

(11) EP 2 677 252 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

25.12.2013 Bulletin 2013/52

(51) Int CI.:

F25B 5/00 (2006.01)

F25B 15/00 (2006.01)

(21) Application number: 13172372.8

(22) Date of filing: 18.06.2013

(84) Designated Contracting States:

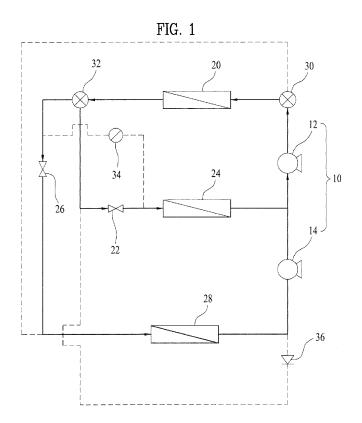
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

(30) Priority: 22.06.2012 KR 20120067111

(71) Applicant: LG Electronics, Inc. Seoul 150-721 (KR)


(72) Inventor: Kim, Seongjae 153-802 Seoul (KR)

(74) Representative: Vossius & Partner Siebertstrasse 4 81675 München (DE)

(54) Refrigerator

(57) The present invention relates to a refrigerator. The refrigerator includes a compressor unit for compressing refrigerant, a condensing unit for passing the refrigerant compressed thus, and a first heat exchanger unit and a second heat exchanger unit each for making heat exchange as the refrigerant passes therethrough, wherein, if a defrosting mode is performed for one of the first heat exchanger unit and a second heat exchanger

unit, the refrigerant compressed at the compressor unit is supplied to one of the first heat exchanger unit and the second heat exchanger unit, and then the refrigerant is supplied to the other one of the first heat exchanger unit and the second heat exchanger unit after the refrigerant is passed through an expansion valve, thereby permitting to reduce power consumption of the refrigerator while defrosting the evaporator.

EP 2 677 252 A1

[0001] The present invention relates to refrigerators, and more particularly, to a refrigerator which can reduce power consumption of the refrigerator at the time of defrosting an evaporator.

1

[0002] In general, the refrigerator, used for frozen or refrigerated storage of food, is provided with a case which forms partitioned spaces of a freezing chamber and a refrigerating chamber, and parts, such as a compressor, a condenser, an evaporator, a capillary tube, and so on for forming a refrigerating cycle to lower temperatures of the freezing chamber and the refrigerating chamber.

[0003] The case has a door mounted to one side thereof for opening/closing the freezing chamber and the refrigerating chamber.

[0004] The refrigerator performs refrigerating operation with a refrigerating cycle in which low temperature and low pressure gaseous refrigerant is compressed to high temperature and high pressure gaseous refrigerant by the compressor, the high temperature and high pressure gaseous refrigerant compressed thus is turned to high pressure liquidus refrigerant as the high temperature and high pressure gaseous refrigerant passes through the condenser, the high pressure liquidus refrigerant is involved in temperature and pressure drop as the high pressure liquidus refrigerant passes through the capillary tube, and the refrigerant having the temperature and pressure dropped thus cools down air around the evaporator as the refrigerant is turned to low temperature and low pressure gaseous refrigerant while absorbing heat from the air around the evaporator.

[0005] If a related art refrigerator forms frost at the evaporator, a heater adjacent to the evaporator is put into operation for defrosting the evaporator.

[0006] However, the defrosting with the heater causes a problem in that power consumption of the heater increases refrigerator power consumption. And, if the heater is operated excessively to introduce the heat from the heater to the refrigerating chamber or the freezing chamber, it is required to drive the compressor again for running the refrigerating cycle, which requires consumption of additional energy.

[0007] To solve the problems, an object of the present invention is to provide a refrigerator which has no heater for defrosting the evaporator.

[0008] Another object of the present invention is, to provide a refrigerator which can reduce power consumption of the refrigerator in defrosting, more particularly, to provide a refrigerator which enables to run a refrigerating cycle by using energy consumed for defrosting.

[0009] Additional advantages, objects, and features of the disclosure will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly

pointed out in the written description and claims hereof as well as the appended drawings.

[0010] To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a refrigerator includes a compressor unit for compressing refrigerant, a condensing unit for passing the refrigerant compressed thus, and a first heat exchanger unit and a second heat exchanger unit each for making heat exchange as the refrigerant passes therethrough, wherein, if a defrosting mode is performed for one of the first heat exchanger unit and a second heat exchanger unit, the refrigerant compressed at the compressor unit is supplied to one of the first heat exchanger unit and the second heat exchanger unit, and then the refrigerant is supplied to the other one of the first heat exchanger unit and the second heat exchanger unit after the refrigerant is passed through an expansion valve.

[0011] In this case, if the defrosting mode is performed for the first heat exchanger unit, heat can be supplied to the first heat exchanger unit by the refrigerant, and cold can be supplied to the second heat exchanger.

[0012] In this case, if the defrosting mode is performed for the second heat exchanger unit, heat can be supplied to the second heat exchanger unit by the refrigerant, and the cold can be supplied to the first heat exchanger.

[0013] In the meantime, if the defrosting mode is performed, the refrigerant can pass through an expansion valve between the first heat exchanger unit and the second heat exchanger unit.

[0014] Especially, if the defrosting mode is performed, one of the first heat exchanger unit and the second heat exchanger unit can become a high temperature part having a relatively high temperature, and the other one of the first heat exchanger unit and the second heat exchanger unit can become a low temperature part having a relatively low temperature.

[0015] And, if the defrosting mode is performed, the refrigerant which does not pass through the condensing unit can pass through one of the first heat exchanger unit and the second heat exchanger unit.

[0016] In a cold supply mode on the first heat exchanger unit, the refrigerant passed through the condensing unit can be introduced to the first heat exchanger unit after passing through the expansion valve.

