

(11)

EP 2 699 652 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

(15) Correction information:

Corrected version no 1 (W1 B1)

Corrections, see

Claims DE 1

Claims EN 1

Claims FR 1

(48) Corrigendum issued on:

25.10.2023 Bulletin 2023/43

(45) Date of publication and mention
of the grant of the patent:

05.04.2023 Bulletin 2023/14

(21) Application number: 12722398.0

(22) Date of filing: 18.04.2012

(51) International Patent Classification (IPC):

C10G 3/00 (2006.01) C10L 1/08 (2006.01)**B01J 8/04 (2006.01)**

(52) Cooperative Patent Classification (CPC):

C10G 3/50; B01J 8/0453; B01J 8/0492;**C10G 3/46; C10G 3/48; C10G 3/49; C10G 3/54;****C10L 1/08; B01J 2208/00274; B01J 2208/025;****C10G 2300/1014; C10G 2300/1018;****C10G 2300/4018; C10G 2400/02; C10G 2400/04;**

(Cont.)

(86) International application number:

PCT/FI2012/050385

(87) International publication number:

WO 2012/143613 (26.10.2012 Gazette 2012/43)

(54) CATALYTIC PROCESS FOR PRODUCING HYDROCARBONS FROM BIOOILS

KATALYTISCHES VERFAHREN ZUR HERSTELLUNG VON KOHLENWASSERSTOFFEN AUS BIOÖLE.

PROCEDE CATALYTIQUE POUR LA PRODUCTION D'HYDROCARBURES À PARTIR DES HUILES D'ORIGINE BIOLOGIQUE.

(84) Designated Contracting States:

**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

(30) Priority: 18.04.2011 US 201161476521 P

(43) Date of publication of application:

26.02.2014 Bulletin 2014/09

(73) Proprietor: **UPM-Kymmene Corporation
00100 Helsinki (FI)**

(72) Inventors:

- **NOUSIAINEN, Jaakko
FI-53500 Lappeenranta (FI)**
- **RISSANEN, Arto
FI-53300 Lappeenranta (FI)**
- **GUTIERREZ, Andrea
FI-53200 Lappeenranta (FI)**

• **LINDBERG, Teemu
FI-53500 Lappeenranta (FI)**• **LAUMOLA, Heli
FI-00650 Helsinki (FI)**• **KNUUTTILA, Pekka
FI-06400 Porvoo (FI)**(74) Representative: **Boco IP Oy Ab****Kansakoulukatu 3****00100 Helsinki (FI)**

(56) References cited:

**WO-A2-2010/028717 US-A1- 2004 230 085
US-A1- 2004 256 287 US-A1- 2007 010 682
US-A1- 2007 161 832**

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

(52) Cooperative Patent Classification (CPC): (Cont.)
Y02P 30/20

Description**FIELD OF THE INVENTION**

5 [0001] The present invention relates to a process for converting material of biological origin into hydrocarbons such as fuel components by a catalytic method.

BACKGROUND

10 [0002] WO 2010/028717 A2 relates to a process and hydrogenation catalyst for producing diesel and naphtha fuels.

BRIEF DESCRIPTION OF THE INVENTION

15 [0003] An object of the present invention is to provide a process for converting biological feed material into at least one hydrocarbon useful as fuel and/or additive for fuel.

[0004] The object of the invention is achieved by a method characterized by what is stated in the independent claim. The preferred embodiments of the invention are disclosed in the dependent claims.

BRIEF DESCRIPTION OF THE DRAWINGS

20 [0005]

Figure 1 illustrates the gradual mixing ratio of hydrodeoxygenation (HDO) and hydrodewaxing (HDW) catalysts.

25 Figure 2 shows an apparatus comprising one reactor where the catalyst system is packed in two separate layers in the reactor.

Figure 3 shows an apparatus comprising a reactor and a hydrogen sulphide separator.

DETAILED DESCRIPTION OF THE INVENTION

30 [0006] The present invention relates to a process for producing a mixture of hydrocarbons as described in claim 1.

[0007] The feed material of biological origin can be any kind of animal and/or plant based material suitable for producing fuel components. In an embodiment, the feed material is selected from the group consisting of:

- 35 a) plant fats, plant oils, plant waxes; animal fats, animal oils, animal waxes; fish fats, fish oils, fish waxes;
- b) fatty acids or free fatty acids obtained from plant fats, plant oils, plant waxes; animal fats, animal oils, animal waxes; fish fats, fish oils, fish waxes, and mixtures thereof by hydrolysis, transesterification or pyrolysis;
- c) esters obtained from plant fats, plant oils, plant waxes; animal fats, animal oils, animal waxes; fish fats, fish oils, fish waxes; and mixtures thereof by transesterification;
- d) metal salts of fatty acids obtained from plant fats, plant oils, plant waxes; animal fats, animal oils, animal waxes; fish fats, fish oils, fish waxes, and mixture thereof by saponification;
- 40 e) anhydrides of fatty acids from plant fats, plant oils, plant waxes; animal fats, animal oils, animal waxes; fish fats, fish oils, fish waxes, and mixtures thereof;
- f) esters obtained by esterification of free fatty acids or plant, animal and fish origin with alcohols;
- 45 g) fatty alcohols or aldehydes obtained as reduction products of fatty acids from plant fats, plant oils, plant waxes; animal fats, animal oils, animal waxes; fish fats, fish oils, fish waxes, and mixtures thereof;
- h) recycled food grade fats and oils, and fats, oils and waxes obtained by genetic engineering;
- i) dicarboxylic acids or polyols including diols, hydroxyketones, hydroxylaldehydes, hydroxycarboxylic acids, and corresponding di- or multifunctional sulphur compounds, corresponding di- or multifunctional nitrogen compounds;
- j) compounds derived from algae, and
- 50 k) mixtures of the above raw materials.

[0008] In an embodiment of the invention, the biological feed material is based on a non-edible oil/fat. In another embodiment, the feed material comprises plant oil. In a further embodiment, the plant oil is obtained as by-product from forest industry.

