Government Interests
[0002] The present invention was made with support by the Economic Development Administration,
Grant No. 06-69-04501, and the Department of Energy, Sponsor Award DE-FG36-05GO15185.
The United States government may have certain rights in the invention.
Background of the Invention
[0003] The present invention relates to the reduction iron bearing material, such as iron
ore, to metallic iron.
[0004] Many different iron ore reduction processes have been described and/or used in the
past. The processes may be traditionally classified into direct reduction processes
and smelting reduction processes. Generally, direct reduction processes convert iron
ores into a solid state metallic form with, for example, use of shaft furnaces (e.g.,
natural gas-based shaft furnaces), whereas smelting reduction converts iron ores into
molten hot metal without the use of blast furnaces.
[0005] The conventional reduction processes for production of direct reduced iron (DRI)
involve heating beneficiated iron ores to below the melting point of iron, below 1200
°C (2372 °F), either by gas-based processes or coal-based processes. For example,
in the gas-based process, direct reduction of iron oxide (e.g., iron ores or iron
oxide pellets) employs the use of a reducing gas (e.g., reformed natural gas) to reduce
the iron oxide and obtain DRI. Methods of making DRI have employed the use of materials
that include carbon such as coal and coke as a reducing agent. A typical composition
of DRI is 90 to 95% metallization and 2-4% gangue, but has shortcomings for steelmaking
processes as a replacement of scrap because its oxygen and gangue content increases
energy usage, increase slag volume, and necessitates the addition of costly reagents.
[0006] Natural gas-based direct reduced iron accounts for over 90% of the world's production
of DRI. Coal-based processes are generally used in producing the remaining DRI production.
However, in many geographical regions, the use of coal may be more desirable because
coal prices may be more stable than natural gas prices. Further, many geographical
regions are far away from steel mills that use the processed product. Therefore, shipment
of iron units in the form of iron nuggets produced by a coal-based direct reduction
process may be more desirable than use of a smelting reduction process.
[0007] Another reduction process in gas-based or coal-based directly reducing iron bearing
material to metallic nuggets is often referred to as fusion reduction. Such fusion
reduction processes, for example, generally involve the following processing steps:
feed preparation, drying, preheating, reduction, fusion/melting, cooling, product
discharge, and metallic iron/slag product separation. These processes result in direct
reduction of iron bearing material to metallic iron nuggets and slag. Metallic iron
nuggets produced by these direct reduction processes are characterized by high grade
reduction, nearing 100% metal (e.g., about 96% to about 97% metallic Fe).
1
[0008] Unlike conventional direct reduced iron (DRI), these metallic iron nuggets have low
oxygen content because they are metallic iron and have little or no porosity. These
metallic iron nuggets are also low in gangue because silicon dioxide has been removed
as slag. Such metallic iron nuggets are desirable in many circumstances such as use
in place of scrap in electric arc furnaces. These metallic iron nuggets can be also
produced from beneficiated taconite iron ore, which may contain 30% oxygen and 5%
gangue. As a result, with such metallic iron nuggets, there is less weight to transport
than with beneficiated taconite pellets and DRI, as well as a lower rate of oxidation
and a lower porosity than DRI. In addition, generally, such metallic iron nuggets
are just as easy to handle as taconite pellets and DRI.
[0009] Various types of hearth furnaces have been described and used for direct reduction
of metallic iron nuggets. One type of hearth furnace, referred to as a rotary hearth
furnace (RHF), has been used as a furnace for coal-based direct reduction. Typically,
the rotary hearth furnace has an annular hearth partitioned into a preheating zone,
a reduction zone, a fusion zone, and a cooling zone, between the supply location and
the discharge location of the furnace. The annular hearth is supported in the
1 Percents (%) herein are percents by weight unless otherwise stated. furnace to move
rotationally. In operation, raw reducible material comprising a mixture of iron ore
and reducing material is charged onto the annular hearth and provided to the preheat
zone. After preheating, through rotation, the iron ore mixture on the hearth is moved
to the reduction zone where the iron ore is reduced in the presence of the reducing
material and fused into metallic iron nuggets, using one or more heat sources (e.g.,
gas burners). The reduced and fused product, after completion of the reduction process,
is cooled in the cooling zone on the rotating hearth, preventing oxidation and facilitating
discharge from the furnace.
[0010] One exemplary metallic iron nugget direct reduction process for producing metallic
iron nuggets is referred to as ITmk3
® by Kobe Steel. In such a process, dried balls formed using iron ore, coal, and a
binder are fed to a rotary hearth furnace. As the temperature increases in the furnace,
the iron ore concentrate is reduced and fuses when the temperature reaches between
1450 °C to 1500 °C. The resulting products are cooled and then discharged. The intermediate
products generally are shell-shaped, pellet-sized metallic iron nuggets with slag
inside, from which the metallic iron can be separated.
[0011] Another direct reduction process for making metallic iron nuggets has also been reportedly
used.
See United States Patent No.
6,126,718. In this process, a pulverized anthracite coal layer is spread over a hearth and
a regular pattern of dimples is made therein. Then, a layer of a mixture of iron ore
and coal is placed over the dimples, and heated to 1500 °C. The iron ore is reduced
to metallic iron, fused, and collected in the dimples as iron pebbles and slag. Then,
the iron pebbles and slag are broken apart and separated.
[0012] Both of these direct reduction processes for producing metallic iron nuggets have
involved mixing of iron-bearing materials and a carbonaceous reductant (e.g., pulverized
coal). Either with or without first forming dried balls, iron ore/carbon mixture is
fed to a hearth furnace (e.g., a rotary hearth furnace) and heated to a reported temperature
of 1450 °C to approximately 1500 °C, to form metallic iron nuggets and slag. Metallic
iron and slag can then be separated, for example, with use of mild mechanical action
and magnetic separation techniques.
[0013] A particular problem with the metallic iron nuggets formed by these previous direct
reduction processes was the sulfur content of the nuggets. Sulfur is a major impurity
in direct reduced metallic iron nuggets. In the past, carbonaceous reductants utilized
in direct reduction processes of iron ore have generally resulted in metallic iron
nuggets with at least 0.1% or more by weight sulfur. This high level of sulfur has
made the metallic iron nuggets made by direct reduction undesirable in many steelmaking
processes, and particularly in the electric arc furnace processes.
[0014] Attempts have been made to form metallic iron nuggets with low sulfur content in
these previous direct reduction processes using large amounts of additives containing
MgCO
3 or MgO. Problems, such as increased energy consumption and increased refractory wear,
have occurred with fusing these nuggets due to the increases in slag melting temperature
caused by MgO in the slag.
See EP 1 605 067.
Summary of the Invention
[0015] The present invention provides the following items 1 to 107:
- 1. A method for use in production of metallic iron nuggets comprising the steps of:
providing a hearth comprising refractory material,
providing a hearth material layer comprising at least carbonaceous material on the
refractory material,
providing a layer of reducible mixture comprising at least reducing material and reducible
iron bearing material arranged in a plurality of discrete portions over at least a
portion of the hearth material layer,
at least partially surrounding the discrete portions of reducible mixture with nugget
separation fill comprising at least carbonaceous material,
providing an overlayer of coarse carbonaceous material over at least a portion of
the layer of reducible mixture, and
heating the layer of reducible mixture to form from the discrete portions of reducible
mixture one or more metallic iron nuggets and slag.
- 2. The method for use in production of metallic iron nuggets of item 1 where the step
of heating the layer of reducible mixture forms singular metallic iron nuggets from
a majority of the discrete portions of reducible mixture.
- 3. The method for use in production of metallic iron nuggets of item 1 where the coarse
carbonaceous material has an average particle size greater than an average particle
size of the hearth material layer carbonaceous material.
- 4. The method for use in production of metallic iron nuggets of item 1 where the discrete
portions of reducible mixture are mounds.
- 5. The method for use in production of metallic iron nuggets of item 1 where the discrete
portions of reducible mixture are briquettes.
- 6. The method for use in production of metallic iron nuggets of item 1 where the overlayer
of coarse carbonaceous material comprises discrete particles having sizes greater
than about 20 mesh.
- 7. The method for use in production of metallic iron nuggets of item 1 where the overlayer
of coarse carbonaceous material comprises discrete particles having sizes greater
than about 6 mesh.
- 8. The method for use in production of metallic iron nuggets of item 1 where the overlayer
of coarse carbonaceous material comprises discrete particles having sizes between
about 20 mesh and about ½ inch (12.7 mm).
- 9. The method for use in production of metallic iron nuggets of item 1 where the step
of providing a layer of reducible mixture over at least a portion of the hearth material
layer further comprises: forming at least a portion of the reducible mixture to have
a predetermined quantity of reducing material between about 70 percent and about 90
percent of the calculated stoichiometric amount of reducing material necessary for
complete metallization.
- 10. The method for use in production of metallic iron nuggets of item 1 where the
step of providing an overlayer of coarse carbonaceous material comprises at least
partially surrounding the discrete portions of reducible mixture with coarse carbonaceous
material.
- 11. The method for use in production of metallic iron nuggets of item 1 where the
step of providing an overlayer of coarse carbonaceous material comprises providing
between 50% and 100% coverage over the discrete portions of reducible mixture.
- 12. The method for use in production of metallic iron nuggets of item 1 where the
step of providing an overlayer of coarse carbonaceous material comprises providing
an overlayer about ½ inch (12.7 mm) thick over the discrete portions of reducible
mixture.
- 13. The method for use in production of metallic iron nuggets of item 1 where the
step of providing an overlayer of coarse carbonaceous material comprises providing
between about 0.5 lb/ft2 (2.44 kg/m2)and about 1 lb/ft2 (4.88 kg/m2) of coarse carbonaceous material over the discrete portions of reducible mixture.
- 14. The method for use in production of metallic iron nuggets of item 1 where the
step of providing an overlayer of coarse carbonaceous material comprises providing
between about 0.75 lb/ft2 (3.66 kg/m2) and about 1 lb/ft2 (4.88 kg/m2) of coarse carbonaceous material over the discrete portions of reducible mixture.
- 15. The method for use in production of metallic iron nuggets of item 1 where the
overlayer of coarse carbonaceous material is comprised of coke.
- 16. The method for use in production of metallic iron nuggets of item 1 where the
overlayer of coarse carbonaceous material is comprised of non-caking coal.
- 17. The method for use in production of metallic iron nuggets of item 1 where the
overlayer of coarse carbonaceous material is comprised of char.
- 18. The method for use in production of metallic iron nuggets of item 1 where the
step of heating the layer of reducible mixture comprises heating the layer of reducible
mixture at a temperature of less than 1425 °C.
- 19. The method for use in production of metallic iron nuggets of item 1 where the
step of heating the layer of reducible mixture comprises heating the layer of reducible
mixture at a temperature of less than 1400 °C.
- 20. The method for use in production of metallic iron nuggets of item 1 where the
step of heating the layer of reducible mixture comprises heating the layer of reducible
mixture at a temperature of less than 1375 °C.
- 21. A method for use in production of metallic iron nuggets comprising the steps of:
providing a hearth comprising refractory material,
providing a hearth material layer comprising at least carbonaceous material on the
refractory material,
providing a layer of reducible mixture comprising at least reducing material and reducible
iron bearing material arranged in a plurality of discrete portions over at least a
portion of the hearth material layer carbonaceous material,
providing an overlayer of coarse carbonaceous material over at least a portion of
the discrete portions of reducible mixture, and
heating the layer of reducible mixture to form one or more metallic iron nuggets in
one or more of the plurality of the discrete portions of reducible mixture.
- 22. The method for use in production of metallic iron nuggets of item 21 where the
discrete portions of reducible mixture are mounds.
- 23. The method for use in production of metallic iron nuggets of item 21 where the
discrete portions of reducible mixture are briquettes.
- 24. The method for use in production of metallic iron nuggets of item 21 where the
coarse carbonaceous material has an average particle size greater than an average
particle size of the hearth material layer carbonaceous material.
- 25. The method for use in production of metallic iron nuggets of item 21 where the
overlayer of coarse carbonaceous material comprises discrete particles having a size
greater than about 20 mesh.
- 26. The method for use in production of metallic iron nuggets of item 21 where the
overlayer of coarse carbonaceous material comprises discrete particles having a size
greater than about 6 mesh.
- 27. The method for use in production of metallic iron nuggets of item 21 where the
overlayer of coarse carbonaceous material comprises discrete particles having a size
between about 20 mesh and ½ inch (12.7 mm).
- 28. The method for use in production of metallic iron nuggets of item 21 where the
step of providing a layer of reducible mixture above at least a portion of the hearth
material layer further comprises: forming at least a portion of the reducible mixture
to have a predetermined quantity of reducing material between about 70 percent and
about 90 percent of the calculated stoichiometric amount of reducing mixture necessary
for complete metallization.
- 29. The method for use in production of metallic iron nuggets of item 21 where the
step of providing an overlayer of coarse carbonaceous material further comprises at
least partially surrounding the discrete portions of reducible mixture with coarse
carbonaceous material.
- 30. The method for use in production of metallic iron nuggets of item 21 where the
step of providing an overlayer of coarse carbonaceous material comprises providing
between 50% and 100% coverage above the reducible mixture.
