(11) EP 2 677 172 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:25.12.2013 Patentblatt 2013/52

(51) Int Cl.: **F04B 43/08** (2006.01)

F04B 43/12 (2006.01)

(21) Anmeldenummer: 13002397.1

(22) Anmeldetag: 06.05.2013

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

(30) Priorität: 19.06.2012 DE 102012012839

- (71) Anmelder: **Herman Roelofsen GmbH**73466 Lauchheim (DE)
- (72) Erfinder: Roelofsen, Herman 73466 Lauchheim (DE)
- (74) Vertreter: Kohl, Karl-Heinz Jackisch-Kohl und Kohl Stuttgarter Straße 115 70469 Stuttgart (DE)

(54) Schlauchpumpe

(57) Die Schlauchpumpe hat eine Exzenterwelle (2), mit der aufeinanderliegende Schieber (6) gegeneinander gegen einen Schlauch (5) verschiebbar sind. Er ist durch die Schieber (6) zur portionsweisen Abgabe eines Mediums elastisch zusammendrückbar. Damit die Schlauchpumpe auch bei längerem Einsatz einwandfrei

arbeitet, ist die Exzenterwelle (2) an wenigstens einem Ende durch ein metallisches Wälzlager drehbar abgestützt. Das metallische Wälzlager sorgt für einen leichten Lauf der Exzenterwelle (2). Dadurch ist die Stromaufnahme der Schlauchpumpe verringert. Zudem wird die Lebensdauer der Schlauchpumpe erheblich verlängert.

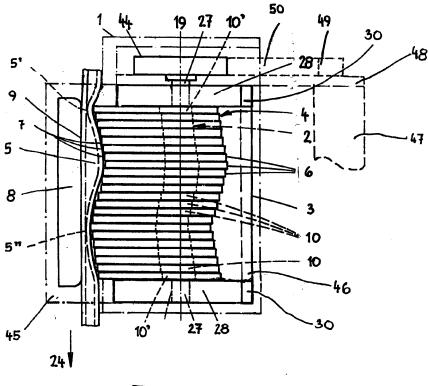


Fig. 1

FOOOAL Die Enfindung betrifft eine Cebleusbrungen

1

[0001] Die Erfindung betrifft eine Schlauchpumpe nach dem Oberbegriff des Anspruches 1.

[0002] Schlauchpumpen werden beispielhaft dafür eingesetzt, portionsweise Tomatenketchup, Majonäse, Sirup, Dressing, Blut bei der Blutwäsche und dergleichen auszubringen. Die Exzenterwelle der Schlauchpumpe hat die Schieber, die so angeordnet sind, dass sie in Ansicht senkrecht zur Exzenterwelle eine Wellenform haben. Mit den Schiebern wird der Schlauch an zwei mit Abstand voneinander liegenden Stellen zusammengedrückt. Das zwischen den zusammengedrückten Stellen befindliche auszutragende Medium wird zum Schlauchauslass transportiert. Ist eine solche Schlauchpumpe längere Zeit in Anspruch, verschleißt die Exzenterwelle frühzeitig, weil sie aus Kunststoff besteht und in einer Kunststoffbuchse drehbar abgestützt ist.

[0003] Der Erfindung liegt die Aufgabe zugrunde, die gattungsgemäße Schlauchpumpe so auszubilden, dass sie auch bei längerem Einsatz einwandfrei arbeitet.

[0004] Diese Aufgabe wird bei der gattungsgemäßen Schlauchpumpe erfindungsgemäß mit den kennzeichnenden Merkmalen des Anspruches 1 gelöst.

[0005] Bei der erfindungsgemäßen Schlauchpumpe wird die Exzenterwelle an wenigstens einem Ende, vorzugsweise an beiden Enden, in einem metallischen Wälzlager drehbar abgestützt, bei dem die Lagerringe und die Wälzkörper aus Metall bestehen. Das metallische Wälzlager sorgt für einen leichten Lauf der Exzenterwelle. Dadurch ist die Stromaufnahme der Schlauchpumpe verringert. Zudem wird die Lebensdauer der Schlauchpumpe erheblich verlängert. Das metallische Wälzlager verformt sich auch bei einer längeren andauernden Belastung nicht, so dass ein einwandfreier Medienaustrag sichergestellt ist.

[0006] Das Wälzlager besteht bevorzugt aus korrosionsbeständigem Material. Dadurch wird eine Verschmutzung der Schlauchpumpe durch Korrosionsmaterial verhindert, das sich an den Schiebern festsetzen und diese blockieren könnte.

[0007] Vorteilhaft ist das Wälzlager ein VA-Kugellager, z.B. ein V2A- oder ein V4A-Kugellager, das eine lange Lebensdauer gewährleistet. Die erfindungsgemäße Schlauchpumpe kann darum ohne weiteres im Dauerbetrieb eingesetzt werden, ohne dass die Gefahr des Verklemmens der Schlauchpumpe bzw. einer Verformung des Wälzlagers zu befürchten ist. Das Wälzlager ist in einem Lagerteil aufgenommen.

[0008] Vorteilhaft weist das Lagerteil für das metallische Wälzlager eine ringförmige Aufnahme auf. In sie wird das Wälzlager eingesetzt, das dadurch über seinen gesamten Umfang gehalten wird.

[0009] Die Aufnahme für das metallische Wälzlager kann an einem Grundkörper des Lagerteiles vorgesehen sein.

[0010] Die Aufnahme ist vorteilhaft so verjüngt ausgebildet, dass das Wälzlager von einer Seite in die Aufnah-

me eingesetzt, nicht aber durch die Aufnahme hindurchgedrückt werden kann.

