

EP 2 701 304 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
26.02.2014 Bulletin 2014/09

(51) Int Cl.:
H03F 3/217 (2006.01)

(21) Application number: **12181598.9**

(22) Date of filing: **23.08.2012**

(84) Designated Contracting States:
**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**
Designated Extension States:
BA ME

(71) Applicant: **BlackBerry Limited
Waterloo, ON N2K 0A7 (CA)**

(72) Inventor: **Anazawa, Isao Ginn
Waterloo, Ontario N2L 3W8 (CA)**

(74) Representative: **Bryn-Jacobsen, Caelia
Kilburn & Strode LLP
Electronics
20 Red Lion Street
London WC1R 4PJ (GB)**

(54) **Switching mode amplifier operation**

(57) A switching mode amplifier and method. A voltage divider (310, 312) comprising two series connected reactive components produces, on a center line (308), a fraction of a voltage received on a first line (304) and a second line (306). The switching structure (316, 318) produce a fraction of the power supply voltage to the first port or the second port by either one of 1) a first configuration that connects the first port to the first input and

the second port to the center line (410), or 2) a second configuration that connects the first port to the center line and the second port to the second input (412). A controller (210) responds to a sequence of commands to provide the fraction of the voltage by alternating the switching structure between the first configuration and the second configuration.

Description**FIELD OF THE DISCLOSURE**

[0001] The present disclosure generally relates to switching mode signal amplifiers, and more particularly to efficient operation of multiple output level switching mode power amplifiers.

BACKGROUND

[0002] Switching mode amplifiers, which are sometimes referred to as "Class-D" amplifiers, are incorporated as signal amplifiers in many applications, particularly in applications that value efficient electrical power utilization. Applications incorporating switching mode amplifiers include loudspeaker amplifiers, ultrasonic transducer drivers, motor speed controllers, LED brightness controllers, and many other amplifying or output voltage controlling applications. Switching mode amplifiers operate by rapidly switching an output element, such as a transistor, between a conducting and non-conducting state to create a pulsed output waveform. The output element is usually switched with a frequency that is much greater than the highest frequency component of the signal being amplified or produced. The duration for which the output element is configured to conduct relative to the duration for which the output element is configured to not conduct controls a short term average for the voltage delivered to a load by the amplifier. Low pass filtering to remove the on-off switching components is used to produce the desired, lower frequency signal represented by the pulse width durations. In one example, the load incorporates reactive components, including energy storage devices such as inductors, capacitors, or any other electrical structures, to perform a voltage averaging function and implement this low frequency filtering to allow the load to operate with only the short term average of output voltage. The on/off characteristic of switching mode amplifiers generally result in high power efficiency, particularly when compared to amplifiers with active components that amplify signals using a linear operating mode.

[0003] The present description describes circuits that include one or more reactive components. It is clear that the described reactive components are able to be strictly reactive, substantially reactive, or exhibits impedance with a substantial reactive component. In an example of an inductor, most real inductors have a reactive component along with a resistive component, where the resistive component may be negligible or small. A component is able to be characterized as substantially reactive if it has a reactive component, i.e., an imaginary inductive component, that results in a phase shift of time varying electrical current flowing through the device as a function of time varying voltage across the device. Such a component introduces a phase shift between voltage and electrical current applied to the device without regard to the resistance of the device. Components with imped-

ance values including imaginary numbers are considered to be substantially reactive without regard to the value of the impedance value's real number component.

[0004] Although switching mode amplifiers are generally highly efficient in converting supply power into the desired output signal, the efficiency of switching mode amplifiers has been noted to decrease as the output power of the output signal is reduced. When producing an output signal at a small fraction of the total output power capacity of a switching mode amplifier, very short duration output pulses are generated and the amount of power consumed by the amplifier that is delivered to an output load decreases.

[0005] Therefore, the efficiency and performance of switching mode amplifiers are limited by inefficient energy conversion from power supply to output signal when the amplifiers are operated over a large dynamic range.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The accompanying figures where like reference numerals refer to identical or functionally similar elements throughout the separate views, and which together with the detailed description below are incorporated in and form part of the specification, serve to further illustrate various embodiments and to explain various principles and advantages all in accordance with the present disclosure, in which:

[0007] FIG. 1 illustrates a handheld audio device, according to an example;

[0008] FIG. 2 illustrates an audio amplifier sub-system, according to one example;

[0009] FIG. 3 illustrates a switching mode amplifier output driver, according to one example;

[0010] FIG. 4 illustrates a switch configuration table, according to one example;

[0011] FIG. 5 illustrates a pulse width modulated (PWM) representation of a sinusoidal waveform, according to one example;

[0012] FIG. 6 illustrates a multiple level PWM modulator design, according to one example;

[0013] FIG. 7 illustrates a reactive voltage divider charge balancing process, according to one example;

[0014] FIG. 8 illustrates a least magnitude output switching process, according to one example; and

[0015] FIG. 9 is a block diagram of an electronic device and associated components.

DETAILED DESCRIPTION

[0016] As required, detailed embodiments are disclosed herein; however, it is to be understood that the disclosed embodiments are merely examples and that the systems and methods described below can be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in

the art to variously employ the disclosed subject matter in virtually any appropriately detailed structure and function. Further, the terms and phrases used herein are not intended to be limiting, but rather, to provide an understandable description.

[0017] The terms "a" or "an", as used herein, are defined as one or more than one. The term plurality, as used herein, is defined as two or more than two. The term another, as used herein, is defined as at least a second or more. The terms "including" and "having," as used herein, are defined as comprising (i.e., open language). The term "coupled," as used herein, is defined as "connected," although not necessarily directly, and not necessarily mechanically. The term "configured to" describes hardware, software or a combination of hardware and software that is adapted to, set up, arranged, built, composed, constructed, designed or that has any combination of these characteristics to carry out a given function. The term "adapted to" describes hardware, software or a combination of hardware and software that is capable of, able to accommodate, to make, or that is suitable to carry out a given function. In the following discussion, "handheld" is used to describe items, such as "handheld devices," that are sized, shaped, designed or otherwise configured to be carried and operated while being held in a human hand.

[0018] Described below are switching mode amplifiers and methods of operating same that provide, for example, high efficiency and low spurious signal content output across a large dynamic range, allow switching among multiple output voltages while receiving electrical power from a single voltage power supply, and are able to accommodate manufacturing variations in reactive component values. In one example, a switching mode amplifier described below receives electrical power from a single voltage power supply, such as from a battery or other type power pack, and internally generates at least one intermediate voltage by the use of a voltage divider. This intermediate voltage is generated by a reactive voltage divider in one example that consists of series connected set of reactive components, such as series connected pair of capacitors. In an additional example, a reactive voltage divider is able to be realized as a series connected set of two or more inductors with an intermediate voltage provided at a connection between one of the inductors in the set of inductors and another circuit element. In further examples, any type of voltage reduction element is able to be incorporated into the switching mode amplifier, such as resistive voltage dividers, bucking voltage reducing regulators, or any type of voltage reduction elements. It is further clear that multiple intermediate voltages are able to be produced by a voltage divider with multiple elements, such as multiple capacitors, inductors, resistors, other passive or active circuit elements, or any combinations of these, where each of the multiple intermediate voltages are available at junctions between these elements.

[0019] The description of the illustrated example refers

to components that are connected in series. In the present description, two or more components in series includes, but is not necessarily limited to, two components that are strictly in series, in which all of the current passing through one component also passes through the other component or components. It is clear that a reference to two or more components being connected in series further includes a case of two or more components that are connected substantially in series. Components 5 may be in a substantially series configuration if they behave substantially as if they were strictly in series, with all or nearly all of the current that passes through one component passing through the other. With reference to the above described example, two or more reactive components 10 that are in a substantially serial arrangement are able to also have other components coupled in series with those two reactive components, such as resistive components, other reactive components, active components, or combinations of two or more of these types of components. Similarly, components that are described 15 as being connected in parallel are also able to be arranged in a substantially parallel configuration. In a substantially parallel configuration, components behave substantially as if they were strictly in parallel. In one example of a substantially parallel configuration, two components 20 that each have a first electrical terminal and a second electrical terminal have an electrical coupling between the first terminal of each component, and another electrical coupling between the second electrical terminal of each component. The one or both of the electrical 25 couplings between the two components are able to be either direct couplings or indirect couplings. An indirect connection is able to include, as an example, a connection that include resistive components, reactive components, active components, or combinations of two or more of these types of components.

[0020] A switching arrangement allows the selectively coupling of each port of a two port load to any of the two power supply lines or to the intermediate voltage. In the 30 following description, a switching structure is able to selectively couple a particular circuit point, such as a port, to one or more other circuit points by being able to connect the particular point to any of the one or more other circuit points. In various examples, the switching 35 structure selectively couples the particular point to one of the other circuit points in response to a control, signal, command, or similar input. By selectively coupling each port of a two port load to one of three lines, where each line is at a different voltage potential, the switching mode 40 amplifier output is able to be configured to deliver any of five voltage levels across a two port load. Switching among five voltage levels allows better matching of the output voltage to the desired amplified signal level output, thereby increasing the duty cycle of a pulse modulated 45 output to decrease spurious signal content and increase the efficiency of converting power supply energy to output energy over a wide dynamic range.

[0021] A switching mode amplifier of one example de-

scribed below uses a voltage divider that includes two series capacitors to generate an intermediate voltage that is a fraction of the voltage received from the single voltage power supply. In that example, the switching mode amplifier delivers electrical current from the voltage divider by alternating between the two capacitors of the voltage divider. As described in further detail below, alternating the capacitor through which electrical current is drawn from of a capacitive voltage divider operates to maintain the electrical charge on the center point of the capacitive voltage divider and further operates to accommodate variations in the actual capacitance values of each capacitor in the capacitive voltage divider.

[0022] Switching mode amplifiers such as in examples described below are particularly well suited for use in small, portable devices that are operated by power packs such as batteries. The below described systems generate two or more voltage levels from a single voltage power supply, such as is efficiently provided by a battery or other power pack, by using a voltage divider that consists of passive elements. The capacitive voltage divider of one example operates efficiently, does not include active components to consume energy or dissipate heat, and generally does not include circuit paths that draw electrical current aside from the current delivered to its load. Such aspects improve the efficiency of converting energy received from the power supply into signal energy delivered to the load of the switching mode amplifier.

[0023] The use of passive, capacitive components to generate a second voltage from a single voltage power supply allows realization of a switching mode amplifier that has a small physical size and that dissipates little power, which would be dissipated in the form of wasted heat, in its voltage dividing component and its output voltage switching component. In addition to conserving energy, such as from a limited energy power pack, the low power dissipation by the voltage dividing and voltage switching components further allows for the design of a switching mode amplifier that has a smaller physical size and potentially less weight. A circuit that dissipates lower amounts of waste heat obviates a need for physical design aspects such as larger component spacing, large heat sinks, and other physical size consuming design features that are needed to dissipate larger amounts of waste heat.

[0024] Switching mode amplifiers, such as are described in the examples below, that generate lower amounts of waste heat dissipation are able to have lower operating temperatures for components of the switching mode amplifier as well as for other components located near the switching mode amplifier. Such lower operating temperatures are able to result in greater reliability due to less thermal stress, an increase in ambient temperature operating ranges, lower case temperatures that are advantageous with, for example, handheld devices, as well as combinations of these benefits.

[0025] The switching mode amplifiers described below are able to be incorporated into any type of device. In

one example, the switching mode amplifiers amplify audio signals so as to provide an amplified, higher power signal to properly operate a physical speaker to produce an audio signal. Further applications include driving any type of load such as lights, motors, or any type of load. The below described switching mode amplifiers are able to be incorporated into handheld devices, electronic equipment that is installed into vehicles, facilities, or other locations, larger electronic equipment, or any type of electronic component.

[0026] FIG. 1 illustrates a handheld audio device 100, according to an example. The handheld audio device 100 is an example of a portable electronic device that is able to include a switching mode audio amplifier as is described below. The handheld audio device 100 in this example is a wireless voice and data communication device such as a smartphone. The illustrated handheld audio device 100 is one example of an electronic device that is able to include examples of switching mode audio amplifiers that are described herein. Further examples of electronic devices that are able to include switching mode audio amplifiers include cellular telephone handsets, telephone handsets, personal audio systems, portable or stationary audio devices, other audio reproduction devices, loudspeaker systems, and the like.