55 [0009] In one embodiment of the invention, the feed material is substantially composed of crude tall oil. The term used for this kind of feed material is "tall oil" or "tall oil based material" or "crude tall oil" or "CTO". CTO is mainly composed of both saturated and unsaturated oxygen-containing organic compounds such as rosins, unsaponifiables, sterols, rosin acids (mainly abietic acid and its isomers), fatty acids (mainly linoleic acid, oleic acid and linolenic acid), fatty alcohols,

sterols and other alkyl hydrocarbon derivatives. CTO is essentially free of triglycerides. Typically, CTO also contains minor amounts of impurities like inorganic sulphur compounds, residual metals such as Na, K, Ca and phosphorus. The composition of the CTO varies depending on the specific wood species. CTO is derived from pulping of coniferous wood. The term CTO also covers soap oil. Soap oil is a term referring to the oil phase obtained from tall oil soap by neutralization (typically to a pH of 7 to 8), while tall oil is provided from tall oil soap by acidification (typically to a pH of 3 to 4).

[0010] In the present invention, the raw material can be purified before it is subjected to further treatments or it can be utilized in unpurified form. Purification can be accomplished in any appropriate manner, such as by means of washing with washing liquid, filtering, distillation, degumming, depitching, evaporating etc. Also, a combination of the above mentioned purification methods can be used. Such purification methods are well known in the art and are not discussed here in further detail. Purification of the raw material may facilitate the accomplishment of the process of the invention. In case the raw material comprises CTO, the content of any harmful substances, such as metal ions, sulphur, phosphorus and lignin residuals in the CTO is reduced by the purification.

[0011] It is well known in the refinery field also to use guard beds with active materials for the removal of harmful compounds such as inorganic catalyst poisons before any hydroprocessing reactor in order to prolong the life of the catalysts. Such guard beds for purification of the feed may be provided in a separate step before the actual hydroprocessing/isomerisation/hydrocracking step.

[0012] In one embodiment of the invention, the whole amount of feed material or a part of it comprises purified CTO.

[0013] In the process of the present invention, two separate catalysts in undiluted or diluted form are loaded into a reactor, one being a hydrodeoxygenation or HDO catalyst and the other a hydrodewaxing or HDW catalyst, so that the proportion of the HDW catalyst grows towards the bottom of the reactor. As can be realized from the description and the figures, the bottom of the reactor refers to the outlet end of the reactor. Correspondingly, the top of the reactor refers to the inlet end of the reactor.

[0014] In the present invention, the HDO catalyst is selected from a group consisting of NiMo, CoMo, and a mixture of NiMo and CoMo (NiMoCo). The support for the catalyst is selected from Al_2O_3 and $\text{Al}_2\text{O}_3\text{-SiO}_2$. In one embodiment of the invention, NiMo on an Al_2O_3 support is used. In a specific embodiment, the HDO catalyst is NiMo on an Al_2O_3 support with 10% addition of a HDW catalyst, which is NiW on an Al_2O_3 support.

[0015] In the present invention, the HDW catalyst is NiW on a support selected from Al_2O_3 , zeolite, zeolite- Al_2O_3 , and $\text{Al}_2\text{O}_3\text{-SiO}_2$. In a specific embodiment, NiW on an Al_2O_3 support is used. NiW is a dewaxing catalyst which has the capability of also performing the hydrodeoxygenation and other hydrogenation reactions of biological feed materials, which are typically performed by HDO catalysts (see WO 2011/148045).

[0016] According to the present invention, the HDO and HDW catalysts used for hydroprocessing treatment and isomerisation, respectively, are load-ed/packed in a single reactor.

[0017] The reactor used in the present invention comprises at least two catalyst containing layers. In one embodiment of the invention, the reactor comprises three catalyst layers. The catalyst(s) containing layers may be separated from each others with guard bed material layers of inert material. Guard beds comprise suitable material, such as Al_2O_3 , SiC or glass beads.

[0018] In the present invention, the HDO and HDW catalysts are mixed and packed in the reactor so that the proportion of the HDW catalyst gradually grows towards the bottom of the reactor. A minor amount (1 - 6%) of HDW catalyst is mixed with the HDO catalyst and the mixture is loaded in the topmost section of the reactor. In one embodiment, the bottom layer comprises a minor amount (1 - 6%) of HDO catalyst. In another embodiment, the topmost section of the reactor is loaded with a mixture containing 5% HDW catalyst and 95% HDO catalyst. In a further embodiment the ratios of the HDO and HDW catalysts change gradually and the proportion of the HDW catalyst grows towards the bottom of the reactor so that the lowest catalyst layer of the reactor contains HDW catalyst as the sole catalyst.

[0019] In one embodiment of the invention, the reactor comprises two catalyst layers wherein the upper one contains 5% HDW and 95% HDO catalyst and the lower one contains 100 % HDW catalyst. In another embodiment, the reactor comprises three catalyst layers, the topmost containing of 5% HDW and 95% HDO catalyst, the middle one 50% HDO and 50% HDW, and the lowest one contains 100% HDW catalyst. In a further embodiment, the reactor comprises three catalyst layers, the topmost containing of 5% HDW and 95% HDO catalyst, the middle one 75% HDW and 25% HDO, and the lowest one contains 100% HDW catalyst. In an other further embodiment, the reactor comprises four catalyst layers, the topmost containing of 5% HDW and 95% HDO catalyst, the next ones 25% HDW and 75% HDO and 50% HDW and 50% HDO catalysts, respectively and the lowest one contains 100% HDW catalyst. In an even further embodiment, the reactor comprises five catalyst layers, the topmost containing of 5% HDW and 95% HDO catalyst, the next ones 25% HDW and 75% HDO, 50% HDW and 50% HDO and 75% HDW and 25% HDO catalysts, respectively and the lowest one contains 100% HDW catalyst.

[0020] In one embodiment of the invention, the topmost catalyst layer contains 5 to 10% NiW catalyst and 90 to 95% NiMo catalyst and the bottom layer contains 100% NiW catalyst.

[0021] The catalysts can be diluted with appropriate inert mediums. Examples of inert media include glass spheres and silica. In one embodiment of the invention, at least one of the catalysts is diluted with an inert material. Accordingly,

in one embodiment the reactor comprises two catalyst layers wherein the upper one comprises 5% HDW and 95% HDO catalyst and inert material and the lower one comprises 100 % HDW catalyst in diluted or undiluted form.