[0011] Der Grundkörper ist in bevorzugter Ausbildung plattenartig ausgebildet, so dass er und damit auch das Lagerteil nur wenig Einbauraum beansprucht. Damit bei einer solchen dünnen Ausbildung des Grundkörpers dennoch eine hohe Festigkeit gewährleistet ist, ist der Grundkörper durch wenigstens eine Versteifungsrippe versteift. Sie trägt dazu bei, dass auch bei einer Dauerbelastung der Schlauchpumpe eine Verformung des Wälzlagers nicht auftritt. Vorteilhaft kann die Versteifungsrippe so vorgesehen sein, dass sie bis an die ringförmige Aufnahme reicht, so dass auch diese Aufnahme in hohem Maße versteift wird. Diese trägt zur langen Lebensdauer der Schlauchpumpe bei.

[0012] Bei einer vorteilhaften Ausführung ist die Dicke des Grundkörpers kleiner als die Höhe der Aufnahme für das metallische Wälzlager. Diese Ausbildung trägt zur kompakten Bauform des Lagerteiles und damit der Exzenterwelle bei.

[0013] Ein einfacher Einbau der Exzenterwelle ergibt sich, wenn das Lagerteil rastend in der Schlauchpumpe gehalten ist. Dann kann durch einen einfachen Steckvorgang das Lagerteil in der Schlauchpumpe befestigt werden, so dass zusätzliche Befestigungsmaßnahmen, wie Sicherungsschrauben u. dgl., nicht erforderlich sind. Selbstverständlich kann das Lagerteil zusätzlich auch in der Schlauchpumpe verschraubt werden.

[0014] Eine einfache Ausbildung ergibt sich, wenn vom Grundkörper des Lagerteiles wenigstens ein Arm absteht, der mit wenigstens einem Rastelement versehen ist

[0015] Hierbei ist der Arm in vorteilhafter Weise federnd elastisch ausgebildet. Der Arm wird beim Einschieben des Lagerteiles in die Schlauchpumpe so weit elastisch verformt, dass das an ihm vorgesehene Rastelement in die Rastposition gelangen kann.

[0016] Die Exzenterwelle wird in vorteilhafter Weise aus Exzenterscheiben gebildet, die zur Exzenterwelle zusammengesteckt werden. Dabei werden benachbarte Exzenterscheiben jeweils winkelversetzt drehfest miteinander verbunden.

[0017] Zum Antrieb der Exzenterwelle ist ein Elektromotor vorgesehen, der an einem Träger gehalten ist. Er ist als Einschubteil ausgebildet. Dadurch kann der Träger zusammen mit dem Elektromotor durch einen einfachen Steckvorgang an der Schlauchpumpe montiert werden. [0018] Der Träger besteht vorteilhaft aus korrosionsbeständigem Material, vorzugsweise aus VA-Stahl. Dadurch ist gewährleistet, dass im Einsatz der Schlauchpumpe kein Korrosionsmaterial am Träger entsteht, das in den Bereich der Schieber gelangen und diese dann blockieren könnte.

[0019] Eine einfache Montage der Schlauchpumpe ergibt sich, wenn die Schieber und die Exzenterwelle Teil einer Baueinheit sind, die in ein Einbaugehäuse der Schlauchpumpe eingesetzt werden. Hierbei ist es von Vorteil, wenn auch das Lagerteil Bestandteil der Bauein-

35

heit ist. Dann ist es möglich, in einem einzigen Montagevorgang die Schieber, die Exzenterwelle und die Lagerteile einzubauen.

[0020] Eine vorteilhafte Ausführungsform ergibt sich, wenn das Einbaugehäuse mit mindestens einem Aufnahmeraum versehen ist, in dem mindestens ein Elektronikbauteil bzw. mindestens eine Elektronikbaugruppe eingebaut werden kann. Dadurch kann die erfindungsgemäße Schlauchpumpe durch Einsetzen der entsprechenden Elektroniken mit unterschiedlichen Funktionen ausgestattet sein. Hierbei ist es vorteilhaft, wenn das Elektronikbauteil bzw. die Elektronikbaugruppe im Aufnahmeraum rastend gehalten wird, wodurch eine einfache Montage gewährleistet ist.

[0021] Der Anmeldungsgegenstand ergibt sich nicht nur aus dem Gegenstand der einzelnen Patentansprüche, sondern auch durch alle in den Zeichnungen und der Beschreibung offenbarten Angaben und Merkmale. Sie werden, auch wenn sie nicht Gegenstand der Ansprüche sind, als erfindungswesentlich beansprucht, soweit sie einzeln oder in Kombination gegenüber dem Stand der Technik neu sind.

[0022] Weitere Merkmale der Erfindung ergeben sich aus den weiteren Ansprüchen, der Beschreibung und den Zeichnungen.

[0023] Die Erfindung wird anhand eines in den Zeichnungen dargestellten Ausführungsbeispieles näher erläutert. Es zeigen

- Fig. 1 in schematischer Darstellung eine erfindungsgemäße Schlauchpumpe in Seitenansicht,
- Fig. 2 die erfindungsgemäße Schlauchpumpe gemäß Fig. 1 in Stirnansicht,
- Fig. 3 eine Exzenterwelle der erfindungsgemäßen Schlauchpumpe in Seitenansicht,
- Fig. 4 die Exzenterwelle gemäß Fig. 3 in Draufsicht,
- Fig. 5 in vergrößerter Darstellung und teilweise geschnitten einen Teil der Exzenterwelle gemäß Fig. 3,
- Fig. 6 eine Draufsicht auf einen Lagerschlitten der erfindungsgemäßen Schlauchpumpe,
- Fig. 7 einen Schnitt längs der Linie A-A in Fig. 6,
- Fig. 8 den Lagerschlitten gemäß Fig. 6 in perspektivischer Darstellung mit Blick auf seine Unterseite,
- Fig. 9 den Lagerschlitten gemäß Fig. 6 in perspektivischer Darstellung mit Blick auf seine Oberseite.
- [0024] Mit der Schlauchpumpe wird Medium aus ei-

nem Vorratsbehälter portioniert ausgegeben. Diese Medien sind viskose Medien, wie beispielsweise Ketchup, Majonäse, Dressing und dergleichen. Die Schlauchpumpe kann auch bei der Blutwäsche eingesetzt werden. Insbesondere aber wird die Schlauchpumpe für hydrostatisches Granulat eingesetzt, das für Wasseraufbereitungsanlagen und Kläranlagen verwendet wird. Ein solches Granulat wird beispielsweise unter der eingetragenen Marke "CarbonAdd" angeboten. Mit der Schlauchpumpe kann dieses staubförmige Granulat genau dosiert zugegeben werden. Die Schlauchpumpe hat ein Gehäuse 1 und eine Exzenterwelle 2, die in einem Einsatzgehäuse 3 drehbar gelagert ist. Das Einsatzgehäuse 3 lässt sich zu Reinigungs- und/oder Reparaturzwecken einfach aus dem Gehäuse 1 herausnehmen. Auf der Exzenterwelle 2 sitzt ein Lamellenblock 4, mit dem das Medium durch einen Schlauch 5 gedrückt wird.

