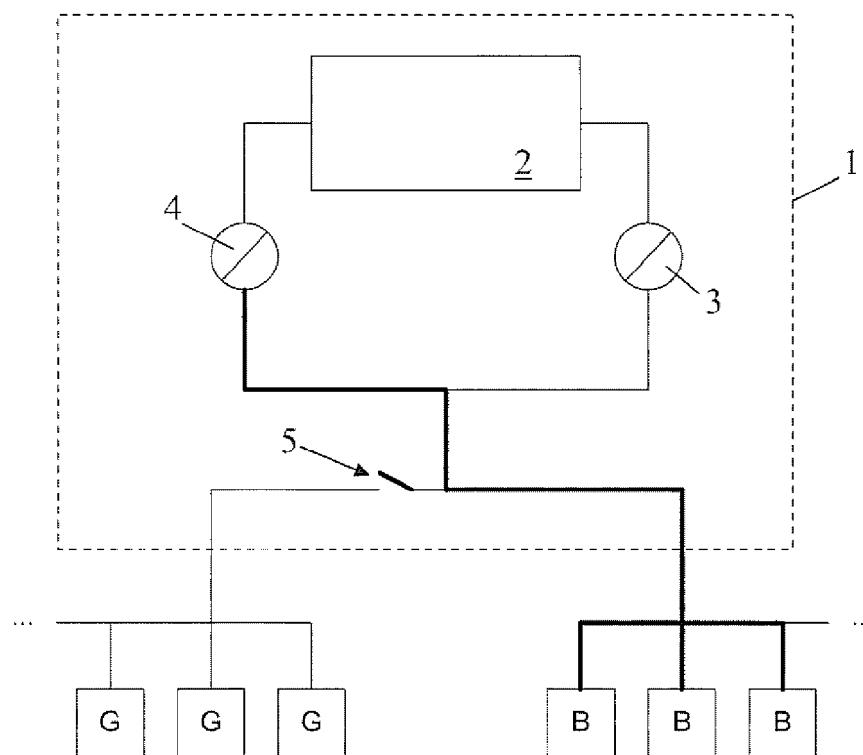
30


35

40


45

50


55

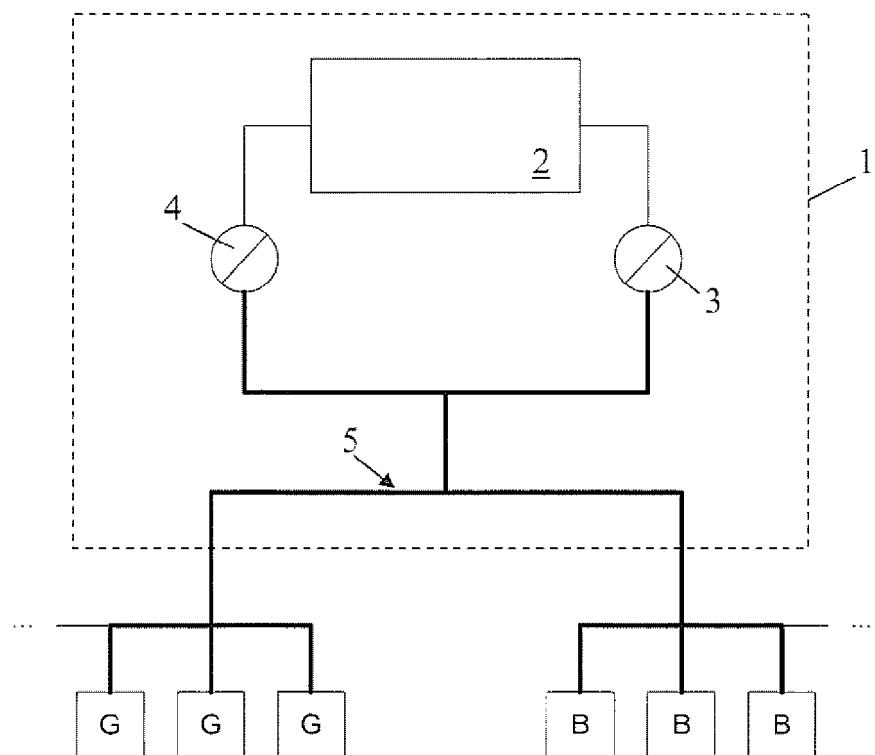