[0027] The handheld audio device 100 includes a handheld body 102 that serves as an enclosure for various components and also includes mounting locations for some components. Illustrated as mounted on outside locations of the handheld body 102 are an earpiece speaker 112, a loudspeaker 104, display screen 110, and a voice microphone 106. Further electronic components are mounted within the handheld body 102 to provide functions whereby the handheld audio device 100 is able to operate as a wireless voice and data communications device and perform other audio and data processing functions. The illustrated locations of these components are only one example of many possible mounting locations on the handheld body 102 for these various components.

[0028] The earpiece speaker 112 is located on the handheld body 102 in a position that is likely to coincide with the user's ear when the handheld audio device is held to the user's head. This placement is particularly useful when the handheld audio device is used as a telephone. In general, the earpiece speaker 112 generates acoustic sound at a relatively low level because the earpiece speaker is generally held against a user's ear. Although the earpiece speaker 112 usually generates acoustic signals with a low level, some amount of audio signal power amplification is performed in the handheld audio device 100 to properly drive the earpiece speaker. In one example, this amplification is provided by a switched mode audio amplifier such as is described in detail below.

[0029] The illustrated handheld body 102 depicts a view of an aspect of the handheld audio device 100 that shows a front 120 and a left side 122 of the handheld

audio device 100. The loudspeaker 104 is located on the left side 122 of the handheld audio device 100 to allow the sound generated by the loudspeaker 104 to be effectively broadcast from the handheld body 102 while not being too close to a user's ear when the handheld body 102 is inadvertently held to his or her ear while the loudspeaker is producing sound. In general, the loudspeaker 104 generates acoustical signals at a higher level than is generated by the earpiece speaker 112. The handheld audio device 100 includes an audio amplifier, such as the switched mode audio amplifier described below, to generate an electrical signal to properly drive the loudspeaker 104 to produce the desired acoustic sound level. In further examples, the loudspeaker 104 is able to be mounted at any location on the handheld body 102. Further, multiple loudspeakers, one or more other sound generating devices, or both are able to be mounted on the handheld body 102 at any location. Further, one or more loudspeakers or sound generating devices are able to be electrically connected to the handheld audio device 100 and located at locations separate from the handheld body 102.

[0030] FIG. 2 illustrates an audio amplifier sub-system 200, according to one example. The audio amplifier sub-system 200 is an example of an audio amplifier component of the above described handheld audio device 100 that is used to generate higher power audio signals to drive, for example, one or more audio transducers such as one or both of the above described earpiece speaker 112 and the loudspeaker 104. In further examples, the audio amplifier sub-system 200 is an example an audio amplification device that receives an audio signal and produces an electrical or acoustic audio output. In this example, the audio amplifier sub-system 200 includes an output driver 214 that operates in a switched, or Class-D, amplification mode to provide a load, such as load Z 220 that is able to include a sound generating speaker, with a suitable electrical signal to cause the load Z 220 to emit sound in this example.

[0031] The illustrated audio amplifier sub-system 200 includes two types of signal interfaces that receive audio signals to be amplified, an analog interface 204, which accepts an analog input 202, and a digital interface 208, which accepts a digital input 206. The analog interface 204 and the digital interface 208 are each examples of an audio input that is able to provide In the illustrated example, both the analog input 202 and the digital input 206 convey information defining sound waves to be amplified for use by components that accept higher level electrical signals, such as a speaker that is represented by the reactive load Z 220. In various examples, only one of these inputs are able to be present in an audio amplifier, or one or more other types of signal inputs are able to be included with or without one or both of these illustrated interfaces.

[0032] As is understood by practitioners of ordinary skill in the relevant arts, the analog input 202 generally conveys a signal by means of a varying voltage where

the varying voltage represents a signal that is to be amplified in order to drive a speaker to output acoustic energy represented by the input signal. The digital input 206 similarly conveys information representing a signal that is to be amplified in order to drive a speaker to output acoustic energy, but the digital input 206 generally conveys a time sequence of data values that indicate the level of the input audio signal to be amplified and output as acoustic energy. In one example, the digital input 206 is able to convey a sequence of values that correspond to the relative voltage levels in an acoustic input 202 that conveys the same sound information.

[0033] The analog interface 204 receives an analog input 202 and conditions the signal received on the analog input in order to properly drive other elements of the audio amplifier sub-system 200. In one example, the analog interface receives an analog signal that has a time varying voltage level that represents an audio signal to be amplified and emitted as acoustical energy. The digital interface 208 receives digital data, as one or more of a serial data sequence, a parallel data interface, or a multiple level data interface. The digital interface 208 in one example further performs clock synchronization for the received digital input 206, either by a separate data clocking signal or by other data clock synchronization techniques.

[0034] A Pulse Width Modulation (PWM) modulator 210 receives data from one or both of the analog interface 204 and the digital interface 208. The PWM modulator 210 in one example is a controller that generates output voltage commands to be provided to an output driver 214 based upon the values of the input signals received from either or both of the analog interface 204 and the digital interface 208. The commands generated by the PWM modulator 210 are examples of indications to provide a particular output voltage across the load Z 220. In one example, the PWM modulator 210 generates commands to direct the output driver 214 to output a particular voltage level for a particular time that is selected from one of multiple possible values. The PWM modulator 210 in one example operates according to similar components in audio Class-D switching mode amplifiers, the details of which are familiar to practitioners of ordinary skill in the relevant arts. In one example, the PWM modulator 210 is able to produce indications to provide one of a zero voltage, a fraction of the supply voltage, or the supply voltage across a first port and a second port of a load. In one example, the indication to provide a fraction of the supply voltage and the supply voltage are further able to specify a polarity of that voltage, where the polarity is able to be a first polarity or an opposite polarity that is opposite the first polarity.

[0035] In one example, the PWM modulator 210 determines the command to provide to the output driver 214 by comparing the present value of the input signal to one or more high frequency waveforms. The oscillator 212 of one example generate one or more high frequency saw tooth or triangular waveforms to which input signals are

compared, in the PWM modulator 210, in order to determine the output voltage to be provided to the load Z 220. In one example, the present value of received input signal is compared to a present value of the one or more high frequency saw tooth or triangular waveform and when the input signal exceeds the value of a high frequency waveform generated by the oscillator 212, the PWM modulator 210 sends a command to the output driver 214 to change the output voltage delivered to the load Z 220 for as long as the received input signal exceeds the present value of the waveform generated by the oscillator 212. In various examples, the PWM modulator 210 is able to be realized with analog circuitry, digital circuitry, or a combination of analog and digital circuitry that perform, for example, the comparison of the input signal to the one or more high frequency waveforms produced by the oscillator 212.

[0036] The output driver 214 in one example receives energy from a power supply 216 and provides a time varying output voltage to the load Z 220 through an output 218. In one example, as is described in further detail below, the power supply 216 produces a single output voltage across two power supply lines and the output driver 214 of one example operates to deliver five possible output voltages across the load Z 220 by selectively coupling the load Z 220 across different power supply lines or to an output of a voltage divider, as is described in detail below.

[0037] In one example, the output voltages delivered to the load Z 220 changes at an average frequency of the frequency of the high frequency saw tooth or triangular waveforms generated by oscillator 212. As the high frequency saw tooth or triangular waveforms generated by oscillator 212 exceeds or drops below the present value of the input audio signal received by either the analog input 202 or the digital input 206, the output driver 214 changes the output voltage delivered to the load Z 220. The electrical characteristics of the load Z 220 in one example attenuates the high frequency components of the output produced by the output driver 214, and only the lower frequency audio signal that replicates the input signal is passed to some components by the load Z 220, such as an acoustic transducer that responds to the audio signal to produce acoustic signals to be emitted into the surrounding space.

[0038] The output load Z 220 in one example is an acoustic signal generator, such as a speaker. In various examples the output load Z 220 is able to be any type of load across which an electrical signal is applied. In various examples, load Z 220 is able to be reactive, resistive, or have any type of impedance to electrical energy flow.

[0039] FIG. 3 illustrates a switching mode amplifier output driver 300, according to one example. The switching mode amplifier output driver 300 is an example of an output driver 214 that is used in the audio amplifier subsystem 200, as is described above. The switching mode amplifier output driver 300 receives electrical power from a voltage source 302 and selectively connects each of

the two ports of the load Z 340 such that the port is at an electrical potential of one of three possible voltages.

[0040] The switching mode amplifier output driver 300 has a direct current (DC) power input from the voltage source 302 that provides a supply voltage across a positive voltage line 304 and a negative voltage line 306. The positive voltage line 304 is an example of a first input and the negative voltage line 306 is an example of a second input. The positive voltage line 304 and the negative voltage line 306 form a power supply input that receives the supply voltage from the voltage source 302. In various examples, the voltage source 302 is able to be part of a device that includes the switching mode amplifier output driver, or the power supply is able to be external to such a device.

[0041] The switching mode amplifier output driver 300 of one example has a reactive voltage divider that produces a voltage on a center line 308, where the voltage on the center line 308 is a fraction of the voltage present at the positive voltage line 304 and the negative voltage line 306. In various examples, any type of voltage divider is able to be used, such as a bucking voltage divider, a resistive voltage divider, a voltage divider that includes reactive components in the voltage division circuitry, or any type of voltage reducing processing is able to be used.

[0042] In the illustrated example, the voltage reducing processor that produces a voltage between the positive voltage line 304 and the negative voltage line 306 includes reactive components arranged in a voltage dividing arrangement. The switching mode amplifier output driver 300 has a voltage divider that consists of two capacitors that are connected in series between the positive voltage line 304 and the negative voltage line 306.

A first capacitor 310 connects the positive voltage line 304 and a center line 308, and a second capacitor 312 connects the center line 308 to the negative voltage line 306. The first capacitor 310 and the second capacitor 312 operate as a voltage divider such that the voltage present at the center line 308 is between the voltage present at the positive voltage line 304 and the negative voltage line 306. The voltage present at the center line 308 is dependent upon the amount of charge on the plates of each of these two capacitors. In one example, the first capacitor 310 and the second capacitor 312 are specified to have equal values, and the actual values of these capacitors will generally be within the manufacturing tolerances of those components from each other.

[0043] The capacitance values of the first capacitor 310 and the second capacitor 312 is selected based upon an amount of current that is to be delivered through those capacitors during operation of the switching mode amplifier. The capacitance values of these capacitors is generally dependent upon the switching frequency of the output driver 214, described above, which is based upon the frequency of the waveforms received from the oscillator 212. As the switching frequency of the output driver increases, the energy to be provided by these capacitors,

and therefore the value of the capacitors, decreases.

[0044] The voltage source 302 is shown to deliver a single output voltage between the positive voltage line 304 and the negative voltage line 306. In general, one of the output lines from the voltage source 302 is able to be connected to a system ground potential. For example, an electronic device, such as the handheld audio device 100, is able to have a battery, power pack, or other power source that has one output line connected to ground structures within the device. In one example, the negative voltage line 306 is able to be connected to the system ground of an electronic device, and the positive voltage line 304 corresponds to a positive power supply voltage. In general, the connection of one power supply output to a system ground potential does not affect the operation of the switching mode amplifier output driver 300. For example, the load 340 in one example is isolated from the system ground potential.

[0045] The switching mode amplifier output driver 300 includes a first switch S1 316 and a second switch S2 318. The first switch S1 316 selectively connects a first port of the load 340 to any one of the positive voltage line 304, the center line 308, and the negative voltage line 306. A second switch S2 318 selectively connects a second port of the load 340 to any one of the positive voltage line 304, the center line 308, and the negative voltage line 306. In this example, the first switch S1 316 and the second switch S2 318 form a switching structure that is configurable to selectively couple the first port and the second port of the load 340 to any of the positive voltage line, the negative voltage line and the center line.

[0046] In one example, the first switch S1 316 and the second switch S2 318 are controlled by a PWM modulator, such as the PWM modulator 210 described above. The first switch S1 316 and the second switch S2 318 are able to be realized by any controllable switching design. In one example, each of the first switch S1 316 and the second switch S2 318 includes three semiconductor switching devices, such as Field Effect Transistors (FETs). In various examples, the first switch S1 316 and the second switch S2 318 are able to be realized by circuitry that consists of one or more of any type of FET, such as J-FET, CMOS-FET, SiC-MOS-FET, or bi-polar transistors such as Insulated Gate Bi-Polar transistors (IGBT).