[0025] Der Lamellenblock 4 besteht aus flachen, aufeinanderliegenden Schiebern 6, die jeweils rechteckigen Umriss haben und von der Exzenterwelle 2 durchsetzt sind. Die Schieber 6 werden relativ zueinander beim Drehen der Exzenterwelle 2 verschoben, wodurch der Schlauch 5 abschnittsweise elastisch zusammengedrückt wird. Fig. 1 zeigt, dass die übereinanderliegenden Schieber 6 so gegeneinander verschoben werden, dass ihre am Schlauch 5 anliegenden Ränder 7 über die Höhe des Lamellenblockes 4 S- oder sinusförmig verlaufen. Dieser S-förmige Verlauf ändert sich ständig beim Drehen des Exzenterwelle 2, so dass der Schlauch 5 über seine Länge abschnittsweise durchgewalkt wird. Dadurch wird das Medium exakt portioniert am unteren Ende des Schlauches 5 ausgegeben.

[0026] Damit der Schlauch 5 durch die Schieber 6 des Lamellenblocks 4 elastisch zusammengedrückt wird, ist er an der vom Lamellenblock 4 abgewandten Seite durch wenigstens eine Abstützung 8 abgestützt. Sie wird vorteilhaft durch eine Platte gebildet, die eine zuverlässige Abstützung des Schlauches 5 beim Zusammendrücken durch den Lamellenblock 4 gewährleistet. Die Abstützung 8 steht in Richtung auf den Schlauch 5 unter einer so hohen Kraft, dass der Schlauch 5 luftdicht zusammengedrückt werden kann. Dies ist besonders wichtig bei der Förderung von hydrostatischem Granulat. Ein Zutritt von Luft, die stets Feuchtigkeit enthält, würde sonst das Granulat zerstören. Die Druckkraft wird in bevorzugter Weise durch wenigstens eine Druckfeder erzeugt, die entsprechend stark ausgelegt ist. Damit der Schlauch 5 exakt gegenüber dem Lamellenblock 4 ausgerichtet ist, ist es vorteilhaft, wenn die Abstützung 8 eine in Längsrichtung des Schlauches 5 verlaufende Vertiefung aufweist, in welche der Schlauch eingreift.

[0027] Die Abstützung 8 kann an einer Tür 45 vorgesehen sein, mit der sich das Einsatzgehäuse 3 öffnen lässt. Durch Schließen der Tür kann die Abstützung 8 in einfacher Weise an den Schlauch 5 angelegt werden. Er erstreckt sich durch einen Aufnahmeraum 9 des Gehäuses 1. Die Druckfeder stützt sich an der Tür 45 ab, die am Einsatzgehäuse 3 schwenkbar gelagert ist. In der

25

30

40

Schließstellung ist die Tür 45 durch Rastelemente gesichert, die so ausgebildet sind, dass die Tür 45 auch bei einem hohen, auf den Schlauch 8 wirkenden Pressdruck nicht unbeabsichtigt geöffnet wird.

[0028] Die Exzenterwelle 2 besteht aus einzelnen kreisförmigen Exzenterscheiben 10, auf denen die Schieber 6 sitzen. Die Schieber 6 haben entsprechende kreisförmige Öffnungen, in denen die Exzenterscheiben 10 angeordnet sind und mit ihrem äußeren Rand an der Öffnungswand der Schieber 6 anliegen.

[0029] Wie Fig. 5 zeigt, haben die Exzenterscheiben 10 an ihrer Oberseite einen Achsstummel 11 und an ihrer Unterseite eine Vertiefung 12, in die der Achsstummel 11 der jeweils darunterliegenden Exzenterscheibe 10 eingreift. Die Tiefe z der Vertiefung 12 ist geringfügig größer als die Höhe y des Achsstummels 11. Dadurch verbleibt zwischen dem Boden 13 der Vertiefung 12 und dem Achsstummel 11 ein Spalt 14. Die Achsstummel 11 liegen mit ihrem Mantel an der Innenwand der Vertiefungen 12 an, so dass die Exzenterwelle 2 über ihre Länge eine ausreichende Stabilität aufweist. Die einzelnen Exzenterscheiben 10 sind jeweils winkelversetzt so aufeinandergesetzt (Fig. 3 und 4), dass sich die gewünschte Walzkontur 15, 16 ergibt. Die aufeinanderliegenden Exzenterscheiben 10 sind mit Steckzapfen 17 versehen, die mit Abstand zu den Achsstummeln 11 angeordnet sind und in Durchgangsöffnungen 18 der benachbarten Exzenterscheibe 10 eingreifen. Wie sich aus Fig. 4 ergibt, hat jede Exzenterscheibe 10 einen Steckzapfen 17 und winkelversetzt hierzu eine Durchgangsöffnung 18. Aufeinanderliegende Exzenterscheiben 10 sind jeweils gegeneinander verdreht, wodurch sich eine wendelförmige Struktur der Exzenterwelle 2 ergibt (Fig. 4). Die Achsstummel 11 der Exzenterscheiben 10 liegen in einer gemeinsamen Achse 19, welche die Drehachse der Exzenterwelle 2 bildet.