[0022] In one embodiment of the invention, an inert guard bed layer is arranged as the uppermost layer of the reactor to bind elements and/or compounds harmful for the active catalysts. In another embodiment, an inert guard bed is arranged as the bottom layer of the reactor. In a further embodiment, inert guard beds are arranged between some or all of the catalyst layers in the reactor. In an even further embodiment, inert guard beds are arranged as the uppermost layer of the reactor, between all of the catalyst layers and as the bottom layer of the reactor. The feed material can also be directed through active guard bed(s) as is common in the art.

[0023] Examples of reactors are illustrated in Figure 1.

[0024] The packing/loading of the reactor can be performed as several layers/beds between which hydrogen can be led to control the temperature. The catalysts in the separate layers can be formed of catalyst granules of different size and form. Further, the amounts of active HDO and HDW catalyst as well as the amount of active metals in the active catalyst may vary. In one embodiment of the invention, the amount of the active catalyst(s) and the active metals increases from the top of the reactor towards the bottom of the reactor. In another embodiment, the particle size of the catalysts diminishes from the top of the reactor towards the bottom of the reactor. In a further embodiment, the amount of the active catalyst(s) and the active metals increases, and the particle size of the catalysts diminish from the top of the reactor towards the bottom of the reactor. This helps in preventing blocking of the catalyst bed and reduces pressure drop in the reactor. With these arrangements the control of the temperature and/or pressure of the reactor is optimized which has an effect on the activity and selectivity of the catalysts. These factors determine the composition, characteristics and quality of the products produced and recovered by the process.

[0025] In the hydroprocessing treatment, hydrodeoxygenation of the feed material, such as CTO, takes place. The hydrodeoxygenation reaction is catalyzed by means of a HDO catalyst. The HDO catalyst is advantageously capable of removing undesirable sulphur compounds present in the feed material, by converting the organic sulphur compounds to gaseous hydrogen sulphide. It is characteristic of the HDO catalyst that sulphur has to be present to maintain the catalytic activity of the catalyst. Advantageously, hydrogen disulphide needed for catalytic activity of the catalyst is thus simultaneously provided in the hydroprocessing treatment step from the sulphur compounds inherently present in CTO. Gaseous hydrogen sulphide can be easily discarded from the mixture of the hydrocarbon components formed in said step.

[0026] It may be necessary to supply supplementary sulphur to the process to maintain the catalytic activity of the HDO catalyst. Supplementary sulphur can be supplied in gaseous form like hydrogen sulphide, or it can be any material that produces hydrogen sulphide in the process, like organic sulphur compounds, such as dimethyl disulphide. Generally, the H_2 feed/ H_2S relation must be maintained over about 0.0001. Sulphur can be fed to the hydroprocessing treatment step together with the feed material or separately.

[0027] The amount of hydrogen gas needed to hydrogenate the olefinic bonds of the unsaturated compounds and remove the heteroatoms in the feed material is determined by the amount and type of the feed material. The amount of hydrogen needed to hydrogenate the oxygen containing compounds of the raw material also depends on the nature of the raw material. Biological oils, fats and waxes typically contain fatty acids and/or triglycerides structures, which are hydrogenated and cracked in the hydroprocessing reaction forming water and long paraffinic carbon chains. CTO is a biological raw material, which lacks triglyceride structures.

[0028] The hydroprocessing on the HDO catalyst also typically hydrogenates sulphur compounds and nitrogen compounds forming H_2S and NH_3 , respectively.

[0029] The main task of the HDW catalyst is to isomerise the long carbon chains of the biological material. Isomerisation of the carbon chains improves the cold properties of the resulting fuel product. HDW catalysts also act as hydrogenation catalysts and they also have the capacity for cracking complex molecules into fragments suitable for fuel products.

[0030] Hydrocarbons including n-paraffins obtained in the hydroprocessing treatment are subjected to isomerisation where straight carbon backbones of the n-paraffins are isomerised to isoparaffins. Isoparaffins have typically mono and di branches. Isomerisation of the carbon chains is accomplished in the presence of the HDW catalyst. Long carbon chains and complex molecules will also be subjected to some cracking by the HDW catalyst. Like the NiMo or CoMo based HDO catalyst, the NiW based HDW catalyst needs sulphur to maintain its catalytic activity. Pt and Pd based HDW catalysts perform better with feed materials which are sulphur-free or almost sulphur-free.

[0031] In addition to the capability of isomerisation of the hydrocarbon chains, the HDW catalysts have cracking properties. The isomerisation of the hydrocarbons improves the cold flow properties of diesel fuel and increases the octane number of gasoline fuel. Isomerisation performed by means of the HDW catalyst in the present invention has thus a beneficial influence on the quality of both gasoline and diesel grade fuels.

[0032] A suitable amount of hydrogen needed for the hydroprocessing and isomerisation/cracking can be determined by a man having ordinary skills in the art.

[0033] In the present invention, the pressure in the reactor varies from about 10 to about 250 bar, preferably about 80 to about 110 bar.

[0034] The HDO and HDW treatments in the reactor are carried out at a temperature in the range of about 280°C to

about 450°C, preferably at about 350°C to about 370°C.

[0035] The feed material is pumped to the reactor at a desired speed. The feed rate WHSV (weight hourly spatial velocity) of the feed material is proportional to an amount of the catalyst: the WHSV is calculated according to the following equation:

5

$$WHSV [h^{-1}] = \frac{V_{feed[g/h]}}{m_{catalyst}[g]}$$

10

wherein $V_{feed[g/h]}$ means the pumping velocity of the feed material, and $m_{catalyst}[g]$ means the amount of the catalyst.

[0036] The WHSV of the feed material in the present invention varies between 0.1 and 5, and is preferably in the range of 0.3 - 0.7.

15

[0037] The ratio of H_2 /feed in the present invention varies between 600 and 4000 NI/l, and is preferably in the range of 1300-2200 NI/l

20

[0038] The hydroprocessing steps are highly exothermic reactions in which the temperature can rise to a level which is detrimental to the stability of the catalyst and/or product quality. In some cases, it may be necessary to control the temperature variations. Recirculation of at least a portion of the product stream and/or effluent gas provides an efficient means for constraining the exothermic reaction whereby the recycled streams acts as media lowering the temperature of the bed in a controlled manner.