FIG. 1

FIG. 2

FIG. 3

FIG. 4

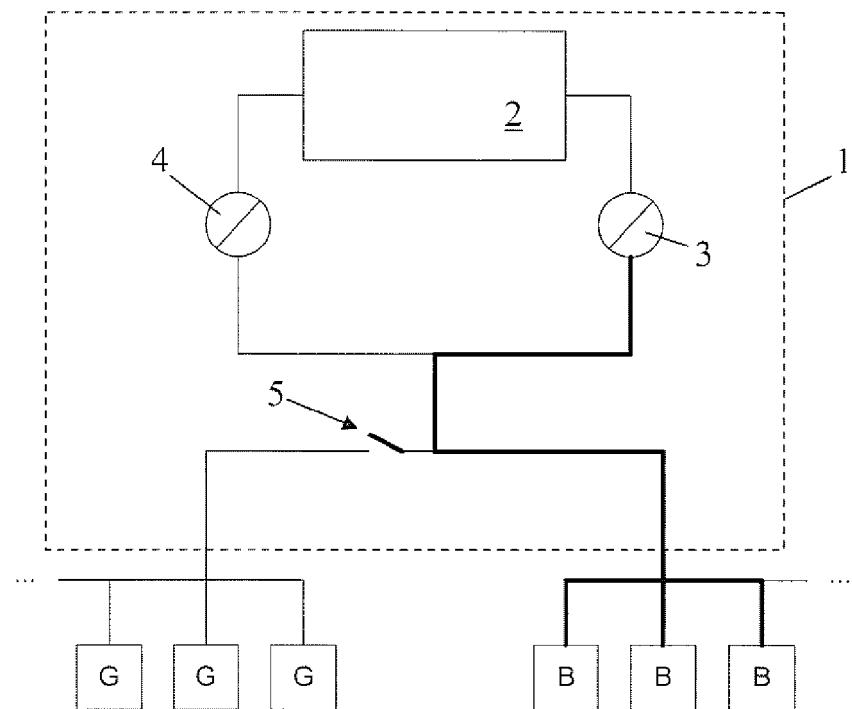


FIG. 5