- 31. The method for use in production of metallic iron nuggets of item 21 where the
step of providing an overlayer of coarse carbonaceous material comprises providing
an overlayer of at least about ½ inch thick (12.7 mm).
- 32. The method for use in production of metallic iron nuggets of item 21 where the
step of providing an overlayer of coarse carbonaceous material comprises providing
between about 0.5 lb/ft2 (2.44 kg/m2) and about 1 lb/ft2 (4.88 kg/m2) of coarse carbonaceous material over the discrete portions of reducible mixture.
- 33. The method for use in production of metallic iron nuggets of item 21 where the
step of providing an overlayer of coarse carbonaceous material comprises providing
between about 0.75 lb/ft2 (3.66 kg/m2) and about 1 lb/ft2 (4.88 kg/m2) of coarse carbonaceous material.
- 34. The method for use in production of metallic iron nuggets of item 21 where the
step of heating the discrete portions of reducible mixture comprises heating the layer
of reducible mixture at a temperature of less than 1425 °C.
- 35. The method for use in production of metallic iron nuggets of item 21 where the
step of heating the layer of reducible mixture comprises heating the layer of reducible
mixture at a temperature of less than 1400 °C.
- 36. The method for use in production of metallic iron nuggets of item 21 where the
step of heating the layer of reducible mixture comprises heating the layer of reducible
mixture at a temperature of less than 1375 °C.
- 37. A method for use in production of metallic iron nuggets comprising the steps of:
providing a hearth comprising refractory material,
providing a hearth material layer comprising at least carbonaceous material on the
refractory material,
providing a layer of reducible mixture comprising at least reducing material and reducible
iron bearing material being arranged in a plurality of discrete portions over at least
a portion of the hearth material layer,
providing an overlayer of turbulent gas flow disrupting material over at least a portion
of the layer of reducible mixture, and
heating the layer of reducible mixture to form from the discrete portions of reducible
mixture one or more metallic iron nuggets and slag.
- 38. The method for use in production of metallic iron nuggets of item 37 where the
discrete portions of reducible mixture are mounds.
- 39. The method for use in production of metallic iron nuggets of item 37 where the
discrete portions of reducible mixture are briquettes.
- 40. The method for use in production of metallic iron nuggets of item 37 where the
step of providing an overlayer of turbulent gas flow disrupting material comprises
providing coarse carbonaceous material.
- 41. The method for use in production of metallic iron nuggets of item 37 where the
turbulent gas flow disrupting material comprises discrete particles having a size
greater than about 20 mesh.
- 42. The method for use in production of metallic iron nuggets of item 37 where the
turbulent gas flow disrupting material comprises discrete particles having a size
greater than about 6 mesh.
- 43. The method for use in production of metallic iron nuggets of item 37 where the
turbulent gas flow disrupting material comprises discrete particles having a size
between about 20 mesh and about ½ inch.
- 44. The method for use in production of metallic iron nuggets of item 37 where the
step of providing an overlayer of turbulent gas flow disrupting material comprises
providing between about 0.5 lb/ft2 (2.44 kg/m2)and about 1 lb/ft2 (4.88 kg/m2) of coarse carbonaceous material over the discrete portions of reducible mixture.
- 45. The method for use in production of metallic iron nuggets of item 37 where the
step of providing an overlayer of turbulent gas flow disrupting material comprises
providing between about 0.75 lb/ft2 (3.66 kg/m2) and about 1 lb/ft2 (4.88 kg/m2) of coarse carbonaceous material over the discrete portions of reducible mixture.
- 46. The method for use in production of metallic iron nuggets of item 37 where the
step of heating the layer of reducible mixture comprises heating the layer of reducible
mixture at a temperature of less than 1425 °C.
- 47. The method for use in production of metallic iron nuggets of item 37 where the
step of heating the layer of reducible mixture comprises heating the layer of reducible
mixture at a temperature of less than 1400 °C.
- 48. The method for use in production of metallic iron nuggets of item 37 where the
step of heating the layer of reducible mixture comprises heating the layer of reducible
mixture at a temperature of less than 1375 °C.
- 49. A method for use in production of metallic iron nuggets comprising the steps of:
providing a hearth comprising refractory material,
providing a hearth material layer comprising at least carbonaceous material on the
refractory material,
providing a layer of reducible mixture comprising at least reducing material and reducible
iron bearing material above at least a portion of the hearth material layer,
providing an overlayer of coarse carbonaceous material above at least a portion of
the layer of reducible mixture, and
heating the layer of reducible mixture to form one or more metallic iron nuggets.
- 50. The method for use in production of metallic iron nuggets of item 49 where the
overlayer of coarse carbonaceous material has an average particle size greater than
an average particle size of the hearth material layer carbonaceous material.
- 51. The method for use in production of metallic iron nuggets of item 49 where the
overlayer of coarse carbonaceous material comprises discrete particles having a size
greater than about 20 mesh.
- 52. The method for use in production of metallic iron nuggets of item 49 where the
overlayer of coarse carbonaceous material comprises discrete particles having a size
greater than about 6 mesh.
- 53. The method for use in production of metallic iron nuggets of item 49 where the
overlayer of coarse carbonaceous material comprises discrete particles having a size
between about 20 mesh and about ½ inch (12.7 mm).
- 54. The method for use in production of metallic iron nuggets of item 49 where the
step of providing a layer of reducible mixture above at least a portion of the hearth
material layer further comprises: forming at least a portion of the reducible mixture
to have a predetermined quantity of reducing material between about 70 percent and
about 90 percent of the calculated stoichiometric amount of reducing material necessary
for complete metallization.
- 55. An intermediate product of metallic iron nuggets and slag with less than 5% MgO
in the slag where the ratio of percent by weight sulfur in the slag over percent sulfur
in the metallic iron nuggets is at least about 12.
- 56. The intermediate product of metallic iron nuggets and slag of item 55 where the
ratio of percent by weight sulfur in the slag over percent sulfur in the metallic
iron nuggets is at least about 15.
- 57. The intermediate product of metallic iron nuggets and slag of item 55 where the
ratio of percent by weight sulfur in the slag over percent sulfur in the metallic
iron nuggets is at least about 30.
- 58. The intermediate product of metallic iron nuggets and slag of item 55 where the
slag has an iron content of less than about 1%.
- 59. The intermediate product of metallic iron nuggets and slag of item 55 where the
slag has an iron content of less than about 0.25%.
- 60. The intermediate product of metallic iron nuggets and slag of item 55 where the
slag has an iron content of essentially less than about 0.01%.
- 61. The intermediate product of metallic iron nuggets and slag of item 55 where the
slag contains no more MgO than levels resulting from trace amounts of Mg in the starting
materials.
- 62. An intermediate product of metallic iron nuggets and slag with less than 5% MgO
in the slag where the ratio of percent by weight sulfur in the slag over percent sulfur
in the metallic iron nuggets is at least about 12, made by the steps comprising:
providing a hearth comprising refractory material,
providing a hearth material layer comprising at least carbonaceous material on the
refractory material,
providing a layer of reducible mixture comprising at least reducing material and reducible
iron bearing material arranged in a plurality of discrete portions over at least a
portion of the hearth material layer,
providing an overlayer of coarse carbonaceous material over at least a portion of
the discrete portions of reducible mixture, and
heating the layer of reducible mixture to form from the discrete portions of reducible
mixture a plurality of metallic iron nuggets and slag where the ratio of percent by
weight sulfur in the slag over percent sulfur in the metallic iron nuggets is at least
about 12.
- 63. The intermediate product of metallic iron nuggets and slag of item 62 where the
ratio of percent by weight sulfur in the slag over percent sulfur in the metallic
iron nuggets is at least about 15.
- 64. The intermediate product of metallic iron nuggets and slag of item 62 where the
step of heating the layer of reducible mixture forms singular metallic iron nuggets
and slag from a majority of the discrete portions of reducible mixture.
- 65. The intermediate product of metallic iron nuggets and slag of item 62 where the
coarse carbonaceous material has an average particle size greater than an average
particle size of the hearth material layer carbonaceous material.
- 66. The intermediate product of metallic iron nuggets and slag of item 62 where the
discrete portions of reducible mixture are mounds.
- 67. The intermediate product of metallic iron nuggets and slag of item 62 where the
discrete portions of reducible mixture are briquettes.
- 68. The intermediate product of metallic iron nuggets and slag of item 62 where the
overlayer of coarse carbonaceous material comprises discrete particles having a size
greater than about 20 mesh.
- 69. The intermediate product of metallic iron nuggets and slag of item 62 where the
overlayer of coarse carbonaceous material comprises discrete particles having a size
greater than about 6 mesh.
- 70. The intermediate product of metallic iron nuggets and slag of item 62 where the
overlayer of coarse carbonaceous material comprises discrete particles having a size
between about 20 mesh and about ½ inch (12.7 mm).
- 71. The intermediate product of metallic iron nuggets and slag of item 62 where the
step of providing a layer of reducible mixture above at least a portion of the hearth
material layer further comprises: forming at least a portion of the reducible mixture
to have a predetermined quantity of reducing material between about 70 percent and
about 90 percent of the calculated stoichiometric amount of reducing material necessary
for complete metallization.
- 72. The intermediate product of metallic iron nuggets and slag of item 62 further
comprising at least partially surrounding the discrete portions of reducible mixture
with nugget separation fill comprising at least carbonaceous material.
- 73. The intermediate product of metallic iron nuggets and slag of item 62 where the
step of providing an overlayer of coarse carbonaceous material comprises providing
between 50% and 100% coverage above the reducible mixture.
- 74. The intermediate product of metallic iron nuggets and slag of item 62 where the
step of providing an overlayer of coarse carbonaceous material comprises providing
an overlayer about ½ inch thick (12.7 mm).
- 75. The intermediate product of metallic iron nuggets and slag of item 62 where the
step of providing an overlayer of coarse carbonaceous material comprises providing
between about 0.5 lb/ft2 (2.44 kg/m2) and about 1 lb/ft2 (4.88 kg/m2) of coarse carbonaceous material.
- 76. The intermediate product of metallic iron nuggets and slag of item 62 where the
step of providing an overlayer of coarse carbonaceous material comprises providing
between about 0.75 lb/ft2 (3.66 kg/m2) and about 1 lb/ft2 (4.88 kg/m2) of coarse carbonaceous material.
- 77. The intermediate product of metallic iron nuggets and slag of item 62 where the
step of heating the layer of reducible mixture results in the substantially complete
metallization of the metallic iron nuggets.
- 78. The intermediate product of metallic iron nuggets and slag of item 62 where the
hearth material layer, the layer of coarse carbonaceous material and the layer of
reducible mixture each contain an amount of sulfur in a range from about 0.2% to about
1.5%.
- 79. The intermediate product of metallic iron nuggets and slag of item 62 where the
step of heating the layer of reducible mixture further comprises forming slag having
an iron content of less than about 1%.
- 80. The intermediate product of metallic iron nuggets and slag of item 62 where the
step of heating the layer of reducible mixture further comprises forming slag having
an iron content of less than about 0.25%.
- 81. The intermediate product of metallic iron nuggets and slag of item 62 where the
step of heating the layer of reducible mixture further comprises forming slag having
an iron content of essentially less than about 0.01%.
- 82. The intermediate product of metallic iron nuggets and slag of item 62 where the
layer of reducible mixture further comprises an additive selected from one or more
of the group consisting of CaF2, Na2CO3, fluorspar and soda ash.
- 83. The intermediate product of metallic iron nuggets and slag of item 82 where the
layer of reducible mixture contains an amount of the additive in a range from about
1% to about 7%.
- 84. The intermediate product of metallic iron nuggets and slag of item 62 where the
slag contains no more MgO than levels resulting from trace amounts of Mg in the starting
materials.
- 85. Metallic iron nuggets having a sulfur content less than 0.03% by weight.
- 86. Metallic iron nuggets having a sulfur content less than 0.03% by weight made by
the steps comprising:
providing a hearth comprising refractory material,
providing a hearth material layer comprising at least carbonaceous material on the
refractory material,
providing a layer of reducible mixture comprising at least reducing material and reducible
iron bearing material arranged in a plurality of discrete portions over at least a
portion of the hearth material layer,
providing an overlayer of coarse carbonaceous material over at least a portion of
the discrete portions of reducible mixture, and
heating the layer of reducible mixture to form from the discrete portions of reducible
mixture a plurality of metallic iron nuggets having a sulfur content less than about
0.03%.
- 87. The metallic iron nuggets of item 86 where the step of heating the layer of reducible
mixture forms singular metallic iron nuggets from a majority of the discrete portions
of reducible mixture.
- 88. The metallic iron nuggets of item 86 where the coarse carbonaceous material has
an average particle size greater than an average particle size of the hearth material
layer carbonaceous material.
- 89. The metallic iron nuggets of item 86 where the discrete portions of reducible
mixture are mounds.
- 90. The metallic iron nuggets of item 86 where the discrete portions of reducible
mixture are briquettes.
- 91. The metallic iron nuggets of item 86 where the overlayer of coarse carbonaceous
material comprises discrete particles having a size greater than about 20 mesh.
- 92. The metallic iron nuggets of item 86 where the overlayer of coarse carbonaceous
material comprises discrete particles having a size greater than about 6 mesh.