[0047] In an example of a switching mode amplifier output driver 300 that includes FETs to implement coupling of the load to a power line, a first FET of the first switch S1 316 couples the first port 342 of the load 340 to the positive voltage line 304 via a first switch positive contact 320. A second FET of the first switch S1 316 couples the first port 342 of the load 340 to the center line 308 via a first switch center line contact 322. A third FET of the first switch S1 316 couples the first port of the load 340 to the negative voltage line 306 via a first switch negative voltage contact 324. Three FETs in the second switch S2 318 similarly couple the second port 344 of the load 340 to: 1) the positive voltage line 304 via a second switch

positive contact 330; 2) to the center line 308 via a second switch center line contact 332; and 3) to the negative voltage line 306 via a second switch negative voltage contact 334. In one example, these FETs are controlled by signals from the PWM modulator 210 that are directing a particular coupling based upon, for example, the level of the input signal to be amplified.

[0048] As described below, configuration of the first switch S1 316 and the second switch S2 318 allow the voltage across the load 340 to be one of five (5) possible voltages. In the following discussion, the polarity of voltages across the load 340 is described with reference to the first port 342 of the load 340, which is considered to be the "positive" port of the load 340. The polarity of voltages across the load 340 is described according to this orientation in order to clearly describe the operation of the switching mode amplifier output driver 300 in this example. Choosing this polarity orientation is in no way a limitation on the operation of the load 340.

[0049] When the first switch S1 316 couples the first port 342 to the first switch positive contact 320, zero volts is able to be placed across the load 340 by configuring the second switch 318 to couple the second port 344 to the second switch positive contact 330. Further, when the first switch S1 316 couples the first port 342 to the first switch positive contact 320, a fraction of the source voltage V, as determined by the relationship between the values of the first capacitor C1 310 and second capacitor C2 312, is able to be placed across the load 340 by configuring the second switch 318 to couple the second port 344 to the second switch center line contact 332. In the following discussion, the fraction of the power supply voltage, indicated as "V," that is present between the positive voltage line 304 and the center line 308 is assumed to be $1/2$ V volts. The power supply voltage V is able to be placed across the load 340 by configuring the second switch 318 to couple the second port 344 to the second switch negative voltage contact 334 while the first switch S1 316 couples the first port 342 to the first switch positive contact 320.

[0050] When the first switch S1 316 couples the first port 342 to the first switch center line contact 322, negative one half voltage ($-1/2$ V) is able to be placed across the load 340 by configuring the second switch 318 to couple the second port 344 to the second switch center line contact 332, and $+1/2$ V volts are able to be placed across the load 340 by configuring the second switch 318 to couple the second port 344 to the second switch negative voltage contact 334.

[0051] When the first switch S1 316 couples the first port 342 to the first switch negative voltage contact 324, the output voltage V of the voltage source 302 is placed across the load 340 with a negative polarity, i.e., $-V$, by configuring the second switch 318 to couple the second port 344 to the second switch positive contact 330. Fur-

ther, $-1/2$ V is able to be placed across the load 340 by configuring the second switch 318 to couple the second port 344 to the second switch center line contact 332, and zero volts are able to be placed across the load 340 by configuring the second switch 318 to couple the second port 344 to the second switch negative voltage contact 334.

[0052] The combination of the three possible configurations of the first switch S1 316 and the three possible configurations of the second switch S2 318 produces nine possible states. As indicated by the above described combination of configurations for the first switch S1 316 and the second switch S2 318, more than one switch configuration is able to be chosen to produce the same voltage across the load 340. For example, $+1/2$ V is placed across the load by 1) coupling the first port 342 to the first switch positive contact 320 and the second port 344 to the second switch center line contact 332, or by 2) coupling the first port 342 to the first switch center line contact 322 and the second port 344 to the second switch negative voltage contact 334.

[0053] The above described switching mode amplifier output driver 300 depicts a reactive voltage divider with two capacitors, the first capacitor 310 and the second capacitor 312, that produce one intermediate voltage. In further examples, additional intermediate voltages are able to be produced by including a voltage divider that consists of a number of capacitors connected in series with one another, where different intermediate voltages are produced at the junction between each of these series connected capacitors. An output switching structure of such examples operates to selectively couple each of the two ports of the load 340 to the positive voltage line, the negative voltage line, or to any junction between two capacitors of a series sequence of multiple capacitors configured as a multiple level voltage divider.

[0054] FIG. 4 illustrates a switch configuration table 400, according to one example. The following description of the switch configuration table 400 refers to components depicted in FIG. 3 and described above with regards to the switching mode amplifier output driver 300. The switch configuration table 400 depicts the selectable couplings that are made by the first switch S1 316 and the second switch S2 318 in each of the nine possible configurations of those two switches. The switch configuration table 400 includes a configuration number column 402 that has a heading of "Switch Configuration" and specifies an identifier for each configuration, as is described below. The switch configuration table 400 also includes an output voltage column 404 that indicates the output voltage delivered to the load Z 340. As described above, the voltage delivered to the load Z 340 is able to have a positive polarity or a negative polarity based upon the configuration of the switches. The switch configuration table 400 further includes a switch coupling column 406 that defines the couplings of the first switch S1 316 and the second switch S2 318.

[0055] The switch configuration table 400 includes a

first row 410 that depicts information for a first configuration. The first configuration delivers a voltage of $+1/2$ V across the load Z 340. In this first configuration, the first switch S1 316 couples the first port 342 to the first switch positive contact 320, and thereby to the positive voltage line 304. In the first configuration, the second switch S2 318 couples the second port 344 to the second switch center line contact 332, and thereby to the center line 308.

[0056] The switch configuration table 400 includes a second row 412 that depicts information for a second configuration. The second configuration also delivers a voltage of $+1/2$ V across the load Z 340. In this second configuration, the first switch S1 316 couples the first port 342 to the first switch center contact 322, and thereby to the center line 308. In the second configuration, the second switch S2 318 couples the second port 344 to the second switch negative voltage contact 334, and thereby to the negative voltage line 306.

[0057] The switch configuration table 400 includes a third row 414 that depicts information for a third configuration. The third configuration delivers a voltage of $-1/2$ V across the load Z 340. In this third configuration, the first switch S1 316 couples the first port 342 to the first switch center contact 322, and thereby to the center line 308. In the third configuration, the second switch S2 318 couples the second port 344 to the second switch positive voltage contact 330, and thereby to the positive voltage line 304.

[0058] The switch configuration table 400 includes a fourth row 416 that depicts information for a fourth configuration. The fourth configuration, in addition to the third configuration, also delivers a voltage of $-1/2$ V across the load Z 340. In this fourth configuration, the first switch S1 316 couples the first port 342 to the first switch positive contact 320, and thereby to the positive voltage line 304. In the fourth configuration, the second switch S2 318 couples the second port 344 to the second switch center line contact 332, and thereby to the center line 308.

[0059] The switch configuration table 400 includes a fifth row 418 that depicts information for a fifth configuration. The fifth configuration delivers a voltage of zero volts (0V) across the load Z 340. In this second configuration, the first switch S1 316 couples the first port 342 to the first switch positive voltage contact 320, and thereby to the positive voltage line 304. In the second configuration, the second switch S2 318 couples the second port 344 to the second switch positive voltage contact 330, and thereby to the positive voltage line 304.

[0060] The switch configuration table 400 includes a sixth row 420 that depicts information for a sixth configuration. The sixth configuration, in addition to the fifth configuration described above, also delivers a voltage of 0 V across the load Z 340. In this sixth configuration, the first switch S1 316 couples the first port 342 to the first switch center contact 322, and thereby to the center line 308. In the second configuration, the second switch S2 318 couples the second port 344 to the second switch center contact 332, and thereby also to the center line

308.

[0061] The switch configuration table 400 includes a seventh row 422 that depicts information for a seventh configuration. The seventh configuration, in addition to the fifth configuration and the sixth configuration, also delivers a voltage of 0 V across the load Z 340. In this seventh configuration, the first switch S1 316 couples the first port 342 to the first switch negative voltage contact 324, and thereby to the negative voltage line 306. In the seventh configuration, the second switch S2 318 couples the second port 344 to the second switch negative voltage contact 334, and thereby also to the negative voltage line 306.

[0062] The switch configuration table 400 includes an eighth row 424 that depicts information for an eighth configuration. The eighth configuration delivers a voltage of +V across the load Z 340. In this second configuration, the first switch S1 316 couples the first port 342 to the first switch positive voltage contact 320, and thereby to the positive voltage line 304. In the eighth configuration, the second switch S2 318 couples the second port 344 to the second switch negative voltage contact 334, and thereby to the negative voltage line 306.

[0063] The switch configuration table 400 includes a ninth row 426 that depicts information for a ninth configuration. The ninth configuration delivers a voltage of -V across the load Z 340. In this second configuration, the first switch S1 316 couples the first port 342 to the first switch negative voltage contact 324, and thereby to the negative voltage line 306. In the ninth configuration, the second switch S2 318 couples the second port 344 to the second switch positive voltage contact 330, and thereby to the positive voltage line 304.

[0064] FIG. 5 illustrates a pulse width modulated (PWM) representation of a sinusoidal waveform 500, according to one example. The PWM representation of a sinusoidal waveform 500 is an example of an output electrical waveform that is produced by the audio amplifier sub-system 200, i.e., the electrical waveform that is presented to the load Z 220 or load 340 by operation of the first switch S1 316 and the second switch S2 318. The following description of the PWM representation of a sinusoidal waveform 500 refers to components of the audio amplifier sub-system 200 to facilitate the description of the depicted signals and to more clearly explain certain features. The principles presented in this description of the PWM representation of a sinusoidal waveform 500 are representative of the operation and output of switched mode amplifier circuits that incorporate the principals described herein.

[0065] The description of the PWM representation of a sinusoidal waveform 500 depicts a sinusoidal waveform 520 that represents a low frequency component of the switched voltages produced by the output driver 214 and the switching mode amplifier output driver 300. The PWM representation of a sinusoidal waveform 500 illustrates a switched output waveform 522 that is produced by alternating switch configurations of the switching

mode amplifier output driver 214 among the switch configurations described above in reference to FIG. 4 for the switch configuration table 400.

[0066] In general, the output of the output driver 214 is switch at a frequency that is much higher than the highest frequency components of an input waveform received by the audio amplifier sub-system 200. As described above, switches within the switching mode amplifier output driver 300 are configured by a PWM modulator 210 to connect each port of a two port load impedance to one of three lines that are at different voltage levels. As described above, the output driver 300 selectively connects each port to a +V line that is the positive voltage line 304, a -V line that is a negative voltage line 306, and a center line 308 that is at a voltage between the voltage levels of the +V line 304 and the -V line 306. The voltage level of the center line in one example is half way between the voltage levels of the +V line 304 and the -V line 306 and is created by the voltage divider that includes two reactive components such as the first capacitor 310 and the second capacitor 312, as is described above.

[0067] The PWM representation of a sinusoidal waveform 500 depicts the voltage levels produced by an output driver 216 in response to a sinusoidal waveform input that is received by an audio amplifier subsystem 200 as is described above with regards to FIG. 2. The input waveform is able to be received at either the analog interface 204 or the digital interface 208. As discussed above, an input to the audio amplifier sub-system 200 or to a similar system is able to be in any type of digital or analog form.

[0068] The PWM representation of a sinusoidal waveform 500 depicts a sinusoidal waveform 520 in this example that corresponds to a sinusoidal input waveform. A sinusoidal waveform is depicted to simplify the description of certain aspects of the depicted example, and an input waveform to a switching mode amplifier is able to have any shape or sequence of values. In general, the frequency components of the input waveform are generally limited to a defined bandwidth, such as a bandwidth of audio signals. The depicted sinusoidal waveform 520 reflects the low frequency components of the switched voltage levels produced by the output driver 214. Higher frequency components of the switched voltage levels produced by the output driver 214 are generally filtered out by components of the load Z 220. In one example, the load Z 220 includes a sound transducer, such as a speaker, that responds to the frequency components of input signals that fall within an audible frequency band that corresponds to, for example, human hearing. The sound transducer in one example further does not respond to frequency components that fall outside of, such as that are higher in frequency than, that audible frequency band.