[0017] In the cold supply mode on the second heat exchanger unit, the refrigerant passed through the condensing unit can be introduced to the second heat exchanger unit after passing through the expansion valve.

[0018] Especially, in the cold supply mode, the refrigerant can be introduced to one of the first heat exchanger unit and the second heat exchanger unit selectively after the refrigerant passes through the condensing unit.

[0019] In the meantime, the first heat exchanger unit can be provided for supplying the cold to a refrigerating chamber, and the second heat exchanger unit can be provided for supplying the cold to a freezing chamber.

[0020] The compressor unit can include a first com-

40

pressor unit for supplying the refrigerant to the first heat exchanger unit in the cold supply mode, and a second compressor unit for supplying the refrigerant to the second heat exchanger unit.

[0021] In the defrosting mode on the first heat exchanger unit, the second compressor unit can supply the refrigerant in order of the first heat exchanger unit and the second heat exchanger unit, and, in the defrosting mode on the second heat exchanger unit, the first compressor unit can supply the refrigerant in order of the second heat exchanger unit and the first heat exchanger unit.

[0022] Opposite to this, the second heat exchanger unit can be provided with a cold accumulation unit having a phase change material placed therein, and the cold accumulation unit can be provided to supplement the cold to the freezing chamber or the refrigerating chamber.

[0023] It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.

[0024] The accompanying drawings, which are included to provide a further understanding of the invention, illustrate embodiments of the invention and together with the description serve to explain the principle of the invention.

- FIG. 1 illustrates a diagram showing a state a cold supply mode is performed in accordance with a preferred embodiment of the present invention.
- FIG. 2 illustrates a diagram showing a state a defrosting mode on a second heat exchanger unit in FIG. 1is performed.
- FIG. 3 illustrates a diagram showing a state a defrosting mode on a first heat exchanger unit in FIG. 1 is performed.
- FIG. 4 illustrates a diagram showing a state a cold supply mode is performed in accordance with another preferred embodiment of the present invention.
- FIG. 5 illustrates a diagram showing a state a defrosting mode on a second heat exchanger unit in FIG. 4 is performed.
- FIG. 6 illustrates a diagram showing a state a defrosting mode on a first heat exchanger unit in FIG. 4 is performed.
- FIG. 7 illustrates a diagram showing a state a cold supply mode is performed in accordance with another preferred embodiment of the present invention.

[0025] Reference will now be made in detail to the specific embodiments of the present invention, examples of which are illustrated in the accompanying drawings.

[0026] For convenience and clarity of description, a size or a shape of an element shown in the drawing may be exaggerated. Terms specially defined taking a configuration and operation of the present invention into account may vary with intentions or usual practices of the user and operator. It is required that definition on such

terms is made with reference to entire description of the present invention.

[0027] A word of "cold" used in this specification as a noun has a meaning opposite to a word of "heat" used as a noun which means warmth or hotness.

[0028] FIG. 1 illustrates a diagram showing a state a cold supply mode is performed in accordance with a preferred embodiment of the present invention.

[0029] Referring to FIG. 1, the refrigerator includes a compressor unit 10 for compressing the refrigerant, a condensing unit 20 for passing the refrigerant compressed thus, and a first heat exchanger unit 24 and a second heat exchanger unit 28 for making heat exchange as the refrigerant passes therethrough.

[0030] In the meantime, a plurality of pipelines connect various valves, the condensing unit 20, the compressor unit 10, the first heat exchanger unit 24, and the second heat exchanger unit 28 for enabling to move the refrigerant.

20 [0031] In this case, the compressor unit 10 may include a first compressor unit 12 for supplying the refrigerant to the first heat exchanger unit 24 and a second compressor unit 14 for supplying the refrigerant to the second heat exchanger unit 28 in a cold supply mode.

[0032] The cold supply mode is a regular refrigerator operation state in which the cold is supplied to an inside of the refrigerator through the first heat exchanger unit 24 or the second heat exchanger unit 28. In the cold supply mode of the first heat exchanger unit 24, the cold is supplied to the inside of the refrigerator through the first heat exchanger unit24, and, in the cold supply mode on the second heat exchanger unit 28, the cold is supplied to the inside of the refrigerator through the second heat exchanger unit28.

[0033] The first heat exchanger unit 24 may be provided to supply the cold to the refrigerating chamber, and the second heat exchanger unit 28 may be provided to supply the cold to the freezing chamber. That is, the refrigerating chamber may be cooled by the cold supplied from the first heat exchanger unit 24, and the freezing chamber may be cooled by the cold supplied from the second heat exchanger unit 28. It is viable that the first heat exchanger unit 24 is an element matched to a refrigerating chamber evaporator, and the second heat exchanger unit 28 is an element matched to a freezing chamber evaporator. In this case, the first compressor unit 12 may be driven when the cold is supplied to the refrigerating chamber evaporator which is the first heat exchanger unit 24, and the second compressor unit 14 may be driven when the cold is supplied to the freezing chamber evaporator which is the second heat exchanger unit 28.

[0034] A system for embodying the cold supply mode in which the cold is supplied to the refrigerating chamber will be described. If the refrigerant is compressed by the first compressor unit 12, the refrigerant is guided to the condensing unit 20 by a first three-way valve 30. Heat exchange of the refrigerant is made at the condensing

25

40

50

unit 20. Then, the refrigerant may pass through an expansion valve 22 for the first heat exchanger unit by the second three way valve 32, and guided to the first heat exchanger unit 24. That is, since heat exchange is made at the first heat exchanger unit 24, the cold can be supplied to the refrigerating chamber through the first heat exchanger unit 24. The refrigerant passed through the first heat exchanger unit 24 may be guided to the first compressor unit 12 to embody the refrigerating cycle.