25

[0039] In the present invention, the hydrocarbon or the mixture of hydrocarbons obtained from the reactor includes fuel grade hydrocarbon(s) having a boiling point of 380°C or less. In order to be able to utilize the obtained hydrocarbon mixture in an optimum manner, the mixture is further subjected to separation for separating the mixture into various fuel grade hydrocarbon fractions. In one embodiment, the product fraction comprises middle distillate hydrocarbons. For example, a hydrocarbon fraction having a boiling point typical in the diesel range, i.e. from 160°C to 380°C is obtained, meeting the specification of EN 590 diesel.

[0040] In the separation, also hydrocarbon fractions distilling at temperatures ranging from 40°C to 210°C and at a temperature of about 370°C may be obtained.

30

[0041] These fractions are useful as high quality gasoline fuel and naphta fuel, respectively, or as blending components for these fuels. Said hydrocarbon fractions can also be used as blending components in standard fuels.

[0042] An apparatus is adapted for realizing an embodiment of the process of the invention. The apparatus comprises

35

- a reactor (1) comprising at least two catalyst layer (3, 3') of HDO and HDW catalysts wherein the proportion of the HDW catalyst grows towards the bottom of the reactor,
- an inlet conduit (4) for introducing feed material to the reactor
- a hydrogen inlet conduit (5) for introducing hydrogen to the reactor
- a product outlet conduit (10) for recovering hydrocarbons from the reactor.

40

[0043] In one embodiment of the invention, in the lowest catalyst layer of the reactor the sole catalyst is HDW.

[0044] Figure 2 shows an embodiment of an apparatus where a catalyst system is packed in two separate layers, a first catalyst layer (3') and a second catalyst layer (3), in the reactor (1).

[0045] With reference to Figure 2, feed material such as crude tall oil is supplied to the reactor (1) via the inlet conduit (4).

45

[0046] Hydrogen is supplied via conduit (5) to the reactor (1). The conduit (5) enters the reactor (1) at an initial end of the reactor. Hydrogen can also enter the reactor at a position where the catalyst layers (3, 3') are arranged in the reactor, as shown by the dotted line (50).

[0047] A first catalyst layer (3') and a second catalyst layer (3) are packed in the reactor. The first catalyst layer (3') is arranged upstream of the second catalyst layer (3). The HDO and HDW catalysts are mixed and packed in the catalyst layers (3') and (3) so that the ratios of the HDO and HDW catalysts change gradually towards the bottom of the reactor and the proportion of the HDW catalyst grows towards the bottom of the reactor.

50

[0048] Hydroprocessing treatment and isomerisation/cracking of the feed material are accomplished in the reactor (1).

[0049] Further, an intermediate guard layer (13) can be disposed between the catalyst layers to prevent the layers from mixing with each other and to facilitate the operating of the catalyst layers at different temperatures when needed.

55

[0050] The H_2 feed can be supplied to the reactor also via the H_2 feed pipe (50) at one or more locations denoted by reference numbers 6, 7 and 8. When appropriate, the H_2 feed can be divided so that a part of the H_2 feed is supplied to the catalyst layer 3' and a part of it is supplied to the catalyst layer 3, as shown in Figure 2.

[0051] External sulphur can be supplied via sulphur feed pipe (16) to the reactor (1), if appropriate. Also, the external sulphur feed can be divided so that a part of the external sulphur feed is supplied to the catalyst layer 3' and a part of it is supplied to the catalyst layer 3.

[0052] The catalyst materials used in the catalyst layers 3' and 3 must be activated before they are effective. The activation comprises several steps, of which one is treating the catalyst with activating sulphur compound, for example dimethyl disulphide. The activation of catalysts is common knowledge in the art and will thus not be discussed here in detail.

5 [0053] Product is recovered from the reactor (1) via product outlet pipe (10). At least a portion of the product can be supplied via pipe 101 to a separating reactor 17 for isolating any component from the mixture of the product components. One or more of the isolated components can be recovered via pipe 18 as depicted in Figure 2.

[0054] Excess hydrogen and light gaseous compounds including H₂S formed in the hydroprocessing treatment can be led via conduit 19 to a hydrogen separator 20. Hydrogen is recovered and circulated via hydrogen circulation conduit 21 back to hydrogen inlet conduit 5.

10 [0055] As in an embodiment illustrated in Figure 3, a product recovered via product outlet pipe 10 can be further led to a H₂S removal step 2. In the H₂S removal reactor 2, gaseous compounds composed predominantly of hydrogen sulphide, hydrogen and methane are removed from the product via pipe 14. This can be accomplished for example by stripping, flashing or bubbling with inert gas, such as nitrogen.

15 [0056] When supplementary sulphur supply is desired, at least part of the gaseous compounds recovered from the reactor 2 can be recirculated back to reactor 1 via H₂S recirculation pipe 140 as shown in Figure 2 by a dotted line. Supplementary sulphur can also be supplied to the reactor 1 from an outer source via sulphur feed pipe 16 through inlets 6, 7 and/or 8.

20 [0057] A reactor to be used in the process comprises at least two catalyst layers comprising HDO and HDW catalysts wherein the proportion of the HDW catalyst grows towards the bottom of the reactor. In one embodiment of the invention, the reactor comprises three catalyst layers. In another embodiment, the particle size of the catalysts diminishes from the top of the reactor towards the bottom of the reactor. The reactor comprises HDO catalyst selected from the group consisting of NiO/MoO₃, CoO/MoO₃, a mixture of NiO/MoO₃ and CoO/MoO₃ on a support selected from Al₂O₃ and Al₂O₃-SiO₂, and HDW catalyst NiW on a support selected from Al₂O₃, zeolite, zeolite-Al₂O₃, and Al₂O₃-SiO₂.

25 [0058] The following examples are presented for further illustration of the invention without limiting the invention thereto.

Example 1

[0059] The catalyst layers of a five layer reactor are shown in Table 1.

30 Table 1.

Layer No.	HDW/%	HDO/%
1	5	95
2	25	75
3	50	50
4	75	25
5	100	0

Example 2

[0060] The catalyst layers of a four layer reactor are shown in Table 2.

45 Table 2

Layer No.	HDW/%	HDO/%
1	5	95
2	25	75
3	50	50
4	100	0

Example 3

[0061] The catalyst layers of a reactor are shown in Table 3.

Table 3

Layer No.	HDW/%	HDO/%
1	5	95
2	25	75
3	100	0

5

10 Example 4

[0062] The catalyst layers of a reactor are shown in Table 4.