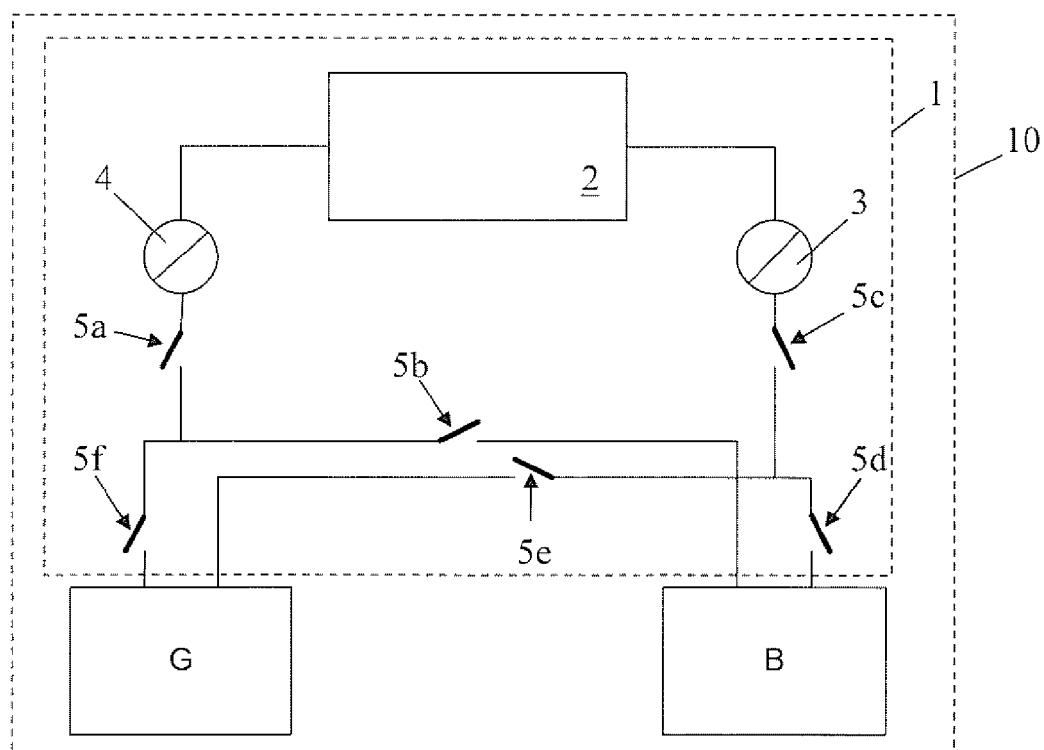


FIG. 6

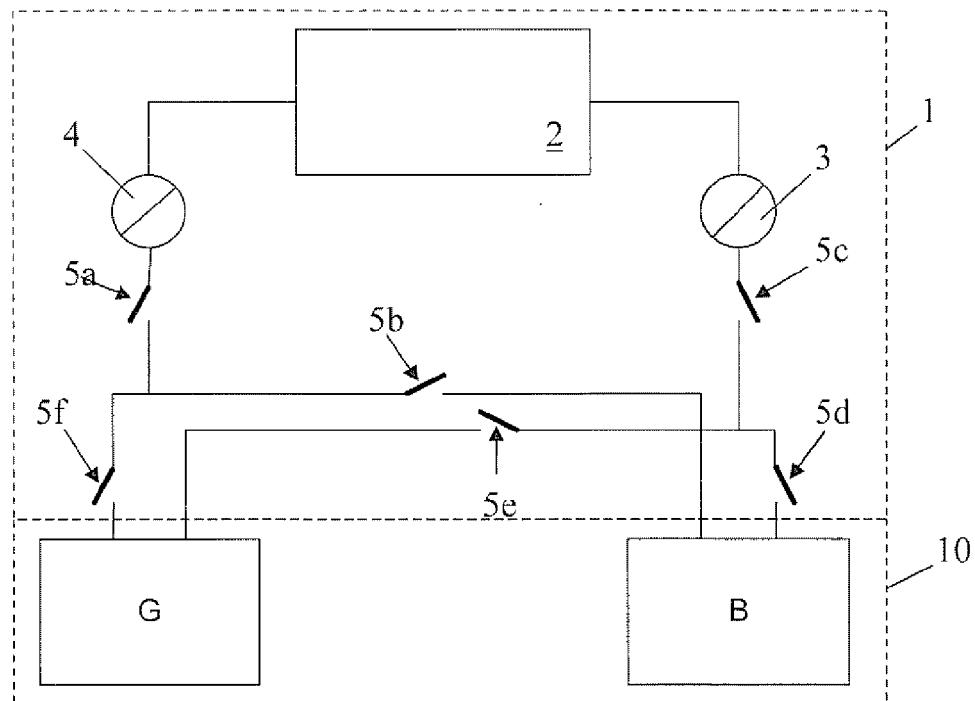