[0030] Die Exzenterwelle 2 lässt sich aus den einzelnen Exzenterscheiben 10 einfach durch einen Steckvorgang herstellen. Die Relativverdrehung aufeinandersitzender Exzenterscheiben 10 beim Montagevorgang ist einfach möglich, weil die Steckzapfen 17 und die Durchgangsöffnungen 18 jeder Exzenterscheibe in Umfangsrichtung nebeneinander liegen (Fig. 4), so dass sich die Exzenterscheiben 10 einfach in der verdrehten Lage zusammenfügen lassen.

[0031] Die Exzenterscheiben 10 haben kreisförmigen Umriss. Jede Exzenterscheibe 10 weist an der Ober- und an der Unterseite eine im Randbereich verlaufende Fase 20 auf. Damit die einzelnen Exzenterscheiben 10 eine ausreichend hohe Festigkeit haben, sind die Vertiefungen 12 und die in sie eingreifenden Achsstummel 11 so aufeinander abgestimmt, dass der Bereich 21 zwischen der Vertiefung 12 und dem Achsstummel 11 eine ausreichende axiale Dicke hat.

[0032] Um die Steckvorgänge bei der Herstellung der Exzenterwelle 2 zu erleichtern, sind auch die Achsstummel 11 und die Steckzapfen 17 an ihrer Stirnseite im Umfangsbereich mit einer Fase 22, 23 versehen.

[0033] Die auf den Exzenterscheiben 10 sitzenden Schieber 6 haben gleiche Dicke wie die Exzenterscheiben 10. Entsprechend der Walzenkontur 15, 16 der Exzenterwelle 2 werden die Schieber 6 entsprechend gegen den Schlauch 5 gepresst. Aufgrund der wellenförmigen Walzkontur wird der Schlauch 5 an den mit Abstand voneinander liegenden Bereichen 5', 5" so weit zusammengepresst, dass der Schlauch an diesen Stellen geschlossen ist. Dadurch wird das zwischen den Stellen 5', 5" befindliche Medium beim Drehen der Exzenterwelle 2 in Förderrichtung 24 im Schlauch 4 gefördert. Beim Drehen der Exzenterwelle 2 bewegen sich die Einschnürbereiche 5', 5" nach unten, bis das eingeschlossene Medium am unteren Ende des Lamellenblocks 4 freikommt und durch einen entsprechenden Auslass der Schlauchpumpe in bekannter Weise ausgetragen wird.

[0034] Die Schieber 6 werden beim Drehen der Exzenterwelle 2 lediglich in ihrer Längsrichtung gegen den Schlauch 5 verschoben. Der Lamellenblock 4 wird an seinen beiden Längsseiten 25, 26 geführt (Fig. 2). Zur Führung können beispielsweise die Seitenwände des Einsatzgehäuses 3 verwendet werden.

[0035] Die Schieber 6 und/oder die Exzenterscheiben 10 können aus hartem Kunststoff oder auch aus metallischem Werkstoff bestehen. Aufgrund des hohen Zusammenpressdruckes bestehen die Schieber 6 aus einem Material, das sich auch bei längerer Betriebsdauer der Schlauchpumpe nur unwesentlich erwärmt. Dadurch wird zuverlässig verhindert, dass sich die Schieber 6 infolge Erwärmung ausdehnen und dann blockieren.

[0036] Die oberste und die unterste Exzenterscheibe 10' haben jeweils einen Lagerzapfen 27, der länger ist als die Achsstummel 11. Mit den Lagerzapfen 27 ist die Exzenterwelle 2 am oberen und am unteren Ende in jeweils einem Lagerschlitten 28 drehbar gelagert. Beide Lagerschlitten sind gleich ausgebildet. Sie sind in das Einsatzgehäuse 3 eingerastet, können aber auch auf jede andere geeignete Weise im Einsatzgehäuse 3 gehalten sein. Die beiden Lagerschlitten 28 sind so im Einsatzgehäuse 3 vorgesehen, dass die Exzenterscheiben 10 und der Lamellenblock 4 einwandfrei zusammengehalten werden.

[0037] Der Lagerschlitten 28 hat einen flachen Grundkörper 29, der etwa rechteckigen Umriss hat und von dem drei mit Abstand voneinander liegende parallel zueinander verlaufende Arme 30 bis 32 abstehen. Die Arme 30 bis 32 und der Grundkörper 29 sind vorteilhaft einstückig miteinander ausgebildet und bestehen vorteilhaft aus einem harten Kunststoff.

[0038] Vom Grundkörper 29 steht eine ringförmige Lageraufnahme 33 ab, die etwa über ihren halben Umfang über den Grundkörper 29 vorsteht und ein Wälzlager 34 aufnimmt. Es ist vorteilhaft ein Kugellager, das bevorzugt ein VA-Kugellager ist, insbesondere ein V2A- oder ein V4A-Kugellager. Der äußere Lagerring 35 ist in geeigneter Weise an der Innenwand der Aufnahme 33 befestigt, beispielsweise eingepresst. Die ringförmige Auf-

40

nahme 33, die beispielhaft etwa über den halben Umfang über den Grundkörper 29 in Längsrichtung der Arme 30 bis 32 vorsteht, hat gleiche Dicke wie das Wälzlager 34 (Fig. 7). Die Aufnahme 33 ist vorteilhaft so ausgebildet, dass das Wälzlager 34 nicht nach oben bzw. nach unten aus den Aufnahmen 33 der beiden Lagerschlitten 28 herausgedrückt werden kann. Zu diesem Zweck sind die Aufnahmen 33 konisch ausgebildet. Die Aufnahme 33 des in Fig. 1 oberen Lagerschlittens 28 verjüngt sich nach oben und die Aufnahme 33 des unteren Lagerschlittens 28 nach unten. Die Verjüngung der Aufnahmen 33 ist so gestaltet, dass die Wälzlager 34 mit Presssitz in den Aufnahmen 33 sitzen.