15

20

Table 4

Layer No.	HDW/%	HDO/%
1	5	95
2	75	25
3	100	0

Example 5

25

[0063] The catalyst layers of a reactor are shown in Table 5.

30

Table 5

Layer No.	HDW/%	HDO/%
1	5	95
2	100	0

Example 6 (comparative)

35

[0064] The catalyst layers of a reactor containing a pre-HDO layer are shown in Table 6.

40

45

Table 6

Layer No.	HDW/%	HDO/%
1		100
2	5	95
3	50	50
4	100	0

Example 7 (comparative)

50

[0065] The catalyst layers of a reactor containing a pre-HDO layer are shown in Table 7.

55

Table 7

Layer No.	HDW/%	HDO/%
1		100
2	5	95
3	75	25

(continued)

Layer No.	HDW/%	HDO/%
4	100	0

5

Example 8 (comparative)

[0066] The catalyst layers of a reactor containing diluted HDO and HDW catalysts are shown in Table 8.

10

Table 8

Layer No.	HDW/%	HDO/%	Inert material/ %
1	5	20	75
2	10	25	65
3	25	25	50
4	50	10	40
5	80	0	20

15

20

Example 9 (comparative)

[0067] A laboratory reactor is packed with two catalyst layers, wherein the first layer comprises a mixture of HDO catalyst granules and HDW catalyst granules and the second layer comprises only HDW catalyst granules. The HDO catalyst contains NiMo/Al₂O₃ as active catalyst and the HDW catalyst contains NiW/Al₂O₃ as active catalyst.

[0068] In the first layer 10 % HDW catalyst granules are mixed with 90% HDO catalyst granules. The second layer contains 100 % HDW catalyst.

[0069] An inert guard bed containing glass beads is packed on top of the first catalyst layer. The catalysts are sulphided with H₂S prior to start up.

[0070] The feed is composed of crude tall oil, which has been purified by depitching before being fed to the reactor. Hydrogen gas is fed into the reactor together with the feed CTO.

[0071] The purified CTO is fed into the reactor at a rate of 28 g/h and hydrogen is fed at 70 l/h. The reaction conditions are as follows:

35

WHSV	0.69
Pressure	70 bar
Temp.	364-372 °C
H ₂ /feed	2320 Nl/l

40

[0072] The product is cooled and gaseous components, mainly H₂, H₂S, CO and CO₂ are removed. The produced water is also removed from the hydrocarbon product. The obtained hydrocarbon mixture is distilled and separated into three fractions containing a) gases (C1 to C4), b) light hydrocarbons (C5 to C9) and c) middle distillate (C10 to C28).

[0073] The fractionation is controlled by monitoring the flash point of the middle distillate product. Three different runs of middle distillate fractions are analysed for diesel fuel properties and found to have the following flash point (FP), cloud point (CP) and cold filter plug point (CFPP):

50

Property (°C)	Run 1	Run 2	Run 3
FP	64	64	66
CP	-1	-3	-8
CFPP	-3	-6	-10

55

[0074] The results indicate that the CTO has been converted into a satisfactory middle distillate product with a good flash point and acceptable cold properties. The middle distillate is suitable for blending into diesel fuel.

Claims

1. A process for producing a mixture of hydrocarbons, comprising:

5 (i) mixing hydrodeoxygenation (HDO) and hydrodewaxing (HDW) catalysts, wherein the HDO catalyst is selected from the group consisting of NiO/MoO_3 , CoO/MoO_3 , and a mixture of NiO/MoO_3 and CoO/MoO_3 on a support selected from Al_2O_3 and $\text{Al}_2\text{O}_3\text{-SiO}_2$, and the HDW catalyst is NiW on a support selected from Al_2O_3 , zeolite, zeolite- Al_2O_3 , and $\text{Al}_2\text{O}_3\text{-SiO}_2$,

10 (ii) packing the HDO and HDW catalysts in a reactor, which reactor comprises at least two catalyst layers and the catalyst layers consist of the HDO and HDW catalysts or HDW catalyst as the sole catalyst,

wherein 1-6 % HDW catalyst is mixed with HDO catalyst and loaded in a topmost section of the reactor and wherein the proportion of HDW catalyst grows towards the bottom of the reactor,

15 (iii) subjecting a feed of biological material into the reactor,

(iv) treating the feed material in the reactor at a temperature in the range of 280 to 450°C and under a pressure from 10 to 250 bar, where the WHSV of the feed of biological material varies between 0.1 and 5 and the ratio of the H_2 /feed varies between 600 and 4000 NI/l to produce a mixture of hydrocarbons obtained from the reactor,

20 (v) recovering the mixture of hydrocarbons, and

(vi) subjecting the mixture of hydrocarbons to separation into fuel range hydrocarbon fractions.

2. The process according to claim 1 **characterized in that** the feed of biological origin is selected from the group consisting of

25 a) plant fats, plant oils, plant waxes; animal fats, animal oils, animal waxes, fish fats, fish oils, fish waxes;

b) fatty acids or free fatty acids obtained from plant fats, plant oils, plant waxes; animal fats, animal oils, animal waxes; fish fats, fish oils, fish waxes, and mixtures thereof by hydrolysis, transesterification or pyrolysis;

c) esters obtained from plant fats, plant oils, plant waxes; animal fats, animal oils, animal waxes; fish fats, fish oils, fish waxes, and mixtures thereof by transesterification;

30 d) metal salts of fatty acids obtained from plant fats, plant oils, plant waxes; animal fats, animal oils, animal waxes; fish fats, fish oils, fish waxes, and mixtures thereof by saponification;

e) anhydrides of fatty acids from plant fats, plant oils, plant waxes; animal fats, animal oils, animal waxes; fish fats, fish oils, fish waxes, and mixtures thereof;

f) esters obtained by esterification of free fatty acids of plant, animal and fish origin with alcohols;

35 g) fatty alcohols or aldehydes obtained as reduction products of fatty acids from plant fats, plant oils, plant waxes; animal fats, animal oils, animal waxes; fish fats, fish oils, fish waxes, and mixtures thereof;

h) recycled food grade fats and oils, and fats, oils and waxes obtained by genetic engineering;

40 i) dicarboxylic acids or polyols including diols, hydroxyketones, hydroxyaldehydes, hydroxycarboxylic acids, and corresponding di- or multifunctional sulphur compounds, corresponding di- or multifunctional nitrogen compounds;

j) compounds derived from algae, and

k) mixtures of the above raw materials.