[0069] The PWM representation of a sinusoidal waveform 500 depicts a time axis 502 along a horizontal direction and a voltage axis 504 along a vertical direction. The voltage axis 504 depicts five (5) voltage levels, a -V

level 506, a -1/2 V level 508, a zero (0) voltage level 510, a +1/2 V level 512, and a +V level 514. These output voltage levels correspond to the output voltages as depicted in the switch configuration table 400 described in regards to FIG. 4. In this example, the voltage between the +V level 514 and the -V level 506 is equal to the single ended power supply voltage produced by the power supply 216. As noted in the description of the switch configuration table 400, some voltages, such as zero volts or the +1/2 V level or -1/2 V level, are able to be generated by multiple switch configurations.

[0070] The time axis 502 is divided into six time intervals, or durations, that are identified based upon the voltage range of the sinusoidal waveform 520 that is produced by the output driver 214. This voltage range corresponds to voltage ranges of the input signal from which the output signal is generated. During a first duration 550, the switching mode amplifier output driver 300 produces a first portion 532 of a switched output waveform 522 by alternatively connecting the two ports of the load 340 between voltage levels that are either equal, and produces a first portion output 530 that has a net voltage equal to the zero volt level 510 across the load 340, or that differ by positive one half (+1/2) V and therefore produce a net voltage equal to the +1/2 V level 512. By varying the ratio of time that zero volts is placed across the load impedance, and that the amount of time that +1/2 V is placed across the load impedance, a short term average voltage is able to be produced that is represented by the sinusoidal waveform 520 in this example. When the input signal, which has a similar shape as the sinusoidal waveform 520, has a value close to zero, the output driver places zero volts across the load 340 for longer time durations than the time durations when +1/2 V are placed across the load 340. As the input waveform voltage increases to be closer to a value corresponding to an output voltage of the sinusoidal waveform 520 that is closer to +1/2 V, the output driver places +1/2 V across the load 340 for longer time durations than the time duration when zero volts are placed across the load 340.

[0071] During a second duration 552, the sinusoidal waveform 520 has values between the +1/2 V level 512 and the +V level 514. In order to produce a second portion 532 of the switched output waveform 522, the switching mode amplifier output driver 300 alternatively connects the two ports of the load 340 between voltage levels that that produce either the +1/2 V level 512 across the load 340, or that produce the +V level 514 across the load 340. In a manner similar to that described above for the first portion 530 when producing an output in a different output voltage range, when the input signal has a voltage value that corresponds to a sinusoidal waveform 520 value close to +1/2 V level 512, the output driver places +1/2 V across the load 340 for longer time durations than the time duration when +V is placed across the load 340. As the input signal is near a value that corresponds to the sinusoidal waveform 520 being closer to +V level 514, the switching mode amplifier output driver 300 places +V

across the load 340 for longer time durations than the time duration when +1/2 V are placed across the load 340.

[0072] A third duration 554 of the PWM representation of a sinusoidal waveform 500 is depicted that is similar to the first portion 530 except that the value of the sinusoidal waveform 520 is decreasing during the third portion 534. During the third duration 534, the switching mode amplifier output driver 300 generates a third portion output 554 of the switched output waveform 522 by configuring switches to place either the +1/2 V level 512 or the zero volt level 510 across the load impedance for durations that produce a low frequency component that corresponds to the sinusoidal waveform 520 during the third duration.

[0073] During a fourth duration 556, the input signal has voltage values that result in the sinusoidal waveform 520 having values between the zero volt level 510 and the -1/2 V level 508. In order to produce a fourth portion output 536, the switching mode amplifier output driver 300 alternatively connects the two ports of the load 340 between the zero volt level 510 or the -1/2 V level 508. In a manner similar to that described above, when the sinusoidal waveform 520 has a value close to the zero volt level 510, the output driver 214 places zero volts across the load 340 for longer time durations than the time duration when the load impedance has the -1/2 V level 508 across it. As the sinusoidal waveform 520 is closer to the -1/2 V level, the switching mode amplifier output driver 300 places the -1/2 V level 508 across the load 340 for longer time durations than the time duration when the zero volt level 510 is placed across the load 340. The PWM representation of a sinusoidal waveform 500 further depicts a sixth duration 560 that is similar to the fourth duration 556 in that the sixth portion output 540 is created by switching between the -1/2 V level 508 and the zero level 510, but with the difference that the value of the sinusoidal waveform 520 is increasing during the sixth duration 560.

[0074] During a fifth duration 558, the input signal has values that correspond to the sinusoidal waveform 520 having values between the -1/2 V level 508 and the -V level 506. In order to produce this output waveform, the switching mode amplifier output driver 300 alternatively connects the two ports of the load 340 between voltage levels that that produce either the -1/2 V level 508 across the load 340, or that produce the -V level 506 across the load 340. In a manner similar to that described above, when the sinusoidal waveform 520 has a value close to the -1/2 V level 508, the output driver places the -1/2 V level 508 across the load 340 for longer time durations than the time duration when the -V level 506 is placed across the load 340. As the sinusoidal waveform 520 is closer to the -V level 506, the switching mode amplifier output driver 300 places the -V level 506 across the load 340 for longer time durations than the time durations when the -1/2 V level 508 is placed across the load 340.

[0075] As described above, the switching mode ampli-

fier output driver 300 of one example varies the ratio of time each of the two described voltages is placed across the load 340 in order to create a desired short term average voltage. The short term average voltage, as is contained in a low frequency component signal represented by the sinusoidal waveform 520 in the PWM representation of a sinusoidal waveform 500, is able to be accurately controlled by varying the ratio of time durations that each of the above described voltages are placed across the load 340.

[0076] The above described switching mode amplifier output driver 300 is able to place one of five (5) voltages across the load 340. The switching mode amplifier output driver 300 of one example operates to switch between two voltages that are selected based upon the value of the low frequency component signal to be provided to the load impedance. The switching mode amplifier output driver 300 of one example further switches the voltage placed across the load impedance between two voltages values that are closest to each other. In the above described example, the voltage across the output load 340 is switched between two voltages that differ by a magnitude of 1/2 V.

[0077] In contrast to the above described example that switches between voltages that differ by 1/2 V, further examples are able to generate a particular low frequency component signal at a load impedance by switching between voltages with greater differences. One instance of such a further example generates low frequency components with positive voltages are able to be generated by switching between zero volts and +V. Negative voltages are generated by switching between zero volts and -V. The ratio of time durations that each of those voltages is placed across the load impedance is adjusted so as to cause the desired low frequency component voltage to be delivered to the load impedance. Switching the output voltage by a larger amount, in comparison to the 1/2 V switching magnitude of the above described example, may result in larger amounts of higher frequency signals that are to be filtered out to produce the desired low frequency component.

[0078] FIG. 6 illustrates a multiple level PWM modulator design 600, according to one example. The multiple level PWM modulator design 600 depicts one design of a PWM modulator 602, and its associated connections, that is able to accept an input signal 604 and configure an output driver of a switching mode amplifier to provide an amplified version of the input signal. As described above, the input signal 604 is able to be in an analog format, a digital format, or any format that delivers input signal information to the PWM modulator 602.

[0079] The PWM modulator 602 of this example includes a level detector 606 and a level comparator 608. Referring to the above described examples where the switched output signal is produced by switching between set output voltage levels, the level detector 606 is configured to determine input signal levels that correspond to those set output voltage levels. As described above,

valid input signals are specified to have levels between a +full scale value and a -full scale value. In one example, input values that are beyond this range are treated as though they are at the maximum of that range, i.e., input values above the +full scale value are treated as though they are at the +full scale value and input values less than the -full scale value are treated as though they are at the -full scale value.

[0080] Using the example illustrated in FIG. 5, the switched output signal is produced by switching between five (5) output voltage levels, the -V level 506, the -1/2 V level 508, the zero (0) voltage level 510, the +1/2 V level 512, and the +V level 514. In such an example, the +V level 514 is produced in response to an input signal with a value equal to the +full scale value, and the -V level 506 is produced in response to an input signal with a value equal to the -full scale value. The level detector 606 detects the relationship of the value of the input signal relative to thresholds that result in outputting any of the specified output voltage levels, i.e., the above described five (5) output voltage levels corresponding to the -V level 506, the -1/2 V level 508, the zero (0) voltage level 510, the +1/2 V level 512, and the +V level 514.

[0081] The level comparator 608 receives a saw tooth waveform 622 or a triangular waveform 620 from an oscillator 212. The saw tooth waveform 622 and the triangular waveform 620 generated by the oscillator 212 are described above. The level comparator 608 in one example determines the value of the input signal 604 within the range between levels detected by the level detector 606. In the above example in which the output driver switches between five levels, four regions of values exist between these five values. With reference to FIG. 5, input signal values that fall between the values that correspond to an output voltage level fall into four regions. In particular, a first input region exists between input values that correspond to outputs between the -V level 506 and the -1/2 V level 508, a second input region first input region exists between input values that correspond to outputs between the zero (0) voltage level 510 and the -1/2 V level 508, a third input region exists between input values that correspond to outputs between the zero voltage level 510 and the +1/2 V level 512, and a fourth input region exists between input values that correspond to outputs between the +1/2 V level 512 and the +V level 514.

[0082] The level comparator 608 determines the timing for switching between two output voltage levels. In one example, the level comparator 608 receives level information from the level detector 606 to, for example, shift the level of the input signal 604 to properly align the input signal within the input region for comparison to the saw tooth or triangular waveform received from the oscillator 212.

[0083] The PWM modulator 602 of one example produces a region output 612 and a change output 614. The region output 612 and the change output 614 are examples of commands, or indications, of voltages to provide across a load, such as the load Z 220 described above.

The region output defines the region in which the output voltage falls. In one example, these regions are defined by the two voltages between which the output is switched. In the example of the first region, the output voltage is switched between the -V level 506 and the -1/2 V level 508. The change output 614 is used to determine which of these two output voltages is produced. Stated differently, the change output 614 specifies when to change between the two output voltages that define the region.

[0084] The region output 612 and the change output 614 are provided to a switch driver 630. The switch driver 630 receives the region output 612 and the change output 614, which are indications of the voltage to provide across two ports of a load. The switch driver 630 responds to receiving these indications by producing control signals to control switches in an output driver, such as the switched mode amplifier output driver 300. The switch driver 630 produces an S1 control signal 632, which configures the first switch 316 of the switched mode amplifier output driver 300. The switch driver 630 further produces an S2 control signal 634, which configures the second switch 318 of the switched mode amplifier output driver 300. In one example, the switch driver 630 produces the S1 control signal 632 and the S2 control signal 634 in response to receiving the indications of output voltage to provide across the load that is conveyed by the region output 612 and the change output 614.

[0085] FIG. 7 illustrates a reactive voltage divider charge balancing process 700, according to one example. The reactive voltage divider charge balancing process 700 is an example of processing performed when operating the above described switching mode amplifier output driver 300 in order to maintain a balance of electrostatic charges on the reactive voltage divider formed by the first capacitor 310 and the second capacitor 312. The reactive voltage divider charge balancing process 700 described below describes configuration of an output switching structure that corresponds to the switching structure depicted in the switching mode amplifier output driver 300 that consists of the first switch S1 316 and the second switch S2 318. The following description further refers to switching configurations described above with regards to the switch configuration table 400 as illustrated in FIG. 4.

[0086] The operation of the reactive voltage divider charge balancing process 700 further operates to reduce the distortion that may be induced by variations in the actual values of the two capacitors, e.g., the first capacitor 310 and the second capacitor 312 in the above example, that make up the voltage divider to produce the voltage on the center line 308. In one example, the center line 308 has a voltage that is one half of the voltage across the +V line 304 and the -V line 306 and the first capacitor 310 is specified to have a capacitance value equal to the capacitance value of the second capacitor 312. In actual devices, however, the values of these two capacitors will differ by, for example, the manufacturing tolerances of the capacitors and by further aging or degradation of

those components that may occur due to various reasons. Differences in the values of the capacitance values of the first capacitor 310 and the second capacitor 312 result in the voltage present on the center line 308 differing from its specified value. The voltage difference between the specified voltage of the center line 308 and the actual voltage is proportional to the difference in the actual capacitance values of the first capacitor 310 and the second capacitor 312.