[0039] Die Grundplatte 29 ist an ihrer einen Seite mit wenigstens einer, im Ausführungsbeispiel mit drei Versteifungsrippen 36 bis 38 versehen, die vorteilhaft gleich hoch sind und von einem Rand 39 des Grundkörpers 29 aus sich bis zur Aufnahme 33 erstrecken.

[0040] Der mittlere Arm 31 ist auf beiden Seiten jeweils mit Versteifungsrippen 40, 41 versehen, die an die Aufnahme 33 anschließen (Fig. 8 und 9). Die Versteifungsrippen 40, 41 liegen den Versteifungsrippen 36 bis 38 des Grundkörpers 29 diametral gegenüber. Die Versteifungsrippen 40, 41 verstärken den mittleren Arm 31, der als flacher, abgewinkelter Steg (Fig. 7) ausgebildet ist. [0041] Die beiden äußeren Arme 30, 32 liegen jeweils mit Abstand zum mittleren Arm 31 und sind am freien Ende jeweils L-förmig ausgebildet. Die beiden Arme 30, 32 sind spiegelsymmetrisch zueinander ausgebildet. An ihren voneinander abgewandten Außenseiten sind die Arme 30, 32 jeweils mit einer Rastnase 42, 43 versehen, mit denen der Lagerschlitten 28 im Einsatzgehäuse 3 eingerastet werden kann. Auf diese Weise lässt sich die Exzenterwelle 2 mit den Schiebern 6 als gemeinsame Baueinheit in das Einsatzgehäuse 3 einschieben und befestigen. Die Arme 36 bis 38 sind an die Einbauverhältnisse im Einsatzgehäuse 3 angepasst. Insbesondere die Arme 30, 32 wirken mit ihren L-förmigen Enden mit entsprechenden Gegenformschlussteilen im Einsatzgehäuse 3 zusammen. Die Lagerschlitten 28 werden mit dem Rand 39 nach vorn in das Einsatzgehäuse 3 so weit eingeschoben, bis die Arme 30, 32 eingerastet sind bzw. von Hand entgegengesetzt zueinander nach außen in die Raststellung bewegt werden. Die Rastnasen 42, 43 sind im Bereich der über den Grundkörper 29 vorstehenden Abschnitte 30, 32 vorgesehen, die darum bei der Montage in ausreichendem Maße elastisch nach innen gegen den Arm 31 gebogen werden können, damit die Rastnasen 42, 43 über entsprechende gehäuseseitige Vorsprünge oder in Rastöffnungen rasten bzw. einrasten

[0042] Mit den L-förmigen Armen 30, 32 ist es möglich, die Verrastung des Lagerschlittens 28 aufzuheben. Die Arme 30, 32 werden hierfür elastisch so weit gegen den mittleren Arm 31 gebogen, bis die Rastnasen 42, 43 freikommen. Die L-förmigen Enden bilden Griffe, mit denen sich die Arme 30, 32 einfach biegen lassen.

[0043] Die Verrastung der Lagerschlitten 28 erfolgt

vorteilhaft an den einander gegenüberliegenden Seitenwänden des Einsatzgehäuses 3, zwischen die der Lamellenblock 4 mit der Exzenterwelle 2 eingeschoben wird. Zum Schließen des Einsatzgehäuses 3 dient eine Schließplatte 46, die in Fig. 1 schematisch dargestellt ist. Die Schließplatte 46 befindet sich an den freien Enden der Seitenwände des Einsatzgehäuses 3 und wird durch die L-förmigen Enden der Arme 30, 32 der beiden Lagerschlitten 28 in montierter Lage gesichert, wenn sich die Arme 30, 32 in ihrer Raststellung befinden. Die Schließplatte 46 stellt eine zusätzliche Sicherung dar, um den Lamellenblock 4 mit der Exzenterwelle 2 gegen Herausfallen aus dem Einsatzgehäuse 3 zu verhindern. [0044] Auf dem oberen Lagerzapfen 27 sitzt drehfest ein Zahnrad 44, das mit einem Elektromotor 47 antriebsverbunden ist. Das Zahnrad 44 kann beispielsweise auf den Lagerzapfen 27 aufgepresst oder auf andere Weise drehfest mit ihm verbunden sein, beispielsweise durch Kleben, Aufschrumpfen und dergleichen. Der Motor 47 ist an einem laschenförmigen Träger 48 befestigt, der als Einschublasche ausgebildet ist. Die Motorwelle ragt durch den Träger 48 und trägt ein Ritzel 49, das in Eingriff mit einem Zwischenzahnrad 50 ist. Es ist drehbar am Träger 48 gelagert und kämmt in der Einbaulage mit dem Zahnrad 44. Der Träger 48 besteht vorteilhaft aus korrosionsbeständigem Material, vorzugsweise aus VA-Stahl, insbesondere aus V2A- oder V4A-Stahl. (Nicht dargestellte) Befestigungsschrauben, mit denen der Motor 47 am Träger 48 befestigt ist, bestehen ebenfalls vorteilhaft aus korrosionsbeständigem Material, vorzugsweise aus VA-Stahl, insbesondere aus V2A- oder V4A-Stahl. Die Lagerachse für das Zwischenzahnrad 50 besteht in vorteilhafter Weise ebenfalls aus diesem Material. Somit ist gewährleistet, dass kein Korrosionsmaterial vom Motorbereich in die Schlauchpumpe gelangt.

[0045] Der Träger 48 mit dem Motor 47 und dem Zwischenzahnrad 50 wird mittels einer Führung in das Einsatzgehäuse 3 eingeschoben. Die Führung wird beispielsweise durch Profilierungen gebildet, die an den Seitenwänden des Einsatzgehäuses 3 vorgesehen sind und den Träger 48 oben und unten übergreifen. Da der Träger 48 laschenförmig ausgebildet ist, nimmt er nur wenig Einbauraum in Anspruch.