3. The process of claim 2 wherein the feed material comprises crude tall oil.

45 4. The process of claim 3 wherein the crude tall oil is purified prior to subjecting it to the reactor.

5. The process of claim 1 wherein the pumping speed WHSV of the feed material is 0.3 -0.7.

50 6. The process of claim 1 wherein the reactor comprises three layers.

7. The process of claim 1 wherein the particle size of the catalysts diminishes from the top of the reactor towards the bottom of the reactor.

Patentansprüche

1. Verfahren zur Herstellung eines Gemisches von Kohlenwasserstoffen, umfassend:

5 (i) Mischen von Katalysatoren der Hydrodeoxygenation (HDO) und Hydrodeparaffinierung (HDW), wobei der HDO-Katalysator ausgewählt ist aus der Gruppe bestehend aus NiO/MoO₃, CoO/MoO₃ und einem Gemisch von NiO/MoO₃ und CoO/MoO₃ auf einer aus Al₂O₃ und Al₂O₃-SiO₂ ausgewählten Unterlage und es sich beim HDW-Katalysator um NiW auf einer aus Al₂O₃, Zeolith, Zeolith-Al₂O₃ und Al₂O₃-SiO₂ ausgewählten Unterlage handelt,

10 (ii) Packen des HDO- und HDW-Katalysators in einen Reaktor, wobei der Reaktor mindestens zwei Katalysatorschichten umfasst und die Katalysatorschichten aus dem HDO- und HDW-Katalysator oder dem HDW-Katalysator als einzigen Katalysator bestehen,

15 10 wobei 1-6 % HDW-Katalysator mit HDO-Katalysator gemischt und in einen obersten Abschnitt des Reaktors eingetragen werden und
wobei der Anteil des HDW-Katalysators zum Boden des Reaktors hin zunimmt,

15 (iii) Eintragen eines Einsatzgutes von biologischem Material in den Reaktor,

20 15 (iv) Behandeln des Einsatzmaterials im Reaktor bei einer Temperatur im Bereich von 280 bis 450 °C und einem Druck von 10 bis 250 bar, wo die Raumgeschwindigkeit (WHSV) des Einsatzgutes von biologischem Material zwischen 0,1 und 5 beträgt und das Verhältnis H₂ / Einsatzgut zwischen 600 und 4000 Nl/l beträgt, um ein aus dem Reaktor erhaltenes Gemisch von Kohlenwasserstoffen zu erzeugen,

25 20 (v) Gewinnen des Gemisches von Kohlenwasserstoffen, und

30 25 (vi) Unterziehen des Gemisches von Kohlenwasserstoffen einer Abtrennung in Kohlenwasserstofffraktionen des Kraftstoffbereichs.

2. Verfahren nach Anspruch 1, **dadurch gekennzeichnet, dass** das Einsatzgut biologischer Herkunft ausgewählt ist aus der Gruppe bestehend aus:

25 a) pflanzlichen Fetten, pflanzlichen Ölen, pflanzlichen Wachsen; tierischen Fetten, tierischen Ölen, tierischen Wachsen; Fischfetten, Fischölen, Fischwachsen;

30 30 b) Fettsäuren oder freien Fettsäuren, die aus pflanzlichen Fetten, pflanzlichen Ölen, pflanzlichen Wachsen; tierischen Fetten, tierischen Ölen, tierischen Wachsen; Fischfetten, Fischölen, Fischwachsen, und deren Gemischen durch Hydrolyse, Transesterifizierung oder Pyrolyse gewonnen werden;

35 35 c) Estern, die aus pflanzlichen Fetten, pflanzlichen Ölen, pflanzlichen Wachsen; tierischen Fetten, tierischen Ölen, tierischen Wachsen; Fischfetten, Fischölen, Fischwachsen, und deren Gemischen durch Transesterifizierung gewonnen werden;

40 40 d) Metallsalzen von Fettsäuren, die aus pflanzlichen Fetten, pflanzlichen Ölen, pflanzlichen Wachsen; tierischen Fetten, tierischen Ölen, tierischen Wachsen; Fischfetten, Fischölen, Fischwachsen, und deren Gemischen durch Verseifung gewonnen werden;

45 45 e) Anhydriden von Fettsäuren aus pflanzlichen Fetten, pflanzlichen Ölen, pflanzlichen Wachsen; tierischen Fetten, tierischen Ölen, tierischen Wachsen; Fischfetten, Fischölen, Fischwachsen, und deren Gemischen;

50 50 f) Estern, die durch Esterifizierung freier Fettsäuren pflanzlicher, tierischer und fischiger Herkunft mit Alkoholen gewonnen werden;

55 55 g) Fettalkoholen oder Fettaldehyden, die als Reduktionsprodukte von Fettsäuren aus pflanzlichen Fetten, pflanzlichen Ölen, pflanzlichen Wachsen; tierischen Fetten, tierischen Ölen, tierischen Wachsen; Fischfetten, Fischölen, Fischwachsen, und deren Gemischen gewonnen werden;

60 60 h) rezyklierten lebensmittelzugelassenen Fetten und Ölen sowie gentechnisch erzeugten Fetten, Ölen und Wachsen;

65 65 i) Dicarbonsäuren oder Polyolen einschließlich Diolen, Hydroxyketonen, Hydroxylaldehyden, Hydroxycarbonsäuren und entsprechenden bi- oder multifunktionellen Schwefelverbindungen, entsprechenden bi- oder multifunktionellen Stickstoffverbindungen, und

70 70 j) von Algen abgeleiteten Verbindungen, und

75 75 k) Gemischen der obigen Rohstoffe.

3. Verfahren nach Anspruch 2, wobei das Einsatzmaterial Rohtallöl umfasst.

4. Verfahren nach Anspruch 3, wobei das Rohtallöl gereinigt wird, bevor es dem Reaktor ausgesetzt wird.

55 5. Verfahren nach Anspruch 1, wobei die WHSV-Pumpgeschwindigkeit des Einsatzmaterials 0,3-0,7 beträgt.

6. Verfahren nach Anspruch 1, wobei der Reaktor drei Schichten umfasst.

7. Verfahren nach Anspruch 1, wobei sich die Teilchengröße der Katalysatoren von der Oberseite des Reaktors zum Boden des Reaktors hin vermindert.