[0087] In an illustration of the difference in voltage between the specified, or design, voltage of the center line 308 and the actual voltage on the center line 308, the first capacitor 310 and the second capacitor 312 are specified to have the same capacitance value, but the actual first capacitor 310 has a capacitance value that is less than the capacitance value of the second capacitor 312. This difference in capacitance values causes the voltage on the center line 308 to be higher than the specified value. As described above, the switching configurations for the first switch 316 and the second switch 318 allow the +1/2 V to be placed across the load 340 with two possible configurations: 1) by the first configuration that places the load 340 between the +V line 304 and the center line 308, or 2) by the second configuration that places the load 340 between the center line 308 and the -V line 806. In the first configuration, the higher voltage of the center line 308 caused by the unequal values of the first capacitor 310 and the second capacitor 312 cause the voltage across the load 340 to be less than the specified +1/2 V, and in the second configuration, the voltage across the load 340 is greater than the specified +1/2 V.

[0088] By alternating the switch configurations that connect the ports of the load 340 to the center line, the variations in voltages across the load when placing +1/2 V across the load will cancel out over time. Stated differently, When $C_1 > C_2$, the center line has a voltage of $+1/2 V + x$, which corresponds to the voltage across the load in the second configuration. The first configuration therefore produces a voltage across the load 340 of $+1/2V - x$. By alternating between $+1/2 V + x$ and $+1/2 V - x$, averaged output voltage, as performed by the low pass filtering of the load 340 in this example, creates an output with reduced distortion caused by component value differences between the first capacitor 310 and the second capacitor 312 relative to their specified values. Similar distortion removal is performed by the reactive voltage divider charge balancing process 700 when placing -1/2 V across the load 340.

[0089] Referring to the above description of the audio amplifier sub-system 200 and multiple level PWM modulator design 600, the reactive voltage divider charge balancing process 700 is at least partially performed in one example by components of the PWM modulator 210, such as the components of the PWM modulator 602. The PWM modulator 210 and PWM modulator 602 are examples of a controller that perform processing to produce indications of the voltage to provide across the load Z

220 and further include components to receive those indications and configure the output driver 214 to provide those voltages.

[0090] The reactive voltage divider charge balancing process 700 begins by receiving, at 702, an output voltage command. In the example described for the switching mode amplifier output driver 300, the output voltage command is able to specify one of five possible values, +V, +1/2V, 0V, -1/2V, and -V. In further examples, other voltage dividing structures are able to be constructed and different possible output voltage commands are possible.

[0091] After receiving the output voltage command, the reactive voltage divider charge balancing process 700 determines, at 704, if the output voltage command is +V. In the event that the command is to set the output voltage to +V, the reactive voltage divider charge balancing process 700 continues by the configuring, at 706, the output switching structure to the eighth configuration, as is described above with regards to FIG. 4. The process then returns to receive, at 702, the next output voltage command.

[0092] If the output voltage command was not +V, the reactive voltage divider charge balancing process 700 determines, at 708, if the output voltage command is -V. In the event that the command is to set the output voltage to -V, the reactive voltage divider charge balancing process 700 continues by the configuring, at 710, the output switching structure to the ninth configuration, as is described above with regards to FIG. 4. The process then returns to receive, at 702, the next output voltage command.

[0093] If the output voltage command was not -V, the reactive voltage divider charge balancing process 700 determines, at 712, if the output voltage command is +1/2V. If the output voltage command is +1/2V, the process determines, at 714, if the prior command to set the output to +1/2V was to configure the switching structure to the first configuration. If the prior +1/2V command was to configure the switching structure to the first configuration, the process configures, at 716, the switching structure to the second configuration. If the prior +1/2V command was not to configure the switching structure to the first configuration, the process continues by configuring, at 718, the output switching structure to the first configuration. The process then returns to receive, at 702, the next output voltage command. Stated differently, the processing performed in response to an output voltage command that is an indication to provide a fraction of the supply voltage, such as +1/2 V, across the load responds to a first indication to provide the fraction of the supply voltage by configuring the switching structure to the first configuration, and responds to a subsequent indication to provide the fraction of the supply voltage by configuring the switching structure to the second configuration.

[0094] If the output voltage command was not +1/2V, the reactive voltage divider charge balancing process 700 determines, at 720, if the output voltage command is -1/2V. If the output voltage command is -1/2V, the

process determines, at 722, if the prior command to set the output to -1/2V was to configure the switching structure to the third configuration. If the prior -1/2V command was to configure the switching structure to the third configuration, the process configures, at 724, the switching structure to the fourth configuration. If the prior -1/2V command was not to configure the switching structure to the third configuration, the process continues by config-

5 uring, at 726, the output switching structure to the third configuration. The process then returns to receive, at 702, the next output voltage command. Stated differently, the processing performed in response to an output voltage command that is an indication to provide a fraction of the supply voltage with an opposite polarity, such as 10 -1/2 V, across the load responds to a first indication to provide the fraction of the supply voltage with the opposite polarity by configuring the switching structure to the third configuration, and responds to a subsequent indication to provide the fraction of the supply voltage by 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965 9970 9975 9980 9985 9990 9995 9999 10000 10005 10010 10015 10020 10025 10030 10035 10040 10045 10050 10055 10060 10065 100

number of commands, or of other indications, to set the output voltage to a particular voltage level occur in a sequence by temporally occurring one after another. These commands or other indications to set the output voltage to a particular voltage are able to occur immediately after one another, or are able to be separated by one or more commands or other indications to set the output voltage to other voltages. A each command to set the output voltage to a particular voltage level that occur in a sequence are able to be separated by one command or indication to set the output voltage level to another voltage level, or they are able to be separated by multiple commands or indications to set the output voltage level to other voltage levels, where these multiple commands are able to indicate the same other voltage level or different other voltage levels.

[0097] FIG. 8 illustrates a least magnitude output switching process 800, according to one example. The least magnitude output switching process 800 is performed by a PWM modulator 214 in one example to command the output driver 214 to operate as a switching mode amplifier in a manner such that changes in output voltages in response to switching voltage levels result in a minimum voltage change at each switching interval. Such operations result in reducing spurious signals produced by the switching operations of the output driver and further improve the performance of the switching mode amplifier.

[0098] With reference to FIG. 2 as described above, the following discussion to an "input signal (Vin)" that is generally between a "+full scale" value and a "-full scale" value. As is common with audio amplifiers, an input voltage range, or digital value range in the instance of a digital input signal interface, is often specified for the amplifier's input and normal amplifier operations assume that the input voltage is within this input voltage range. In the following discussion, this input voltage range is referred to as being between a -full scale value and a full scale value. In the following discussion, the operation of the output driver is described as switching between two voltages. As described above, the switching of the output driver voltage between two voltages is performed with a duty cycle dependent upon the value of the input signal Vin in order to replicate the waveform of the input signal at the output of the output driver when that output is low pass filtered.

[0099] The least magnitude output switching process 800 begins by receiving, at 802, an input signal indicated as "Vin." In the example depicted in FIG. 3, Vin is able to be received through the analog interface 204 or the digital interface 208. As is also described above, in one example the received input signal is compared to saw tooth or triangular waveforms to determine when to switch the output driver between two voltages such that their low frequency components (which roughly correspond to a short term average value) replicate the input waveform.

[0100] After receiving the input signal Vin, the least

magnitude output switching process 800 determines, at 804, if the value of the input signal is between 0 and +1/2 full scale. If the input signal is between 0 and +1/2 full scale, the least magnitude output switching process 800 operates the output driver 214 to switch, at 806, the output voltage on the output 218 that is provided to the load Z 220 between 0 and 1/2V. The process then returns to receive, at 802, the next input signal value (Vin).

[0101] If the value of the input signal is not between 0 and +1/2 full scale, the process determines, at 808, if the input signal is between +1/2 full scale and full scale. If the input signal is between +1/2 full scale and full scale, the least magnitude output switching process 800 operates the output driver 214 to switch, at 810, the output voltage to the load Z 220 between 1/2V and V. The process then returns to receive, at 802, the next input signal value (Vin).

[0102] If the value of the input signal is not between 1/2 full scale and + full scale, the process determines, at 812, if the input signal is between -1/2 full scale and zero (0). If the input signal is between -1/2 full scale and zero, the least magnitude output switching process 800 operates the output driver 214 to switch, at 814, the output voltage to the load Z 220 between - 1/2V and 0V. The process then returns to receive, at 802, the next input signal value (Vin).

[0103] If the value of the input signal is not between -1/2 full scale and zero, the process determines, at 86, if the input signal is between -full scale and -1/2 full scale. If the input signal is between -full scale and -1/2 full scale, the least magnitude output switching process 800 operates the output driver 214 to switch, at 818, the output voltage to the load Z 220 between - 1/2V and -V. The process then returns to receive, at 802, the next input signal value (Vin).

[0104] FIG. 9 is a block diagram of an electronic device and associated components 900 that is able to include the above described systems and perform the above described methods. In this example, an electronic device 952 is a wireless two-way communication device with voice and data communication capabilities. Such electronic devices communicate with a wireless network 950, which is able to include a wireless voice network, a wireless data network, or both, that use one or more wireless communications protocols. Wireless voice communications are performed using either an analog or digital wireless communication channel. Data communications allow the electronic device 952 to communicate with other computer systems via the Internet. Examples of electronic devices that are able to incorporate the above described systems and methods include, for example, a data messaging device, a two-way pager, a cellular telephone with data messaging capabilities, a wireless Internet appliance or a data communication device that may or may not include telephony capabilities.

[0105] The illustrated electronic device 952 is an example electronic device that includes two-way wireless communications functions. Such electronic devices in-

corporate a wireless communication component that includes a wireless communications subsystem including elements such as a wireless transmitter 910, a wireless receiver 912, and associated components such as one or more antenna elements 914 and 916. A digital signal processor (DSP) 908 performs processing to extract data from received wireless signals and to generate signals to be transmitted. The particular design of the communication subsystem is dependent upon the wireless communications network and associated wireless communications protocols with which the device is intended to operate.

[0106] The electronic device 952 includes a microprocessor 902 that controls the overall operation of the electronic device 952. The microprocessor 902 interacts with the above described communications subsystem elements and also interacts with other device subsystems such as flash memory 906, random access memory (RAM) 904, auxiliary input/output (I/O) device 938, USB Port 928, display 934, touch sensor 940, keyboard 936, speaker 932, audio amplifier 942, earpiece 944, a short-range communications subsystem 920, an orientation sensor 954, a handedness indicator 948, a power subsystem and charging controller 926, and any other device subsystems.

[0107] The electronic device 952 in one example includes a microphone 930, which is similar to the above described microphone 106, that picks up ambient sounds including a user's spoken words. Sounds picked up by the microphone 930 are provided to the microprocessor 902 in one example. The microprocessor 902 in that example conditions and processes such audio signals in order to, for example, broadcast the audio over the above described two-way wireless communications functions. The electronic device 952 also includes an audio amplifier 942 that receives audio signals, such as from the microprocessor 902, and amplifies those signals for reproduction by one or both of the speaker 932 and earpiece 944. In one example, the speaker 932 is similar to the above described loudspeaker 104 and the earpiece 944 is similar to the above described earpiece speaker 112.

[0108] The display 934 in one example is able to be a touch screen display such as is discussed above. In this example, the display 934 has an attached touch sensor 940. In the case of a touch screen display, the display 934 and the touch sensor 940 provide user input information to microprocessor 902 in addition to presenting information provided by microprocessor 902. In the case of a touch screen display with touch sensor 940 that is used in conjunction with the display 934, the keyboard 936 may not be included in the electronic device 952 or the keyboard 936 may include a reduced number of keys.

[0109] A power pack 924 is connected to a power subsystem and charging controller 926. The power pack 924 provides power to the circuits of the electronic device 952. The power subsystem and charging controller 926 includes power distribution circuitry for providing power

to the electronic device 952 and also contains power pack charging controller circuitry to manage recharging the power pack 924.

[0110] The USB port 928 provides data communication between the electronic device 952 and one or more external devices. Data communication through USB port 928 enables a user to set preferences through the external device or through a software application and extends the capabilities of the device by enabling information or software exchange through direct connections between the electronic device 952 and external data sources rather than through a wireless data communication network.