[0046] Der Träger 48 hat eine (nicht dargestellte) Rastöffnung, in die in montierter Lage ein Rastelement 51 eingreift (Fig. 6 und 9), das am freien Ende des mittleren Arms 31 des Lagerschlittens 28 vorgesehen ist. Da der Arm 31 als abgewinkelter Steg ausgebildet ist, der geringfügig über die eine Seite des Lagerschlittens 28 vorsteht (Fig. 7), wird der Arm 31 beim Einschieben des Trägers 48 elastisch zurückgebogen, bis das Rastelement 51 in die Rastöffnung des Trägers 48 einrastet. Der Träger 48 wird zwischen das Zahnrad 44 und den Lagerschlitten 28 eingeschoben. Der Träger 48 ist dann lagegesichert.

[0047] Da als Wälzlager 34 ein metallisches Lager, vorzugsweise ein V2A-Kugellager, eingesetzt wird, ergibt sich ein sehr leichter Lauf der Exzenterwelle 2. Dies

10

15

20

25

30

35

40

45

50

55

hat den Vorteil, dass die Schlauchpumpe eine geringere Stromaufnahme benötigt, so dass sie energiesparend eingesetzt werden kann. Der leichte Lauf der Exzenterwelle in den Wälzlagern 34 führt außerdem zu einer erheblich längeren Lebensdauer der Schlauchpumpe. Mit dem metallischen Wälzlager 34 ist ein Heißlaufen der Schlaupumpe bei längerem Einsatz nicht zu befürchten. [0048] Abweichend vom dargestellten bevorzugten Ausführungsbeispiel kann die Exzenterwelle 2 auch durch eine durchgehende Welle gebildet sein, auf der die Exzenterscheiben 6 sitzen. Diese Welle kann aus jedem geeigneten metallischen Material bestehen, vorzugsweise aus VA-Material, insbesondere aus V2Aoder V4A-Stahl. Insbesondere besteht eine solche durchgehende Achse aus einem Federstahl, wodurch sichergestellt ist, dass die Achse nach jeder Biegebeanspruchung in ihre Ausgangslage zurückfedert.

[0049] Das Einsatzgehäuse 3 ist vorteilhaft mit einem Aufnahmeraum 52 für eine Elektronik versehen (Fig. 2). Dieser Aufnahmeraum 52 ist an einer Rückwand 53 des Einsatzgehäuses 3 vorgesehen, von der die Seitenwände des Einsatzgehäuses 3 quer abstehen. Im Aufnahmeraum 52 sind beispielhaft Rastelemente 54, 55 vorgesehen, in die die entsprechenden Elektronikbauteile bzw.-gruppen eingerastet werden können. Der Aufnahmeraum 52 ist so ausgebildet, dass er alle für die Schlauchpumpe möglichen Elektronikbauteile/Gruppen aufnehmen kann. Je nach Ausstattung der Schlauchpumpe lassen sich auf diese Weise die benötigten bzw. vom Kunden gewünschten Bauteile/Gruppen einfach in den Aufnahmeraum 52 einsetzen.

[0050] Anstelle der auf unterschiedliche Funktionen der Schlauchpumpe abgestimmten Elektronikbauteile/ gruppen kann auch nur ein einziger Elektronikbaustein im Aufnahmeraum 52 untergebracht werden, an dem bereits alle für die möglichen Einsatzbereiche der Schlauchpumpe benötigten Elektroniken vorgesehen sind. Je nach gewünschter Funktion der Schlauchpumpe lassen sich dann diese Elektroniken freischalten.

[0051] Es ist dadurch möglich, mit einer geeigneten Elektronik die Schlauchpumpe so zu gestalten, dass das Medium genau dosiert zugegeben werden kann. Dies ist insbesondere bei Verwendung des hydrostatischen Granulates von großem Vorteil. Dieses Granulat wird in die zu reinigende Flüssigkeit in einer solchen Menge eingebracht, dass die Flüssigkeit einen vorgegebenen pH-Wert aufweist. Die Zugabe dieses Granulates erfolgt elektronisch. So kann der pH-Wert in der Flüssigkeit gemessen und bei Unterschreiten des vorgegebenen pH-Wertes die Schlauchpumpe eingeschaltet und so viel Granulat zugegeben werden, bis der vorgegebene pH-Wert wieder erreicht ist. Dann wird die Schlauchpumpe abgeschaltet.

[0052] Der pH-Wert der Flüssigkeit ist nur ein mögliches Kriterium. Es kann beispielsweise auch der Bakterienwert in der Flüssigkeit, die Konzentration von kritischen Bestandteilen in der Flüssigkeit, zum Beispiel der Phosphorwert, gemessen werden. Wird der zulässige

Werte über- bzw. unterschritten, wird mit Hilfe der Schlauchpumpe genau dosiert ein entsprechendes Mittel zugegeben, um diese Werte auf den erforderlichen Wert zu bringen bzw. auf diesem Wert zu halten.

