(11) **EP 2 708 650 A2**

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:19.03.2014 Patentblatt 2014/12

(51) Int Cl.: **E01C 23/088** (2006.01)

E01C 21/00 (2006.01)

(21) Anmeldenummer: 13002815.2

(22) Anmeldetag: 31.05.2013

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

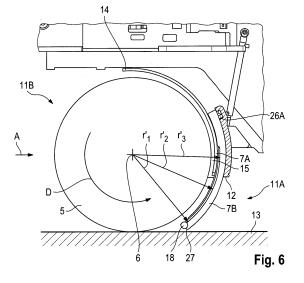
Benannte Erstreckungsstaaten:

BA ME

(30) Priorität: 25.06.2012 DE 102012012397

(71) Anmelder: Wirtgen GmbH 53578 Windhagen (DE)

(72) Erfinder:


Franzmann, Dirk
 53773 Hennef (DE)

- Berning, Christian 50321 Brühl (DE)
- Ley, Herbert 53562 St. Katharinen (DE)
- Barimani, Cyrus, Dr.
 53639 Königswinter (DE)
- Hähn, Günter, Dr.
 53639 Königswinter (DE)
- (74) Vertreter: Oppermann, Frank
 OANDO Oppermann & Oppermann LLP
 Washingtonstrasse 75
 65189 Wiesbaden (DE)

(54) Selbstfahrende Baumaschine

(57) Die Erfindung betrifft eine selbstfahrende Baumaschine, insbesondere Straßenfräsmaschine, Recycler oder Stabilisierer, mit einer Arbeitswalze 5 und einem die Arbeitswalze umschließenden Walzengehäuse 7B, das von einem in Arbeitsrichtung vorderen und/oder hinteren Abdichtelement 7A und/oder seitlichen Abdichtelement verschlossen wird. Die Baumaschine weist eine Einrichtung zum Anheben und Absenken des Abdichtelements auf, die das Abdichtelement mit einer vorgegebenen Auflagekraft auf den Boden gedrückt hält.

Die Einrichtung zum Anheben und Absenken weist eine Messeinheit 26 auf, die derart ausgebildet ist, dass die Messeinheit, die beim Anstoßen des Abdichtelements an einem Hindernis auf das Abdichtelement einwirkende Kraft misst. Darüber hinaus weist die Einrichtung zum Anheben und Absenken eine Steuereinheit auf, die derart ausgebildet ist, dass die Steuereinheit ein Steuersignal zum Anheben des Abdichtelements erzeugt, wenn die mit der Messeinheit gemessene Kraft größer als ein vorgegebener Grenzwert ist, so dass das Abdichtelement angehoben wird.

Beschreibung

[0001] Die Erfindung betrifft eine selbstfahrende Baumaschine, insbesondere Straßenfräsmaschine, Recycler oder Stabilisierer, mit einem Maschinenrahmen und einer Arbeitseinrichtung, wobei die Arbeitseinrichtung eine Arbeitswalze und ein die Arbeitswalze umschließendes Walzengehäuse aufweist.

1

[0002] Mit den bekannten Straßenfräsmaschinen kann der Straßenbelag konturgetreu und eben abgefräst werden. Die bekannten Straßenfräsmaschinen verfügen über eine Fräseinrichtung, die eine Fräswalze zum Abfräsen des Materials aufweist. Bei einer Hecklader-Straßenfräsmaschine wird das Fräsgut dem nachfolgenden LKW über das Heck der Fräsmaschine zugeführt.

[0003] Von den Straßenfräsmaschinen sind die sogenannten Stabilisierer oder Recycler zu unterscheiden, die durch Zugabe von Bindemitteln aus einem nicht tragfähigen Untergrund, beispielsweise einem losen Boden (Stabilisierer) oder einer schadhaften Fahrbahn (Recycler) einen tragfähigen Unterbau herstellen, der für die spätere Überbauung mit einer Fahrbahn geeignet ist.

[0004] Straßenfräsmaschinen und Stabilisierer oder Recycler haben gemeinsam, dass die Arbeitseinrichtung eine Arbeitswalze und ein die Arbeitswalze umschließendes Walzengehäuse aufweist, das von mindestens einem in Arbeitsrichtung hinter der Arbeitswalze angeordneten Abdichtelement verschlossen ist, das auch als Abstreifelement bezeichnet wird. Straßenfräsmaschinen verfügen neben dem hinteren Abdichtelement noch über ein in Arbeitsrichtung vor der Fräswalze angeordnetes Abdichtelement, das auch als Niederhalter bezeichnet wird. Neben dem Niederhalter und dem Abstreifer weisen die Straßenfräsmaschinen einen in Arbeitsrichtung sich erstreckenden rechten und linken Kantenschutz auf, die das Walzengehäuse seitlich verschließen.

[0005] In der Praxis stellt sich bei sämtlichen Abdichtelementen grundsätzlich das Problem, dass das Abdichtelement bei Unebenheiten an Hindernissen anschlagen kann. Daher muss das Abdichtelement in der Höhe verstellbar sein. Dieses Problem stellt sich insbesondere bei dem sich quer zur Arbeitsrichtung erstreckenden vorderen und hinteren Abdichtelement. Das Problem des Verkantens stellt sich insbesondere bei dem hinteren Abdichtelement, da das hintere Abdichtelement in Arbeitsrichtung angestellt ist und im Allgemeinen an der unteren Kante mit scheidenförmigen Hartmetallelementen bestückt ist. Dieses Problem wird bei dem hinteren Abdichtelement noch dadurch erhöht, da dieses Abdichtelement im Allgemeinen mit einer Andruckkraft beaufschlagt wird.

[0006] Eine Straßenfräsmaschine mit einem vorderen Niederhalter und einem hinteren Abstreifelement ist beispielsweise aus der EP 2 050 875 A2 bekannt. Zur Höhenverstellung des Niederhalters verfügt die Straßenfräsmaschine über ein Nachführorgan, mit dem der Niederhalter über einen Steuerhebel derart gelenkig verbunden ist, dass beim Anschlagen des Nachführorgans an

einem Hindernis der Niederhalter angehoben wird.

[0007] Die US 4 723 867A beschreibt eine Straßenfräsmaschine, dessen Fräswalzengehäuse ein vorderes und hinteres Abdichtelement aufweist. Beide Abdichtelemente können in der Höhe verstellt werden, so dass die Fräswalze zugänglich ist.

[0008] Der Erfindung liegt die Aufgabe zu Grunde, eine selbstfahrende Baumaschine zu schaffen, bei der das Walzengehäuse in Arbeitsrichtung nach vorne und/oder hinten und/oder seitlich abgedichtet ist, ohne dass die Gefahr einer Blockade durch das an einem Hindernis anstoßende Abdichtelement besteht.

[0009] Die Lösung dieser Aufgabe erfolgt erfindungsgemäß mit den Merkmalen des Patentanspruchs 1. Die Unteransprüche betreffen bevorzugte Ausführungsformen der Erfindung.

[0010] Die Erfindung betrifft eine selbstfahrende Baumaschine, insbesondere eine Straßenfräsmaschine, einen Stabilisierer oder Recycler, der über mindestens ein vorderes und/oder mindestens ein hinteres Abdichtelement und/oder mindestens ein seitliches Abdichtelement verfügt.

[0011] Unter einem Abdichtelement ist jedes Element zu verstehen, mit dem das Walzengehäuse zum Boden hin verschlossen wird. Dies bedeutet aber nicht, dass das Walzengehäuse dicht verschlossen ist. Dem jeweiligen Abdichtelement oder den jeweiligen Abdichtelementen ist eine Einrichtung zum Anheben und Absenken zugeordnet, die derart ausgebildet ist, dass das Abdichtelement oder die Abdichtelemente mit einer vorgegebenen Auflagekraft auf dem Boden aufliegen oder auf Boden gedrückt werden. Bei einer Baumaschine mit einem vorderen und einem hinteren Abdichtelement sind beispielsweise zwei Einrichtungen zum Anheben und Absenken vorgesehen.

[0012] Für das Funktionsprinzip der Erfindung ist unerheblich, wie die Einrichtung zum Anheben und Absenken des mindestens einen Abdichtelements beschaffen ist, solange das Abdichtelement mit einer vorgegebenen Auflagekraft auf dem Boden aufliegt, wenn das Abdichtelement nicht angehoben wird. Die Auflagekraft des Abdichtelements kann die Gewichtskraft des Abdichtelements sein. Das Abdichtelement kann aber mit einer Auflagekraft auf den Boden gedrückt werden, die größer als die Gewichtskraft des Abdichtelements ist.

[0013] Die erfindungsgemäße Baumaschine zeichnet sich dadurch aus, dass die Einrichtung zum Anheben und Absenken des Abdichtelements eine Messeinheit aufweist, die derart ausgebildet ist, dass die Messeinheit die beim Anstoßen des Abdichtelements an einem Hindernis auf das Abdichtelement einwirkende Kraft misst. Darüber hinaus weist die Einrichtung zum Anheben und Absenken eine Steuereinheit auf, die derart ausgebildet ist, dass die Steuereinheit ein Steuersignal zum Anheben des Abdichtelements erzeugt, wenn die mit der Messeinheit gemessene Kraft größer als ein vorgegebener Grenzwert ist, so dass das Abdichtelement angehoben wird.