[0035] It is viable that the cold supply mode in which the cold is supplied to the refrigerating chamber has a concept the same with the cold supply mode on the first heat exchanger unit 24. In the cold supply mode on the first heat exchanger unit 24, the refrigerant passed through the condensing unit 20 is introduced to the first heat exchanger unit 24 after the refrigerant passes through the expansion valve 22 for the first heat exchanger unit.

[0036] Next, a system for embodying the cold supply mode in which the cold is supplied to the freezing chamber will be described. If the refrigerant is compressed by the second compressor unit 14, the refrigerant compressed thus can pass the first compressor unit 12 without any change. Of course, the refrigerant compressed at the second compressor unit 14 may be compressed at the first compressor unit 12, further. In this case, since the refrigerant is compressed at the second compressor unit 14 and the first compressor unit 12 in succession, a compression load on the second compressor unit 14 can be reduced. Moreover, since the refrigerant is compressed at the second compressor unit 14 and the first compressor unit 12, a compressor unit 14 and the first compressor unit 12, a compression performance can be improved.

[0037] The refrigerant passes through the condensing unit 20 by the first three way valve 30. And, the refrigerant may be guided to the expansion valve 26 for the second heat exchanger unit and forwarded to the second heat exchanger unit 28 by the second three way valve 32. Since heat exchange is made at the second heat exchanger unit 28, the cold can be supplied to the freezing chamber, finally. The refrigerant passed through the second heat exchanger unit 28 may be guided to the second compressor unit 14 again to embody the refrigerating cycle.

[0038] It is viable that the cold supply mode in which the cold is supplied to the freezing chamber has a concept the same with the cold supply mode on the second heat exchanger unit 28. In the cold supply mode on the second heat exchanger unit 28, the refrigerant passed through the condensing unit 20 is introduced to the second heat exchanger unit 28 after the refrigerant passes through an expansion valve 26 for the second heat exchanger unit.

[0039] That is, in the embodiment described with reference to FIG. 1, since a flow path of the refrigerant can be guided by the second three way valve 32, the cold can be supplied to the freezing chamber or the refrigerating chamber by the second three way valve 32. In the

cold supplied mode, the refrigerant passed through the compressor unit 10 may be introduced to any one of the first heat exchanger unit 24 or the second heat exchanger unit 28 after the refrigerant passes through the condensing unit 20, selectively.

[0040] FIG. 2 illustrates a diagram showing a state a defrosting mode on a second heat exchanger unit in FIG. 1 is performed.

[0041] Referring to FIG. 2, if the second heat exchanger unit 28 is frosted, defrosting of the second heat exchanger unit 28 is required.

[0042] Therefore, the first compressor unit 12 is put into operation to compress the refrigerant. The refrigerant compressed thus is guided to the second heat exchanger unit 28 through the first three way valve 30. In this case, in order to make the refrigerant to move from the first three way valve 30 to the second heat exchanger unit 28, a pipeline is connected between the first three way valve 30 and the second heat exchanger unit 28.

[0043] The refrigerant guided to the second compressor unit 28 after passing through the first three way valve is at a relatively high temperature because the refrigerant does not pass through the expansion valve before the refrigerant passes through the second heat exchanger unit 28. Since the refrigerant compressed at the first compressor unit 12 has a reduced volume, the refrigerant has an increased temperature. Therefore, as heat is supplied to the second heat exchanger unit 28 can be heated to a relatively high temperature. That is, ice stuck to the second heat exchanger unit 28 can be melted to defrost the second heat exchanger unit 28.

[0044] In the meantime, the refrigerant passed through the second heat exchanger unit 28 is guided to the first heat exchanger unit 24, passing through a check valve 36. The refrigerant passes the expansion valve 22 for the first heat exchanger unit before the refrigerant passes through the first heat exchanger unit 24. Therefore, the refrigerant is changed at the expansion valve 22 for the first heat exchanger unit to enable to supply the cold to the first heat exchanger unit 24. The refrigerant can cool the refrigerating chamber connected to the first heat exchanger unit 24 as the refrigerant passes through the first heat exchanger unit 24.

[0045] That is, the refrigerator of the present invention puts the first compressor unit 12 into operation to compress the refrigerant for defrosting the second heat exchanger unit 28. However, since the cold is supplied to the first heat exchanger unit 24 by using the refrigerant compressed thus, a space in communication with the first heat exchanger unit 24 can be cooled. In other words, since the refrigerator of the present invention utilizes energy for defrosting the second heat exchanger unit 28 for embodying the refrigerating cycle on the first heat exchanger unit 24, energy efficiency can be improved.

[0046] The refrigerator of the present invention can use the energy for defrosting, not only for defrosting, but also for supplying the cold to other parts.

25

40

45

[0047] And, while defrosting for the second heat exchanger unit 28 is performed, though the first heat exchanger unit 24 becomes a relatively low temperature part, the second heat exchanger unit 28 becomes a relatively high temperature part.

[0048] FIG. 3 illustrates a diagram showing a state a defrosting mode on a first heat exchanger unit in FIG. 1 is performed.

[0049] Referring to FIG. 3, if the first heat exchanger unit 24 is frosted, it is required to defrost the first heat exchanger unit 24.

[0050] Therefore, the second compressor unit 14 is put into operation to compress the refrigerant. The refrigerant compressed thus is, not passed through the first compressor unit 12, but guided to the first heat exchanger unit 24. Since the first compressor unit 12 is not in operation, the refrigerant compressed at the second compressor unit 14 can not pass the first compressor unit 12, but can move to the first heat exchanger unit 24.

[0051] The refrigerant guided to the first heat exchanger unit 24 is at a relatively high temperature state because the refrigerant does not pass through the expansion valve before the refrigerant passes through the first heat exchanger unit 24. Since the refrigerant compressed at the first compressor unit 12 has a reduced volume, the refrigerant has an increased temperature. Therefore, as heat is supplied to the first heat exchanger unit 24, the first heat exchanger unit 24 can be heated to a relatively high temperature. That is, ice stuck to the first heat exchanger unit 24 may be melted to defrost the first heat exchanger unit 24.