- 93. The metallic iron nuggets of item 86 where the overlayer of coarse carbonaceous
material comprises discrete particles having a size between about 20 mesh and about
½ inch (12.7 mm).
- 94. The metallic iron nuggets of item 86 where the step of providing a layer of reducible
mixture above at least a portion of the hearth material layer further comprises: forming
at least a portion of the reducible mixture to have a predetermined quantity of reducing
material between about 70 percent and about 90 percent of the calculated stoichiometric
amount of reducing material necessary for complete metallization.
- 95. The metallic iron nuggets of item 86 further comprising at least partially surrounding
the discrete portions of reducible mixture with nugget separation fill comprising
at least carbonaceous material.
- 96. The metallic iron nuggets of item 86 where the step of providing an overlayer
of coarse carbonaceous material comprises providing between 50% and 100% coverage
above the reducible mixture.
- 97. The metallic iron nuggets of item 86 where the step of providing an overlayer
of coarse carbonaceous material comprises providing an overlayer about ½ inch thick
(12.7 mm).
- 98. The metallic iron nuggets of item 86 where the step of providing an overlayer
of coarse carbonaceous material comprises providing between about 0.5 lb/ft2 (2.44 kg/m2) and about 1 lb/ft2 (4.88 kg/m2) of coarse carbonaceous material.
- 99. The metallic iron nuggets of item 86 where the step of providing an overlayer
of coarse carbonaceous material comprises providing between about 0.75 lb/ft2 (3.66 kg/m2) and about 1 lb/ft2 (4.88 kg/m2) of coarse carbonaceous material.
- 100. The metallic iron nuggets of item 86 where the step of heating the layer of reducible
mixture results in the substantially complete metallization of the reducible iron
bearing material.
- 101. The metallic iron nuggets of item 86 where the hearth material layer, the layer
of coarse carbonaceous material and the layer of reducible mixture each contain an
amount of sulfur in a range from about 0.2% to about 1.5%.
- 102. The metallic iron nuggets of item 86 where the step of heating the layer of reducible
mixture further comprises forming slag having an iron content of less than about 1%.
- 103. The metallic iron nuggets of item 86 where the step of heating the layer of reducible
mixture further comprises forming slag having an iron content of less than about 0.25%.
- 104. The metallic iron nuggets of item 86 where the step of heating the layer of reducible
mixture further comprises forming slag having an iron content of less than about 0.01%.
- 105. The metallic iron nuggets of item 86 where the layer of reducible mixture further
comprises an additive selected from one or more of the group consisting of CaF2, Na2CO3, fluorspar and soda ash.
- 106. The metallic iron nuggets of item 105 where the layer of reducible mixture contains
an amount of the additive in a range from about 1% to about 7%.
- 107. The intermediate product of metallic iron nuggets and slag of item 86 where the
step of heating the layer of reducible mixture further comprises forming slag having
no more MgO than levels resulting from trace amounts of Mg in the starting materials.
[0016] A method and system are disclosed that provide for various advantages in the reduction
processes in the production of metallic iron nuggets. The method and system results
in a marked higher percent of the sulfur in the slag without the use of large amounts
of Mg compounds, and a marked lower percent of the sulfur in the metallic iron nuggets.
A novel intermediate metallic nugget/slag product having a ratio of percent weight
sulfur in the slag to sulfur in the metallic nugget of at least 12, at least 15 or
at least 30, without large amounts of MgO within the slag, which may result in nuggets
with less than 0.05% sulfur content. A novel metallic nugget having a sulfur content
less than 0.03% by weight may also be produced by the disclosed process.
[0017] A method for use in production of metallic iron nuggets is disclosed that comprises
providing a hearth refractory material, providing a hearth material layer comprising
at least carbonaceous material on the refractory material, providing a layer of reducible
mixture comprised of at least reducing material and reducible iron bearing material
arranged in a plurality of discrete portions over at least a portion of the hearth
material layer, providing a layer of coarse carbonaceous material over at least a
portion of the discrete portions of reducible mixture, and heating the reducible mixture
to form one or more discrete portions into an intermediate product of metallic iron
nuggets and slag, and after separation, metallic iron nuggets. The step of heating
the reducible mixture may form singular metallic iron nuggets with separate slag portions
from a majority of the discrete portions. The overlayer is generally provided prior
to heating, but may be provided after devolatilization of carbonaceous material occurs
and before completion of solid state reduction.
[0018] The coarse carbonaceous material of the overlayer has an average particle size greater
than an average particle size of the hearth layer. In addition or alternatively, the
overlayer of coarse carbonaceous material may include discrete particles having a
size greater than about 20 mesh or greater than about 6 mesh, and in some embodiments,
the overlayer of coarse carbonaceous material may have discrete particles with a size
between about 20 mesh or about 6 mesh and about ½ inch (12.7mm). The coarse carbonaceous
material may be coke, non-caking coal, char, or a combination of one or more of these.
In the alternative, the overlayer of coarse carbonaceous material may have discrete
particles with a size between about 3/8 inch (9.7 mm) and about ½ inch (12.7 mm) or
between about 3 mesh (6.7 mm) and about 3/8 inch (9.7 mm).
[0019] In addition or in the alternative, the discrete particles of the hearth layer may
have a particle size less than 4 mesh, and in some embodiments a particle size between
100 and 20 mesh or 6 mesh. Particle sizes less than 100 mesh should be avoided because
these particles sizes tend to have more ash content. The thickness and particle size
of the carbonaceous and other material in the hearth layer should be selected so that
the hearth layer protects the hearth refractory from slag and molten metal formed
during reduction of the reducible mixture, while avoiding production of excess ash.
The hearth layer may have a particle size between a range of -6 to -20 mesh to a range
of +65 to +150 mesh. The carbonaceous material in the reducible mixture is also different
in particle size from those of the coarse overlayer, but for the different considerations.
In the reducible mixture a consideration is the surface area for rapid reaction of
the carbonaceous material with the reducible iron bearing material in commercial production.
Less than 65 mesh or less than 100 mesh particle size of carbonaceous material in
the reducible mixture is effective for efficient reduction of the iron oxide to produce
metallic iron nuggets.
[0020] The overlayer of coarse carbonaceous material may provide between 50% and 100% coverage
of the discrete portions of reducible mixture and may be about ½ inch (12.7mm) in
thickness. Further, in some embodiments of the method, the coverage of the overlayer
of coarse carbonaceous material may be between about 0.5 lb/ft
2 (2.44 kg/m
2) and about 1 lb/ft
2 (4.88 kg/m
2) of coarse carbonaceous material, or between about 0.75 lb/ft
2 (3.66 kg/m
2) and about 1 lb/ft
2 (4.88 kg/m
2) of coarse carbonaceous material over the reducible mixture.
[0021] In some embodiments of the disclosed method, the step of providing a reducible mixture
over at least a portion of the hearth material layer may comprise forming at least
a portion of the reducible mixture with a predetermined quantity of reducing material
between about 70 percent and about 90 percent of said stoichiometric amount of reducing
material necessary for complete metallization. Said stoichiometric amount may be between
about 75 percent and about 85 percent of said stoichiometric amount of reducing material
for complete metallization, or about 80 percent of said stoichiometric amount of reducing
material for complete metallization. The stoichiometric amount of reducing material
is the calculated amount of carbonaceous material needed for complete metallization
of iron in the formation of metallic iron nuggets from a predetermined quantity of
reducible iron bearing material.
[0022] The discrete portions may be formed
in situ as mounds, or alternatively, preformed as briquettes, balls, extrudates, or other
shapes as needed. In any event, the discrete portions of reducible mixture may be
at least partially surrounded with nugget separation fill material comprising at least
carbonaceous material. The fill material may be placed by depositing the carbonaceous
material after the discrete portions are formed, or by dropping or pushing preformed
discrete portions into the hearth layer. The nugget separation fill material may also
have an average particle size less than the average particle size of the coarse carbonaceous
material of the overlayer. However, the step of providing an overlayer of coarse carbonaceous
material may comprise at least partially surrounding the discrete portions of reducible
mixture with coarse carbonaceous material. In some embodiments, this may be accomplished
by placing the coarse carbonaceous material over the discrete portions of reducible
mixture and allowing some of the coarse carbonaceous material to go between the discrete
portions of reducible mixture.
[0023] In some embodiments of the method, the step of heating the layer of reducible mixture
includes heating the layer of reducible mixture at a temperature of less than about
1425 °C. Also, the step of thermally heating the layer of reducible mixture may include
heating the layer of reducible mixture at a temperature of less than about 1400 °C
or less than 1375 °C.
[0024] Also disclosed is a method for use in production of metallic iron nuggets that comprises
providing a hearth refractory material, providing a hearth material layer comprising
at least carbonaceous material on the refractory material, providing a layer of reducible
mixture comprised of at least reducing material and reducible iron bearing material
arranged in a plurality of discrete portions over at least a portion of the hearth
material layer, providing a layer of turbulent gas flow disrupting material over at
least a portion of the discrete portions of reducible mixture, and heating the reducible
mixture to form one or more discrete portions into an intermediate product of metallic
iron nuggets and slag, and after separation, metallic iron nuggets. In this alternative
method, at least partially surrounding the discrete portions of reducible mixture
may be nugget separation fill material comprising at least carbonaceous material.
Also, in some embodiments, the step of providing an overlayer of turbulent gas flow
disrupting material may include providing coarse carbonaceous material. Further, the
overlayer of turbulent gas flow disrupting material may include providing between
about 0.5 lb/ft
2 (2.44 kg/m
2) and about 1 lb/ft
2 (4.88 kg/m
2) of coarse carbonaceous material, or between about 0.75 lb/ft
2 (3.66 kg/m
2) and about 1 lb/ft
2 (4.88 kg/m
2) of coarse carbonaceous material.
[0025] Also disclosed is an intermediate product comprising metallic iron nuggets and slag
having less than 5 % MgO and having a ratio of percent by weight sulfur in the slag
to sulfur in the metallic nuggets of at least 12, at least 15, or at least 30, which
may produce nuggets of less than 0.05% sulfur. In addition, a metallic iron nugget
composition having a sulfur content less than 0.03% by weight is disclosed. The metallic
nugget/slag product and metallic iron nuggets may be produced by the method steps
that comprise providing a hearth refractory material, providing a hearth material
layer comprised of at least carbonaceous material on the refractory material, providing
a layer of reducible mixture comprising at least reducing material and reducible iron
bearing material arranged in a plurality of discrete portions over at least a portion
of the hearth material layer, optionally at least partially surrounding the discrete
portions of reducible mixture with nugget separation fill material comprising at least
carbonaceous material, providing a layer of coarse carbonaceous material over at least
a portion of the discrete portions of reducible mixture, and heating the reducible
mixture to form the one or more discrete portions into the intermediate product of
metallic iron nuggets and slag of said sulfur slag/nugget ratio, and after separation,
metallic iron nuggets. The slag formed may have an iron content of less than about
1%, less than about 0.25%, or essentially less than 0.1%.
[0026] The carbonaceous material of the hearth layer, the coarse overlayer, and the layer
of reducible mixture may contain an amount of sulfur in a range from about 0.2% to
about 1.5%, and more typically, in the range of 0.5% to 0.8%. The reducible mixture
may also contain an amount of additives in a range from about 1% to about 10%. The
reducible mixture may further include an additive selected from the group consisting
of SiO
2, CaF
2, Na
2CO
3, aluminum smelter slag, cryolite, fluorspar and soda ash. The additives may be separately
added to the reducible mixture in its making, or may be naturally part of the reducible
iron bearing material and/or the carbonaceous material used in making the reducible
mixture. Typically 2% of the content of the reducible mixture may be additives, but
may range between about 1% and about 7% by weight. Compounds containing Mg, such as
dolomite, should be avoided, and in any event compounds containing Mg are not added
in quantities such that greater than 3%, or greater than 4%, or greater than 5% MgO
results in the slag.
[0027] The above summary of the present invention is not intended to describe each embodiment
or every implementation of the present invention. Advantages, together with a more
complete understanding of the invention, will become apparent and appreciated by referring
to the following detailed description and claims taken in conjunction with the accompanying
drawings.
Brief Description of the Drawings
[0028] FIG. 1 shows a block diagram of one or more general embodiments of a metallic iron
nugget process;
[0029] FIG. 2 is a generalized block diagram of a furnace system for implementing a metallic
iron nugget process such as that shown generally in FIG. 1;
[0030] FIG. 3 is a diagram of a linear hearth furnace that may be used to carry out one
or more processes described herein, and produce one or more products described herein;
[0031] FIG. 4 shows a pallet or tray with an arrangement of different feed mixtures therein
for use in describing one or more tests employing a linear hearth furnace such as
that shown in FIG. 3;
[0032] FIG. 5 shows a table giving chemical compositions of one or more additives that may
be used in one or more embodiments of the metallic iron nugget process described generally
in FIG. 1, and/or for use in other processes that form metallic iron nuggets;
[0033] FIGS. 6A and 6B are generally top views showing stages of one embodiment of a metallic
iron nugget process as shown generally in FIG. 1;
[0034] FIG. 6C is a generalized cross-section view of a hearth and the layers thereon;
[0035] FIGS. 7A-7D show illustrations of the effect of time on metallic nugget formation
in a metallic iron nugget process as shown generally in FIG. 1;
[0036] FIG. 8 shows a block diagram of one exemplary embodiment of a reducible mixture provision
method for use in a metallic iron nugget process as shown generally in FIG. 1, and/or
for use in other processes that form metallic iron nuggets.