40

25

30

40

45

50

[0014] Die mit der Messeinheit gemessene Kraft ist vorzugsweise die im Wesentlichen horizontale Kraftkomponente, die auf das Abdichtelement beim Anschlagen an einem Hindernis einwirkt. Es ist aber auch möglich, dass die gemessene Kraft eine vertikale Komponente hat. Die Kraft muss auch nicht absolut bestimmt werden. Vielmehr genügt es, wenn die Kraft quantitativ ermittelt wird. Auch muss die Kraft nicht in ihrer eigentlichen physikalischen Einheit direkt gemessen werden, sondern kann über beliebige physikalische Prinzipien gewandelt in einer anderen physikalischen Einheit, wie Druck, Weg oder dergleichen gemessen werden, wenn sich diese physikalischen Größen einfacher erfassen lassen sollten.

[0015] Der Vorteil des erfindungsgemäßen Abdichtelements liegt darin, dass Hindernisse in Arbeitsrichtung der Baumaschine dadurch erkannt werden, dass die auf das Abdichtelement einwirkende Kraft einen Grenzwert überschreitet. Wenn dies der Fall ist, wird das Abdichtelement automatisch angehoben. Das Abdichtelement wird nur solange angehoben, bis die gemessene Kraft wieder unter dem Grenzwert liegt. In diesem Fall wird angenommen, dass das Hindernis überwunden ist und wieder in den ursprünglichen Betriebsmodus oder einen vorwählbaren anderen Betriebsmodus gewechselt werden kann. Der Grenzwert für die gemessene Kraft sollte derart bemessen sein, dass das Abdichtelement nicht schon bei sehr kleinen Kräften angehoben wird. Wenn das Abdichtelement angehoben ist, kann das Abdichtelement in der angehobenen Stellung verbleiben. Das Abdichtelement verbleibt beispielsweise in der angehobenen Stellung, wenn das Hindernis eine Stufe ist. Das Abdichtelement kann sich aber auch wieder absenken, wenn das Hindernis keine Stufe ist. Wenn sich die Einrichtung zum Anheben und Absenken des Abdichtelements vor dem Anheben in dem Betriebsmodus der sogenannten Schwimmstellung befunden hat, in der das Abdichtelement mit einer vorgegebenen Auflagekraft auf dem Boden aufliegend gehalten wird, kann die Einrichtung zum Anheben und Absenken des Abdichtelements beispielweise wieder in die Schwimmstellung zurückkehren, wenn die gemessene Kraft wieder den vorgegebenen Grenzwert unterschreitet. Dann kann sich das Abdichtelement automatisch nach unten bewegen, wenn die Höhe des Geländes abnimmt, d. h. das Abdichtelement kann dann wieder der Kontur des Geländes folgen. Die Einrichtung zum Anheben und Absenken des Abdichtelements kann aber auch in einen vorwählbaren anderen Betriebsmodus schalten, wenn die gemessene Kraft wieder den vorgegebenen Grenzwert unterschreitet, z. B. in einen Betriebsmodus, in dem das Abdichtelement durch eine Rückstellkraft unterstützt abgesenkt

[0016] Bei einer bevorzugten Ausführungsform erzeugt die Steuereinheit ein zweites Steuersignal, wenn die Kraft kleiner als der vorgegebene Grenzwert ist, so dass die Einrichtung zum Anheben und Absenken in einen Betriebsmodus umschaltet, in dem das Abdichtele-

ment seine Stellung beibehalten oder sich absenken kann. Die Absenkung des Abdichtelements kann allein unter Wirkung der Schwerkraft erfolgen oder von der Einrichtung zum Anheben und Absenken des Abdichtelements mit einer zusätzlichen Rückstellkraft unterstützt werden. Allein entscheidend ist, dass das Abdichtelement wieder mit der vorgegebenen Auflagekraft auf dem Boden aufliegt.

[0017] Bei einer bevorzugten Ausführungsform weist die Einrichtung zum Anheben und Absenken des Abdichtelements einen oder mehrere Kolben/Zylinder-Anordnungen auf, deren Zylinder gelenkig mit dem Maschinenrahmen und deren Kolben gelenkig mit dem Abdichtelement oder deren Zylinder gelenkig mit dem Abdichtelement und deren Kolben gelenkig mit dem Maschinenrahmen verbunden sind. Die Kolben/Zylinder-Anordnung kann hydraulisch oder pneumatisch betätigt werden. Es ist aber auch ein elektromotorischer Antrieb möglich. Die hierzu erforderlichen Baugruppen gehören zum Stand der Technik.

[0018] Mit dem automatischen Anheben bzw. Absenken des Abdichtelements wird der Maschinenführer der Baumaschine entlastet. Weiterhin wird die Stabilität der Maschine verbessert und ein gleichbleibender Vorschub sichergestellt, da nicht die Gefahr besteht, dass sich die Maschine von Hindernissen losreißt. Darüber hinaus wird der Verschleiß des Abdichtelements verringert. Die erfindungsgemäße Steuerung des Abdichtelements kann während des Betriebs der Baumaschine immer in Betrieb sein oder auch vom Maschinenführer ausgeschaltet werden, so dass das Anheben und Absenken des Abdichtelements von Hand gesteuert werden kann. [0019] Eine weitere bevorzugte Ausführungsform der Erfindung sieht ein Anschlagelement insbesondere an dem vorderen oder hinteren Abdichtelement vor, das sich über die untere Kante des Abdichtelements hinaus nach unten erstreckt. Das Anschlagelement ist vorzugsweise ein plattenförmiges Element, das sich über die Breite des Abdichtelements erstreckt. Es ist aber auch möglich, dass sich das Anschlagelement nur über einen Teil der Breite des Abdichtelements erstreckt.

[0020] Bei einer besonders bevorzugten Ausführungsform insbesondere des vorderen oder hinteren Abdichtelements ist ein oberer Abschnitt des Anschlagelements an dem Abdichtelement unter einer federnden Vorspannung befestigt, so dass das Anschlagelement beim Anschlagen an ein Hindernis aus einer ersten Position, in der der obere Abschnitt des Anschlagelements an dem Abdichtelement anliegt, entgegen der federnden Vorspannung in eine zweite Position verschoben wird, in der der obere Abschnitt des Anschlagelements von dem Abdichtelement absteht. Das Anschlagelement kann entweder linear geführt oder verschwenkbar an dem Abdichtelement befestigt sein. Entscheidend ist, dass das Anschlagelement seine Position ändert, so dass das Anschlagen an ein Hindernis erkannt werden kann.

[0021] Bei einer weiteren besonders bevorzugten Ausführungsform ist der obere Abschnitt des Anschlagele-

ments auf einer Achse verschiebbar geführt, die senkrecht auf der Ebene des Abdichtelements steht. Das Anschlagelement kann aber auch auf einer schräg zu der Ebene des Abdichtelements verlaufenden Achse geführt sein.

[0022] Die Führung des Anschlagelements an dem Abdichtelement kann mindestens einen Führungsbolzen umfassen, der sich durch eine Bohrung in dem Anschlagelement erstreckt. Vorzugsweise sind mehrere über die Breite des Abdichtelements verteilt angeordnete Führungsbolzen vorgesehen. Der Führungsbolzen weist vorzugsweise ein Schraubgewinde auf, und das Anschlagelement ist vorzugsweise mit einer Schraube verschraubt, wobei zwischen der Schraube und dem Anschlagelement eine Feder angeordnet ist, so dass das Anschlagelement federnd gegen das Abdichtelement vorgespannt ist. Durch Andrehen und Lösen der Schraube kann die federnde Vorspannung eingestellt werden. [0023] Die Messeinheit weist mindestens einen die Stellung des Anschlagelements erkennenden Sensor auf, der vorzugsweise ein Abstandssensor ist, mit dem das Auslenken oder Verschieben des Anschlagelements beim Anschlagen an ein Hindernis detektiert werden kann. Im einfachsten Fall kann der Abstandssensor ein Kontaktschalter sein, der durch das Anschlagelement betätigt wird.

[0024] Das Walzengehäuse wird bei einer weiteren bevorzugten Ausführungsform der Erfindung von zwei in Arbeitsrichtung der Baumaschine hinter der Arbeitswalze angeordneten hinteren Abdichtelementen verschlossen, wobei zwei Einrichtungen zum Anheben und Absenken des Abdichtelements vorgesehen sind, so dass die beiden Abdichtelemente beim Anschlagen an ein Hindernis unabhängig voneinander angehoben werden können. Bei dieser Ausführungsform können sich die Abdichtelemente jeweils über die Hälfte der Arbeitsbreite der Arbeitswalze erstrecken. Jedem Abdichtelement ist wieder ein Anschlagelement zugeordnet, das die Anschlagkraft an einem Hindernis detektiert.

[0025] Die Ausführungsform mit zwei Abdicht- und Anschlagelementen hat den Vorteil, dass beim Auftreten eines Hindernisses nur eines der beiden Abdichtelemente angehoben wird, so dass auf der anderen Seite das Walzengehäuse verschlossen bleibt. Dies ist insbesondere bei einer Kurvenfahrt der Baumaschine von Vorteil, bei der die Gefahr des Anschlagens des kurvenäußeren oder kurveninneren Anschlagelements an einem Hindernis besteht.

[0026] Nachfolgend wird ein Ausführungsbeispiel der Erfindung unter Bezugnahme auf die Zeichnungen näher erläutert.