[0052] In the meantime, the refrigerant passed through the first heat exchanger unit 24 is guided to the second heat exchanger unit 28. In this case, the refrigerant passes through a first two-way valve 34 mounted to a pipeline which is connected between the first heat exchanger unit 24 and the expansion valve 26 for the second heat exchanger unit. The first two-way valve 34 opens a flow passage for the refrigerant to pass through. The refrigerant passes through the expansion valve 26 for the second heat exchanger unit before the refrigerant passes through the second heat exchanger unit 28. Therefore, the refrigerant is changed at the expansion valve 26 for the second heat exchanger unit for the refrigerant to supply the cold to the second heat exchanger unit 28. The refrigerant can cool down the freezing chamber connected to the second heat exchanger unit 28 as the refrigerant passes through the second heat exchanger unit 28.

[0053] That is, the refrigerator of the present invention puts the second compressor unit 14 into operation to compress the refrigerant for defrosting the first heat exchanger unit 24. However, since the cold is supplied to the second heat exchanger unit 28 by using the refrigerant compressed thus, a space in communication with the second heat exchanger unit 28 can be cooled. In other words, since the refrigerator of the present invention utilizes energy for defrosting the first heat exchanger unit 24 for embodying the refrigerating cycle on the sec-

ond heat exchanger unit 28, energy efficiency can be improved.

[0054] The refrigerator of the present invention can use the energy for defrosting, not only for defrosting, but also for supplying the cold to other parts.

[0055] And, while defrosting for the first heat exchanger 24 is performed, though the second heat exchanger unit 28 becomes a relatively low temperature part, the first heat exchanger unit 24 becomes a relatively high temperature part.

[0056] If the defrosting mode is performed, since the refrigerant passes through the expansion valve between the first heat exchanger unit 24 and the second heat exchanger unit 28, the refrigerator of the present invention can supply the cold from the first heat exchanger unit 24 or the second heat exchanger unit 28 to which the refrigerant is introduced after the refrigerant passes through a relevant expansion valve.

[0057] In the meantime, if the defrosting is performed, since the refrigerant which does not pass through the condensing unit 20 passes through one of the first heat exchanger unit 24 and the second heat exchanger unit 28, the refrigerator of the present invention can defrost the first heat exchanger unit 24 or the second heat exchanger unit 28.

[0058] FIG. 4 illustrates a diagram showing a state a cold supply mode is performed in accordance with another preferred embodiment of the present invention.

[0059] Different from the refrigerator in accordance with a preferred embodiment of the present invention shown in FIG. 1, the refrigerator in accordance with another preferred embodiment of the present invention shown in FIG. 4 has a big difference in that the compressor unit is one. Since the compressor unit is one, in order to change over flow passages through which the refrigerant moves, a plurality of valves are provided in a system different from a system in the embodiment shown in FIG. 1. Alike the refrigerator in accordance with a preferred embodiment of the present invention shown in FIG. 1, the refrigerator in accordance with another preferred embodiment of the present invention shown in FIG. 4 has various valves and elements connected with pipelines through which the refrigerant can move.

[0060] For convenience's sake, description on an art which can be embodied identical to the refrigerator in accordance with a preferred embodiment of the present invention described above will be omitted. Accordingly, the description made in the refrigerator in accordance with a preferred embodiment of the present invention may also be applied to the refrigerator in accordance with another preferred embodiment of the present invention in the same fashion.

[0061] A cold supply mode will be described, in which the cold is supplied to the first heat exchanger unit 24. The refrigerant compressed by the compressor unit 10 is guided to the condensing unit 20 through a four way change over valve 40. Then, the refrigerant is guided to the first heat exchanger unit 24 through a third three way

20

25

40

45

valve 42. The refrigerant passes through the expansion valve 22 for the first heat exchanger unit before the refrigerant moves to the first heat exchanger unit 24, According to this, the cold can be supplied to an inside of the refrigerator through the first heat exchanger unit 24. [0062] The refrigerant passed through the first heat exchanger unit 24 is guided to the compressor unit 10 through a second two way valve 44. In this case, the second two way valve 44 opens a flow passage of a pipeline connected between the first heat exchanger unit 24 and the compressor unit 10. Opposite to this, a third two way valve 48 connected between the compressor unit 10 and the second heat exchanger unit 28 closes a passage of a pipeline. According to this, the refrigerant is not guided to the pipeline having the third two way valve 48 mounted thereto, but guided to the compressor unit 10 to embody a refrigerating cycle, finally.

[0063] In the meantime, a cold supply mode will be described, in which the cold is supplied to the second heat exchanger unit 28. The refrigerant compressed by the compressor unit 10 is guided to the condensing unit 20 through the four way change over valve 40. Then, the refrigerant is guided to the second heat exchanger unit 28 through the third three way valve 42. The refrigerant passes through the expansion valve 26 for the second heat exchanger unit before the refrigerant moves to the second heat exchanger unit 28. According to this, the cold can be supplied to an inside of the refrigerator through the second heat exchanger unit 28.

[0064] The refrigerant passed through the second heat exchanger unit 28 thus is guided to the compressor unit 10 through the third two way valve 48, In this case, the third two way valve 48 opens a flow passage of a pipeline connected between the second heat exchanger unit 28 and the compressor unit 10. Opposite to this, the second two way valve 44 connected between the compressor unit 10 and the first heat exchanger unit 24 closes a passage of a pipeline. According to this, the refrigerant is not guided to the pipeline having the second two way valve 44 mounted thereto, but guided to the compressor unit 10 to embody a refrigerating cycle, finally.

[0065] In the meantime, in a cold supply mode for supplying the cold to the first heat exchanger unit 24 or the second heat exchanger unit 28, it is provided that a fourth two way valve 46 mounted to a pipeline connected between the first heat exchanger unit 24 and the expansion valve 26 for the second heat exchanger unit closes a flow passage of the pipeline.