[0111] Operating system software used by the microprocessor 902 is stored in flash memory 906. Further examples are able to use a power pack backed-up RAM or other non-volatile storage data elements to store operating systems, other executable programs, or both. The operating system software, device application software, or parts thereof, are able to be temporarily loaded into volatile data storage such as RAM 904. Data received via wireless communication signals or through wired communications are also able to be stored to RAM 904.

[0112] The microprocessor 902, in addition to its operating system functions, is able to execute software applications on the electronic device 952. A predetermined set of applications that control basic device operations, including at least data and voice communication applications, is able to be installed on the electronic device 952 during manufacture. Examples of applications that are able to be loaded onto the device may be a personal information manager (PIM) application having the ability to organize and manage data items relating to the device user, such as, but not limited to, e-mail, calendar events, voice mails, appointments, and task items.

[0113] Further applications may also be loaded onto the electronic device 952 through, for example, the wireless network 950, an auxiliary I/O device 938, USB port 928, short-range communications subsystem 920, or any combination of these interfaces. Such applications are then able to be installed by a user in the RAM 904 or a non-volatile store for execution by the microprocessor 902.

[0114] In a data communication mode, a received signal such as a text message or web page download is processed by the communication subsystem, including wireless receiver 912 and wireless transmitter 910, and communicated data is provided the microprocessor 902, which is able to further process the received data for output to the display 934, or alternatively, to an auxiliary I/O device 938 or the USB port 928. A user of the electronic device 952 may also compose data items, such as e-mail messages, using the keyboard 936, which is able to include a complete alphanumeric keyboard or a telephone-type keypad, in conjunction with the display 934 and possibly an auxiliary I/O device 938. Such composed items are then able to be transmitted over a communication network through the communication subsystem.

[0115] For voice communications, overall operation of

the electronic device 952 is substantially similar, except that received signals are generally reproduced by the speaker 932 or earpiece 944, and signals for transmission are generally produced by a microphone, such as microphone 930. Alternative voice or audio I/O subsystems, such as a voice message recording subsystem, may also be implemented on the electronic device 952. Although voice or audio signal output is generally accomplished primarily through the speaker 932, the display 934 may also be used to provide an indication of the identity of a calling party, the duration of a voice call, or other voice call related information, for example.

[0116] Depending on conditions or statuses of the electronic device 952, one or more particular functions associated with a subsystem circuit may be disabled, or an entire subsystem circuit may be disabled. For example, if the power pack temperature is high, then voice functions may be disabled, but data communications, such as e-mail, may still be enabled over the communication subsystem.

[0117] A short-range communications subsystem 920 is a further optional component which may provide for communication between the electronic device 952 and different systems or devices, which need not necessarily be similar devices. For example, the short-range communications subsystem 920 may include an infrared device and associated circuits and components or a Radio Frequency based communication module such as one supporting Bluetooth® communications, to provide for communication with similarly-enabled systems and devices.

[0118] A media reader 960 is able to be connected to an auxiliary I/O device 938 to allow, for example, loading computer readable program code of a computer program product into the electronic device 952 for storage into flash memory 906. One example of a media reader 960 is an optical drive such as a CD/DVD drive, which may be used to store data to and read data from a computer readable medium or storage product such as computer readable storage media 962. Examples of suitable computer readable storage media include optical storage media such as a CD or DVD, magnetic media, or any other suitable data storage device. Media reader 960 is alternatively able to be connected to the electronic device through the USB port 928 or computer readable program code is alternatively able to be provided to the electronic device 952 through the wireless network 950.

[0119] Information Processing System

[0120] The present subject matter can be realized in hardware, software, or a combination of hardware and software. A system can be realized in a centralized fashion in one computer system, or in a distributed fashion where different elements are spread across several interconnected computer systems. Any kind of computer system - or other apparatus adapted for carrying out the methods described herein - is suitable. A typical combination of hardware and software could be a general purpose computer system with a computer program that,

when being loaded and executed, controls the computer system such that it carries out the methods described herein.

[0121] The present subject matter can also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein, and which - when loaded in a computer system - is able to carry out these methods. Computer program in the present context means any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function either directly or after either or both of the following a) conversion to another language, code or, notation; and b) reproduction in a different material form.

[0122] Each computer system may include, inter alia, one or more computers and at least a computer readable medium allowing a computer to read data, instructions, messages or message packets, and other computer readable information from the computer readable medium. The computer readable medium may include computer readable storage medium embodying non-volatile memory, such as read-only memory (ROM), flash memory, disk drive memory, CD-ROM, and other permanent storage. Additionally, a computer medium may include volatile storage such as RAM, buffers, cache memory, and network circuits. Furthermore, the computer readable medium may comprise computer readable information in a transitory state medium such as a network link and/or a network interface, including a wired network or a wireless network, that allow a computer to read such computer readable information.

[0123] Non-Limiting Examples

[0124] Although specific embodiments of the subject matter have been disclosed, those having ordinary skill in the art will understand that changes can be made to the specific embodiments without departing from the spirit and scope of the disclosed subject matter. The scope of the disclosure is not to be restricted, therefore, to the specific embodiments, and it is intended that the appended claims cover any and all such applications, modifications, and embodiments within the scope of the present disclosure.

45

Claims

1. A switching mode amplifier, comprising:

50 a power supply input (304, 306) receiving a supply voltage across a first input (304) and a second input (306);
 a reactive voltage divider (310, 312) coupling the first input and the second input to a center line (308), and produces a fraction of the supply voltage on the center line;
 55 a switching structure (316, 318) configurable to:

selectably couple a first port (342) to one of the first input, the second input, and the center line; and

selectably couple a second port (344) to one of the first input, the second input, and the center line; and

a controller (210) configured to:

configure, in response to a first indication to provide the fraction of the supply voltage across the first port and the second port, the switching structure into a first configuration (718), the first configuration coupling the first port to the first input and coupling the second port to the center line (410); and

configure, in response to a subsequent indication to provide the fraction of the supply voltage across the first port and the second port, the switching structure into a second configuration (716), the second configuration coupling the first port to the center line and coupling the second port to the second input (412), wherein the subsequent indication occurs after the first indication.

2. The switching mode amplifier of claim 1, wherein the controller is further configured to alternate configuring the switching structure into the first configuration and into the second configuration in response to receiving each indication to provide the fraction of the supply voltage across the first port and the second port (714).

3. The switching mode amplifier of any of claims 1, or 2, wherein the reactive voltage divider comprises a series connected first reactive component having a first value and a second reactive component having a second value, wherein the first value is substantially equal to the first value.

4. The switching mode amplifier of claim 3, wherein the first reactive component comprises a first capacitor (310), and wherein the second reactive component comprises a second capacitor (312).

5. The switching mode amplifier of any of claims 1, 2, 3, or 4, wherein the controller is further configured to:

configure, in response to a first indication to provide the fraction of the supply voltage across the first port and the second port with an opposite polarity, the switching structure into a third configuration (726), the third configuration coupling the first port to the second input and coupling the second port to the center line (414); and

configuring, in response to a second indication to provide the fraction of the supply voltage across the first port and the second port with the opposite polarity, the switching structure into a fourth configuration (724), the fourth configuration coupling the first port to the center line and coupling the second port to the second input (416), wherein the second indication to provide the fraction of the supply voltage across the first port and the second port with an opposite polarity occurs subsequent to the first indication to provide the fraction of the supply voltage across the first port and the second port with an opposite polarity.

6. The switching mode amplifier of claim 5, wherein the controller is further configured to alternate configuring the switching structure into the third configuration and into the fourth configuration in response to receiving each indication to provide the fraction of the supply voltage with the opposite polarity across the first port and the second port (722).

7. The switching mode amplifier of any of claims 1, 2, 3, 4, 5, or 6, wherein the controller is further configured to:

configure, in response to a first indication to provide zero voltage across the first port and the second port, the switching structure into a fifth configuration (736), the fifth configuration coupling the first port to the first input and coupling the second port to the first input (418);

configure, in response to a second indication to provide a zero voltage across the first port and the second port, the switching structure into a sixth configuration (730) the sixth configuration coupling the first port to the center line and coupling the second port to the center line (420); and

configure, in response to a third indication to provide zero voltage across the first port and the second port, the switching structure into a seventh configuration (734), the seventh configuration coupling the first port to the second input and coupling the second port to the second input (422),

wherein the first indication to provide a zero voltage, the second indication to provide a zero voltage, and the third indication to provide a zero voltage occur in a sequence.

8. A method for operating a switched mode amplifier, the method comprising:

configuring, in response to a first indication to provide a fraction of a supply voltage across a first port (342) and a second port (344), a switching structure into a first configuration (718), wherein the switching structure (316, 318) selectively couples the first port to one of a first

input (304), a second input (306), and a center line (308); and selectively couples the second port to one of the first input, the second input, and the center line,
 wherein the first input and the second input receive the supply voltage,
 wherein a reactive voltage divider (310, 312) couples the first input and the second input to the center line, and produces a fraction of the supply voltage on the center line, and
 wherein the first configuration couples the first port to the first input and couples the second port to the center line (410); and
 configuring, in response to a subsequent indication to provide a fraction of the supply voltage across the first port and the second port, the switching structure into a second configuration (716), the second configuration coupling the first port to the center line and coupling the second port to the second input (412), wherein the subsequent indication occurs after the first indication.

9. The method of claim 8, wherein the reactive voltage divider comprises a series connected first reactive component having a first value and a second reactive component having a second value, wherein the first value is substantially equal to the first value.

10. The method of any of claims 8 or 9, further comprising alternating configuring the switching structure into the first configuration and into the second configuration in response to receiving each indication to provide the fraction of the supply voltage across the first port and the second port (714).

11. The method of any of claims 8, 9, or 10, further comprising:
 configure, in response to a first indication to provide a fraction of the supply voltage across the first port and the second port with an opposite polarity, the switching structure into a third configuration (726), the third configuration comprising configuring the first switching structure to connect the first port to the second input and configure the second switching structure to connect the second port to the center line (414); and
 configure, in response to a second indication to provide a fraction of the supply voltage across the first port and the second port, the switching structure into a fourth configuration (724), the fourth configuration coupling the first port to the center line and coupling the second port to the second input, wherein the second indication occurs subsequent to the first indication (416).

12. The method of claim 11, further comprising alternat-

ing configuring the switching structure into the third configuration and into the fourth configuration in response to receiving each indication to provide the fraction of the supply voltage with the opposite polarity across the first port and the second port (722).

13. The method of any of claims 8, 9, 10, 11, or 12, further comprising:
 configuring, in response to a first indication to provide zero voltage across the first port and the second port, the switching structure into a fifth configuration (736), the fifth configuration coupling the first port to the first input and coupling the second port to the first input (418);
 configuring, in response to a second indication to provide a zero voltage across the first port and the second port, the switching structure into a sixth configuration (730), the sixth configuration coupling the first port to the center line and coupling the second port to the center line (420); and
 configuring, in response to a third indication to provide zero voltage across the first port and the second port, the switching structure into a seventh configuration (734), the seventh configuration coupling the first port to the second input and coupling the second port to the second input (422),
 wherein the first indication to provide a zero voltage, the second indication to provide a zero voltage, and the third indication to provide a zero voltage occur in a sequence.