[0027] Es zeigen:

- Fig. 1 eine erfindungsgemäße selbstfahrende Baumaschine in perspektivischer Darstellung,
- Fig.2 eine vereinfachte schematische Darstellung

des die Arbeitswalze umschließenden Walzengehäuses der Baumaschine zusammen mit dem Maschinenrahmen, wobei sich ein das Walzengehäuse in Arbeitsrichtung vor der Arbeitswalze verschließendes Abdichtelement in einer ersten Arbeitsposition befindet,

- Fig. 3 das Walzengehäuse, wobei sich das vordere Abdichtelement in einer zweiten Arbeitsposition befindet,
 - Fig. 4 das Walzengehäuse, wobei sich das vordere Abdichtelement in einer dritten Arbeitsposition befindet,
 - Fig. 5 eine schematische Darstellung des Walzengehäuses zusammen mit der Arbeitswalze, wobei sich das vordere Abdichtelement in einer angehobenen Position befindet,
 - Fig. 6 eine schematische Darstellung des Walzengehäuses zusammen mit der Arbeitswalze, wobei sich das Abdichtelement in einer abgesenkten Position befindet,
 - Fig. 7 einen Schnitt durch ein Führungselement und ein Aufnahmeelement der Führung des vorderen Abdichtelements,
 - Fig. 8 die Vorrichtung zum Anheben und Absenken des vorderen Abdichtelements in schematischer Darstellung,
- Fig. 9A eine schematische Darstellung eines das Walzengehäuse in Arbeitsrichtung hinter der Arbeitswalze verschließenden Abdichtelements und einer Vorrichtung zum Anheben und Absenken des hinteren Abdichtelements, wobei das Abdichtelement auf dem Boden aufliegt,
- Fig. 9B eine schematische Darstellung des hinteren Abdichtelements, wobei das Abdichtelement an einem Hindernis anschlägt,
 - Fig. 9C eine schematische Darstellung des hinteren Abdichtelements, wobei das Abdichtelement angehoben ist,
 - Fig. 10A eine schematische Darstellung eines das Walzengehäuse seitlich verschließenden Abdichtelements, wobei das Abdichtelement auf dem Boden aufliegt,
 - Fig. 10B eine schematische Darstellung des seitlichen Abdichtelements, wobei das Abdichtelement an einem Hindernis anschlägt,

40

- Fig. 11 einen vereinfachten Hydraulikschaltplan, der den Hydraulikzylinder des vorderen oder seitlichen Abdichtelements zeigt,
- Fig. 12 einen vereinfachten Hydraulikschaltplan, der den Hydraulikzylinder des hinteren Abdichtelements zeigt,
- Fig. 13 die Steuerung für die Einrichtungen zum Anheben und Absenken des vorderen und hinteren Abdichtelements sowie der seitlichen Abdichtelemente in stark vereinfachter Darstellung.

[0028] Fig. 1 zeigt in perspektivischer Darstellung als Beispiel für eine Baumaschine eine Straßenfräsmaschine, bei der es sich um eine Hecklader-Straßenfräsmaschine handelt. Die Straßenfräsmaschine weist einen Maschinenrahmen 1 auf, der von einem Fahrwerk 2 getragen wird. Das Fahrwerk 2 weist ein in Arbeitsrichtung vorderes Rad 2A und zwei in Arbeitsrichtung hintere Räder 2B auf. Im hinteren Bereich des Maschinenrahmens befindet sich der Fahrerstand 3. Unterhalb des Fahrerstands 3 befindet sich die Fräseinrichtung 4 der Straßenfräsmaschine.

[0029] Die Fräseinrichtung 4 weist eine Fräswalze 5 auf, die mit umfangsmäßig verteilt angeordneten Fräsmeißeln 5A bestückt ist. Die Fräswalze 5 ist um eine guer zur Arbeitsrichtung der Fräsmaschine verlaufende Drehachse 6 in einem Fräswalzengehäuse 7A angeordnet. Die Fräswalze 5 rotiert in dem Fräswalzengehäuse 7A in einer vorgegebenen Drehrichtung D. Bei dem vorliegenden Ausführungsbeispiel rotiert die Fräswalze 5 entgegen dem Uhrzeigersinn. Das die Fräswalze 5 umschließende Gehäuse 7A weist an der in Arbeitsrichtung hinteren Seite eine Auswurföffnung auf. An den Längsseiten ist das Fräswalzengehäuse von Seitenplatten 8 verschlossen. Am Fräswalzengehäuse 7A befindet sich eine Transporteinrichtung 9 mit einem Förderband 10 zum Fördern des abgefrästen Materials, das von einem hinter der Fräsmaschine fahrenden LKW aufgenommen werden kann.

[0030] Nachfolgend wird das die Fräswalze 5 aufnehmende Fräswalzengehäuse 7A im Einzelnen unter Bezugnahme auf die Figuren 2 bis 8 beschrieben.

[0031] Das Fräswalzengehäuse 7A ist ein feststehendes Gehäuseteil 7A, das mit dem Maschinenrahmen 1 fest verbunden ist. Die Befestigungselemente für das Fräswalzengehäuse 7A sind in den Figuren nicht dargestellt. In den Figuren ist die Fräswalze 5 durch einen Zylinderkörper schematisch dargestellt, der die Spitzen der Meißel 5A der Fräswalze 5 umschließt. Das Fräswalzengehäuse 7A erstreckt sich zu beiden Seiten über die Breite der Fräswalze 5 hinaus. Es umschließt die Fräswalze 5 bis auf eine Öffnung 11A in Arbeitsrichtung vor der Fräswalze und eine Öffnung 11B in Arbeitsrichtung hinter der Fräswalze (Fig. 5). Die in Arbeitsrichtung vordere Öffnung 11A wird von einem Abdichtelement verschlossen,

das nachfolgend als Niederhalter 7B bezeichnet wird. Die hintere Öffnung 11B wird von einem in Arbeitsrichtung hinter der Fräswalze angeordneten hinteren Abdichtelement verschlossen, das in den Figuren 1 bis 8 aber nicht dargestellt ist. Dieses Abdichtelement wird auch als Abstreifer bezeichnet. In den Figuren 1 bis 8 sind auch die seitlichen Abdichtelemente nicht dargestellt, die unter der Bezeichnung Kantenschutz bekannt sind.

[0032] In Abhängigkeit von der Frästiefe kann der Niederhalter 7B in der Höhe verstellt werden. Die Figuren 2 bis 4 zeigen, wie die Fräswalze in das abzufräsende Material in vertikaler Richtung eintaucht. Während die Fräswalze in das Material eintaucht, wird der Niederhalter von einer in Fig. 2 dargestellten ersten Position, in der der Niederhalter 7B vollständig abgesenkt ist, in eine zweite Position bewegt, in der der Niederhalter vollständig angehoben ist (Fig. 4). In dieser Position ist die maximale Frästiefe erreicht.

[0033] Fig. 3 zeigt eine mittlere Position des Niederhalters 7B bei geringerer Frästiefe. Bei dem vorliegenden Ausführungsbeispiel umschließt das geschlossene Fräswalzengehäuse 7A zusammen mit dem Niederhalter 7B die Fräswalze 5 über einen Umfangswinkel von etwa 180°.

[0034] Eine Schnittansicht zeigen die Figuren 5 und 6, wobei der Niederhalter 7B sich in der angehobenen Position (Fig. 5) und in der abgesenkten Position (Fig. 6) befindet. Der Niederhalter 7B verschließt die in Arbeitsrichtung weisende Öffnung zwischen der unteren Kante 27 des Niederhalters 7B und der Oberfläche des abzufräsenden Straßenbelags 13.

[0035] Der Niederhalter 7B weist an der Außenseite zu beiden Seiten eine sich über den Umfang nach oben hinaus erstreckende Führungsschiene 15A, 15B auf. Die Führungsschienen 15A und 15B sind in Aufnahmeelementen 16A und 16B geführt, die an dem Maschinenrahmen 1 befestigt sind. Die Befestigung der Aufnahmeelemente ist in Fig. 5 oder Fig. 6 nicht dargestellt.

[0036] Fig. 7 zeigt einen Schnitt durch die Führungsschienen 15A, 15B und Aufnahmeelemente 16A, 16B. Die Aufnahmeelemente 16A, 16B haben einen U-förmigen Querschnitt, in dem die Führungsschienen 15A, 15B längsverschiebbar geführt sind. Da die Aufnahmeelemente 16A, 16B die Führungsschienen 15A, 15B umgreifen, sind die Führungsschienen in axialer und radialer Richtung gesichert. Wenn sich der Niederhalter 7B in der abgesenkten Position befindet, stützen die sich nach oben erstreckenden Abschnitte der Führungsschienen 15A, 15B an dem Fräswalzengehäuse 7A ab. Dadurch können auch größere Kräfte aufgenommen werden.

[0037] An der unteren Kante 27 weist der Niederhalter 7B ein sich entlang der unteren Kante erstreckendes Gleitelement 18 auf, das eine Gleitstange sein kann. Mit dem Gleitelement 18 gleitet der der Niederhalter 7 auf der Oberfläche des Straßenbelags 13. Dabei liegt der Niederhalter 7B allein aufgrund seiner Gewichtskraft auf dem Straßenbelag auf. Wenn die Fräswalze 5 in den

Straßenbelag in vertikaler Richtung eintaucht, schiebt sich der Niederhalter 7B in der Führung nach oben.