[0037] FIG. 9 shows a CaO-SiO
2-Al
2O
3 phase diagram;
[0038] FIGS. 10-12 show tables for use in describing the effect of adding calcium fluoride
or fluorspar to a reducible mixture in a metallic iron nugget process such as that
shown generally in FIG. 1, and/or for use in other processes that form metallic iron
nuggets;
[0039] FIGS. 13, 14 and 15 show a table, an illustration, and another table, respectively,
for use in showing the effect of Na
2CO
3 and CaF
2 additives to a reducible mixture with respect to control of sulfur levels in one
or more exemplary embodiments of a metallic iron nugget process such as that shown
generally in FIG. 1, and/or for use in other processes that form metallic iron nuggets;
[0040] FIG. 16 is a graph showing concentrations of CO in various zones of a linear hearth
furnace such as that shown in FIG. 3 for use in describing one or more tests employing
such a furnace;
[0041] FIG. 17 is a table showing the effect of slag composition on a reduction process
for use in describing one or more tests employing a linear hearth furnace shown in
FIG. 3;
[0042] FIGS. 18A and 18B show a pallet with an arrangement of different feed mixtures therein
for use in describing one or more tests employing a linear hearth furnace such as
that shown in FIG. 3, and the resulting product from a typical test;
[0043] FIG. 19 is a table showing analytical results of iron nuggets and slag for use in
describing one or more tests employing a linear hearth furnace shown in FIG. 3;
[0044] FIGS. 20 and 21 show the effect of use of various coal addition levels on one or
more exemplary embodiments of a metallic iron nugget process as shown generally in
FIG. 1, and/or for use in other processes that form metallic iron nuggets;
[0045] FIG. 22 is a table showing analytical results of iron nuggets and slag for use in
describing one or more tests employing a linear hearth furnace as shown in FIG. 3;
[0046] FIGS. 23 and 24 show a pallet with an arrangement of different feed mixtures covered
with different amounts of a coarse coke overlayer therein for use in describing one
or more tests employing a linear hearth furnace as shown in FIG. 3, and the resulting
product from a typical test;
[0047] FIGS. 25 and 26 show the separation of products produced from the different areas
shown in FIG. 24;
[0048] FIG. 27 table showing analytical results of weight distribution of iron nuggets,
micro-nuggets, +20 mesh magnetic fraction and slag as shown in FIG. 24 for use in
describing one or more tests employing a linear hearth furnace as shown in FIG. 3;
[0049] FIG. 28 shows the separation of products from the different areas shown in FIG. 27;
[0050] FIG. 29 table showing analytical results of weight distribution of iron nuggets,
micro-nuggets, +20 mesh magnetic fraction and slag for use in describing one or more
tests employing a linear hearth furnace shown in FIG. 3;
[0051] FIG. 30 is a table showing analytical results of iron nuggets and slag for use in
describing one or more tests employing a linear hearth furnace shown in FIG. 3;
[0052] FIGS. 31-33 show a tray with an arrangement of briquettes containing different levels
of feed mixtures with the use of different levels of coarse coke overlayer therein
for use in describing one or more tests employing a linear hearth furnace as shown
in FIG. 3, and the resulting product from a typical test;
[0053] FIGS. 34-36 show a tray with an arrangement different levels of feed mixtures with
the use of different levels of coarse coke overlayer therein for use in describing
one or more tests employing a linear hearth furnace as shown in FIG. 3, and the resulting
products from a typical test;
[0054] FIG. 37 shows the separation of products from different areas from that shown in
FIG. 36;
[0055] FIG. 38 shows the resulting product after heating a pallet with an arrangement of
feed mixtures with the use of different levels of coarse coke overlayer therein for
use in describing one or more tests employing a linear hearth furnace as shown in
FIG. 3;
[0056] FIG. 39 shows the separation of products from different areas shown in FIG. 44;
[0057] FIG. 40 shows the resulting product after heating a tray with an arrangement different
levels of feed mixtures with the use of different levels of coarse coke overlayer
therein for use in describing one or more tests employing a linear hearth furnace
as shown in FIG. 3;
[0058] FIG. 41 shows the separation of products from different areas shown in FIG. 40; and
[0059] FIG. 42 shows a plot of the ratio of percent sulfur in the slag over percent sulfur
in the metallic iron nuggets for tests with and without the addition of the coarse
overlayer.
Detailed Description of the Embodiments
[0060] Certain embodiments of a process for the production of metallic iron nuggets are
described with reference to FIGS. 1-3. Various other embodiments of the process for
the production of metallic iron nuggets and examples supporting such various embodiments
are also described with reference to the other Figures as described below. The method
and system for producing metallic iron nuggets as will be described in further detail
by way of example, together with one or more of the resulting benefits and features.
As explained in detail hereinafter, the disclosed process permits the control of the
amount of sulfur to produce a novel intermediate slag/metallic nugget product, and
with separation, novel metallic iron nuggets.
[0061] FIG. 1 shows a block diagram of one or more generalized illustrative embodiments
of a metallic iron nugget process 10. The metallic iron nugget process 10 shown in
the block diagram shall be described with further reference to a more detailed embodiment
shown in FIG. 3. One skilled in the art will recognize that one or more of the process
steps described with reference to the metallic iron nugget process 10 may be optional.
For example, blocks 20, and 26 are labeled as being optionally provided. As such,
it will be recognized that the metallic iron nugget process 10 is an illustrative
embodiment, and that the present invention is not limited to any specific process
embodiments described herein, but rather as described in the accompanying claims.
[0062] As shown in block 12 of FIG. 1, a hearth 42 is provided as shown in FIG. 6C. The
hearth 42 may be any moving hearth suitable for use with a furnace system 30 (e.g.,
such as that shown generally in FIG. 2) operable for use in carrying out the metallic
iron nugget process 10, or another metallic nugget processes that incorporate one
or more features described herein. Generally, hearth 42 includes a refractory material
upon which reducible material to be processed (e.g., feed material) is received. Hearth
42 may be a hearth suitable for use in a rotary hearth furnace, a linear hearth furnace
(e.g., as shown in FIG. 3), or any other furnace system operable for implementation
for direct reduction of metallic iron nuggets. The refractory material may be, for
example, refractory board, refractory brick, ceramic brick, or a castable refractory.
[0063] Further, a combination of refractory board and refractory brick may be selected to
provide maximum thermal protection for an underlying substructure. In one or more
embodiments, the hearth may include a supporting substructure that carries a refractory
material (e.g., a refractory lined hearth) forming hearth 42. The supporting substructure
may be formed from one or more different materials, such as, for example, stainless
steel, carbon steel, or other metals, alloys, or combinations thereof that have the
required high temperature characteristics for furnace processing.
[0064] With reference to block 14 of FIG. 1, a hearth material layer 44 is provided on hearth
42. The hearth material layer 44 includes at least carbonaceous material.
[0065] As used herein, carbonaceous material refers to any carbon-containing material suitable
for use as a reductant with the iron-bearing material. According to one or more particularly
advantageous embodiments, the hearth material layer 44 includes anthracite, coke,
char, or mixtures thereof. For example, anthracite coal, low volatile bituminous coal,
medium volatile bituminous coal, high volatile bituminous coal, sub-bituminous coal,
coke, graphite, or other sub-bituminous char materials may be used for the hearth
layer 44. Some low, medium, and high volatile bituminous coals may not be suitable
for use as hearth layers by themselves, but may be used as make-up materials to pulverized
bituminous char. Also, coke materials such as coke breeze may be used. The carbonaceous
material of the hearth layer may contain an amount of sulfur in a range from about
0.2% to about 1.5%, and more typically, in the range of 0.5% to 0.8%.
[0066] The hearth material layer 44 is of a thickness sufficient to prevent slag from penetrating
the hearth material layer 44 and contacting refractory material of hearth 42. For
example, the carbonaceous material may be ground or pulverized to an extent such that
it is fine enough to prevent the slag from such penetration, but typically not so
fine as to create excess ash. As recognized by one skilled in the art, contact of
slag with the hearth 42 during the metallic iron nugget process 10 produces undesirable
damage to the refractory material of hearth 42. A suitable particle size for the hearth
layer is less than 4 mesh
2 and desirably between 4 and 100 mesh, with a reasonable hearth layer thickness of
about ½ inch or more, is effective protection for the hearth 42 from penetration of
the slag and metallic iron during processing. Carbonaceous material less than 100
mesh is generally high in ash and also may result in entrained dust that is difficult
to handle in commercial operations.
2 The mesh size of the discrete particles is measured by Tyler Mesh Size for the measurements
given herein.
[0067] Further, referring to block 18 of FIG. 1, a layer of reducible mixture 46 is provided
on the underlying hearth material layer 44. The layer of reducible mixture includes
at least a reducible iron-bearing material and reducing material for the production
of iron metal nuggets.
[0068] As used herein, iron-bearing material includes any material capable of being formed
into metallic iron nuggets via a metallic iron nugget process 10 as described with
reference to FIG. 1. For example, the iron-bearing material may include iron oxide
material, iron ore concentrate, taconite pellets, recyclable iron-bearing material,
pellet plant wastes and pellet screened fines. Further, such pellet plant wastes and
pellet screened fines may include a substantial quantity of hematite. In addition,
such iron-bearing material may include magnetite concentrates, oxidized iron ores,
steel plant wastes (e.g., blast furnace dust, basic oxygen furnace (BOF) dust and
mill scale), red mud from bauxite processing, titanium-bearing iron sands and ilmenites,
manganiferous iron ores, alumina plant wastes, or nickel-bearing oxidic iron ores.
Also, less expensive iron ores high in silica may be used. Other reducible iron bearing
materials may also be used for making the reducible mixture for producing metallic
iron nuggets used in the processes described herein to produce metallic iron nuggets.
For example, nickel-bearing laterites and garnierite ores for ferronickel nuggets,
or titanium bearing iron oxides such as ilmenite that can be made into metallic titanium
iron nuggets (while producing a titania rich slag), or iron rich oxides which contain
manganese oxides can be used to produce manganese iron nuggets.
[0069] At least in some embodiments, such iron-bearing material may be ground to less than
65 mesh (i.e., -65 mesh) or less than 100 mesh (i.e., -100 mesh) in size for processing
according to the disclosed processes. The various examples presented herein use iron-bearing
material ground to 100 mesh and less unless otherwise specified. However, larger size
particles of iron-bearing material may also be used. For example, pellet screened
fines and pellet plant wastes are generally approximately 3 mesh (about 0.25 inches,
about 6.7 mm) in average size. Such material may be used directly, or may be ground
to -65 or -100 mesh (0.21 mm to 0.15 mm) to provide larger surface contact of carbonaceous
reductant with the iron bearing material during processing. The reduction process
is generally more effective to efficiently produce metallic iron nuggets with increased
surface area with more finely divided material.
[0070] The carbonaceous material for the reducible mixture may be ground to 100 mesh or
less in size for processing. In another embodiment, such carbonaceous material is
provided in the range of -65 mesh to -100 mesh. However, carbonaceous material in
the range of -200 mesh to -8 mesh (0.074 mm to 2.4 mm) may also be used. The use of
coarser carbonaceous material (e.g., coal) may require increased amounts of coal in
the reducible mixture for carrying out the reduction process. Finer ground carbonaceous
material may be more effective in the reducible mixture. Even larger size carbonaceous
material may also be used. For example, carbonaceous material of less than about 6
to 7 mesh (e.g., about 0.13 inch to about 0.11 inch, about 3.3 mm to 2.8 mm) in average
size may be used. Such larger size material may be used directly, or may be ground
to -65 or -100 mesh for better contact and more efficiently react with the iron-bearing
reducible material during processing. The various examples presented herein use carbonaceous
material ground to -100 mesh unless otherwise specified. When other additives are
also added to the reducible mixture, such additives may also ground to -100 mesh or
less in size.
[0071] Various carbonaceous materials may be used in providing the reducible mixture of
reducing material and reducible iron-bearing material. For example, eastern anthracite
and bituminous non-caking coals may be used as the carbonaceous reductant in at least
one embodiment. However, in some geographical regions, such as on the Iron Range in
Northern Minnesota, the use of western sub-bituminous non-caking coal offers an attractive
alternative, as such coals are more readily accessible with the rail transportation
systems already in place, plus they are generally lower in cost and lower in sulfur
levels. As such, western sub-bituminous coals may be used in one or more processes
as described herein. Further, an alternative to the direct use of sub-bituminous coals
may be to carbonize it, e.g., at 900 °C, prior to its use. In any case, the carbonaceous
material in the reducible mixture may contain an amount of sulfur in a range from
about 0.2% to about 1.5%, and more typically, in the range of 0.5% to 0.8%.