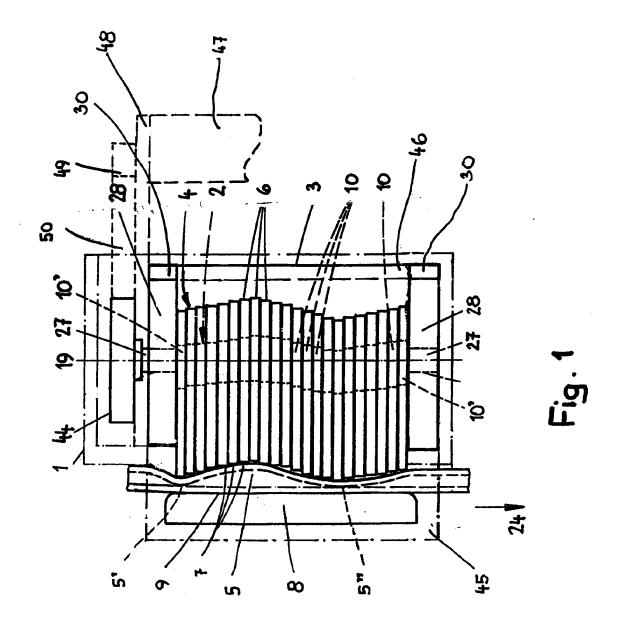
Patentansprüche

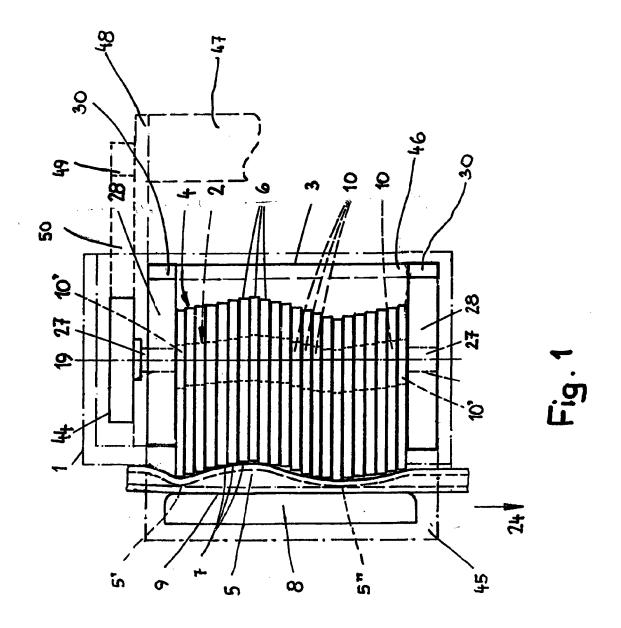
- Schlauchpumpe mit einer Exzenterwelle, mit der aufeinanderliegende Schieber gegeneinander gegen einen Schlauch verschiebbar sind, der durch die Schieber zur portionsweisen Abgabe eines Mediums elastisch zusammendrückbar ist,
 - dadurch gekennzeichnet, dass die Exzenterwelle (2) an wenigstens einem Ende durch ein metallisches Wälzlager (34) drehbar abgestützt ist.
- Schlauchpumpe nach Anspruch 1, dadurch gekennzeichnet, dass das Wälzlager (345) aus korrosionsbeständigem Material besteht.
- Schlauchpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Wälzlager (34), vorzugsweise ein VA-Kugellager, in einem Lagerteil (28) untergebracht ist.
- Schlauchpumpe nach Anspruch 3, dadurch gekennzeichnet, dass das Lagerteil (28) eine ringförmige Aufnahme (33) für das Wälzlager (34) aufweist.
- Schlauchpumpe nach Anspruch 4, dadurch gekennzeichnet, dass die Aufnahme (33) an einem Grundkörper (29) des Lagerteiles (28) vorgesehen ist.
- 6. Schlauchpumpe nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass sich die Aufnahme (33) derart verjüngt, dass das Wälzlager (34) nicht durch die Aufnahme (33) hindurchgedrückt werden kann.
- Schlauchpumpe nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der Grundkörper (29) plattenartig ausgebildet ist.
- Schlauchpumpe nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass der Grundkörper (29) durch wenigstens eine Versteifungsrippe (36) bis (39) versteift ist.
- Schlauchpumpe nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die Dicke des Grundkörpers (29) kleiner ist als die Höhe der Aufnahme (33).
- Schlauchpumpe nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Lagerteil (28)

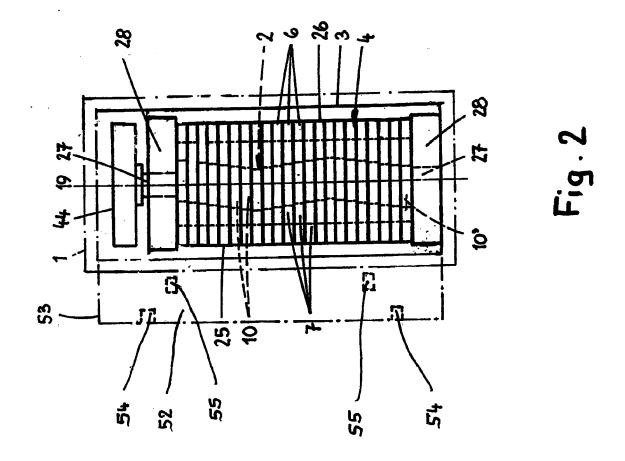
rastend in der Schlauchpumpe gehalten ist.

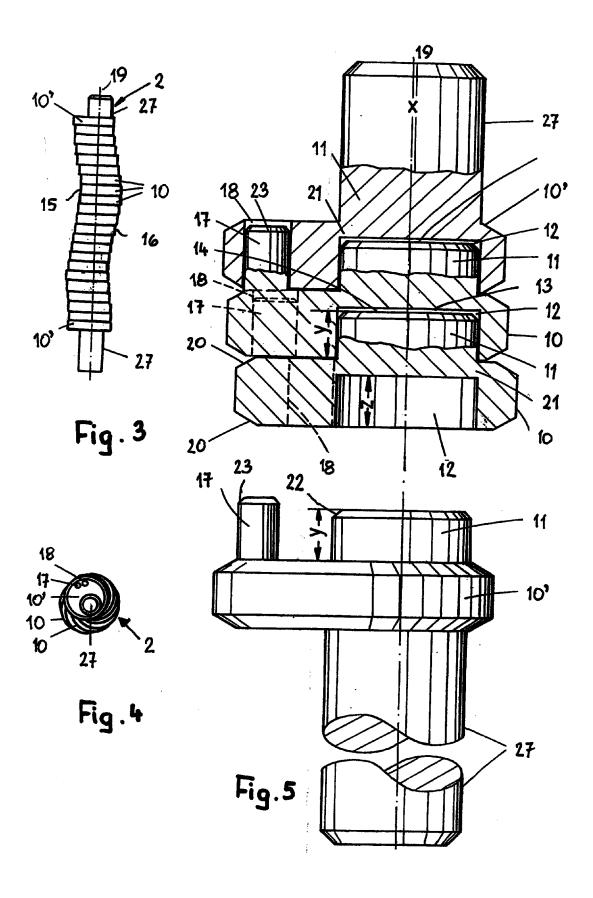
- 11. Schlauchpumpe nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, dass vom Grundkörper (29) des Lagerteiles (28) wenigstens ein vorzugsweise federnd elastisch ausgebildeter Arm (30 bis 32) absteht, der mit wenigstens einem Rastelement (42, 43) versehen ist.
- Schlauchpumpe nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Exzenterwelle (2) durch Exzenterscheiben (10) gebildet wird, die exzentrisch zur Drehachse (19) der Exzenterwelle (2) ausgebildet und winkelversetzt zueinander zusammen-gesteckt sind.
- 13. Schlauchpumpe nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass ein Elektromotor (47) zum Antrieb der Exzenterwelle (2) an einem Träger (48) gehalten ist, der als Einschubteil ausgebildet ist.
- **14.** Schlauchpumpe nach Anspruch 13, dadurch gekennzeichnet, dass der Träger (48) aus korrosionsbeständigem Material, vorzugweise aus VA-Stahl, besteht.
- 15. Schlauchpumpe nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Schieber (6) und die Exzenterwelle (2) Teil einer Baueinheit ist, die in ein Einbaugehäuse (3) einsetzbar ist, das vorteilhaft mit mindestens einem Aufnahmeraum (52) für Elektronikbauteile bzw. Elektronikbaugruppen versehen ist.