[0066] FIG. 5 illustrates a diagram showing a state a defrosting mode on a second heat exchanger unit in FIG. 4 is performed.

[0067] Referring to FIG. 5, the refrigerant compressed at the compressor unit 10 is guided to the second heat exchanger unit 28 after passing through the four way change over valve 40. In this case, the refrigerant does not pass through the expansion valve 26 for the second heat exchanger unit and the condensing unit 20 before the refrigerant is guided to the second heat exchanger

unit 28. Since the refrigerant compressed at the compressor unit 10 moves, the second heat exchanger unit 28, having heat transferred thereto, can be heated to a high temperature, relatively.

[0068] The refrigerant is guided to a pipeline having a check valve 49 mounted thereto. In this case, since the third two way valve 48 mounted to the pipeline connected between the second heat exchanger unit 28 and the compressor unit 10 closes the flow passage, the refrigerant is not guided to the pipeline having the third two way valve 48 mounted thereto.

[0069] After passing through the check valve 49, the refrigerant is guided to the first heat exchanger unit 24 through the expansion valve 22 for the first heat exchanger. In this case, since the refrigerant emits the cold, the first heat exchanger unit 24 can supply the cold. Since the second two way valve 44 opens a flow passage, the refrigerant is guided to the compressor unit 10 after passing through the second two way valve 44. Opposite to this, since the third two way valve 48 is handled to close the flow passage, the refrigerant is not guided to the third two way valve 48, but is lead to the compressor unit 10. Alikely, the fourth two way valve 46 mounted to a pipeline connected between the first heat exchanger unit 24 and the expansion valve 26 for the second heat exchanger unit closes the flow passage for preventing the refrigerant from flowing to the pipeline.

[0070] In the defrosting mode on the second heat exchanger unit too, while the second heat exchanger unit 28 falls under the high temperature part since the second heat exchanger unit 28 has a relatively high temperature, the first heat exchanger unit 24 falls under the low temperature part since the first heat exchanger unit 24 has a relatively low temperature. Therefore, ice and the like stuck to the second heat exchanger unit 28 can be removed.

[0071] In order to defrost the second heat exchanger unit 28, the compressor unit 10 is put into operation, and, the cold can be supplied to the first heat exchanger unit 24 by using the refrigerant compressed by the compressor unit 10. According to this, energy efficiency can be improved.

[0072] FIG. 6 illustrates a diagram showing a state a defrosting mode on a first heat exchanger unit in FIG. 4 is performed.

[0073] Referring to FIG. 6, the refrigerant compressed by the compressor unit 10 is guided to the first heat exchanger unit 24 by the four way change over valve 40. The refrigerant does not pass through the condensing unit 20 or the expansion valve 22 for the first heat exchanger unit before the refrigerant is guided to the first heat exchanger unit 24.

[0074] The second two way valve 44 mounted to the pipeline connected between the first heat exchanger unit 24 and the compressor unit 10 closes the flow passage. Opposite to this, the fourth two way valve 46 mounted to the pipeline connected between the first heat exchanger unit 24 and the expansion valve 26 for the second heat

40

45

50

exchanger unit opens the flow passage. According to this, the refrigerant is guided, not to pass through the second two way valve 44, but to pass the fourth two way valve 46.

[0075] After passing through the expansion valve 26 for the second heat exchanger unit, the refrigerant is guided to the second heat exchanger unit 28. In the meantime, the third two way valve 48 connected between the compressor unit 10 and the second heat exchanger unit 28 opens the third two way valve 48. The refrigerant passed through the second heat exchanger unit 28 is guided to the compressor unit 10 through the pipeline having the third two way valve 48 mounted thereto.

[0076] In the defrosting mode on the first heat exchanger unit too, while the first heat exchanger unit 24 falls under the high temperature part since the first heat exchanger unit 24 has a relatively high temperature, the second heat exchanger unit 28 falls under the low temperature part since the second heat exchanger unit 28 has a relatively low temperature. Therefore, ice and the like stuck to the first heat exchanger unit 24 can be removed.

[0077] In order to defrost the first heat exchanger unit 24, the compressor unit 10 is put into operation, and, the cold can be supplied to the second heat exchanger unit 28 by using the refrigerant compressed by the compressor unit 10. According to this, energy efficiency can be improved.

[0078] FIG. 7 illustrates a diagram showing a state a cold supply mode is performed in accordance with another preferred embodiment of the present invention.

[0079] Different from the refrigerator in accordance with a preferred embodiment of the present invention in FIG. 1, the refrigerator in accordance with another preferred embodiment of the present invention in FIG. 7 includes a cold accumulation unit 60 in the second heat exchanger unit 28. In this case, to make cold accumulation, the cold accumulation unit 60 may have a PCM (Phase Change Material) placed therein.

[0080] The PCM has a phase changing from liquid to gas, from solid to gas, or from gas to solid at a certain temperature. Even though a material shows no temperature change at a melting point or a boiling point, since the material absorbs or discharges much energy for changing the state of the material, the PCM can be used for storage of energy within a particular temperature range,

[0081] At first, a cold supply mode for supplying the cold to the first heat exchanger unit 24 will be described. The compressor unit 10 is put into operation to compress the refrigerant, and the refrigerant compressed thus is guided to the condensing unit 20 through a fourth three way valve 50. Then, after passing through the expansion valve 22 for the first heat exchanger unit, the refrigerant is guided to the first heat exchanger unit 24 to supply the cold thereto. Then, the refrigerant is guided to the compressor unit 10 through a fifth three way valve 52 to embody the refrigerating cycle.