[0072] The amount of reducing material in the mixture of reducing material and reducible
iron bearing material will depend on the stoichiometric quantity necessary for complete
metallization of the iron in the reducing reaction in the furnace process. As described
further below, such a quantity may vary depending on the furnace used and the furnace
atmosphere in which the reducing reaction takes place. In one or more embodiments,
the quantity of reducing material necessary to carry out the reduction of the iron-bearing
material is between about 70 percent and 90 percent of the stoichiometric quantity
of reducing material theoretically necessary for carrying out the reduction to completely
metallize the iron. Such carbonaceous material may be used at different stoichiometric
levels (e.g., 70 percent, 80 percent or 90 percent) of the stoichiometric amount necessary
for reduction of the iron-bearing material. In one embodiment, for compacts containing
coal at 80% of the stoichiometric amount to completely reduce the iron oxide, the
mounds of reducible material have a density of about 1.8-1.9, balls have a density
of about 2.1, and briquettes or extrudates have a density of about 2.1. This feature
of the invention is described in more detail below.
[0073] The reducible mixture 46 may have a thickness of more than 0.25 inches (6.35 mm)
and less than 2.0 inches (50.8 mm). In some embodiments, the reducible mixture 46
may have a thickness of less than 1 inch (25.4 mm) and more than 0.5 inches (12.7
mm). In other embodiments, the reducible mixture 46 may have a thickness of about
0.5 inches or less (12.7 mm or less). The thickness of the reducible mixture is generally
limited and/or dependent upon the effective heat penetration therein. Increased surface
area of iron bearing material and carbonaceous material in the reducible mixture allows
for improved heat transfer and reduction activity.
[0074] As shown by block 20 of FIG. 1, additives may optionally be provided to the reducible
mixture, for one or more purposes, in addition to the reducing material (e.g., coal
or char) and reducible iron-bearing material (e.g., iron oxide material or iron ore).
For example, additives may be provided (i) for controlling slag basicity, (ii) for
binders to provide binder functionality (e.g., lime can act as a weak binder in a
micro-agglomerate configuration when wetted), (iii) for controlling the slag fusion
temperature, (iv) to reduce the formation of micro-nuggets, and/or (v) for further
controlling the content of sulfur in resultant iron nuggets formed by the metallic
iron nugget process 10. The table of FIG. 5 shows the chemical compositions of various
additives to the reducible mixture 46. That includes, for example, chemical compositions
such as Al(OH)
3, bauxite, bentonite, Ca(OH)
2, lime hydrate, limestone, and Portland cement. Other additives may also be used such
as CaF
2, Na
2CO
3, fluorspar, soda ash, aluminum smelter slag, cryolite, and SiO
2. One or more of such additives, separately or in combination, may provide for beneficial
results when used in the metallic iron nugget process 10. These additives and their
impact particularly in reducing sulfur levels in the metallic iron nuggets is explained
in more detail below. Some of the illustrated additives contain trace amounts of Mg,
as shown. Mg, in compounds such as dolomite, should be avoided and in any event is
not used in quantities that will produce 5% mass or more MgO in the resulting slag.
[0075] The reducible mixture 46 is then formed into discrete portions (compacts) either
in situ as explained in detail in application
U.S. Serial No. 11/296,198, filed December 7, 2005, incorporated by reference, or preformed into briquettes or extrudates for use in
the disclosed process of forming metallic iron nuggets. Compacts refer to any compacted
reducible mixture or other feed material that has pressure applied thereto to form
in situ desired discrete portions on the hearth layer. For example, compaction or pressure
to form discrete portions as mounds
in situ on the hearth layer or to provide one or more discrete portions of different profiles
in a layer of reducible material. Discrete portions or compacts may also be preformed
compacted balls or shaped reducible mixtures such as briquettes or extrudates, which
are preformed using compaction or pressure. It should also be noted that different
pressurization during formation of the compacts may result in different processing
characteristics as desired for the particular embodiment of the present process.
[0076] Where the discrete portions 59 (See FIG. 6A) are formed
in situ, a channel definition tool 35 (See FIG. 2) may then be used to create a plurality
of channel openings 50 that extend at least partially through the layer of the reducible
mixture to define the plurality of nugget forming discrete portions 59 of reducible
material for forming the metallic iron nuggets. The channel definition tool 35 may
be any suitable apparatus (e.g., channel cutting device, mound forming press, etc.)
for creating the channel openings 50 in the layer of reducible mixture (e.g., forming
the discrete portions 59, pressing the reducible mixture, cutting the openings, etc.).
The channel definition tool 35 may include one or more molds, cutting tools, shaping
tools, drums, cylinders, bars, and the like. The disclosed process for forming metallic
iron nuggets is not limited to any specific apparatus for creating the channel openings
50 in the formation of the discrete portions 59 of nugget forming reducible material.
[0077] With reference to FIG. 1, as shown in optional block 26, areas surrounding the discrete
portions 59 of reducible mixture are at least partially filled with nugget separation
fill material. The nugget separation fill material 58 includes at least carbonaceous
material. For example, in one or more embodiments, the carbonaceous material includes
pulverized coke, pulverized char, pulverized anthracite, or mixtures thereof. In some
embodiments, at least a portion of the discrete portions of reducible mixture are
dropped onto or pushed into a portion of the hearth material layer to form the nugget
separation fill material 58. The reducible mixture may be formed into briquettes or
extrudates for use in the process of the producing metallic iron nuggets. In any case,
the size of the particles of carbonaceous material provided to surround the discrete
portions 59, whether formed
in situ or preformed, may be the same size as the particles used for the hearth layer.
[0078] Such pulverized material used to fill the areas surrounding the discrete portions
of reducible mixture may be ground to -4 or -6 mesh (4.7 mm or 3.3 mm) in size for
processing according to the disclosed process. In at least some embodiments, such
pulverized material used to fill the areas surrounding the discrete portions of reducible
material is -20 mesh (0.83 mm). Finer pulverized material of -100 mesh (0.15 mm) also
may be used for the fill surrounding the discrete portions, but a balance should be
found to avoid an increase in the amount of micro-nugget formation. Larger size materials
may also be used. For example, carbonaceous material of about 1/4 inch (6 mm) in average
size may be used for the fill surrounding the discrete portions.
[0079] With reference to FIG. 1, as shown in block 22, a layer containing coarse carbonaceous
material 49 is provided over at least some of the discrete portions of the reducible
mixture. The coarse carbonaceous material of the overlayer has an average particle
size greater than an average particle size of the hearth layer. In addition or alternatively,
the overlayer of coarse carbonaceous material may include discrete particles having
a size greater than about 4 mesh or about 6 mesh and in some embodiments, the overlayer
of coarse carbonaceous material may have discrete particles with a size between about
4 mesh or 6 mesh and about ½ inch (about 12.7 mm). There may be of course some discrete
particles less than 4 mesh or 6 mesh in size when discrete particles greater than
4 mesh or 6 mesh size are desired, but the majority of the discrete particles will
be greater than 4 mesh or 6 mesh where a particle size greater than 6 mesh is desired.
The coarse carbonaceous material may be coke, coal, char, or a combination of one
or more of these.
[0080] With the formed discrete portions 59 of reducible mixture 46 provided on the hearth
material layer 44, and with nugget separation fill material 58 and the carbonaceous
overlayer 49 in place, a reducing furnace 34 (shown in FIG. 2) is provided to thermally
directly reduce the layer of reducible mixture 46 to produce one or more metallic
iron nuggets 63 in one or more of the plurality of discrete portions 59. The reducing
furnace 34 may include any suitable furnace regions or zones for providing the appropriate
conditions (e.g., drying/heating, reducing, fusion and cooling zones) for processing
the reducible mixture 46 of the discrete portions 59 to form one or more metallic
iron nuggets 63. For example, a linear hearth furnace, or any other furnace capable
of performing the thermal treatment (block 24 of FIG. 1) of the reducible mixture
46 may be used.
[0081] As further shown in FIG. 6B, resultant slag 60 on hearth material layer 44 is shown
with the one or more metallic iron nuggets 63. That is, slag beads on hearth material
layer 44 are separated from the iron nuggets 63, or attached thereto. With reference
to block 28 of FIG. 1, the metallic iron nuggets 63 and slag 60 (e.g., attached slag
beads) are discharged from hearth 42, and the discharged metallic nuggets are then
separated from the slag 60 (block 29).
[0082] As further shown in FIGS. 6A and 6B, metallic iron nuggets formed by the process
described with reference to FIG. 1 is shown. Resultant slag 60 on hearth material
layer 44 is shown with the one or more metallic iron nuggets 63. Slag beads on hearth
material layer 44 are shown separated from the iron nuggets 63, and attached thereto.
With further reference to block 28 of FIG. 1, the metallic nuggets 63 and attached
slag 60 are discharged from hearth 42, and the discharged metallic nuggets are then
separated from the slag 60 (block 29).
[0083] The presence of CO in the furnace atmosphere accelerated the fusion process somewhat
as compared to a N
2 only atmosphere; the presence of CO
2 in furnace atmospheres adjacent the reducible material slowed the fusion behaviors
of metallic iron nuggets. A presence of CO
2 in furnace atmospheres during iron nugget formation starting at about 1325 °C (2417
°F), wherein the temperature was on the verge of forming fused iron nuggets, has been
observed to inhibit the formation of the metallic iron nuggets. The effect of CO
2 became less pronounced at higher temperatures and, in fact, the effect became virtually
absent over 1400 °C (2552 °F) because of CO
2 forming 2 CO at above such temperature. This effect is shown by the plot set forth
as FIG. 16. This finding is observed mainly in the N
2 and CO atmosphere in the tube furnace or the box furnace. Also, the presence of carbon
near the hot reduced iron will allow the iron to pick up carbon in solution. This
carbonizing of the iron reduces the melting point of the iron and in turn lowers the
process temperature for full fusion of the metallic iron.
[0084] Whether preformed or formed in
in situ, the compacts positioned on the hearth layer may have the areas surrounding the discrete
portions 59 of reducible material filled at least partially with nugget separation
fill material (e.g., carbonaceous material) (block 26) as described herein. With use
of such areas surrounding the discrete portions of reducible material and nugget separation
fill material 58 therein, substantially similar-sized metallic iron nuggets 63 may
be almost always, if not always, uniformly formed in each discrete portion 59, which
the areas surrounding the discrete portions of reducible material assist in defining.
This process of formation of the metallic iron nuggets is markedly improved by the
overlayer 49 of coarse carbonaceous material, and markedly improves the partitioning
of the sulfur in the slag of the intermediate slag/metallic nugget product and lowers
of the sulfur levels in the metallic iron nuggets without large amounts of MgO in
the slag. As formed, the carbonaceous material of the coarse overlayer may contain
an amount of sulfur in a range from about 0.2% to about 1.5%, and more typically,
in the range of 0.5% to 0.8%.
[0085] Metallic iron nugget processes that differ from that described with reference to
FIG. 1 (e.g., the ITmk3 process, the Hi-QIP process) also can be adapted to practice
the process described herein and to produce the novel intermediate slag/nugget product
with high sulfur partitioning into the slag. In these embodiments, the same reducing
material and same iron bearing materials may be used (i.e., type of composition),
but the form of the reducible mixture on the hearth may be different. For example,
the form that the reducible mixture takes may be preformed green balls using a binder,
or may be filled dimples in a pulverized carbonaceous hearth layer, rather than briquettes
or other type of compacts to form the discrete portions. As such, the process may
be used to form novel intermediate products with ratios of sulfur in slag to sulfur
in nuggets of greater than 12, or 15 or 30, and novel metallic iron nuggets with less
than 0.03% sulfur, and not just with the process described above with reference to
FIG. 1. In other embodiments of the disclosed process, depressions are formed in a
portion of the hearth material layer followed by the placement of the reducible mixture
into the depressions.
[0086] The metallic iron nugget process 10 may be carried out by a furnace system 30 as
shown generally in FIG. 2. The furnace system 30 generally includes a charging apparatus
36 operable to provide a layer of reducible mixture 46 on at least a portion of hearth
material layer 44. The charging apparatus may include any apparatus suitable for providing
a reducible mixture 46 onto a hearth material layer 44. A controllable feed chute,
a leveling device, and a feed direction apparatus may be used to place such reducible
mixture on the hearth 42.
[0087] The furnace system 30 further may include a nugget separation fill apparatus 37 operable
to at least partially fill the areas surrounding the discrete portions 59 of reducible
mixture with nugget separation fill material 58. Any suitable fill apparatus 37 for
providing such nugget separation fill material 58 into the areas surrounding the discrete
portions of reducible mixture may be used for manual or automatic operation thereof.
Apparatus 37 can also be used to provide the coarse carbonaceous overlayer 49 over
the discrete portions 59, which may also partially fill the areas surrounding the
discrete portions 59.
[0088] Further as shown in FIG. 2, the furnace system 30 includes a discharge apparatus
38 used to remove the metallic iron nuggets 63 and the slag 60 formed during processing
by the furnace system 30 and discharge such components (e.g., metallic iron nuggets
63 and slag 60) from the system 30 after the metallic iron nuggets are cooled and
solidified. The discharge apparatus 38 may include any number of various discharge
techniques including gravity-type discharge (e.g., tilting of a tray including the
nuggets and slag) or techniques using a screw discharge device or a rake discharge
device. One will recognize that any number of different types of discharge apparatus
38 may be suitable for providing such discharge of the nuggets 63 (e.g., iron nugget
63 and slag bead 60 aggregates). Further, a separation apparatus may then be used
to separate the metallic iron nuggets 63 from the slag beads 60. Any method of breaking
and separating the iron nugget and slag bead aggregates may be used, e.g., tumbling
in a drum, screening, or a hammer mill. However, any suitable separation apparatus
may be used (e.g., a magnetic separation apparatus).