5 **Revendications**

1. Procédé pour fabriquer un mélange d'hydrocarbures, comprenant les étapes consistant à :

10 (i) mélanger des catalyseurs de hydrodéoxygénéation (HDO) et de hydrodéparaffinage (HDW), ledit catalyseur de HDO étant choisi dans le groupe constitué par NiO/MoO_3 , CoO/MoO_3 et un mélange de NiO/MoO_3 et CoO/MoO_3 sur un support choisi parmi Al_2O_3 et $\text{Al}_2\text{O}_3\text{-SiO}_2$, et ledit catalyseur de HDW étant NiW sur un support choisi parmi Al_2O_3 , zéolithe, zéolithe-AteOs et $\text{Al}_2\text{O}_3\text{-SiO}_2$,

15 (ii) placer les catalyseurs de HDO et HDW dans un réacteur, ledit réacteur comprenant au moins deux couches de catalyseur et lesdites couches de catalyseur étant constituées par les catalyseurs de HDO et HDW ou par le catalyseur de HDW en tant que seul catalyseur,

20 1-6 % de catalyseur HDW étant mélangé avec le catalyseur de HDO et chargé dans une partie la plus élevée du réacteur et
la proportion dudit catalyseur de HDW augmentant vers le fond du réacteur,

25 (iii) assujettir une charge de matière biologique au réacteur,

20 (iv) traiter la matière de charge dans le réacteur à une température dans une plage de 280 à 450 °C et à une pression de 10 à 250 bar où la vitesse spatiale horaire massique (WHSV) de la charge de matière biologique varie entre 0,1 et 5 et le rapport H_2/charge est compris entre 600 et 4000 NI/l pour produire un mélange d'hydrocarbures obtenu du réacteur,

25 (v) récupérer le mélange d'hydrocarbures, et

20 (vi) assujettir le mélange d'hydrocarbures à une séparation en des fractions d'hydrocarbures dans la plage des carburants.

30 2. Procédé selon la revendication 1, **caractérisé en ce que** la charge d'origine biologique est choisie dans le groupe constitué par les :

35 a) graisses végétales, huiles végétales, cires végétales; graisses animales, huiles animales, cires animales; graisses de poisson, huiles de poisson, cires de poisson;

30 b) acides gras ou acides gras libres obtenus par hydrolyse, transestérification ou pyrolyse à partir de graisses végétales, huiles végétales, cires végétales; graisses animales, huiles animales, cires animales; graisses de poisson, huiles de poisson, cires de poisson, et de leurs mélanges;

40 c) esters obtenus par transestérification à partir de graisses végétales, huiles végétales, cires végétales; graisses animales, huiles animales, cires animales; graisses de poisson, huiles de poisson, cires de poisson, et de leurs mélanges;

45 d) sels métalliques d'acides gras obtenus par saponification à partir de graisses végétales, huiles végétales, cires végétales; graisses animales, huiles animales, cires animales; graisses de poisson, huiles de poisson, cires de poisson, et de leurs mélanges;

50 e) anhydrides d'acides gras de graisses végétales, huiles végétales, cires végétales; graisses animales, huiles animales, cires animales; graisses de poisson, huiles de poisson, cires de poisson, et de leurs mélanges;

45 f) esters obtenus par l'estérification d'acides gras libres d'origine végétale, animale ou de poisson avec des alcools;

50 g) alcools gras ou aldéhydes gras obtenus en produits de réduction d'acides gras à partir de graisses végétales, huiles végétales, cires végétales; graisses animales, huiles animales, cires animales; graisses de poisson, huiles de poisson, cires de poisson, et de leurs mélanges;

55 h) graisses et huiles recyclées de qualité alimentaire, et graisses, huiles et cires obtenus par génie génétique;

i) acides dicarboxyliques ou polyols comprenant les diols, hydroxycétones, hydroxyaldéhydes, acides hydroxycarboxyliques et les composés soufrés bi- ou multifonctionnels correspondants, les composés azotés bi- ou multifonctionnels correspondants, et

55 j) composés dérivés d'algues, et

k) mélanges des matières brutes susdites.

3. Procédé selon la revendication 2, dans lequel la matière de charge comprend l'huile de tall brute.

4. Procédé selon la revendication 3, dans lequel l'huile de tall brute est purifiée avant d'être assujettie au réacteur.
5. Procédé selon la revendication 1, dans lequel la vitesse de pompage WHSV de la matière de charge est de 0,3-0,7.
- 5 6. Procédé selon la revendication 1, dans lequel le réacteur comprend trois couches.
7. Procédé selon la revendication 1, dans lequel la granularité des catalyseurs diminue de la partie supérieure du réacteur vers la partie inférieure du réacteur.

10

15

20

25

30

35

40

45

50

55

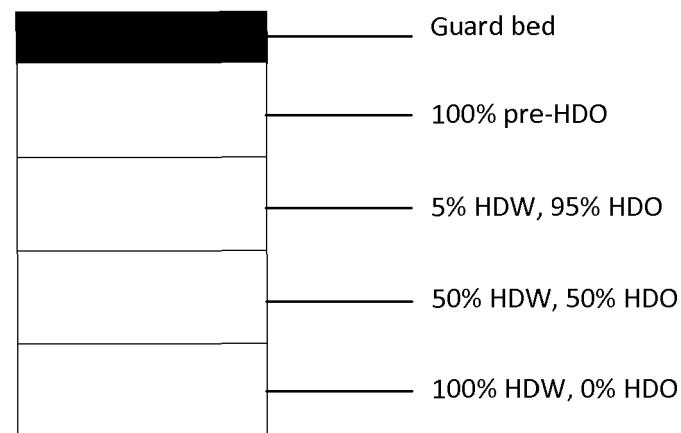
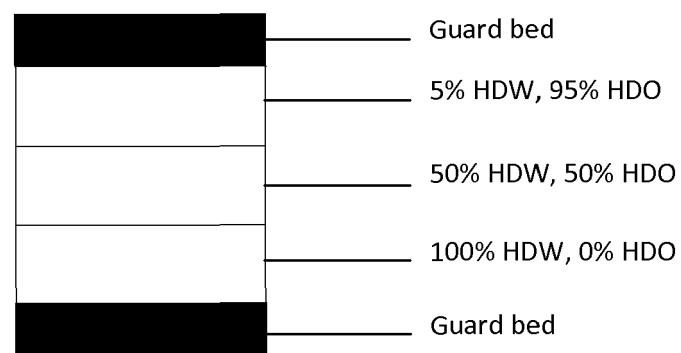
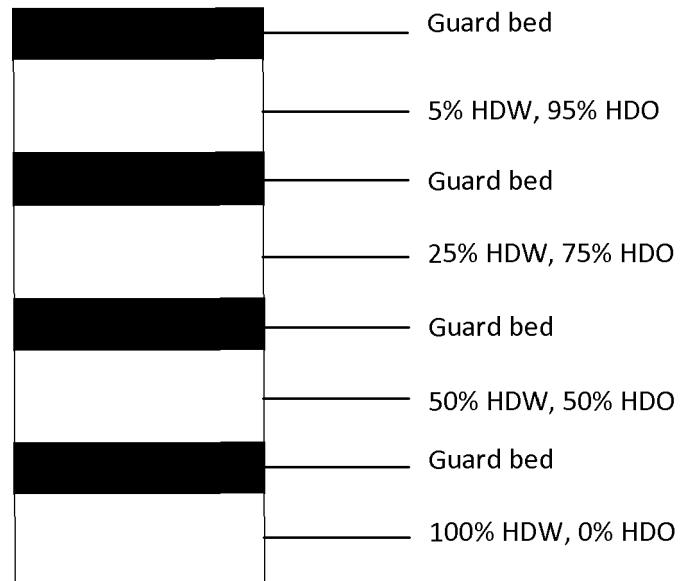