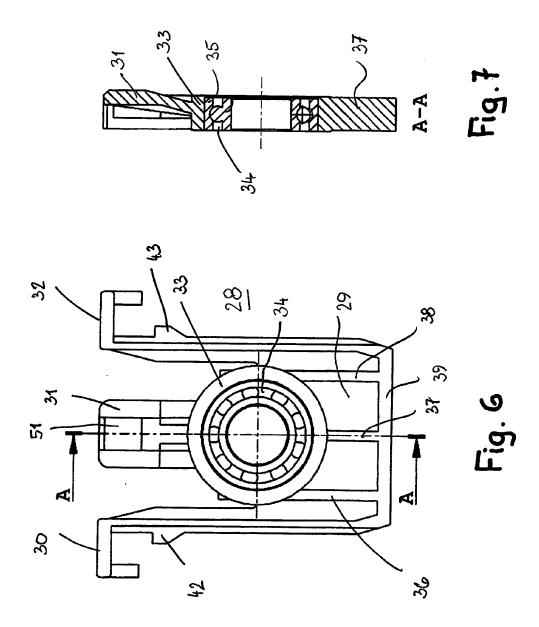
15

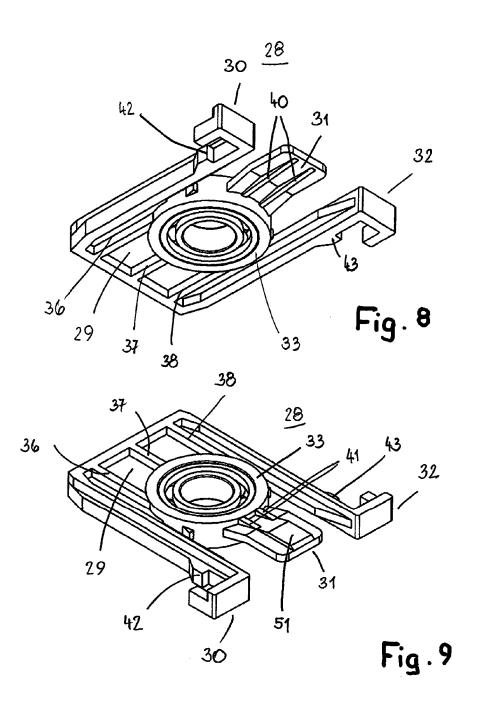

35


40


45


50


55



EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 13 00 2397

	EINSCHLÄGIGE	DOKUMENTE		
Kategorie	Kennzeichnung des Dokum	ents mit Angabe, soweit erforderlich,	Betrifft	KLASSIFIKATION DER ANMELDUNG (IPC)
Х	US 3 083 647 A (MUL 2. April 1963 (1963 * 7usammenfassung *	LER JOHN T)	1,2 3-15	INV. F04B43/08 F04B43/12
	* Spalte 3, Zeilen	13-17 *		101513712
X Y	4. Dezember 1991 (1	RTONCINI JOSEPH [US]) 991-12-04)	1,2	
Y	* Spalte 15, Zeilen	; Abbildungen 1,9 * 28-50 *	3-15	
Υ	WO 93/22558 A1 (MAGEBERHARD [DE]) 11. November 1993 (* Zusammenfassung * Abbildungen *		3-15	
				RECHERCHIERTE SACHGEBIETE (IPC)
Der vo	<u> </u>	rde für alle Patentansprüche erstellt		
	Recherchenort	Abschlußdatum der Recherche 7. Oktober 2013	n: -	Prüfer
X : von Y : von ande A : tech O : nich	München ATEGORIE DER GENANNTEN DOKU besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung ren Veröffentlichung derselben Kateg nologischer Hintergrund tschriftliche Offenbarung sohenliteratur	JMENTE T: der Erfindung z E: älteres Patento et nach dem Anm mit einer D: in der Anmeld. orie L: aus anderen G	ugrunde liegende ī lokument, das jedo eldedatum veröffen ing angeführtes Do ründen angeführtes	tlicht worden ist kument

EPO FORM 1503 03.82 (P04C03)

P : Zwischenliteratur

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 13 00 2397

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

07-10-2013

angeführtes US 30	cherchenberichtes Patentdokum 983647 		Datum der Veröffentlichung	165711	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
		Α		14551		
EP 04	459113		02-04-1963	KEIN	E 	
		A1	04-12-1991	CA EP US US	2040326 A1 0459113 A1 5098261 A 5318413 A	05-11-1991 04-12-1991 24-03-1992 07-06-1994
WO 93	322558	A1	11-11-1993	AT DE EP JP JP US WO	145966 T 9205733 U1 0641416 A1 3287567 B2 H08500871 A 5558507 A 9322558 A1	15-12-1996 02-09-1993 08-03-1995 04-06-2002 30-01-1996 24-09-1996 11-11-1993

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82