[0082] Next, a cold supply mode for supplying the cold to the second heat exchanger unit 28 will be described. The compressor unit 10 is put into operation to compress the refrigerant, and the refrigerant compressed thus is guided to the condensing unit 20 through the fourth three way valve 50. Then, the refrigerant is guided to the first heat exchanger unit 24 after passing through the expansion valve 22 for the first heat exchanger unit to supply the cold thereto. Then, after passing through the fifth three way valve 52, the refrigerant is guided to the expansion valve 26 for the second heat exchanger unit. After passing through the expansion valve 26 for the second heat exchanger unit, the refrigerant moves to the second heat exchanger unit 28. Therefore, the refrigerant supplies the cold to the second heat exchanger unit 28, too.

[0083] In this case, since the second heat exchanger unit 28 is in contact with the cold accumulation unit 60, the cold can be accumulated at the cold accumulation unit 60.

[0084] In the meantime, the cold accumulation unit 60 may be provided to the freezing chamber or the refrigerating chamber.

[0085] For an example, if the cold accumulation unit 60 is provided to the refrigerating chamber, the second heat exchanger unit 28 may be mounted to the refrigerating chamber, to supply the cold to the refrigerating chamber. In this case, different from the second heat exchanger unit 28, the first hat exchanger unit 24 may be mounted to the freezing chamber for supplying the cold to the freezing chamber. Since the cold accumulation unit 60 is mounted to the refrigerating chamber, if the refrigerating cycle is not in operation by the compressor unit 10, the cold accumulated at the cold accumulation unit 60 may be supplied to the refrigerating chamber. [0086] Opposite to this, the cold accumulation unit 60 may be provided to the freezing chamber. In this case, it is possible that the second heat exchanger unit 28 supplies the cold to the cold accumulation unit 60 for storage of the cold therein. Of course, it is also possible to cool down the freezing chamber with the cold supplied from the second heat exchanger unit 28. In this case, the first heat exchanger unit 24 may be mounted, to the refrigerating chamber for supplying the cold to the refrigerating chamber, or to the freezing chamber for supplying the cold to the freezing chamber.

[0087] Since the cold accumulation unit 60 is mounted to the freezing chamber, if the refrigerating cycle is not in operation by the compressor unit 10, the cold accumulated at the cold accumulation unit 60 may be supplied to the freezing chamber.

[0088] A defrosting mode on the first heat exchanger unit 24 in accordance with another preferred embodiment of the present invention will be described.

[0089] The refrigerant compressed by the compressor unit 10 is guided to the first heat exchanger unit 24 through the fourth three way valve 50. In this case, the refrigerant guided to the first heat exchanger unit 24 does

15

20

25

30

35

40

not pass through the condensing unit 20 and the expansion valve 22 for the first heat exchanger unit. According to this, the first heat exchanger unit 24 may form the high temperature part which has a relatively high temperature. [0090] Since the first heat exchanger unit 24 is heated to the relatively high temperature, the ice stuck thereto can be melted to remove the ice therefrom. According to this, the defrosting on the first heat exchanger unit 24 can be achieved.

[0091] The refrigerant passed through the first heat exchanger unit 24 is guided to the expansion valve 26 for the second heat exchanger unit through the fifth three way valve 52. Then, the refrigerant may be guided to the second heat exchanger unit 28 to supply the cold to the second heat exchanger unit 28. In this case, since the refrigerant supplies the cold to the second heat exchanger unit 28, the second heat exchanger unit 28 can form the low temperature part which has a relatively low temperature.

[0092] As has been described, the refrigerator of the present invention can reduce power consumed during defrosting of the evaporator.

[0093] Moreover, the refrigerator of the present invention can improve energy efficiency of the refrigerator because a refrigerating cycle can be embodied by utilizing energy consumed for performing the defrosting.

[0094] Moreover, the refrigerator of the present invention permits to supply the cold to one of the refrigerating chamber and the freezing chamber while defrosting the other one of the refrigerating chamber and the freezing chamber.

Claims

- 1. A refrigerator comprising:
 - a compressor unit (10) for compressing refrigerant:
 - a condensing unit (20) for passing the refrigerant compressed thus; and
 - a first heat exchanger unit (24) and a second heat exchanger unit (28) each for making heat exchange as the refrigerant passes therethrough,

wherein, if a defrosting mode is performed for one of the first heat exchanger unit (24) and a second heat exchanger unit (28), the refrigerator is configured to supply refrigerant compressed at the compressor unit (10) to one of the first heat exchanger unit (24) and the second heat exchanger unit (28), and to then supply the refrigerant to the other one of the first heat exchanger unit (24) and the second heat exchanger unit (28) after the refrigerant is passed through a first or second expansion valve (22, 26), respectively.

- 2. The refrigerator as claimed in claim 1, wherein, if the defrosting mode is performed for the first heat exchanger unit (24), heat is supplied to the first heat exchanger unit (24) by the refrigerant, and cold is supplied to the second heat exchanger unit (28).
- 3. The refrigerator as claimed in claim 1 or 2, wherein, if the defrosting mode is performed for the second heat exchanger unit (28), heat is supplied to the second heat exchanger unit (28) by the refrigerant, and the cold is supplied to the first heat exchanger unit (24).
- 4. The refrigerator as claimed in any one of claims 1 to 3, wherein, if the defrosting mode is performed, the refrigerator is configured to pass refrigerant through the second expansion valve (26) between the first heat exchanger unit (24) and the second heat exchanger unit (28).
- 5. The refrigerator as claimed in any one of claims 1 to 4, wherein, if the defrosting mode is performed, one of the first heat exchanger unit (24) and the second heat exchanger unit (28) becomes a high temperature part having a relatively high temperature, and the other one of the first heat exchanger unit (24) and the second heat exchanger unit (28) becomes a low temperature part having a relatively low temperature.
- 6. The refrigerator as claimed in any one of claims 1 to 5, wherein, if the defrosting mode is performed, the refrigerant which does not pass through the condensing unit (20) passes through one of the first heat exchanger unit (24) and the second heat exchanger unit (28).
- 7. The refrigerator as claimed in any one of claims 1 to 6, wherein, in a cold supply mode on the first heat exchanger unit (24), the refrigerator is configured to introduce the refrigerant passed through the condensing unit (20) to the first heat exchanger unit (24) after passing through the first expansion valve (22).
- 45 8. The refrigerator as claimed in any one of claims 1 to 7, wherein, in the cold supply mode on the second heat exchanger unit (28), the refrigerator is configured to introduce the refrigerant passed through the condensing unit (20) to the second heat exchanger unit (28) after passing through the second expansion valve (26).
 - 9. The refrigerator as claimed in any one of claims 1 to 8, wherein, in the cold supply mode, the refrigerator is configured to introduce the refrigerant to one of the first heat exchanger unit (24) and the second heat exchanger unit (28) selectively after the refrigerant passes through the condensing unit (20).