[0089] In the absence of any other information of the furnace gas composition of iron nugget
processes, most of the laboratory tests in a box furnace described herein were carried
out in an atmosphere of 67.7% N
2 and 33.3% CO, assuming that CO
2 in a natural gas-fired burner gas would be converted rapidly to CO in the presence
of carbonaceous reductants and hearth layer materials by the Boudouard (i.e., carbon
solution) reaction (CO
2+C=2CO) at temperatures higher than 1000 °C, and a CO-rich atmosphere would prevail
at least in the vicinity of the reducible materials largely by reason of the presence
of the coarse overlayer. In these tests, carbon dioxide often predominated and could
reach levels of over 8%. The use of the coarse carbonaceous overlayer, however, enabled
production of metallic iron nuggets even under these adverse conditions.
[0090] One or more different reducing furnaces may be used according to the disclosed processes
depending on the particular application of the disclosed processes. For example, in
one or more embodiments herein, laboratory furnaces were used to perform the thermal
treatment. One will recognize that from the laboratory furnaces, scaling to mass production
level can be performed and the present processes contemplate such scaling. As such,
one will recognize that various types of apparatus described herein may be used in
larger scale processes, or production equipment necessary to perform such processes
at a larger scale may be used.
[0091] For example, a linear hearth furnace such as that described in
U.S. Provisional Patent Application No. 60/558,197, entitled "Linear hearth furnace system and methods," filed 31 March 2004, published
as
US 2005/0229748A1, may also be used. A summary of the linear hearth furnace described therein is as
follows. One exemplary embodiment of such a linear hearth furnace is shown generally
in FIG. 3 and, may be, a forty-foot long walking beam iron reduction furnace 712 including
three heating zones 728, 730, 731 separated by internal baffle walls 746, and also
including a final cooling section 734. As described herein, various tests were also
run using this linear hearth furnace and results thereof are described with reference
to the Figures.
[0092] Zone 728 is described as an initial heating and reduction zone. This zone may operate
on two natural gas-fired 450,000 BTU (113,398 Kcal) burners 738 capable of achieving
temperatures of 1093 °C. The burners are typically operated sub-stoichiometrically
to minimize oxygen levels.
[0093] Zone 730 is described as the reduction zone. This zone may operate on two natural
gas-fired 450,000 BTU (113,398 Kcal) burners 738 capable to achieve 1316 °C. The reduction
of the feed mixture occurs in this zone 730.
[0094] Zone 731 is described as the melting/fusion zone. This zone may operate on two natural
gas-fired 1,000,000 BTU (251,995 Kcal) burners 738 capable to sustain this zone at
1426 °C. The function of this zone is to complete the reduction, fusing the iron into
metallic iron nodules or "nuggets". In the event that this furnace is being used to
make direct reduced iron or sponge iron, the temperatures in this zone would be reduced
where complete reduction would be promoted without melting or fusion.
[0095] The walking beam 724 transports trays 715 to the opposite end 722 of the furnace
where they are discharged onto a similar platform (roller ball plate) elevator 754.
A safety mechanism has been installed to monitor the position of the hot trays at
the discharge of the furnace. Discharge rollers drive the trays onto the platform
elevator where they can be removed or re-inserted back into the furnace. The discharge
rollers will not function unless trays are in position for discharge, platform elevator
is in the "up" position, and the walking beams have been lowered to prevent hot trays
from accidental discharge. Tiered conveyor rollers are located at the discharge of
the furnace to remove and store sample pallets until cool. A controller 718 coupled
to walking beam mechanism 724 controls the furnace through a PC interface.
[0096] The exhaust gas system 747 is connected to an exhaust fan 753 with a variable flue
damper controlled by the furnace PLC. Because the exhaust fan 753 is oversized for
this application, a manually controlled in-line damper or pressure control 755 is
used to reduce the capacity of the exhaust fan 753 to improve zone pressure control.
As a safety precaution, a barometric leg into a level controlled water tank is installed
between the common header and exhaust fan to absorb any sudden pressure changes. Exhaust
gases are discharged from the fan 753 to a forty-foot exhaust stack 757. The exhaust
ducts are refractory lined to the exterior walls of the furnace where they transition
to high temperature stainless steel, fitted with water spray nozzles 749, used to
cool the waste gases.
[0097] The sample trays or pallets 715 (as shown in FIG. 4) have 30 inch square (762 mm
square) refractory lined pans with a flat bottom to be conveyed through the furnace
by the walking beam mechanism 724. The trays framework may be made from a 303 stainless
steel alloy or carbon steel. They may be lined with high temperature refractory brick
or ceramic fiberboard with sidewalls to contain the feed mixture.
[0098] The above described furnace systems are given to further illustrate the nugget formation
process 10, and has provided certain aspects in testing and the results reported herein.
However, any suitable furnace system capable of carrying out one or more embodiments
of a metallic iron nugget formation process described herein may be used.
[0099] As shown in FIGS. 7A-7D, each of the one or more metallic iron nuggets includes a
maximum cross-section. One or more of the metallic iron nuggets includes a maximum
length across the maximum cross-section that is greater than about 0.25 inch (about
6.35 mm) and less than about 4.0 inch (about 101.6 mm). A maximum length across the
maximum cross-section is greater than about 0.5 inch (about 12.7 mm) and less than
about 1.5 inch (about 38.1 mm). Note that these iron nuggets were produced without
the use of a coarse carbonaceous overlayer.
Control of Stoichiometric Amount of Reducing Material
[0100] In previous metallic iron reduction processes, such as those using dried balls described
in the Background of the Invention above, carbonaceous reducing materials are typically
added to the reducible mixture in an amount greater than the theoretical stoichiometric
amount required to complete reduction the iron oxides. This is done to promote carburizing
of metallic iron in order to lower the melting point and the reduction temperature
of the reducible mixture to metallic iron. The amount of carbonaceous reductant in
the balls includes an amount required for reducing iron oxide plus an amount required
for carburizing metallic iron and for loss associated with oxidation.
[0101] As discussed previously, in certain furnaces (e.g., such as natural gas fired furnaces
with high CO
2 and highly turbulent gas atmospheres), added carbonaceous material (e.g., coal) in
feed mixtures (e.g., such as those reducible mixtures described herein) is lost by
the carbon solution (Boudouard) reaction in certain zones of the furnace (e.g., pre-heating
and reduction zones). To compensate for this loss, it may be necessary to add reducing
material (e.g., carbonaceous material) in excess of the stoichiometric amount theoretically
necessary for complete metallization. However, also as described herein, such an addition
of reducing material (e.g., coal) in excess of the stoichiometric amount may lead
to formation of larger amounts of micro-nuggets, i.e., nuggets that are too large
to pass through a 20 mesh screen (+20 mesh material) and less than about 1/8" (about
3 mm).
[0102] As previously described, in some embodiments of the disclosed processes, the reducible
mixture includes a predetermined quantity of reducing material (e.g., carbonaceous
reductant) between about 70 percent and about 90 percent of the stoichiometric amount
necessary for complete metallization thereof. As seen in FIGS. 20-21, the addition
of about 70% to about 90% of the theoretical amount minimized the formation of micro-nuggets.
Carbon needed for further reduction and carbonizing molten metal came from, for example,
CO in the furnace atmosphere from oxidization of the carbonaceous material of the
coarse carbonaceous overlying layer 49 and underlying carbonaceous hearth material
layer 44. The sub-stoichiometric carbon levels in the reducible mixtures are believed
to assist in controlling the nucleation sites and inhibiting formation of small metallic
nuggets that do not consolidate in larger nuggets. The stoichiometric requirements
in carbon for complete reduction of the iron in the metallic nuggets are satisfied
from the carbon in the hearth layer, the nugget separation fill and/or the overlayer.
These sources are believed to also provide the additional carbon needed for dissolved
carbon in the iron phase of the metallic iron nuggets. The availability of carbon
from the hearth layer, nugget separation fill and overlayer for solubilization into
the reduced iron lowers its melting point, and in turn reduces the processing temperature
needed for metal/slag separation.
[0103] Use of compacts may alleviate any need to use nugget separation material as described
with reference to FIG. 1. For example, control of pressure, temperature and gas diffusion
in a briquette, extrudates, or other type of preformed compact may provide such benefits.
[0104] In addition, the control of the amount of reducing material in the reducible mixture
based on the stoichiometric amount theoretically necessary to complete the metallization
process, applies not only to the methods described with reference to FIG. 1, but also
to other direct reduction processes for forming metallic nuggets. The coarse overlayer
together with the underlying hearth layer described herein reduces the formation of
micronuggets formed in the reduction process.
Tests With Additives Without a Coarse Overlayer.
[0105] As described previously with reference to FIG. 1, the reducible mixture 46 for use
in the metallic iron nugget process 10 may include one or more additives in combination
with the reducing material and the reducible iron-bearing material (e.g., reducible
iron oxide material). One such method 200 for providing the reducible mixture 46 with
optional additives as shown in the block diagram of FIG. 8. A mixture of at least
reducing material of carbonaceous material such as coal, coke or charcoal and reducible
iron oxide material are provided (block 202). Optionally in addition, calcium oxide
or one or more compounds capable of producing calcium oxide upon thermal decomposition
thereof (block 204) may be added to the reducible mixture. Further, in addition or
alternatively, sodium oxide or one or more compounds producing sodium oxide upon thermal
decomposition may be provided (block 206), in combination with the other components
of the reducible mixture. Also, one or more fluxing agents may optionally may be provided
for use in the reducible mixture (block 208). The fluxing agents that may be provided
for use with the reducible mixture (block 208) may include any suitable fluxing agent.
For example, an agent that assists in the fusion process by lowering the fusion temperature
of the reducible mixture or increases the fluidity of the reducible mixture may be
included. The additives may be naturally part of the reducible iron bearing material
used as a source for the iron oxide, and typically may be 2% of the content of the
reducible iron bearing material but may range from about 1% to about 7% by weight.
In some embodiments, calcium fluoride (CaF
2) or fluorspar (e.g., a mineral form of CaF
2) may be used as the fluxing agent. Alternatively, SiO
2, borax, NaF, soda ash (Na
2CO
3), or aluminum smelting industry slag or cryolite, may be used as the fluxing agent.
With respect to the use of fluorspar as the fluxing agent, about 0.5% to about 4%
by weight of the reducible mixture may be fluorspar.
[0106] Use of fluorspar, for example, as well as one or more other fluxing agents, lowers
the fusion temperature of the slag phase during formation of the metallic iron nuggets,
and at the same time reduces the generation of micro-nuggets. Fluorspar has been found
to lower not only the nugget formation temperature, but also to be uniquely effective
in decreasing the amount of micro-nuggets generated. It is believed that the lower
temperature slag allows for removal of slag from the reducing iron and formation of
the metallic iron nuggets.
[0107] In an attempt to improve sulfur removal capacity of slag, as shall be described further
herein, the level of lime or one or more other compounds capable of producing calcium
oxide may also be increased beyond a composition (L), as shown on the CaO-SiO
2-Al
2O
3 phase diagram of FIG. 9 that indicates the slag compositions of (A), (L), (L
1), and (L
2). Composition (L) is located in the low fusion temperature trough in the CaO-SiO
2-Al
2O
3 phase diagram. The slag compositions are abbreviated by indicating the amounts of
additional lime used in percent as a suffix, for example, (L
1) and (L
2) indicate lime addition of 1% and 2%, respectively, over that of Composition (L).
The amount of chemical CaF
2 (abbreviated to CF) added in percent was also indicated as a suffix, for example,
(L
0.5CF
0.25), which represents that 0.25% by weight of CaF
2 was added to a feed mixture with Slag Composition of (L
0.5).
[0108] It is common practice in the steel industry to increase the basicity of slag by adding
lime to slag under a reducing atmosphere for removing sulfur from metallic iron, for
example, in blast furnaces. However, increasing lime from Slag Composition (L) to
(L
1.5) and (L
2) may lower sulfur but increase the fusion temperature and the amount of micro-nuggets
generated as described herein. In the present process, the use of fluxing additives
that lower the slag fusion temperature, such as fluorspar, may be used to (i) lower
the temperature of iron nugget formation, (ii) decrease sulfur in the iron nuggets,
and, (iii) decrease the amount of micro-nuggets formed in processing. For example,
addition of certain additives, such as fluorspar to the feed mixture may reduce the
amount of micro-nuggets produced during processing of the reducible feed mixture.
[0109] Although fluorspar is reported to be a not particularly effective desulfurizer in
steelmaking slag, we have found that with increasing fluorspar addition, sulfur in
iron nuggets was found to be lowered more effectively at Slag Compositions (L
1.5) and (L
2) than at (L
1). Therefore, the use of fluorspar not only lowered the operating temperature and
further lowered the sulfur in iron nuggets, but has also been found to have the unexpected
benefit of minimizing the generation of micro-nuggets in the metallic iron nuggets.
It is believed that the melting temperature for the slag components is lower when
fluorspar is employed. An increased amount of liquid slag is thus available to interact
with the sulfur in the iron nugget and extract the sulfur into the slag. If lime is
present as an additive, the slag volume is increased and the fluorspar is more effective
in increasing sulfur levels in the slag and decreasing sulfur levels in the metallic
iron nuggets.