FIG. 7

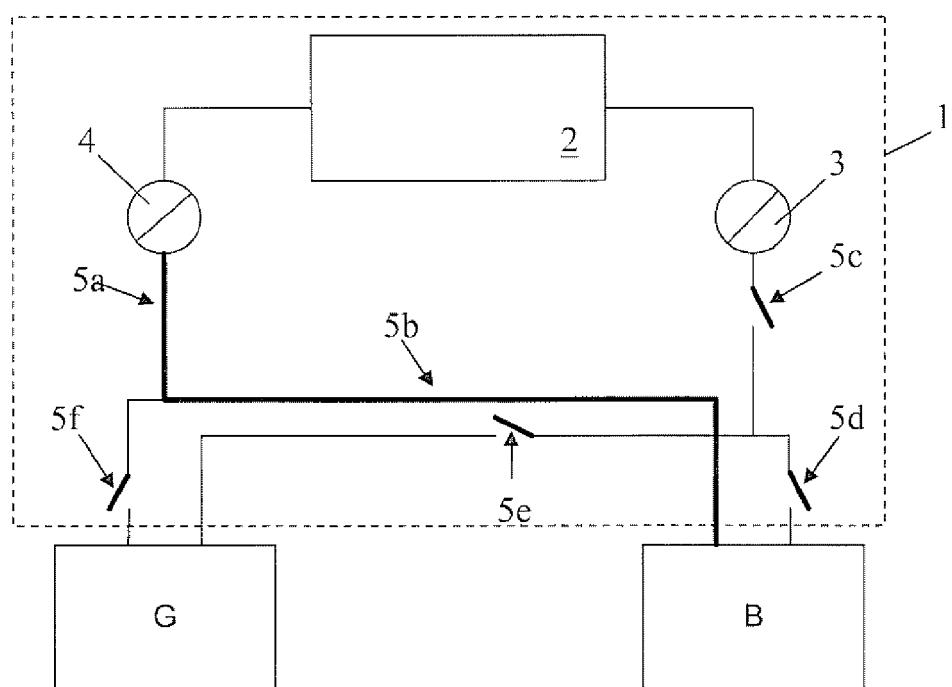


FIG. 8

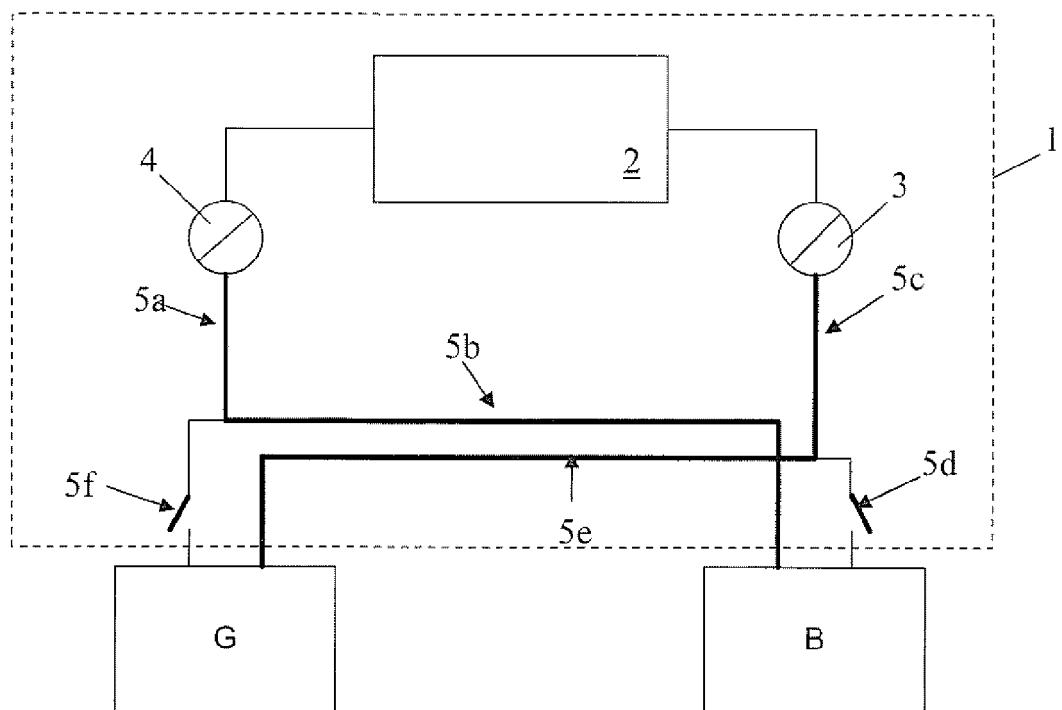