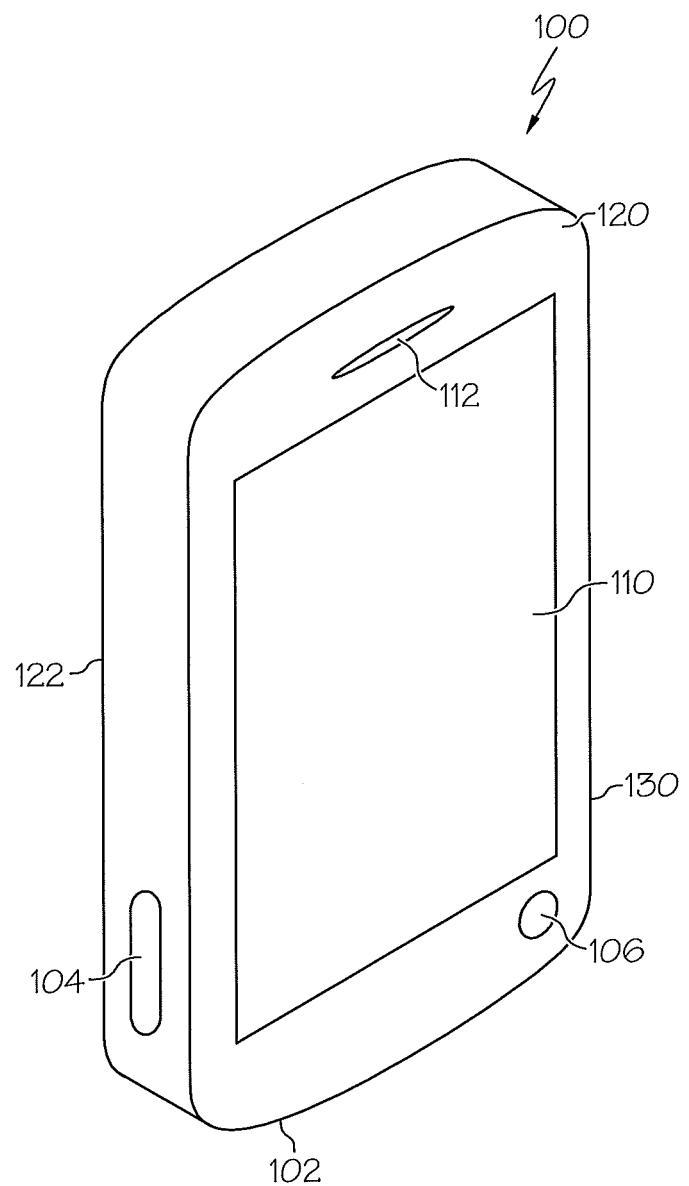


FIG. 1

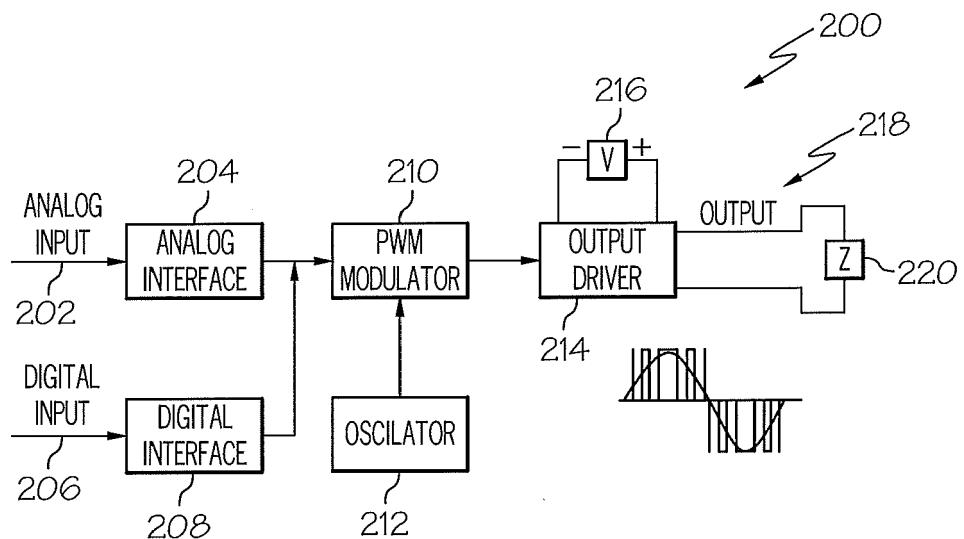


FIG. 2

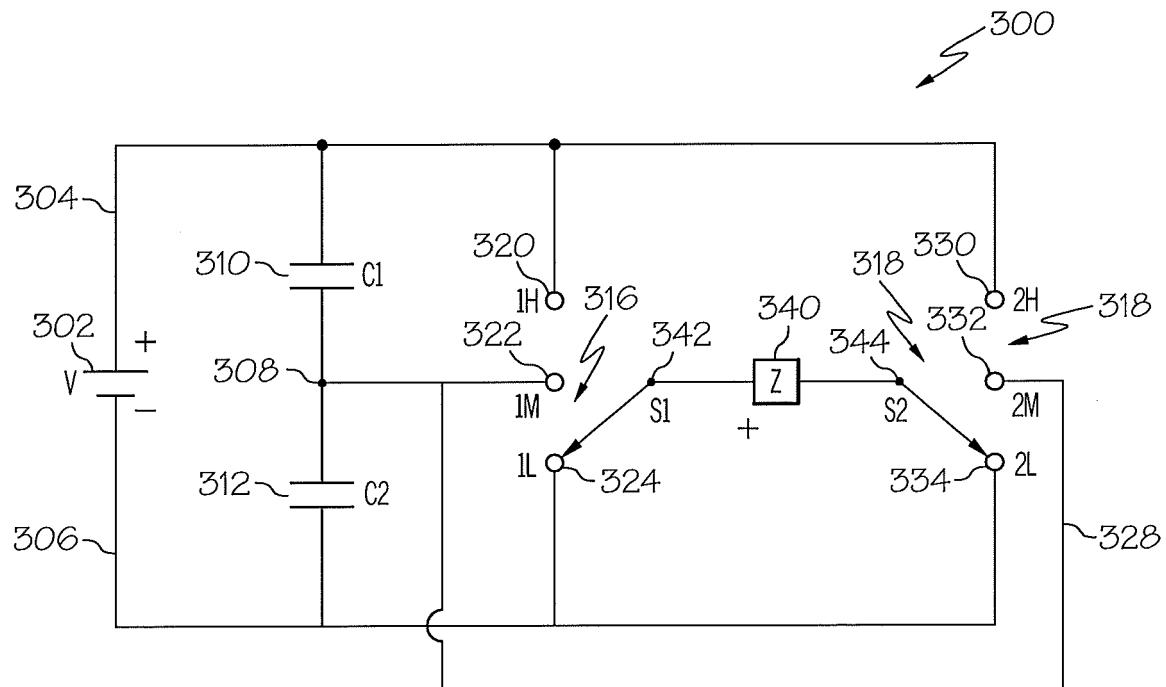


FIG. 3

	SWITCH CONFIGURATION	VOLTAGE ACROSS LOAD Z	SWITCH COUPLINGS
410 →	FIRST CONFIGURATION	+1/2V	FIRST SWITCH S1 → +V SECOND SWITCH S2 → CENTER POINT
412 →	SECOND CONFIGURATION	+1/2V	FIRST SWITCH S1 → CENTER POINT SECOND SWITCH S2 → -V
414 →	THIRD CONFIGURATION	-1/2V	FIRST SWITCH S1 → CENTER POINT SECOND SWITCH S2 → +V
416 →	FOURTH CONFIGURATION	-1/2V	FIRST SWITCH S1 → -V SECOND SWITCH S2 → CENTER POINT
418 →	FIFTH CONFIGURATION	0V	FIRST SWITCH S1 → +V SECOND SWITCH S2 → +V
420 →	SIXTH CONFIGURATION	0V	FIRST SWITCH S1 → CENTER POINT SECOND SWITCH S2 → CENTER POINT
422 →	SEVENTH CONFIGURATION	0V	FIRST SWITCH S1 → -V SECOND SWITCH S2 → -V
424 →	EIGHTH CONFIGURATION?	+V	FIRST SWITCH S1 → +V SECOND SWITCH S2 → -V
426 →	NINTH CONFIGURATION	-V	FIRST SWITCH S1 → -V SECOND SWITCH S2 → +V

FIG. 4

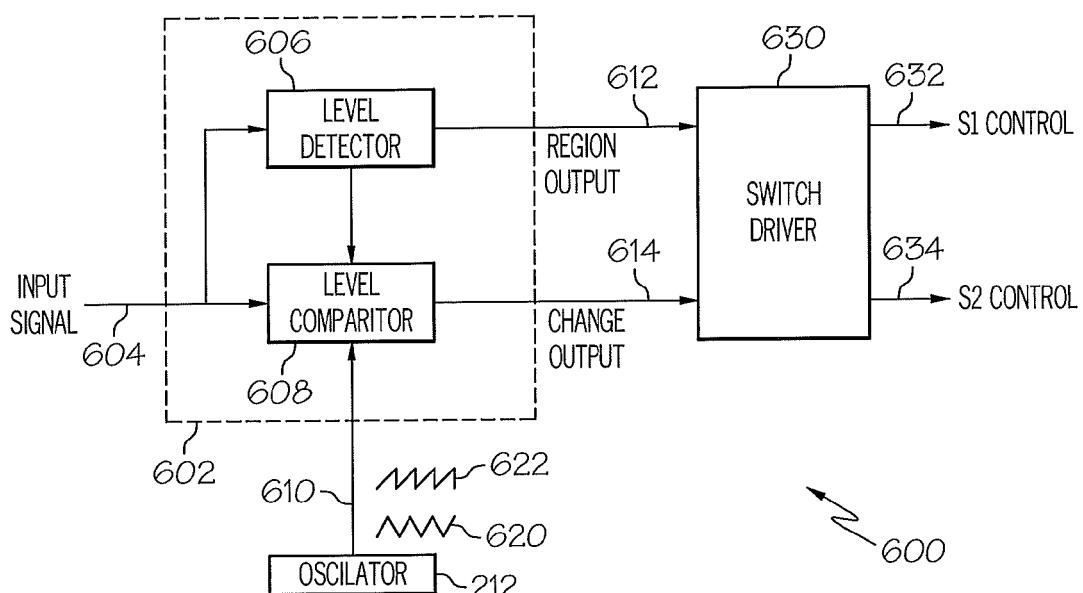
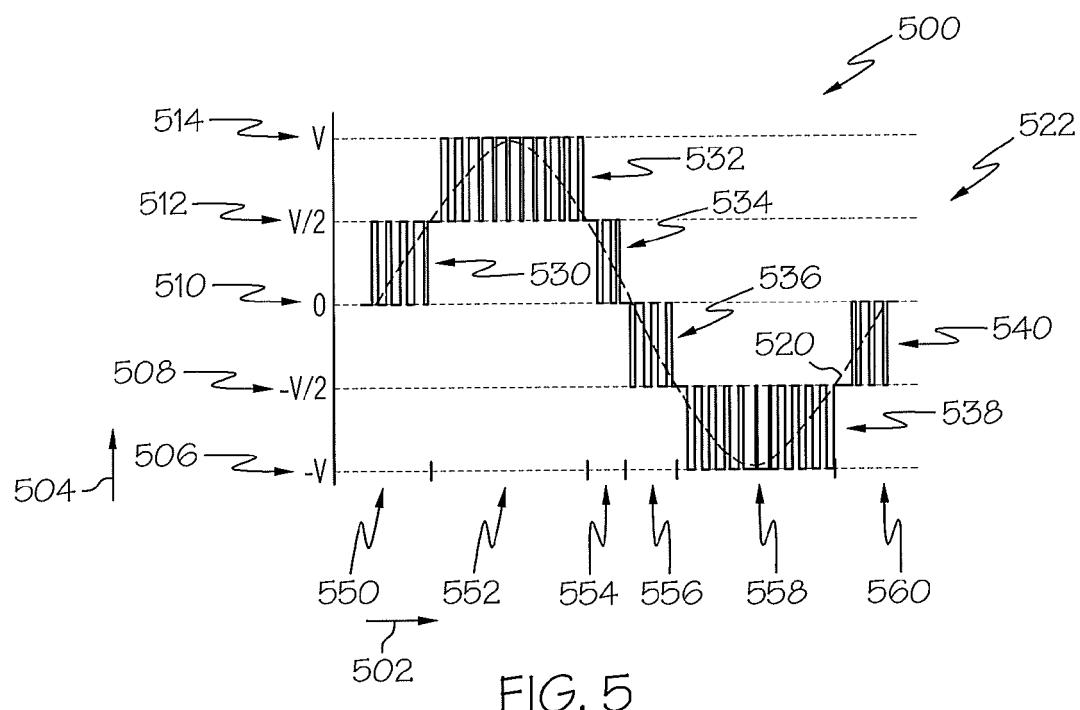