Fig. 1

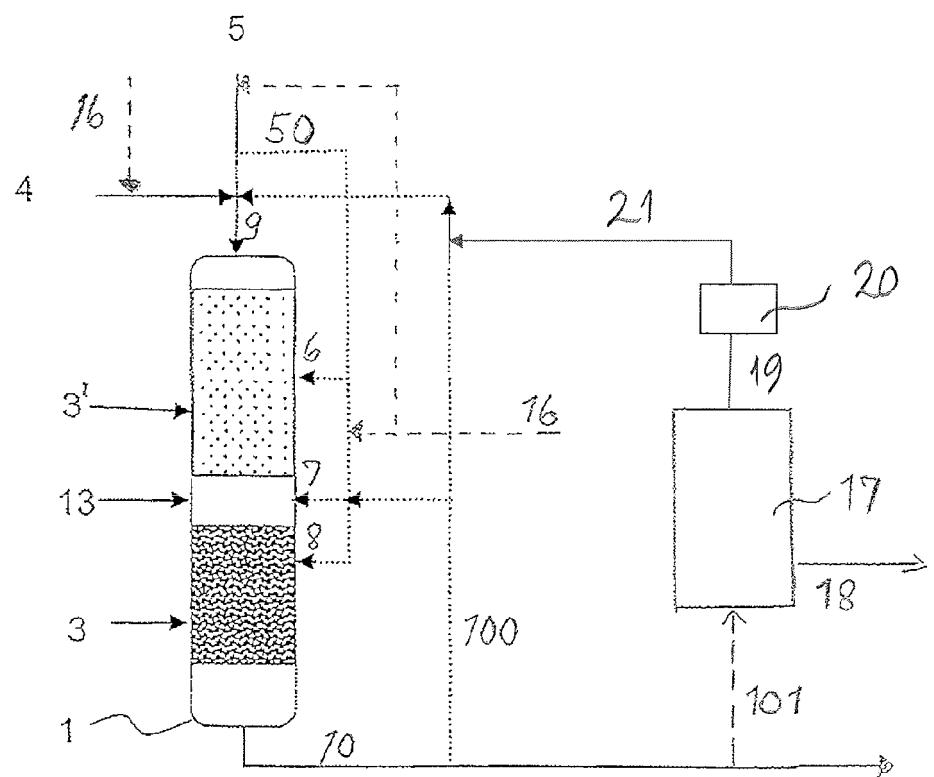


Fig. 2

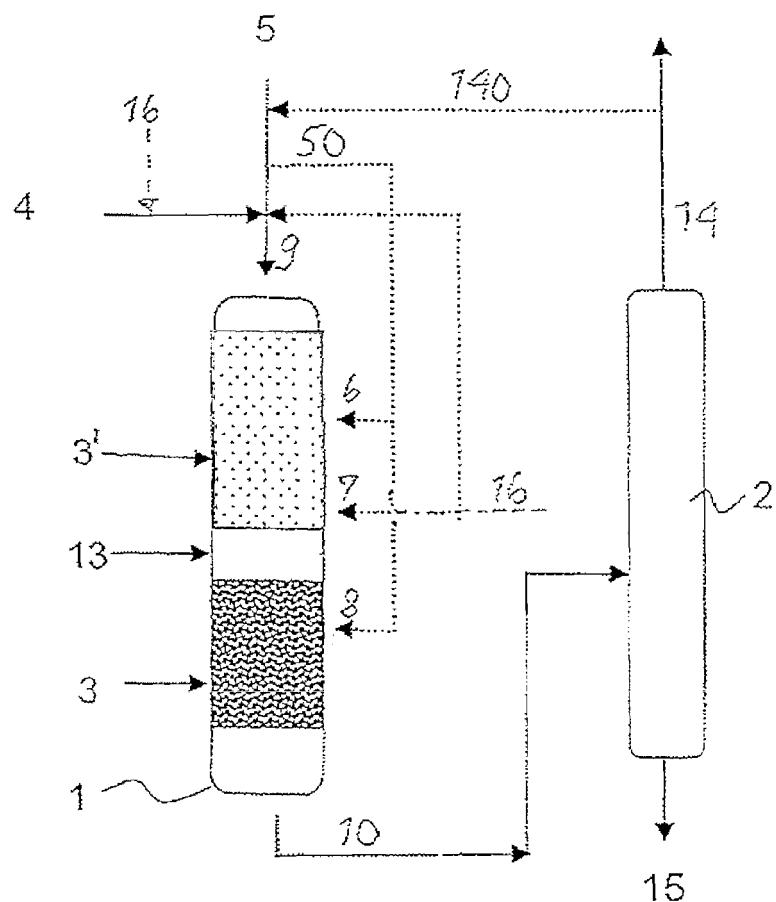


Fig. 3

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2010028717 A2 [0002]
- WO 2011148045 A [0015]