[0038] Die Straßenfräsmaschine verfügt über eine Einrichtung 19 zum Anheben und Absenken des Niederhalters 7B, die eine Kolben/Zylinder-Anordnung 20 aufweist. Die Kolben/Zylinder-Anordnung 20 wird mit einer nur andeutungsweise dargestellten Hydraulikeinheit 21 betrieben, die den Zylinder 20A der Kolben/Zylinder-Anordnung 20 mit einer Hydraulikflüssigkeit beaufschlagt (Fig. 8).

[0039] Der Zylinder 20A der Kolben/Zylinder-Anordnung 20 ist gelenkig mit dem Maschinenrahmen 1 und der Kolben 20B gelenkig mit dem oberen Ende eines Uförmigen Profilelements 22 verbunden, das an dem Niederhalter 7B befestigt ist. Durch Beaufschlagen des Zylinders 20A mit Hydraulikflüssigkeit kann der Niederhalter 7B angehoben und abgesenkt werden.

[0040] Die Einrichtung 19 zum Anheben und Absenken des Niederhalters 7B verfügt weiterhin über eine Steuereinheit 23 und eine Auswerteinheit 24, die über eine Datenleitung 25 miteinander verbunden sind. Die Steuereinheit 23, die mit der Hydraulikeinheit 21 über eine Steuerleitung 26 verbunden ist, steuert die Hydraulikeinheit derart an, dass die Kolben/Zylinder-Anordnung 20 den Niederhalter 7B mit einer vorgegebenen Auflagekraft auf den Boden gedrückt hält. Beispielsweise kann die Hydraulikeinheit 21 den Kolben in dem Zylinder freigeben, so dass der Niederhalter 7B mit seiner Gewichtskraft auf dem Boden aufliegt, wenn der Niederhalter 7B nicht beim Anschlagen an ein Hindernis angehoben wird. [0041] Darüber hinaus verfügt die Einrichtung 19 zum Anheben und Absenken des Niederhalters 7B über eine Messeinheit 26 zum Messen der auf den Niederhalter 7B beim Anschlagen an einem Hindernis einwirkenden Kraft. Vorzugsweise wird mit der Messeinheit 26 nur die horizontale Kraftkomponente der auf den Niederhalter einwirkenden Kraft gemessen.

[0042] Die Auswerteinheit 24 vergleicht die mit der Messeinheit 26 gemessene Anschlagkraft mit einem vorgegebenen Grenzwert. Wenn die Anschlagkraft größer als der Grenzwert ist, erzeugt die Steuereinheit 23 ein erstes Steuersignal für die Hydraulikeinheit 21 zum Anheben des Niederhalters 7B, so dass die Hydraulikeinheit 21 den Kolben 20B der Kolben/Zylinder-Einheit 20 betätigt. Der Niederhalter 7B wird mit der Kolben/Zylinder-Einheit 20 solange angehoben, bis die gemessene Anschlagkraft wieder kleiner als der vorgegebene Grenzwert ist. Wenn die Anschlagkraft kleiner als der Grenzwert ist, erzeugt die Steuereinheit 23 ein zweites Steuersignal für die Hydraulikeinheit 21, mit der die Kolben/ Zylinder-Anordnung 20 wieder betätigt wird, um den Niederhalters 7B so lange wieder abzusenken, bis die untere Kante 27 des Niederhalters 7B wieder mit der vorgegebenen Auflagekraft auf dem Boden aufliegt, oder der Niederhalter seine momentane Stellung beibehält, beispielsweise wenn das Hindernis eine Stufe ist. Alternativ kann die Kolben/Zylinder-Anordnung 20 den Niederhalter 7B auch freigeben, so dass sich der Niederhalter aufgrund seiner Gewichtskraft in der Führung nach unten bewegt oder mit seiner Gewichtskraft auf der Stufe aufliegt. Da die auf den Niederhalter einwirkende Kraft mit einem vorgegebenen Grenzwert verglichen wird, ist ausgeschlossen, dass schon bei kleineren Anschlägen an dem abzufräsenden Material der Niederhalter in der Höhe verstellt wird.

[0043] Zum Messen der Anschlagkraft verfügt die Messeinheit 26 über zwei Sensoren 26A, 26B, die zwischen den Aufnahmeelementen 16A, 16B und den Führungsschienen 15A, 15B in dem Bereich angeordnet sind, in dem sich die Führungsschienen über den Niederhalter 7B nach oben hinaus erstrecken. Die Sensoren 26A, 26B sind mit der Auswerteinheit 24 über Signalleitungen 26A' und 26B' verbunden. Wenn auf den Niederhalter eine im Wesentlichen horizontale Kraft einwirkt, üben die Enden der Führungsschienen eine Anpresskraft auf die Enden der Aufnahmeelemente bzw. innerhalb des vorhandenen Spiels eine leichte Kippbewegung aus, die von den beiden Sensoren 26A, 26B gemessen wird. Die Auswerteinheit 24 wertet die Messsignale beider Sensoren aus. Es können entweder nur das eine oder andere Messsignal oder beide Messsignale ausgewertet werden. Beispielsweise kann ein Mittelwert beider Messsignale erfolgen. Geeignete Druckmesssensoren und die Auswertung der Messsignale gehören zum Stand der Technik. Es ist aber auch möglich, dass die Sensoren nicht zwischen Aufnahmeelementen 16A, 16B und Führungsschienen 15A, 15B, sondern an der Außenseite der Aufnahmeelemente 16A, 16B angeordnet sind, um die Kippbewegung der Aufnahmeelemente 16A, 16B zu de-

[0044] Zur Unterstützung der Aufwärtsbewegung und zur Einleitung der Kraft beim Anschlagen an einem Hindernis kann an dem Niederhalter auch eine Gleitkufe 34 vorgesehen sein, die den Niederhalter bei einem Anschlag an ein Hindernis nach oben schiebt.

[0045] Neben der oben beschriebenen Einrichtung 19 zum Anheben und Absenken des vorderen Abdichtelements kann die Fräsmaschine auch über eine Einrichtung zum Anheben und Absenken des in den Figuren 1 bis 8 nicht dargestellten hinteren Abdichtelements oder der seitlichen Abdichtelemente verfügen, die den gleichen Aufbau hat.

[0046] Nachfolgend wird eine alternative Ausführungsform der Einrichtung 19 zum Anheben und Absenken eines Abdichtelements unter Bezugnahme auf die Figuren 9A bis 9C beschrieben. Bei dem Abdichtelement 7A' kann es sich um ein Abstreifelement einer Fräsmaschine handeln, die das Fräswalzengehäuse in Arbeitsrichtung hinter der Fräswalze verschließt. Das Abdichtelement kann aber auch ein Abstreifelement eines Stabilisierers oder Recyclers sein, der das Mischwalzengehäuse in Arbeitsrichtung hinter der Mischwalze verschließt. Ein Stabilisierer ist beispielsweise aus der EP 1 012 396 B1 bekannt.

[0047] Bei der unter Bezugnahme auf die Figuren 9A bis 9C beschriebenen Ausführungsform sind die Teile,

45

35

40

45

50

55

die der Ausführungsform der Figuren 1 bis 8 entsprechen, mit denselben Bezugszeichen versehen.

[0048] Das Abdichtelement 7A', das nachfolgend als Abstreifelement bezeichnet wird, ist in den Figuren 9A bis 9C zusammen mit der Kolben/Zylinder-Anordnung 20 nur stark vereinfacht dargestellt. Die Einrichtung 19 zum Anheben und Absenken des Abstreifelements 7A' umfasst die Steuereinheit 23, die Auswerteinheit 24 und die Messeinheit 26' sowie die Hydraulikeinheit 21, die über Daten- und Steuerleitungen 25, 26 miteinander verbunden sind.

[0049] Bei der Ausführungsform der Figur 9A bis 9C ist an dem plattenförmigen Abstreifelement 7A' ein plattenförmiges Anschlagelement 28 befestigt, das eine Blechplatte sein kann, die sich vorzugsweise über die gesamte Breite des Abstreifelements erstreckt.

[0050] Das Anschlagelement 28 weist im oberen Bereich mehrere im Abstand zueinander angeordnete Bohrungen 29 auf, durch die sich in den gleichen Abständen angeordnete Führungsbolzen 30 erstrecken, die ein Außengewinde 31 aufweisen. Das Anschlagelement 28 ist mit dem Abstreifelement 7A' mit Muttern 33 verschraubt, wobei zwischen dem Anschlagelement 28 und den Muttern 33 Druckfedern 32 angeordnet sind, so dass das Anschlagelement 28 federnd gegen das Abstreifelement 7A' vorgespannt ist. Die Führungsbolzen 30 bilden mit den Muttern 33 und den Federn 32 eine Linearführung für das Anschlagelement 28, so dass das Anschlagelement 28 aus der in Fig. 9A gezeigten Position beim Anschlagen an ein Hindernis in einer der Arbeitsrichtung A entgegengesetzten Richtung ausweichen kann.

[0051] Fig. 9B zeigt den Augenblick, in dem das Anschlagelement 28 an einem Hindernis anschlägt. Beim Anschlagen an das Hindernis wird das Anschlagelement 28 entgegen der Kraft der Druckfedern 31 verschoben, so dass ein Spalt 35 zwischen Abstreif- und Anschlagelement entsteht.