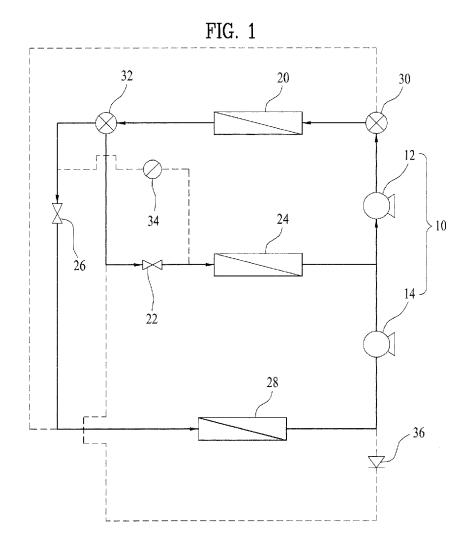
10. The refrigerator as claimed in any one of claims 1 to 9, wherein the first heat exchanger unit (24) is provided for supplying the cold to a refrigerating chamber, and the second heat exchanger unit (28) is provided for supplying the cold to a freezing chamber.

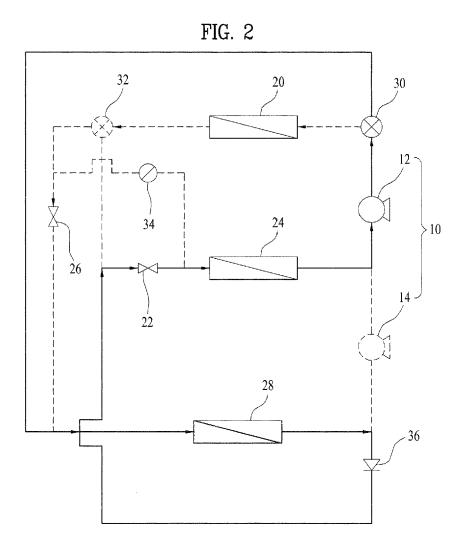
11. The refrigerator as claimed in any one of claims 1 to 10, wherein the compressor unit (10) includes; a first compressor unit (12) for supplying the refrigerant to the first heat exchanger unit (24) in the cold supply mode, and a second compressor unit (14) for supplying the refrigerant to the second heat exchanger unit (28).

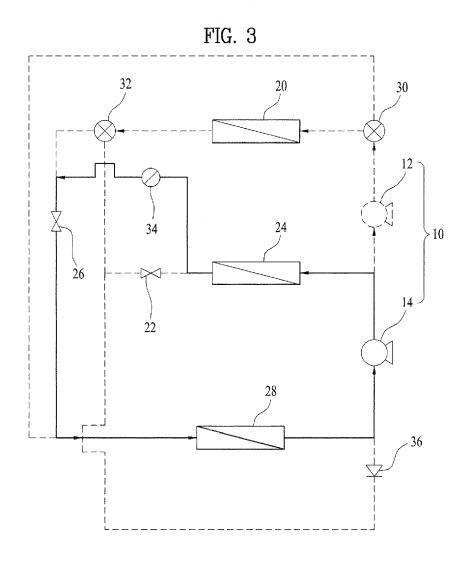
12. The refrigerator as claimed in claim 11, wherein, in the defrosting mode on the first heat exchanger unit (24), the second compressor unit (14) supplies the refrigerant in order of the first heat exchanger unit (24) and the second heat exchanger unit (28).

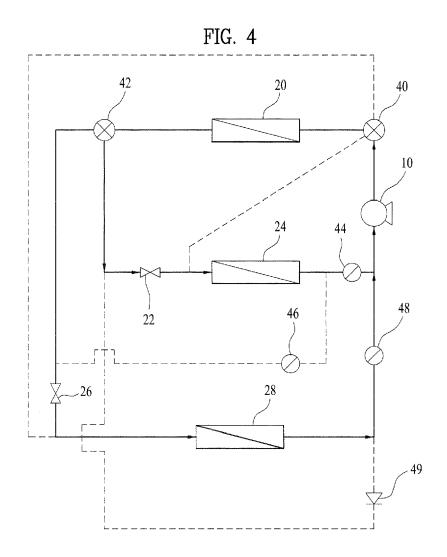
13. The refrigerator as claimed in claim 11 or 12, wherein, in the defrosting mode on the second heat exchanger unit (28), the first compressor unit (12) supplies the refrigerant in order of the second heat exchanger unit (28) and the first heat exchanger unit (24)

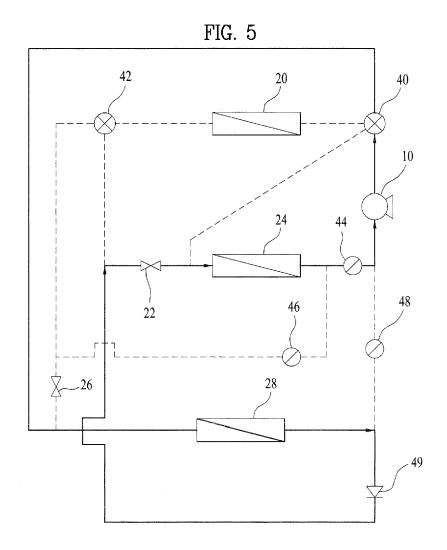
- **14.** The refrigerator as claimed in any one of claims 1 to 13, wherein the second heat exchanger unit (28) is provided with a cold accumulation unit (60) having a phase change material placed therein.
- **15.** The refrigerator as claimed in claim 14, wherein the cold accumulation unit (60) is provided to supplement the cold to the freezing chamber or the refrigerating chamber.