[0110] With reference to FIG. 8, calcium oxide, and/or one or more compounds capable of
producing calcium oxide upon thermal decomposition may also be used (block 204). For
example, lime may be used as an additive to the reducible mixture. Increased use of
lime decreased sulfur in iron nuggets from 0.084% to 0.05%. Increased use of lime,
however, requires increasingly higher reduction temperatures and longer time at reduction
temperature for forming fully fused metallic iron nuggets. As such, a substantial
amount of lime is not desirable, as higher temperatures also result in less economical
production of metallic iron nuggets, and reduces yields with increased formation of
micronuggets. Yet, further decreases in sulfur content may be accomplished by use
of the coarse overlayer of carbonaceous material as explained more fully herein.
[0111] Also shown in FIG. 8, sodium oxide, and/or one or more compounds capable of producing
sodium oxide upon thermal decomposition, may be used in addition to lime (block 206)
to lower sulfur in the formed metallic iron nuggets. Soda ash, Na
2CO
3, NaHCO
3, NaOH, borax, NaF and/or aluminum smelting industry slag, may be used to lower sulfur
in the metallic iron nuggets (e.g., used in the reducible mixture). However, without
the use of a coarse overlayer of carbonaceous material, the sulfur levels in the metallic
nuggets by use of these additives has been found to range from 0.083% to 0.018% by
weight.
[0112] The table of FIG. 15 shows the effect of temperature on analytical results of iron
nuggets formed from reducible feed mixtures. The reducible feed mixture included a
5.7% SiO
2, magnetic concentrate, a Slag Composition (L
1.5FS
1SC
1), and medium-volatile bituminous coal at 80% of the stoichiometric requirement for
metallization. The reducible feed mixture was heated in the tube furnace at the listed
temperatures for 7 minutes in a N
2-CO atmosphere. As shown in the table of FIG. 15, sulfur in the iron nuggets decreased
markedly with decreasing temperature from 0.029% S at 1400°C to 0.013% S at 1325°C.
An addition of Na
2CO
3 together with 1∼2% CaF
2 not only lowered sulfur in the metallic iron nuggets to well below 0.05%, but also
lowered the operating temperature and minimized the generation of micro-nuggets. Lowering
the process temperature, therefore, is an additional advantage with the use of these
additives, and the attendant lowering energy cost and maintenance, with lower sulfur
in the metallic iron nuggets.
[0113] A furnace atmosphere with a minimum of 75% CO and a maximum of 25% CO
2 may be useful in producing metallic iron nuggets with less than 0.05% sulfur.
[0114] Generally, FIG. 10 shows the effect of fluorspar addition on analytical results of
iron nuggets formed from feed mixtures that included a 5.7% SiO
2 magnetic concentrate, medium-volatile bituminous coal at 80% of the stoichiometric
requirement for metallization and slag composition (L
1), (L
1.5), and (L
2). The samples in a 2-segment pattern in boats were heated at 1400 °C for 7 minutes
in a N
2-CO atmosphere.
[0115] The table of FIG. 13 shows the effect of Na
2CO
3 and CaF
2 additions on sulfur analysis of iron nuggets at different levels of lime addition,
the iron nuggets formed from feed mixtures that included a 5.7% SiO
2 magnetic concentrate, medium-volatile bituminous coal at 80% of the stoichiometric
requirement for metallization, and slag composition (L
mCF
1 or L
mFS
1). The feed mixtures were heated in the tube furnace at 1400 °C for 7 minutes in a
N
2-CO atmosphere.
[0116] An addition of Na
2CO
3 without CaF
2 decreased sulfur in iron nuggets as effectively as, or even more effectively than
the CaF
2, but the amount of micro-nuggets generated increased, as shown in FIGS. 14A-14C.
When CaF
2 was used along with Na
2CO
3, the sulfur content in iron nuggets decreased even further and the amount of micro-nuggets
remained minimal at about 1%. Another point of note was that the effect of CaF
2 in lowering the fusion temperature of iron nuggets was more pronounced at Slag Compositions
(L
1), (L
1.5), and (L
2) than at Slag Compositions L and L
0.5. This analytical data shows that at least in this embodiment decrease in sulfur was
more pronounced with soda ash than with increased addition of lime.
[0117] Although fluorspar is reported to be not particularly an effective desulfurizer in
steelmaking slag, FIG. 10 shows that with increasing fluorspar addition, sulfur in
iron nuggets was lowered more effectively at Slag Compositions (L
1.5) and (L
2) than at (L
1). At Slag Compositions (L
1.5) and (L
2), iron nuggets analyzed including 0.058% by weight sulfur and 0.050% by weight sulfur,
respectively, while sulfur decreased steadily to as low as 0.013% and 0.009% by weight,
respectively, at fluorspar addition of 4%. Therefore, the use of fluorspar not only
lowered the operating temperature and the sulfur in iron nuggets, but also showed
an unexpected benefit of minimizing the generation of micro-nuggets as shown in FIGS.
11 and 12.
[0118] Concentrations of CO, expressed as percentages of CO+CO
2, were plotted in the equilibrium concentration diagrams of iron oxide reduction and
carbon solution (Boudouard) reactions as shown in FIG. 16. The CO concentration in
Zone 1 (1750 °F (954 °C)) was in the stability region of Fe
3O
4, and those in Zones 2 (2100 °F (1149 °C)) and Zone 3 (2600 °F (1427 °C)) were in
the low range of the stability region of FeO. All the points were well below the carbon
solution reaction, supporting a view that added coal was rapidly lost in the linear
hearth furnace. The gas sampling ports of the linear hearth furnace were located on
the furnace wall at about 8 inches above pallet surfaces. Because of the high turbulence
of furnace gases, the CO concentrations of 4% should represent a well mixed value.
The arrow at 2600 °F (1427 °C) in FIG. 16 indicates the increase in CO with time in
Zone 3.
[0119] Analytical results of iron nuggets and slags of linear hearth furnace Tests 14 and
17 are given in FIG. 17, along with such results for another Test 15. In linear hearth
furnace Test 15, a tray having an arrangement of feed mixtures in domes was used,
such as generally shown in FIG. 18A to provide the nuggets shown in FIG. 18B. The
feed mixture of Test 15 included medium-volatile bituminous coal at 115% and 110%
of the stoichiometric amount and at Slag Compositions (L
1.5FS
1), placed on a layer of -10 mesh coke. No overlayer of coarse carbonaceous material
was used during these tests.
[0120] As shown in FIG. 17, sulfur in the iron nuggets ranged 0.152 to 0.266%, or several
times to even an order of magnitude higher than those in iron nuggets formed in the
laboratory tube and box furnaces with the same feed mixtures as shown and described
previously with reference to FIG. 10. The slags were analyzed to confirm that they
were indeed high in lime. Though the CaO/SiO
2 ratios ranged from 1.48 to 1.71, it was noted that the slags were high in FeO ranging
from 6.0 to 6.7%. The FeO analyses of slags in the laboratory tube and box furnaces
under identical slag compositions analyzed less than 1% FeO. The formation of high
FeO slags was apparently responsible for higher sulfur in iron nuggets by interfering
with desulfurizing. The use of an increased percentage of coal as well as the use
of high sulfur coke (0.65% S) as a hearth layer as compared to low sulfur coke (0.40%
S) in the laboratory tests might also have contributed to high sulfur in the iron
nuggets. The ratio of sulfur in the slag over sulfur, (S)/[S], in the metallic iron
nuggets by weight was only 0.64 and 1.40.
[0121] In FIG. 19, analytical results of iron nuggets and slag of linear hearth furnace
Tests 14, 15, and 17, along with additional Tests 21 and 22 are shown. Carbon and
sulfur in iron nuggets and iron, FeO and sulfur in slags for such Tests are summarized.
In linear hearth furnace Tests 21 and 22, a pallet having an arrangement of different
feed mixtures in 6-segment domes was used, such as generally shown in FIG. 18A. The
feed mixture included medium-volatile bituminous coal in the indicated percentages
of the stoichiometric amount as shown in FIG. 19 and at the indicated Slag Compositions
as shown in FIG. 19, placed on a -10 mesh coke layer. The temperature in Zone 3 was
25 °F (13.9 °C) higher at 2625 °F (1441 °C) in Tests 21 and 22.
[0122] As shown in FIG. 19, the FeO in slags was halved when a fluorspar addition was increased
to 2% with attendant decrease in sulfur in iron nuggets. In view of the results of
Test 17 with a fluorspar addition of 2%, the lower FeO might have been the results
of a higher temperature of 2625 °F (1441 °C).
[0123] As these tests show, novel metallic iron nuggets with less than 0.05% sulfur can
be produced with the addition of additives to the reducible mixture. However, these
additives add to the expense of producing the metallic iron nuggets of the disclosed
process.
Tests with Coarse Overlayer In the Linear Hearth Furnace
[0124] The products resulting from the linear hearth furnace tests were tested for the amount
of sulfur in the metallic iron nuggets formed by the process and the amount of micro-nugget
formation. These linear hearth furnace tests revealed that unexpectedly high CO
2 levels and highly turbulent furnace gas adjacent the reducible feed mixture during
the reduction process consumed much of the carbonaceous material (e.g., added reducing
material in the reducible iron bearing mixture) in Zones 1 and 2, and not enough reducing
material was left for carburizing and melting the metallic iron in the high temperature
zone (Zone 3). Use of coal in the amount of 105 to 125 percent of the stoichiometric
amount was found necessary for forming fully fused metallic iron nuggets.
[0125] The tests were run using a 40-ft. long (12.19 m), natural gas-fired linear hearth
furnace including three heating zones and a cooling section like that described with
reference to FIG. 3. The heating schedule of feed samples in the furnace was modified
to eliminate the baffle between the reduction zone (Zone 2) and the fusion or high
temperature zone (Zone 3). No Mg was deliberately added beyond trace amounts or impurities
found in the materials used. Hydrated lime or limestone may be added to adjust the
C/S ((CaO)/(SiO
2)) ratio to the range of 1.40 to 1.60, or to 1.43 to 1.48.
[0126] Sample trays 223 (or pallets) as illustrated in FIG. 4 were used in the tests. The
trays were made from a 30 inch square carbon steel framework and were lined with high
temperature fiber board (with sidewalls) to contain samples (i.e., the reducible mixture
and products resulting after completion of reduction processing. The trays 223 were
conveyed through the furnace by a hydraulically driven walking beam system as described
with reference to FIG. 3. The arrow 229 in FIG. 4 indicates the direction of tray
movement through the furnace. A ½" (12.7 mm) layer of anthracite char of particle
size between 6 and 100 mesh was used in each of the tests described below in this
section, unless otherwise stated.
[0127] The sample tray 223 traveled through Zone 1 at 1800 °F (982 °C) for 3 minutes without
stopping, then through Zone 2 at 2400 °F (1316 °C) by moving one stroke of 5.5" (140
mm) every 16 seconds for a total time of 5 minutes. Then, the tray was moved to the
center of Zone 3 (in 55 seconds) for a total time of 10 minutes. The tray was held
in Zone 3 at 2600 °F (1427 °C) for long enough time to visually ascertain fusion of
the mounds or briquettes, and then moved into the cooling zone without stoppage. The
tray was held in the cooling zone for 20 minutes and then discharged.
[0128] Note that the LHF 22 test shown in FIGS. 22 through 27 and discussed below are different
tests than test LHF 22 shown in FIG. 19.
[0129] Test LHF 22 are mounds with coarse coke overlayer. Three rows of reducible feed mixtures
in mounds, consisting of 5.7% SiO
2, magnetic concentrate, Slag Composition L
1.5FS
2, and medium-volatile bituminous coal at 85, 90 and 95% of the stoichiometric amount,
were placed over a hearth layer of anthracite char between 6 and 100 mesh in particle
size, as shown in FIG. 23. The feed mixtures were covered with coarse coke overlayers
of 1.0, 0.5 and 0.25 lb/ft
2 (100, 50 and 25% coverage, respectively, 4.88, 2.44 and 1.22 kg/m
2 respectively) of between 1/4" (6.35 mm) and 1/2" (12.7 mm) particle size. A sheet
of paper was placed over the feed mixtures to prevent accidental mixing with coarse
coke when the coke was distributed over the feed mixtures. The tray was held at 1400
°C (2552 °F) for 24 minutes in Zone 3.
[0130] The products are shown in FIG. 24. Most of the outermost rows and columns were not
fused because coarse coke particles of the overlayer rolled off around the periphery,
and the mounds were exposed to the furnace gas and oxidized. Therefore, the outermost
pieces were excluded from the samples from each section for weight measurements and
chemical analyses. The products in each section, excluding these outermost pieces,
are shown in FIGS. 25 and 26.
[0131] FIG. 25 shows the products from the reducible feed mixtures with 85, 90 and 95% stoichiometric
coal, overlayered with coarse coke at 1.0 lb/ft
2 (100% coverage, 4.88 kg/m
2), gathered from Row (a) in FIG. 23. The weights of products are shown in FIG. 27,
and the analytical results of the iron nuggets and slag in FIG. 22. The amount of
micro-nuggets at 85% stoichiometric coal was 1.4% and increased to 3.3% as the amount
of added coal increased to 95% of the stoichiometric amount.