[0052] Die Messeinheit 26' weist einen oder mehrere im Abstand zueinander angeordnete Sensoren 26A' auf. Die Sensoren 26A' sind Abstandssensoren, die erkennen, wenn das Anschlagelement 28 entgegen der Fahrtrichtung A nach hinten verschoben wird. Dabei bestimmt die Kraft der Druckfedern 32 den Grenzwert der Kraft, die beim Anschlagen des Anschlagselements an einem Hindernis einwirken muss, um ein Steuersignal zum Anheben des Abstreifelements 7A' zu erzeugen. Die Steuereinheit 23 erzeugt in dem Augenblick des Anschlagens ein erstes Steuersignal für die Hydraulikeinheit 21, die die Kolben/Zylinder-Anordnung 20 betätigt, so dass das Abstreifelement 7A' sofort angehoben wird.

[0053] Fig. 9C zeigt die Position, in der sich die untere Kante des Abstreifelements 7A' genau auf der Höhe des Hindernisses befindet. In diesem Augenblick können die Druckfedern 32 das Anschlagelement 28 wieder gegen das Abstreifelement 7A' drücken.

[0054] Wenn der oder die Sensoren 26A' wieder erkennen, dass das Anschlagelement 28 an dem Abstreifelement 7A' anliegt (Fig. 9A), erzeugt die Steuereinheit 22 ein zweites Steuersignal für die Hydraulikeinheit 21, so dass die Kolben/Zylinder-Anordnung 20 das Abstreifelement 7A' mit einer vorgegebenen Auflagekraft auf den Boden drückt.

[0055] Über die gesamte Breite der Arbeitswalze, bei der es sich um eine Fräs- oder Mischwalze handeln kann, können auch mehrere, vorzugsweise zwei der in den Figuren 9A bis 9C beschriebenen Baugruppen nebeneinander angeordnet sein. Eine Aufteilung des Abstreifelements in mehrere Segmente bietet insbesondere bei der Einfahrt in Kurven Vorteile, wenn nur einer der beiden Segmente angehoben werden müssen.

[0056] Bei dem automatisch in der Höhe verstellbaren Abdichtelement kann es sich auch um einen oder beide der seitlichen Abdichtelemente handeln, die als Kantenschutz bezeichnet werden. Die Figuren 10A und 10B zeigen in stark vereinfachter Darstellung den linken oder rechten Kantenschutz, der sich in Arbeitsrichtung erstreckt. Der Kantenschutz 36 ist ein plattenförmiges Element, das zwischen seitlichen Anschlägen 37 leicht pendelnd in der Höhe verstellbar geführt ist. In den Figuren 10A und 10B sind die seitlichen Anschläge 37, die an seitlichen Führungen 38 des Maschinenrahmens anschlagen, nur andeutungsweise dargestellt.

[0057] Die Einrichtung zum Anheben und Absenken des Kantenschutzes weist eine Kolben/Zylinder-Anordnung 39 auf, die von der in den Figuren nicht dargestellten Hydraulikeinheit betrieben wird, um den Zylinder 39A der Kolben/Zylinder-Anordnung 39 mit einer Hydraulikflüssigkeit zu beaufschlagen. Der Zylinder 39A der Kolben/Zylinder-Anordnung 39 ist gelenkig mit dem nicht dargestellten Maschinenrahmen und der Kolben 39B gelenkig mit dem Kantenschutz 36 verbunden. Durch Beaufschlagen des Zylinders 39A mit Hydraulikflüssigkeit kann der Kantenschutz angehoben und abgesenkt werden.

[0058] Der Kantenschutz 36 ist mit einer Vorspanneinrichtung 40 in Arbeitsrichtung A federnd vorgespannt. Die Vorspanneinrichtung 40 weist eine am Kantenschutz 36 vorgesehene Führung 41 und ein am Maschinenrahmen vorgesehenes Element 42 auf, wobei das am Maschinenrahmen vorgesehene Element 42 mit der Führung 41 in bzw. entgegen der Arbeitsrichtung A längsverschiebbar geführt ist. Der Kantenschutz 36 ist mit einer Druckfeder 43 in Arbeitsrichtung vorgespannt, die sich mit dem einen Ende an dem Kantenschutz 36 und dem anderen Ende an dem am Maschinenrahmen vorgesehenen Element 42 abstützt.

[0059] Fig. 10A zeigt den Kantenschutz 36 in der vorgespannten Ausgangsstellung vor dem Anschlagen an ein Hindernis. Beim Anschlagen an ein Hindernis wird auf den Kantenschutz eine im Wesentlichen horizontale Kraft F, die eine frontale oder auch seitliche Kraftkomponente haben kann, ausgeübt. Der federnd vorgespannte Kantenschutz 36 weicht dann entgegen der Arbeitsrichtung A aus, so dass die Druckfeder 43 zusammengedrückt wird (Fig. 10B). Dabei verschiebt sich der Kantenschutz 36 um eine bestimmte Wegstrecke. Die

Verschiebung um die vorgegebene Wegstrecke wird mit einem Sensor 44 detektiert, so dass ein Steuersignal für die Hydraulikeinheit erzeugt wird, die den Hydraulikzylinder 39 zum Anheben des Kantenschutzes betätigt. Der Kantenschutz 36 wird solange angehoben, bis das Hindernis überwunden ist. Wenn das Hindernis überwunden ist, schiebt sich der Kantenschutz aufgrund der Rückstellkraft der Druckfeder 43 wieder in die Ausgangsposition zurück, wobei der Kantenschutz wieder abgesenkt wird. Dabei bestimmt die Rückstellkraft der Druckfeder 43 die Anschlagkraft, bei der der Kantenschutz automatisch angehoben wird.

[0060] Fig. 11 zeigt einen vereinfachten Hydraulikschaltplan, der den Hydraulikzylinder 45 zum Anheben oder Absenken eines nicht dargestellten Niederhalters oder Kantenschutzes zeigt. Während des Vorschubs der Baumaschine befindet sich der Niederhalter oder Kantenschutz in einer Schwimmstellung, so dass der Niederhalter oder Kantenschutz mit einer vorgegebenen Auflagekraft auf dem Boden aufliegt. Das Hydraulikventil 46 der Hydraulikeinheit verbindet in der Schwimmstellung über die an den Zylinderanschlüssen angeschlossenen Hydraulikleitungen 47, 48 den oberen und unteren Zylinderraum 45A und 45B des Hydraulikzylinders 45 zum Anheben und Absenken des Niederhalter oder Kantenschutzes mit einem nicht dargestellten Hydrauliktank, so dass die Kammern nicht mit dem Systemdruck beaufschlagt werden. Bei dem Hydraulikventil 46 handelt es sich um ein 4/3 Wegeventil. Die zum dem Ventil führenden Hydraulikleitungen sind in Fig. 11 der Einfachheit halber nicht dargestellt. Da auf den Zylinder keine spezifische Hydraulikkraft wirkt, kann sich der Kolben in dem Zylinder verschieben, so dass sich der Niederhalter oder Kantenschutz aufgrund seiner Gewichtskraft nach unten bewegt. Bei gleichem Druck in beiden Zylinderräumen kann diese Bewegung nach unten bei einer entsprechenden Ausbildung der wirksamen Anlageflächen des Hydraulikzylinders noch unterstützt werden, wenn beide Kammern in der Schwimmstellung mit einem Druck beaufschlagt sind, der vorzugsweise aber nicht dem Systemdruck entspricht. Durch Umschalten des Hydraulikventils 46 kann jeweils die eine oder andere Hydraulikleitung 47 48 mit dem Systemdruck beaufschlagt werden (Druckleitung) oder mit dem Tank verbunden werden (Tankleitung), so dass der Kolben nach oben oder unten gefahren wird. Die Betätigung des Hydraulikventils 46 erfolgt in Abhängigkeit von der gemessenen Anschlagkraft mit der Steuereinheit, die in Fig. 11 nicht dargestellt ist. Beim Anschlagen an ein Hindernis erzeugt die Steuereinheit ein erstes Steuersignal zum Ansteuern des Hydraulikventils 46, so dass der untere Zylinderraum 45B mit der Druckleitung und der obere Zylinderraum 54A mit der Tankleitung verbunden werden, wodurch der Niederhalter oder Kantenschutz angehoben wird. Wenn die gemessene Kraft unterhalb des vorgegebenen Grenzwerts liegt, schaltet erzeugt die Steuereinheit ei zweites Steuersignal, so dass das Hydraulikventil 46 wieder in die Schwimmstellung geschaltet wird, die in Fig. 11 gezeigt ist, so dass der Niederhalter oder Kantenschutz wieder absinkt. Eine alternative Ausführungsform sieht vor, dass das Hydraulikventil 46 den oberen Zylinderraum 45A mit der Druckleitung und den unteren Zylinderraum 45B mit der Tankleitung verbindet, so dass der Niederhalter oder Kantenschutz nach unten gedrückt wird, bis der Niederhalter oder Kantenschutz auf dem Boden auftrifft. Erst dann schaltet die Steuereinheit den Niederhalter wieder in die Schwimmstellung um.