FIG. 6

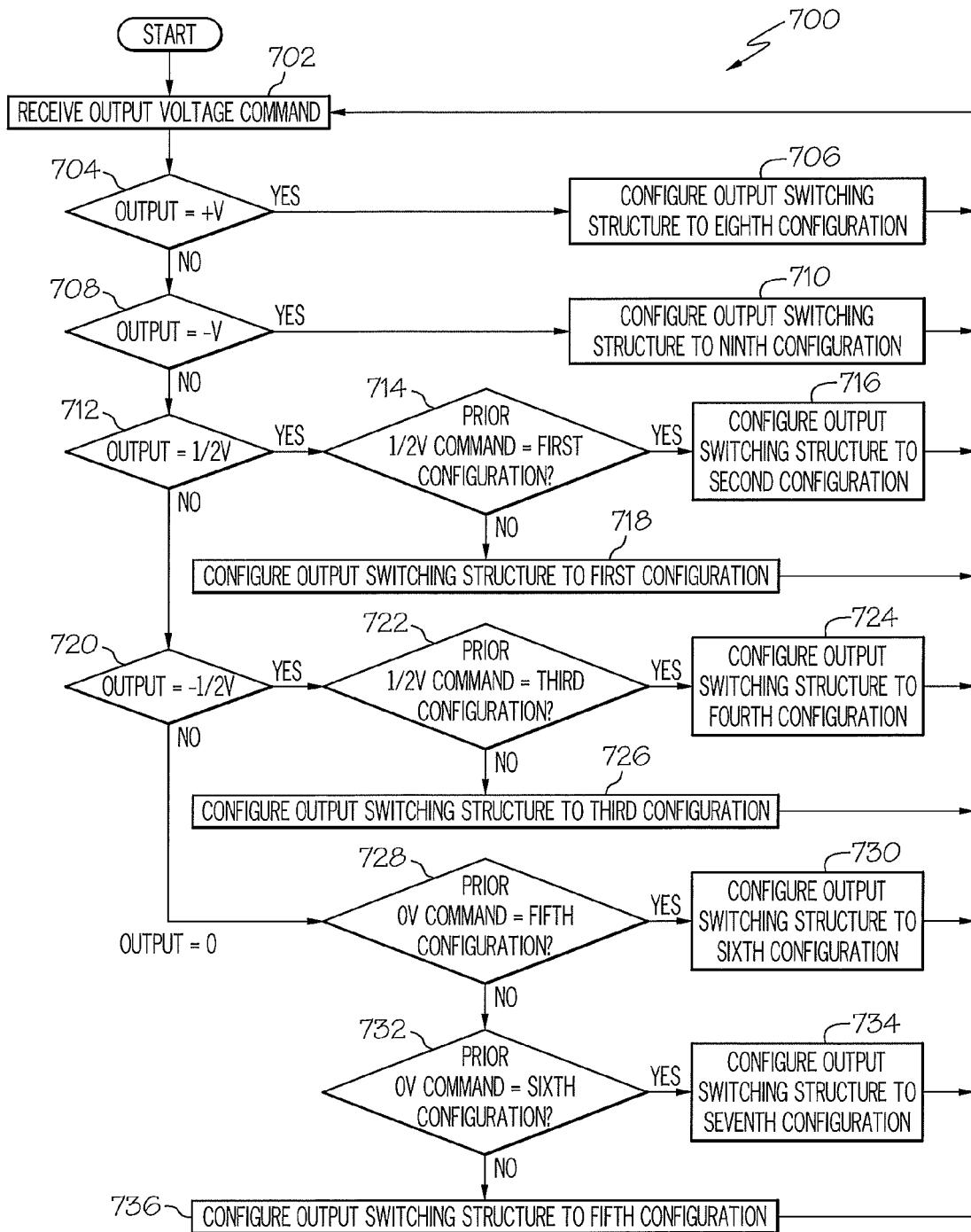


FIG. 7

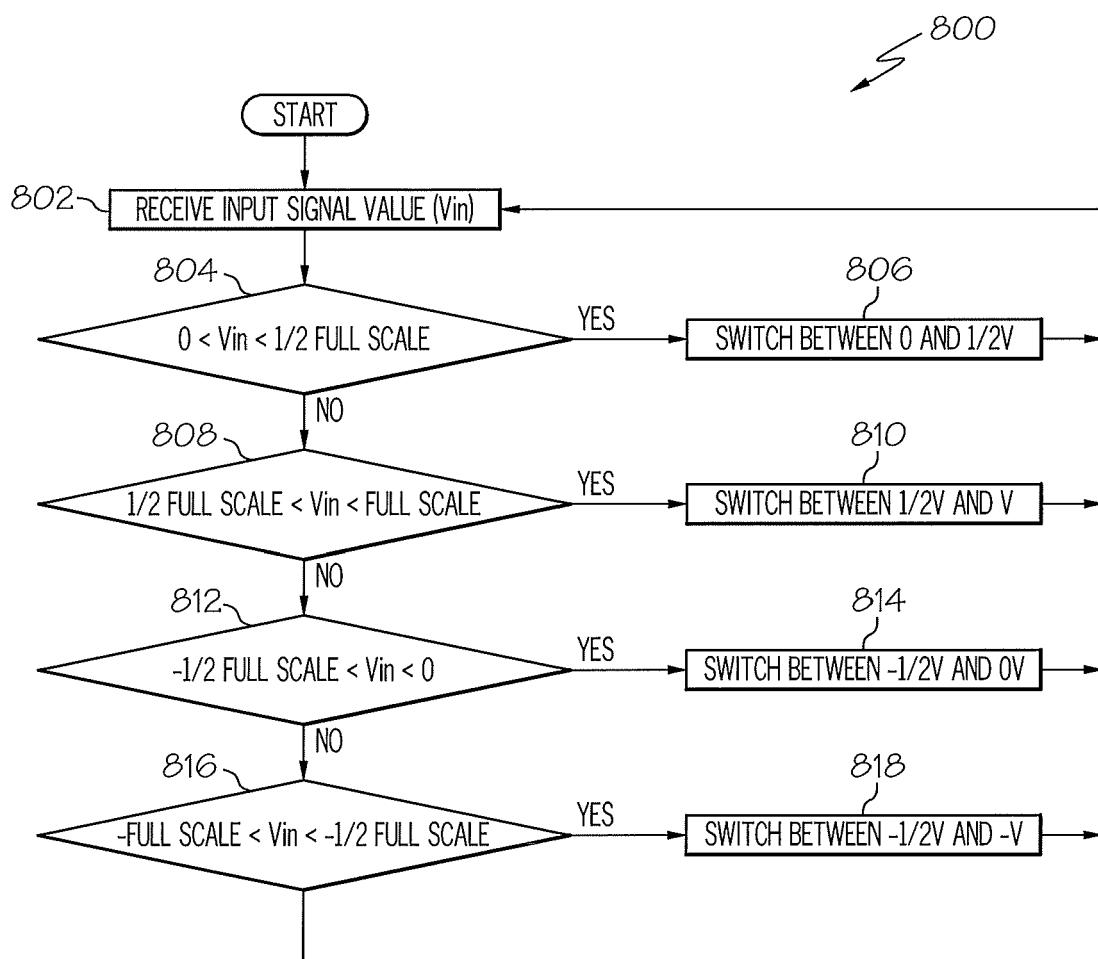


FIG. 8

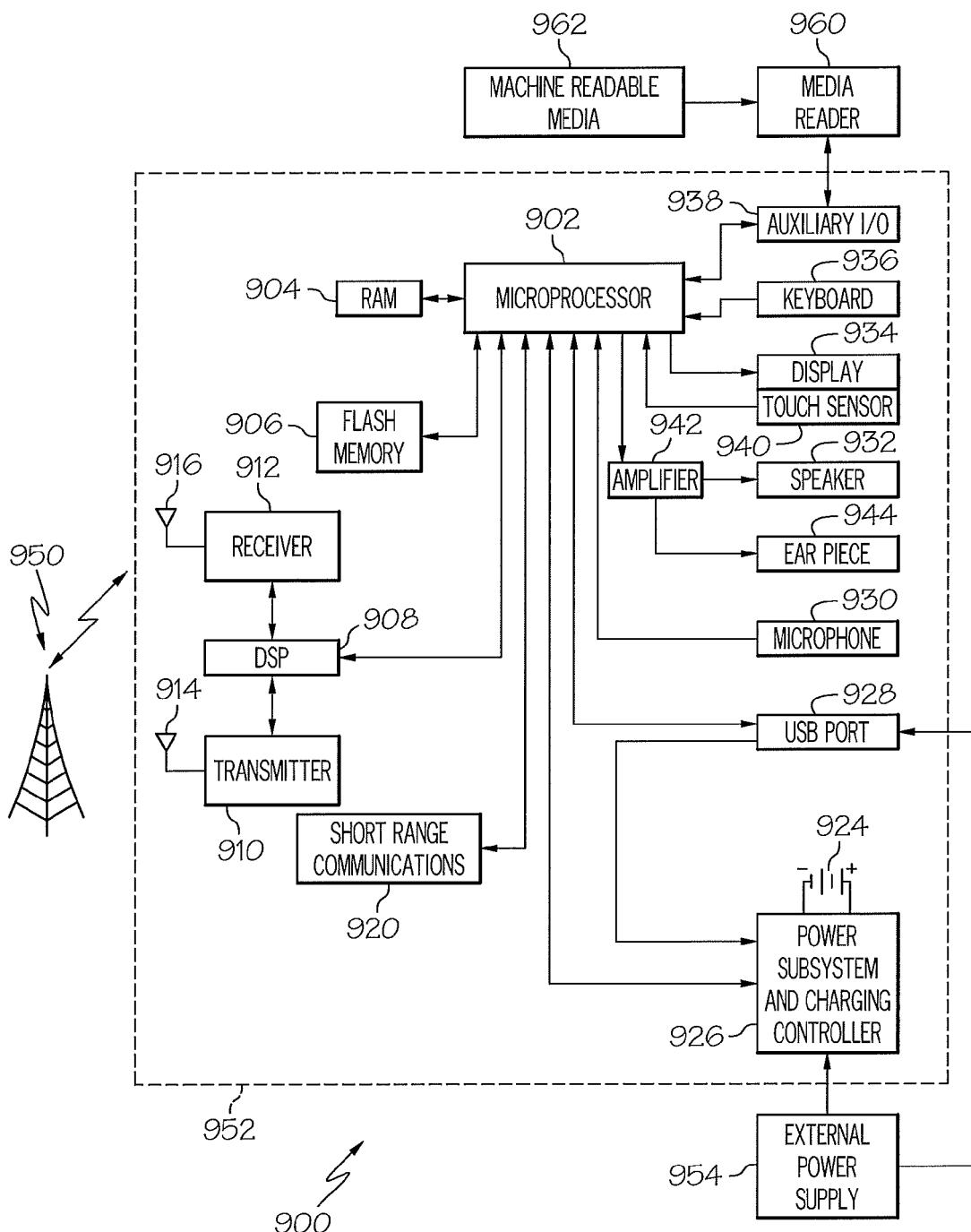


FIG. 9

EUROPEAN SEARCH REPORT

Application Number
EP 12 18 1598

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (IPC)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
A	WO 2012/055968 A1 (MERUS APS [DK]; HOEYERBY MIKKEL [DK]) 3 May 2012 (2012-05-03) * figure 7 *	1,8	INV. H03F3/217
A	US 4 894 621 A (KOENIG LAWRENCE W [US] ET AL) 16 January 1990 (1990-01-16) * figure 2 *	1,8	
A	US 2010/231298 A1 (NORIMATSU TAKASHI [JP] ET AL) 16 September 2010 (2010-09-16) * abstract *	1,8	
A	US 6 169 681 B1 (KEMP III ALSON R [US] ET AL) 2 January 2001 (2001-01-02) * figures 2, 3 *	1,8	

			TECHNICAL FIELDS SEARCHED (IPC)
			H03F
The present search report has been drawn up for all claims			
1	Place of search	Date of completion of the search	Examiner
	Munich	28 January 2013	Agerbaek, Thomas
CATEGORY OF CITED DOCUMENTS			
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			
T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document			

**ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.**

EP 12 18 1598

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

28-01-2013

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 2012055968	A1	03-05-2012	NONE		
US 4894621	A	16-01-1990	NONE		
US 2010231298	A1	16-09-2010	CN 101841307 A		22-09-2010
			JP 2010213114 A		24-09-2010
			KR 20100102546 A		24-09-2010
			US 2010231298 A1		16-09-2010
US 6169681	B1	02-01-2001	AU 3237500 A		21-09-2000
			TW 466818 B		01-12-2001
			US 6169681 B1		02-01-2001
			WO 0052812 A1		08-09-2000