FIG. 9

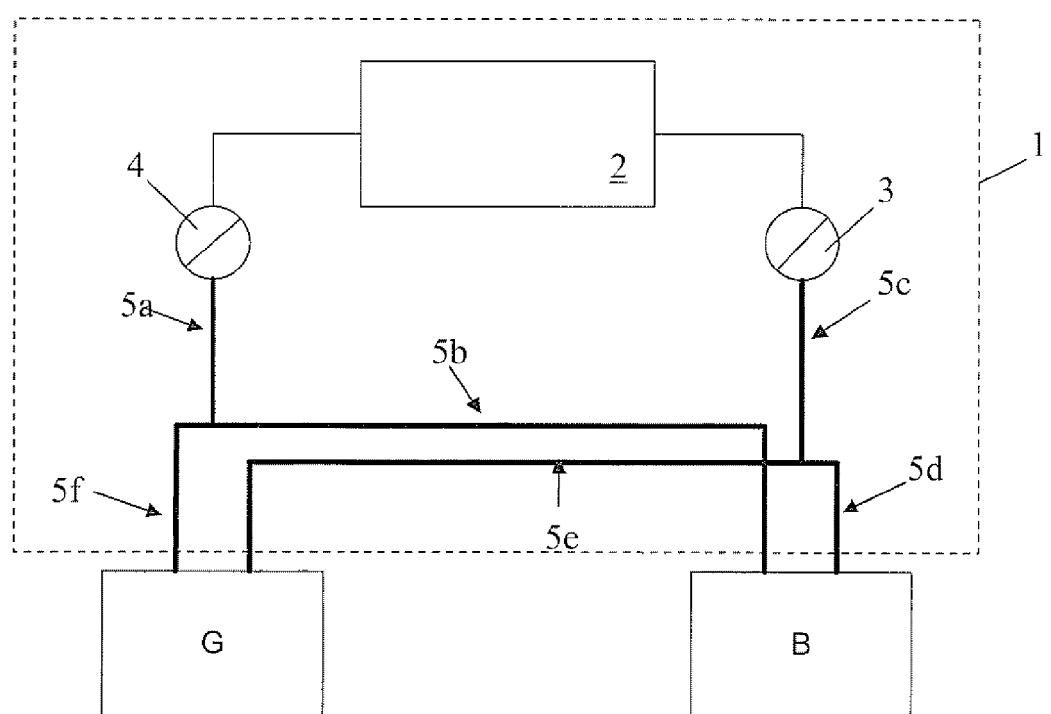
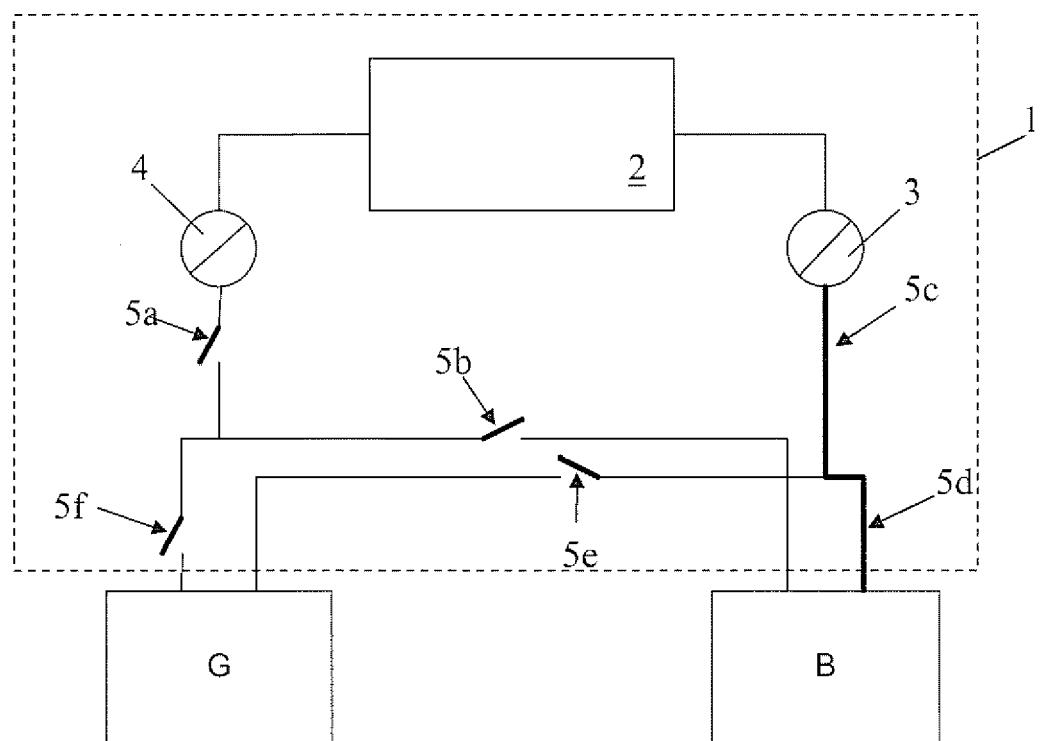