[0061] Fig. 12 zeigt den Hydraulikschaltplan einer weiteren Ausführungsform der Hydrauliksteuerung. Diese Ausführungsform unterscheidet sich von dem Ausführungsbeispiel nach Fig. 11 dadurch, dass zum Anheben und Absenken des nicht dargestellten Abdichtelements zwei Zylinder-Kolben-Anordnungen 49 und 50 vorgesehen sind. Ein weiterer Unterschied liegt in einer zusätzlichen Hydraulikeinheit 51, mit der eine definierte Andruckkraft, die größer als die Gewichtskraft des Abdichtelements aber kleiner als die maximale Arbeitskraft der jeweiligen Kolben-Zylinder-Anordnung ist, auf das Abdichtelement ausgeübt wird. Diese Andruckkraft, mit der das Abdichtelement auf den Boden gedrückt wird, erweist sich insbesondere bei einem Abstreifer als vorteilhaft, da ein Abstreifer auch bei Unebenheiten den Kontakt zum Boden beibehalten soll. Bei der alternativen Ausführungsform sind die oberen Zylinderräume 49A, 50A der beiden Kolben-Zylinder-Anordnungen 49, 50 über eine erste Hydraulikleitung 51 und die unteren Zylinderräume 49B, 50B der Kolben-Zylinder-Anordnungen 49, 50 über eine zweite Hydraulikleitung 52 kurzgeschlossen. Von der ersten Hydraulikleitung 51 führt eine dritte Hydraulikleitung 53 und von der zweiten Hydraulikleitung 52 führt eine vierte Hydraulikleitung 54 zu einem Hydraulikventil 55. Zum Anheben des nicht dargestellten Niederhalters werden die dritte Hydraulikleitung 53 mit einer nicht dargestellten Tankleitung und die vierte Hydraulikleitung 54 mit einer nicht dargestellten Druckleitung verbunden. Hierzu betätigt die nicht dargestellte Steuereinheit das Hydraulikventil 55. Während des Vorschubs der Baumaschine werden die Enden der dritten und vierten Hydraulikleitung 53, 54 verschlossen, wozu das Hydraulikventil in die in Fig. 12 gezeigte Stellung gebracht wird. Dabei ist die dritte Hydraulikleitung 53 mit der Druckleitung 56 und die vierte Hydraulikleitung 54 mit der Tankleitung 57 der zusätzlichen Hydraulikeinheit 51 verbunden, so dass der Niederhalter mit der vorgegebenen Andruckkraft auf den Boden gedrückt wird. Da die Andruckkraft kleiner als die maximale Arbeitskraft der Kolben-Zylinder-Anordnung sein soll, ist der Druck in der Druckleitung 56 kleiner als der Systemdruck, mit dem die Koben-Zylinder-Anordnungen betätigt werden. Bei der Detektion eines Hindernisses erzeugt die nicht dargestellte Steuereinheit wieder ein Steuersignal zur Betätigung des Hydraulikventils 55 derart, dass der Niederhalter solange angehoben wird, bis das Hindernis überwunden ist.

[0062] Fig. 13 zeigt in stark vereinfachter schematischer Darstellung ein Ausführungsbeispiel der Steue-

45

20

40

45

50

55

rung eines Überlastschutzes für einen Abstreifer 58, einen Niederhalter 59 und einen Kantenschutz 60. Dem Abstreifer, Niederhalter oder Kantenschutz ist jeweils eine Messeinheit 58A, 59A, 60A zugeordnet, die jeweils über eine Signalleitung 61 mit einer zentralen Steuerund Auswerteinheit 65 verbunden ist. Die Steuer-und Auswerteinheit 65 steuert über Signalleitungen 62 in Abhängigkeit von der mit der jeweiligen Messeinheit 58A, 59A, 60A gemessenen Anschlagkraft das dem Abstreifer, Niederhalter oder Kantenschutz zugeordnete Hydraulikventil 58B, 59B, 60B an, mit dem die dem Abstreifer, Niederhalter und Kantenschutz zugeordnete Kolben-Zylinder-Anordnung betätigt wird, die in Fig. 13 nicht dargestellt ist. Darüber hinaus ist eine Bedieneinheit vorgesehen 63, die über eine Datenleitung 64 mit der Steuerund Auswerteinheit 65 verbunden ist. Mit der Bedieneinheit 63 kann der Maschinenführer den automatischen Überlastschutz ausschalten und die Abdichtelemente 58, 59, 60 von Hand in der Höhe verstellen.

Patentansprüche

1. Selbstfahrende Baumaschine, insbesondere Straßenfräsmaschine, Recycler oder Stabilisierer, mit einem Maschinenrahmen (1) und einer Arbeitseinrichtung (4), wobei die Arbeitseinrichtung (4) eine Arbeitswalze (5) und ein die Arbeitswalze umschließendes Walzengehäuse (7B) aufweist, das von mindestens einem Abdichtelement (7A; 7A', 36) zum Boden hin verschlossen wird, und mindestens einer Einrichtung (19) zum Anheben und Absenken des mindestens einen Abdichtelements, die derart ausgebildet ist, dass das Abdichtelement mit einer vorgegebenen Auflagekraft auf dem Boden aufliegt, wenn das Abdichtelement nicht angehoben wird,

dadurch gekennzeichnet, dass

die mindestens eine Einrichtung (19) zum Anheben und Absenken des mindestens einen Abdichtelements (7A, 7A', 36) eine Messeinheit (26, 26') aufweist, die derart ausgebildet ist, dass die Messeinheit eine beim Anstoßen des Abdichtelements an einem Hindernis auf das Abdichtelement einwirkenden Kraft misst, und eine Steuereinheit (23) aufweist, die derart ausgebildet ist, dass die Steuereinheit ein Steuersignal zum Anheben des Abdichtelements erzeugt, wenn die mit der Messeinheit gemessenen Kraft größer als ein vorgegebener Grenzwert ist, so dass das Abdichtelement angehoben wird.

2. Selbstfahrende Baumaschine nach Anspruch 1, dadurch gekennzeichnet, dass die Steuereinheit (23) derart ausgebildet ist, dass die Steuereinheit ein zweites Steuersignal erzeugt, wenn die Kraft kleiner als der vorgegebene Grenzwert ist, so dass das Abdichtelement seine Stellung beibehalten kann oder sich absenken kann und dann mit der vorgegebenen Auflagekraft auf dem Boden aufliegt.

- Selbstfahrende Baumaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Abdichtelement ein in Arbeitsrichtung der Baumaschine vor der Arbeitswalze (5) angeordnetes vorderes Abdichtelement (7A) ist.
- 4. Selbstfahrende Baumaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Abdichtelement ein in Arbeitsrichtung der Baumaschine hinter der Arbeitswalze (5) angeordnetes hinteres Abdichtelement (7A') ist.
- Selbstfahrende Baumaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Abdichtelement ein sich in Arbeitsrichtung der Baumaschine erstreckendes seitliches Abdichtelement (36) ist.
- 6. Selbstfahrende Baumaschine nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Messeinheit (26) derart ausgebildet ist, dass eine horizontale Kraftkomponente der auf das Abdichtelement (7A, 7A', 36) einwirkenden Kraft gemessen wird.
- Selbstfahrende Baumaschine nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Einrichtung (19) zum Anheben und Absenken des Abdichtelements (7A, 7A', 36) mindestens eine Kolben/Zylinder-Anordnung (20) aufweist, wobei der Zylinder (20A) gelenkig mit dem Maschinenrahmen (1) und der Kolben (20B) gelenkig mit dem Abdichtelement oder der Zylinder gelenkig mit dem Abdichtelement und der Kolben gelenkig mit dem Maschinenrahmen verbunden ist.
 - 8. Selbstfahrende Baumaschine nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Abdichtelement (7A, 7A', 36) mindestens ein Anschlagelement (28) aufweist, das sich über die untere Kante des Abdichtelements hinaus nach unten erstreckt.
 - Selbstfahrende Baumaschine nach Anspruch 8, dadurch gekennzeichnet, dass das Anschlagelement (28) ein plattenförmiges Anschlagelement ist.
 - 10. Selbstfahrende Baumaschine nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass ein oberer Abschnitt des Anschlagelements (28) an dem Abdichtelement (7A, 7A', 36) unter einer federnden Vorspannung befestigt ist, so dass das Anschlagelement beim Anschlagen an ein Hindernis aus einer ersten Position, in der der obere Abschnitt des Anschlagelements an dem Abdichtelement anliegt, entgegen der federnden Vorspannung in eine zweite Position verschoben wird, in der der obere Abschnitt des Anschlagelements von dem Abdichtelement absteht.