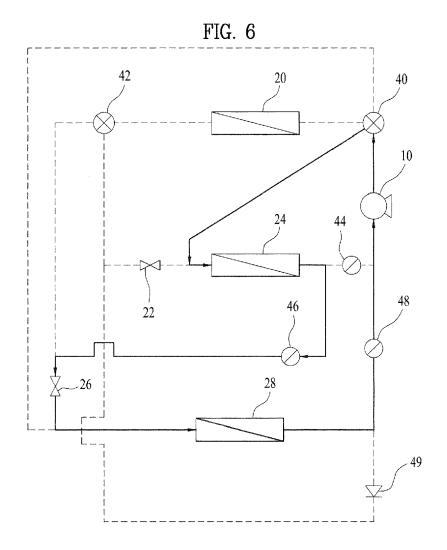

10


20


40


45


50





EUROPEAN SEARCH REPORT

Application Number

EP 13 17 2372

	DOCUMENTS CONSID				
Category	Citation of document with ir of relevant pass	ndication, where appropriate, ages	Relevant to claim		
Х	DE 22 36 480 A1 (NA 7 February 1974 (19 * the whole documer	1-10	INV. F25B5/00 F25B15/00		
Х	AL) 12 March 1985 (ARLO LEONARD J [US] ET 1985-03-12) - column 4, line 38;	1-15		
Х	DE 28 23 395 A1 (GU 7 December 1978 (19 * page 11, paragrap paragraph 1; figure	h 1 - page 15,	1-10		
Х	US 3 633 378 A (TOT 11 January 1972 (19 * column 3, line 13		1-9,14 15		
Х	US 4 979 371 A (LAR 25 December 1990 (1 * the whole documen	990-12-25)	1-15	TECHNICAL FIELDS SEARCHED (IPC)	
Х	US 3 184 926 A (BLA 25 May 1965 (1965-6 * column 4, line 48 figures 1,2 *		1-5,7-	13 F25B	
A	WO 97/24565 A1 (STORE HEAT & PRODUCE ENERGY IN [US]; RAFALOVICH ALEXANDER P [US]; EMME) 10 July 1997 (1997-07-10) * and corresponding description; figure 16 *		14,15		
A	CA 2 530 567 A1 (HU 16 June 2007 (2007- * and corresponding figure 1I *	06-16) descriptiob;	1		
		-/			
	The present search report has l	peen drawn up for all claims			
	Place of search	Date of completion of the search	<u> </u>	Examiner	
Munich			27 September 2013 Gas		
C.A	TEGORY OF CITED DOCUMENTS	T : theory or principle	underlying th	e invention	
X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document		E : earlier patent doc after the filing dat ner D : document cited ir L : document cited fo	E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons &: member of the same patent family, corresponding		

EUROPEAN SEARCH REPORT

Application Number EP 13 17 2372

DOCUMENTS CONSIDERED TO BE RELEVANT CLASSIFICATION OF THE APPLICATION (IPC) Citation of document with indication, where appropriate, Relevant Category of relevant passages to claim DE 21 53 651 A1 (PET INC., ST. LOUIS) 8 June 1972 (1972-06-08) Χ 1-5,7-15 * page 1, paragraph 1 - page 8, paragraph 1; figures 1-3 * TECHNICAL FIELDS SEARCHED (IPC) The present search report has been drawn up for all claims 1 27 September 2013 Munich Gasper, Ralf T: theory or principle underlying the invention
E: earlier patent document, but published on, or after the filing date
D: document cited in the application
L: document cited for other reasons CATEGORY OF CITED DOCUMENTS X : particularly relevant if taken alone
Y : particularly relevant if combined with another
document of the same category A : technological background
O : non-written disclosure
P : intermediate document & : member of the same patent family, corresponding document

EPO FORM 1503 03.82 (P04C01)

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 13 17 2372

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

27-09-2013

Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
DE	2236480	A1	07-02-1974	BE DE FR	788218 A1 2236480 A1 2198103 A1	28-02-197 07-02-197 29-03-197
US	4503685	Α	12-03-1985	NONE		
DE	2823395	A1	07-12-1978	CA DE FR GB JP JP US	1073230 A1 2823395 A1 2393248 A1 1588790 A S5439242 A S5443213 B2 4122686 A	11-03-190 07-12-190 29-12-190 29-04-190 26-03-190 19-12-190 31-10-190
US	3633378	Α	11-01-1972	NONE		
US	4979371	Α	25-12-1990	NONE		
US	3184926	A	25-05-1965	NONE		
WO	9724565	A1	10-07-1997	AU US WO	1568697 A 5755104 A 9724565 A1	28-07-19 26-05-19 10-07-19
CA	2530567	A1	16-06-2007	CA CA	2530567 A1 2672747 A1	16-06-20 16-06-20
DE	2153651	A1	08-06-1972	AR AU CA CH DE FR GB IE ZA	195272 A1 449301 B2 3502671 A 930183 A1 537562 A 2153651 A1 2110111 A5 1316930 A 35762 B1 7106678 A	28-09-19 06-06-19 03-05-19 17-07-19 31-05-19 08-06-19 26-05-19 16-05-19 12-05-19 28-06-19