FIG. 10

FIG. 11

EUROPEAN SEARCH REPORT

Application Number
EP 12 17 0773

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	EP 2 159 472 A1 (GEN ELECTRIC [US]) 3 March 2010 (2010-03-03) * paragraph [0010] * * paragraph [0026] - paragraph [0044]; claims 1-12, 14; figures 1-9 * ----- X WO 2005/088131 A1 (NEG MICON AS [DK]; DEMOTROEDER JENS [DK]; FROEKJAER Poul SPAERHAGE [DK]) 22 September 2005 (2005-09-22) * page 1, line 15 - page 2, line 4 * * page 6, line 24 - page 11, line 5 * * page 23, lines 30-37; claims 31-37; figures 1-10 * ----- A US 2011/204633 A1 (TAKAYANAGI KAZUFUMI [JP]) 25 August 2011 (2011-08-25) * the whole document * ----- A DE 10 2008 013728 A1 (KENERSYS GMBH [DE]) 17 September 2009 (2009-09-17) * the whole document * -----	1-7	INV. F03D11/00
			TECHNICAL FIELDS SEARCHED (IPC)
			F03D F04B
The present search report has been drawn up for all claims			
1	Place of search Munich	Date of completion of the search 14 November 2012	Examiner Balice, Marco
CATEGORY OF CITED DOCUMENTS <p>X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document</p> <p>T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document</p>			

**ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.**

EP 12 17 0773

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

14-11-2012

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 2159472	A1	03-03-2010	CA	2676468 A1		27-02-2010
			CN	101660655 A		03-03-2010
			EP	2159472 A1		03-03-2010
			US	2010056315 A1		04-03-2010
<hr/>						
WO 2005088131	A1	22-09-2005	AU	2004317282 A1		22-09-2005
			CA	2556090 A1		22-09-2005
			CN	1926337 A		07-03-2007
			DK	200400409 A		21-04-2004
			EP	1723338 A1		22-11-2006
			NZ	548882 A		31-07-2009
			US	2008260545 A1		23-10-2008
			US	2012164001 A1		28-06-2012
			WO	2005088131 A1		22-09-2005
<hr/>						
US 2011204633	A1	25-08-2011	AU	2010204474 A1		08-09-2011
			CA	2708906 A1		19-08-2011
			CN	102725522 A		10-10-2012
			EP	2381101 A1		26-10-2011
			US	2011204633 A1		25-08-2011
			WO	2011101982 A1		25-08-2011
<hr/>						
DE 102008013728	A1	17-09-2009	AT	515635 T		15-07-2011
			DE	102008013728 A1		17-09-2009
			EP	2250371 A2		17-11-2010
			ES	2368694 T3		21-11-2011
			US	2011012365 A1		20-01-2011
			WO	2009112093 A2		17-09-2009