15

25

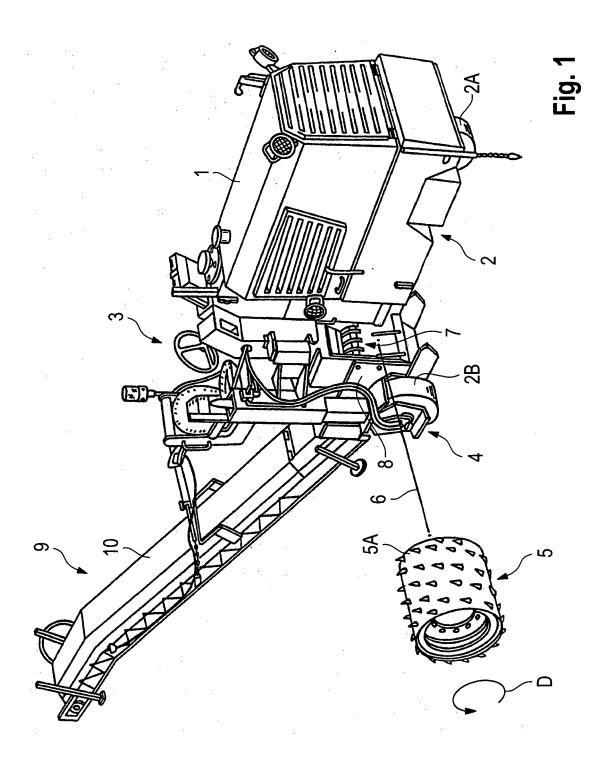
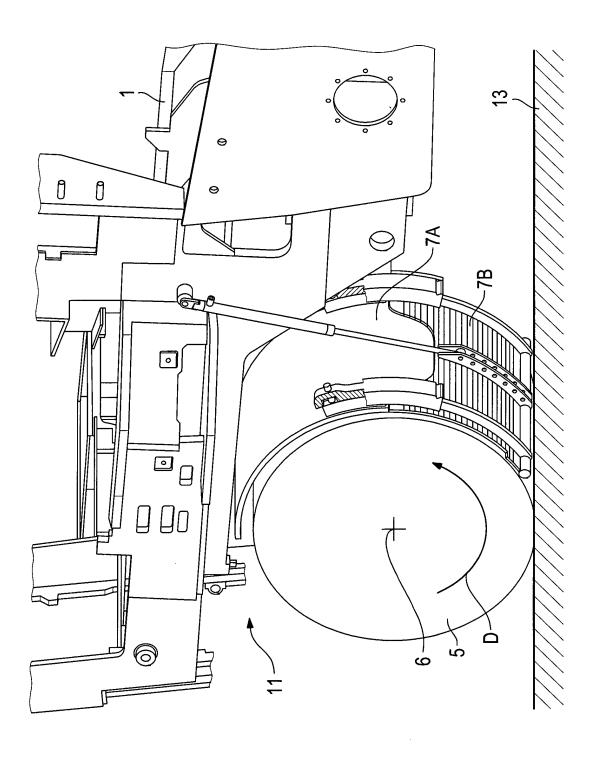
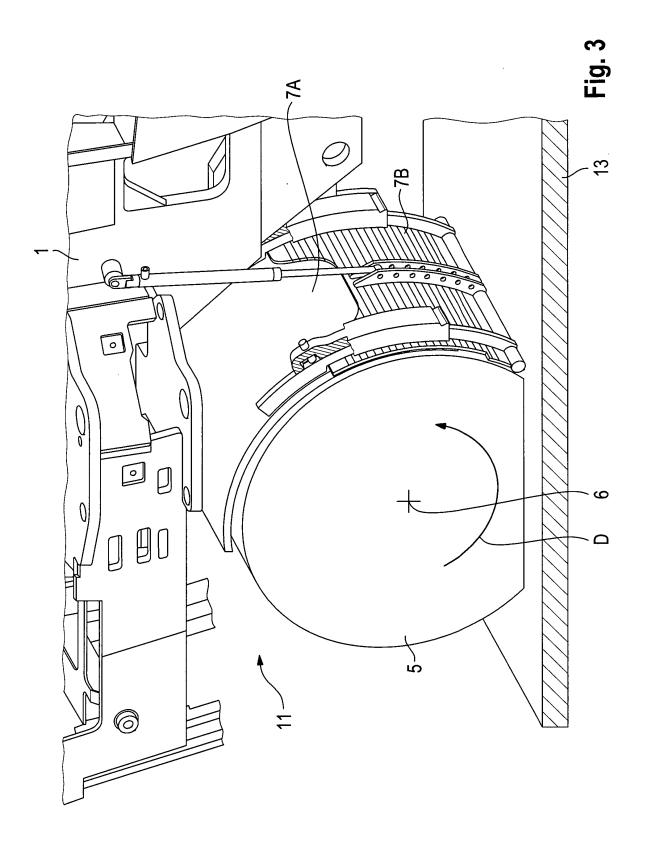
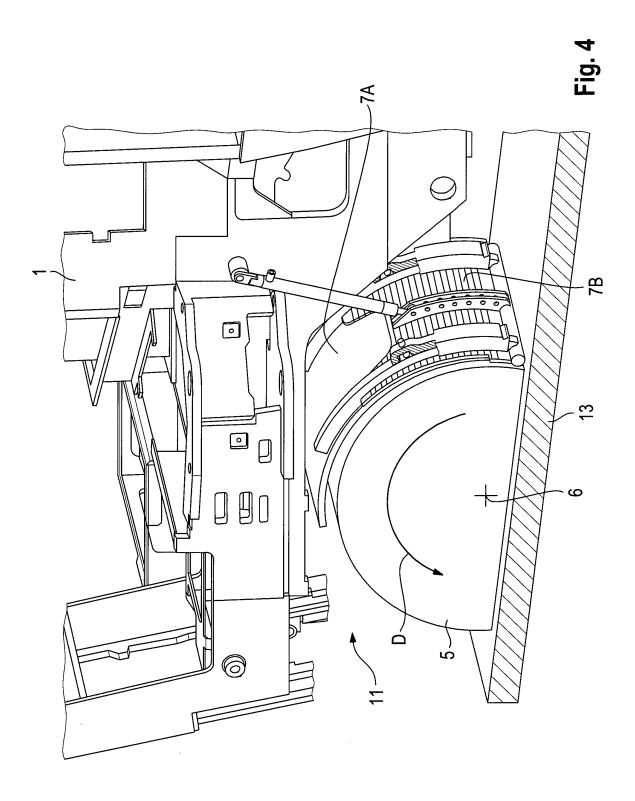
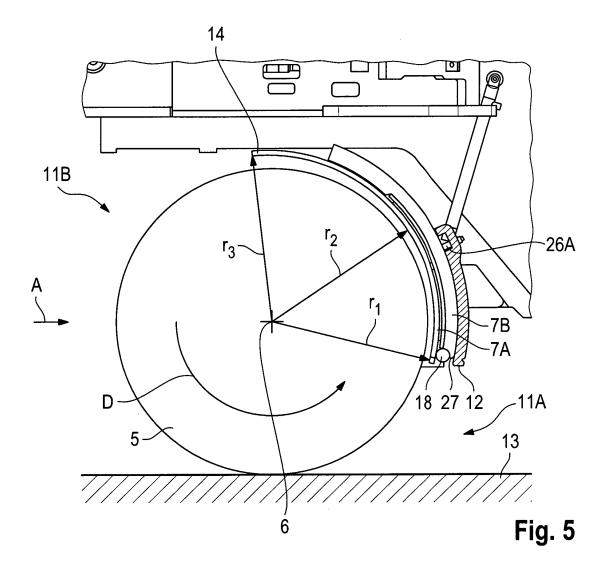
- 11. Selbstfahrende Baumaschine nach Anspruch 10, dadurch gekennzeichnet, dass der obere Abschnitt des Anschlagelements (28) in einer Richtung entgegen der Arbeitsrichtung der Baumaschine verschiebbar geführt ist.
- 12. Selbstfahrende Baumaschine nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass der obere Abschnitt des Anschlagelements (28) auf einer Achse verschiebbar geführt ist, die senkrecht auf der Ebene des Abdichtelements (7A, 7A', 36) steht.
- 13. Selbstfahrende Baumaschine nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass an dem Abdichtelement (7A, 7A') mindestens ein Führungsbolzen (30) vorgesehen ist, der sich durch eine Bohrung (29) in dem Anschlagelement (28) erstreckt.
- 14. Selbstfahrende Baumaschine nach Anspruch 13, dadurch gekennzeichnet, dass der Führungsbolzen (30) ein Schraubgewinde (31) aufweist und das Anschlagelement (28) mit einer Schraube (33) verschraubt ist, wobei zwischen der Schraube und dem Anschlagelement eine Feder (32) angeordnet ist.
- 15. Selbstfahrende Baumaschine nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Messeinheit (26, 26') mindestens einen die Stellung des Anschlagelements (28) erkennenden Sensor (26A, 26B; 26A') aufweist.
- 16. Selbstfahrende Baumaschine nach Anspruch 15, dadurch gekennzeichnet, dass der Sensor (26A') ein Abstandssensor ist, der den Abstand zwischen dem Abdichtelement (7A') und dem Anschlagelement (28) misst.
- 17. Selbstfahrende Baumaschine nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass das Walzengehäuse (7A) von zwei in Arbeitsrichtung der Baumaschine hinter der Arbeitswalze angeordneten hinteren Abdichtelementen (7A') verschlossen ist, wobei zwei Einrichtungen (19) zum Anheben und Absenken des Abdichtelements vorgesehen sind, so dass die beiden Abdichtelemente beim Anschlagen an ein Hindernis unabhängig voneinander angehoben werden.
- **18.** Selbstfahrende Baumaschine nach einem der Ansprüche 1 bis 17, **dadurch gekennzeichnet, dass** die Baumaschine eine Straßenfräsmaschine ist, wobei die Arbeitswalze eine Fräswalze (5) ist.
- 19. Verfahren zum Ansteuern eines höhenverstellbaren Abdichtelements, das ein Walzengehäuse einer selbstfahrende Baumaschine, insbesondere Straßenfräsmaschine, Recycler oder Stabilisierer, zum