[0132] The metallic iron nuggets analyzed about 0.02% S. This level of sulfur is below the
desired level of less than 0.05%. Further optimization as to size consist, coverage
density, proximate analyses of reductant coal as well as hearth layer materials, and
optimum temperature as well as time at temperature in lowering the sulfur in the iron
nuggets, become of interest. Fe and FeO in slag analyzed notably lower than 0.2 and
0.3%, respectively, and the sulfur in the slag analyzed at about 1%.
[0133] FIG. 28 shows the products from the reducible feed mixtures with 85, 90 and 95% stoichiometric
coal, overlayered with coarse coke at 0.5 lb/ft
2 (50% coverage, 2.44 kg/m
2), gathered from Row (b) in FIG. 23. It was determined that the coarse coke coverage
of 0.5 lb/ft
2 (50% coverage) produced iron nuggets just as effectively at 90% of the stoichiometric
coal. The weight distributions of products, shown in FIG. 27, indicate again that
the amounts of micro-nuggets increased from 0.8% with 85% stoichiometric coal to 2.9%
with 95% stoichiometric coal. Hence, the lower stoichiometric amount of coal was found
to reduce the amount of micro-nugget generation.
[0134] It was found in previous tests that the coarse coke overlayer lowered the amount
of micro-nuggets to 1 to 2%, as compared to 10-15% without a coarse coke coverage.
In the previous tests, the coal addition of 85% of the stoichiometric amount again
generated lower amounts of micro-nuggets.
[0135] The sulfur content in the metallic iron nuggets analyzed at about 0.04%. It is apparent
that coarse coke overlayer of 50% (0.5 lb/ft
2, 2.44 kg/m
2) resulted in doubling the sulfur content over the previous test with an overlayer
of 1.0 lb/ft
2 (4.88 kg/m
2) yet remained below 0.05% S. An increase in reductant coal in the reducible mixture
from 85 to 95% of the stoichiometric amount appeared to increase the % S in the iron
nuggets, suggesting that much of the sulfur came from reductant coal. Fe and FeO content
of the slag were in the same range as in the test with full coverage (1.0 lb/ft
2, 4.88 kg/m
2), but the sulfur content of the slag was somewhat lower than 1%.
[0136] Shown in FIG. 28 are the products from the reducible feed mixtures with 85, 90 and
95% stoichiometric coal, overlayered with coarse coke at 0.25 lb/ft
2 (25% coverage, 1.22 kg/m
2), gathered from Row (c) in FIG. 23. Here, all sections resulted in large amounts
of square pieces, indicating that the coarse coke overlayer of 0.25 lb/ft
2 (25% coverage, 1.22 kg/m
2) was not sufficient. With these large amounts of insufficiently fused iron nugget-slag
mixtures, no weight distributions were recorded.
[0137] The conclusion of this series of tests is that the use of a coarse coke overlayer
of 0.5 to 1.0 lb/ft
2 (50 to 100% coverage, 2.44 to 4.88 kg/m
2) enabled the formation of fully fused metallic nuggets and lowered the sulfur in
iron nuggets to below 0.03%.
[0138] Test LHF 26 are dry briquettes with a coarse coke overlayer. To investigate the effect
of coarse coke overlayer over dry briquettes, two columns of dry briquettes at 80%
and 110% stoichiometric amount of coal without a binder were arranged as shown in
FIG. 31. The briquettes were provided with a coarse coke overlayer between 1/4" (6.35
mm) and 1/2" (12.7 mm) particle size at 1.0 and 0.75 lb/ft
2 (4.88 and 3.66 kg/m
2) in Rows (a) and (b), respectively. A sheet of paper was placed over the feed mixtures
to prevent accidental mixing with coarse coke when the coke was distributed over the
reducible feed mixture. The coke-overlayered feed is shown in FIG. 32. The tray was
held at 2552 °F (1400 °C) for 20 minutes in Zone 3.
[0139] As shown in FIG. 33, the products of the briquettes were 100% fused into metallic
nuggets. Most of the iron nuggets in the periphery, particularly at 0.75 lb/ft
2 which is Section (b), were associated with black covered slag, while the slag associated
with the iron nuggets in the interior was essentially white. This difference was attributed
to the fact that the coarse coke particles rolled off around the periphery and the
fused iron nuggets and slag were exposed to the turbulent furnace gas and oxidized
at the periphery. The analytical results are shown in FIG. 30. The metallic iron nuggets
analyzed 0.030% S and 3.68% C, while the slag analyzed low in iron and 1.39% S. The
ratio of sulfur in the slag over sulfur in the metallic nuggets by weight, (S)/[S],
was calculated to be 46.
[0140] Test LHF 27 were mounds of reducible mixtures with different degrees of coarse coke
overlayer. To investigate the effect of different degrees of coverage by coarse coke,
two trays of reducible feed mixtures in mounds with 80% stoichiometric coal were prepared,
as shown in FIG. 34. In both trays, the mounds were divided into three equal rows
and the rows were overlayered with coarse coke of between 1/4" (6.35 mm) and 1/2"
(12.7 mm) particle size at 1.25, 1.0 and 0.75 lb/ft
2 (6.1, 4.88 and 3.66 kg/m
2) in Rows (a), (b), and (c), respectively. A sheet of paper was placed over the feed
mixtures before spreading the coarse coke, as shown in FIG. 35. The tray was sent
through the furnace according to the standardized heating schedule of these tests
and heated to 2600 °F (1427 °C) for 20 minutes in Zone 3.
[0141] The products are shown in FIG. 36. With the coke overlayer, the products could not
be seen, but iron nuggets associated with the black-overlayered slag are seen in the
outside columns on both sides, overlayered with 0.75 and 1.0 lb/ft
2 (3.66 and 4.88 kg/m
2) of coarse coke and in the top row. After the coke overlayer was removed, and the
products were separated into nuggets, micro-nuggets, +20 mesh mag. and slag fractions
and shown in FIG. 37. The weights and analytical results of the products are shown
in FIGS. 29 and 30, respectively.
[0142] Sulfur analyses of the iron nuggets increased from 0.020% to 0.030% with decreasing
coke coverage. Iron analyses of slag were low, 0.03 to 0.3% Fe and 0.27 to 0.55% FeO.
Ratio of sulfur in the slag over sulfur in the nuggets by weight, (S)/[S], ranged
from 55 to 35, again decreasing with decreasing coarse coke coverage.
[0143] Sample (b) was the iron nuggets and associated black-colored slag from the outer
columns at the periphery where the coarse overlayer slid off. Iron analysis of the
slag was notably higher than those from the interior, which were 0.82% Fe and 1.20%
FeO. Sulfur analysis of the iron nuggets was 0.076% S with the ratio, (S)/[S], of
10.8. The results show that an exposure of the products to the furnace atmosphere
was detrimental to the removal of sulfur from iron oxides into the slag.
[0144] Test LHF 28 were mounds with different degrees of coarse coke overlayer. Another
tray of reducible feed mixtures in mounds with 80% stoichiometric coal, covered with
coarse coke of between 1/4" (6.3 mm) and 1/2" (12.7 mm) particle size at 1.25, 1.0
and 0.75 lb/ft
2 (6.1, 4.88 and 3.66 kg/m
2)in Rows (a), (b), and (c), respectively, was sent through the furnace according to
the standardized heating schedule for these tests, but the temperature of Zone 3 was
lowered to 2550 °F (1399 °C) and kept at that temperature for 20 minutes.
[0145] The products are shown in FIG. 38. The products were hidden from view by the coke
overlayer. The products were separated and shown in FIG. 39. More than one half of
the iron products were reduced, but not fused into metallic nuggets, as seen in the
mounds to the right of the fused iron nuggets. With a coarse coke overlayer coverage
of 0.75 lb/ft
2, the amount of fully fused iron nuggets approached one half of the product. The weights
of the products are shown in parentheses in FIG. 29.
[0146] Two iron nuggets and associated slag were selected from Section (c) with 0.75 lb/ft
2 coke coverage, and analyzed. The analytical results are shown in FIG. 30. The sulfur
analyses of the iron nuggets was 0.034% S and the iron analyses of the slag were 0.26%
Fe and 0.54% FeO. The ratio of the sulfur in the slag over the sulfur in the nuggets
by weight, (S)/[S], was 33.
[0147] Test LHF 29 was briquettes with different degrees of coarse coke overlayer at a lower
temperature. In Test LHF 26, the products formed at 1427 °C (2600 °F) were all fused
into metallic iron nuggets. In this test, an identical tray of dry briquettes overlayered
with coarse coke, as shown in FIG. 31, was sent through the furnace according to the
standardized heating schedule, but with the temperature of Zone 3 lowered to 1399
°C (2550 °F) and kept at that temperature for 20 minutes.
[0148] The products are shown in FIG. 40 and the separated products are shown in FIG. 41.
All of the briquettes were fully fused into metallic iron nuggets. The iron nuggets,
however, were notably smaller than those from the mounds as the briquettes were only
half the size and weight of the mounds. The weights of the metallic nuggets are shown
in FIG. 29.
[0149] Micro-nuggets at 80% stoichiometric amount of coal were low, 1.0 and 0.5%, for coarse
coke overlayers of between 1/4" (6.35 mm) and 1/2" (12.7 mm) particle size at 1.0
and 0.75 lb/ft
2 (4.88 and 3.77 kg/m
2) coverage, respectively. Meanwhile, those at 110% stoichiometric amount of coal were
notably higher, 5.0 and 3.5%, for coarse coke overlayers of 1.0 and 0.75 lb/ft
2 (4.88 and 3.77 kg/m
2) coverage, respectively. Therefore, again, as previously observed, the generation
of micro-nuggets was less at 80% stoichiometric amount of coal in the reducible mixture.
It is also noted that the lower coverage by coarse coke overlayer generated less micro-nuggets.
[0150] The analytical results are shown in FIG. 30. The results showed that the iron nuggets
had undergone substantially complete metallization. It was determined that the iron
nuggets analyzed were 0.016 to 0.029% S, while the slag analyzed essentially no Fe
and 0.23 FeO. The ratio of sulfur in the slag over sulfur in the nuggets by weight,
(S)/[S], ranged from 45 to 82.
[0151] Referring to FIG. 42, the relationship (i.e., the ratio) of sulfur in the slag over
sulfur in the metallic nuggets, (S)/[S], is plotted as a function of the percent by
weight sulfur in the nuggets for the various tests that have been done. The filled
squares (■) are for the LHF tests on reducible feed mixtures using 5.3% SiO
2 taconite concentrate, a Slag Composition L
1.5FS
2, and 80% stoichiometric Fording Standard coal. The open squares (□) are for box furnace
tests on reducible feed mixture using 3.6% SiO
2 taconite concentrate, a Slag Composition L
1.5FS
2, and 80% stoichiometric Jim Walter coal.
[0152] The data points for ratio (S)/[S] below 12 were for tests without the coarse coke
overlayer and the others are for tests with the coarse coke overlayer with no deliberately
added Mg producing levels between 5% and 13% of MgO in the slag. As shown by the plotted
data in FIG. 42, sulfur is increased in the slag by the use of the coarse carbonaceous
overlayer, and that when the ratio (S)/[S] is 30 or more, sulfur content in the metallic
iron nuggets that are produced was 0.03% or less. These latter metallic iron nuggets
are particularly useful in steelmaking processes such as the electric arc furnace,
because the iron nuggets may be substituted for scrap in the charge.
[0153] The coarse coke overlayer enabled carburizing both from the hearth layer and the
coarse coke overlayer. The availability of carbon from the coarse overlayer is advantageous
in lowering the overall processing temperature requirements, while creating the necessary
reduction conditions to allow effective separation of sulfur into the slag.
[0154] In view of the above, in some embodiments of the present process, the use of a reducible
feed mixture that includes a reducible mixture, on the hearth layer, that has a predetermined
quantity of reducing material between about 70 percent and about 90 percent of the
stoichiometric amount of reducing material and with a coarse carbonaceous material
over at least a portion of the layer of the reducible mixture results in complete
metallization thereof, and also reduce the potential for formation of micro-nuggets.
The result was reproduced with the box and tube furnaces. In other words, a sub-stoichiometric
amount of reducing material (e.g., coal) may be used with the overlayer to obtain
almost complete metallization and formation of metallic iron nuggets from a predetermined
quantity of reducible iron bearing material, the reducing material (e.g., coal) and
the iron bearing material providing a reducible feed mixture for processing according
to one or more embodiments described herein.
[0155] One will recognize that various shapes of the compacts preformed and formed
in situ may be used, and still maintain the benefit of having a feed mixture with a sub-stoichiometric
amount of reducing material (e.g., coal) next to the hearth layer to minimize micro-nugget
formation. The configurations of the discrete portions (compacts) described herein
are given for illustration only
[0156] This invention has been described with reference to illustrative embodiments and
is not meant to be construed in a limiting sense. It will be apparent to one skilled
in the art that elements or process steps from one or more embodiments described herein
may be used in combination with elements or process steps from one or more other embodiments
described herein, and that the present invention is not limited to the specific embodiments
provided herein but only as set forth in the accompanying claims. Various modifications
of the illustrative embodiments, as well as additional embodiments to the invention
will be apparent to persons skilled in the art upon reference to this description.