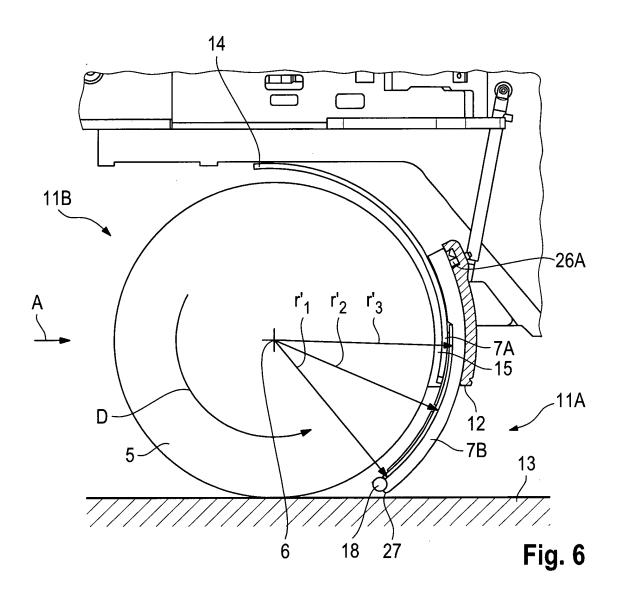
Boden hin verschließt, wobei das Abdichtelement mit einer vorgegebenen Auflagekraft auf dem Boden aufliegt,

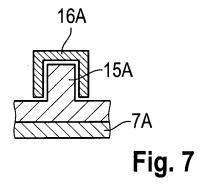
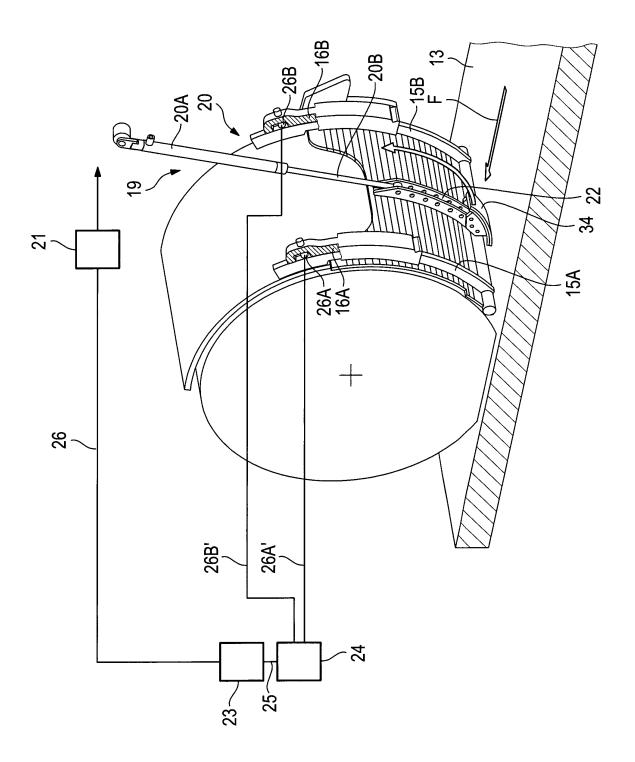
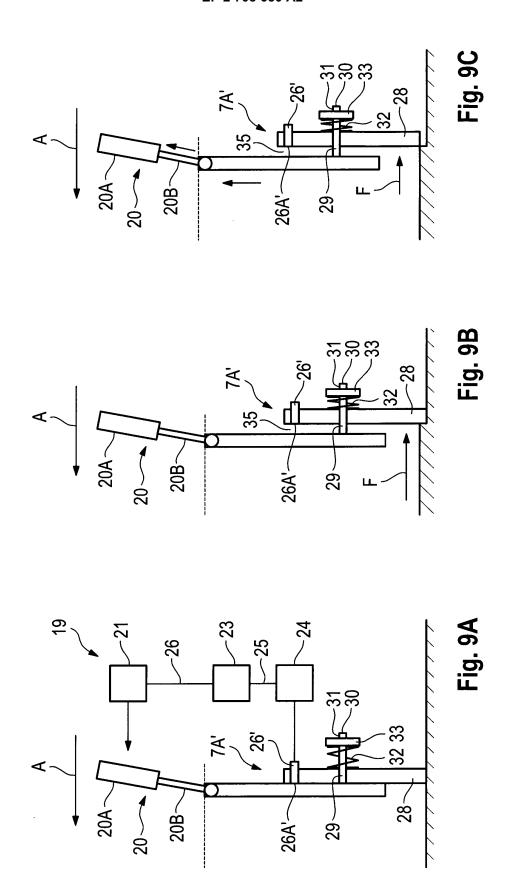
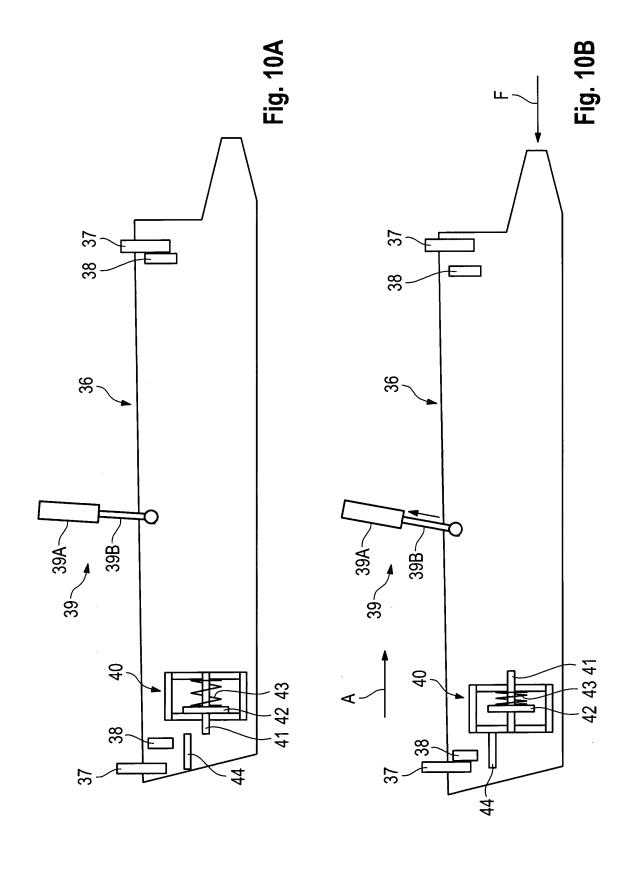
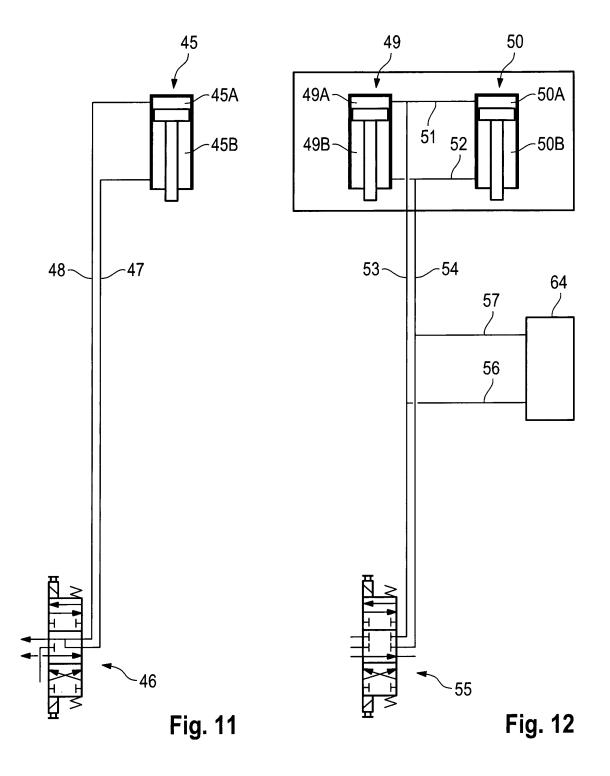
dadurch gekennzeichnet, dass

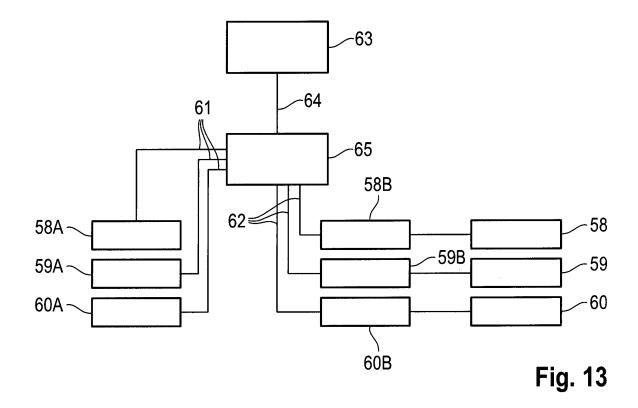
die beim Anstoßen des Abdichtelements an einem Hindernis auf das Abdichtelement einwirkenden Kraft gemessen wird, und das Abdichtelement angehoben wird, wenn die gemessene Kraft größer als ein vorgegebener Grenzwert ist.

20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass das Abdichtelement in einen Betriebsmodus gebracht wird, in dem das Abdichtelement seine Stellung beibehalten kann oder sich absenken kann, wenn die Kraft kleiner als der vorgegebene Grenzwert ist und dann mit der vorgegebenen Auflagekraft auf dem Boden aufliegt.


Fig. 2


Fig. 8

EP 2 708 650 A2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

- EP 2050875 A2 [0006]
- US 4723867 A [0007]

EP 1012396 B1 [0046]