

(11) **EP 2 714 955 B9**

(12) CORRECTED EUROPEAN PATENT SPECIFICATION

(15) Correction information:

Corrected version no 2 (W2 B1) Corrections, see Description Paragraph(s) 87

(48) Corrigendum issued on:

08.12.2021 Bulletin 2021/49

(45) Date of publication and mention of the grant of the patent: 30.06.2021 Bulletin 2021/26

(21) Application number: 12788999.6

(22) Date of filing: 24.05.2012

(51) Int Cl.:

 C22C 38/00 (2006.01)
 C22C 38/44 (2006.01)

 C22C 38/58 (2006.01)
 C22C 38/48 (2006.01)

 C22C 38/02 (2006.01)
 C22C 38/06 (2006.01)

 C22C 38/54 (2006.01)
 C22C 38/50 (2006.01)

 C22C 38/42 (2006.01)
 C22C 38/46 (2006.01)

 C22C 38/46 (2006.01)
 C22C 38/46 (2006.01)

(86) International application number:

PCT/SG2012/000183

(87) International publication number:

WO 2012/161661 (29.11.2012 Gazette 2012/48)

(54) AUSTENITIC STAINLESS STEEL

AUSTENITISCHER EDELSTAHL
ACIER INOXYDABLE AUSTÉNITIQUE

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME

(30) Priority: 26.05.2011 SG 201103887

(43) Date of publication of application: **09.04.2014 Bulletin 2014/15**

(73) Proprietor: N'Genius Technology Limited Warrington, Cheshire WA4 4NP (GB)

(72) Inventor: ROSCOE, Cecil Vernon Singapore 048623 (SG)

(74) Representative: Talbot-Ponsonby, Daniel Frederick
Marks & Clerk LLP
Fletcher House
Heatley Road
The Oxford Science Park
Oxford OX4 4GE (GB)

(56) References cited:

EP-A1- 0 438 992 EP-A1- 0 626 460 WO-A1-01/00898 WO-A1-01/00898 WO-A1-01/64969 WO-A1-01/64969 WO-A1-02/088411 WO-A1-03/080886 WO-A1-03/080886 WO-A1-2004/079027 WO-A1-2004/079027 GB-A-1 433 857 GB-A- 1 514 934 JP-A- H0 426 740 JP-A- H06 179 952 JP-A- 2005 179 733 JP-A- 2007 105 733 JP-A- 2010 031 313 US-A1-2006 243 719 JP-A- 2010 031 313 US-A1- 2006 243 719

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

P 2 714 955 B9

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

25

Background and Field of the Invention

[0001] This invention relates to Austenitic Stainless Steel.

[0002] Traditionally, 300 series Austenitic Stainless Steels such as UNS S30403 (304L) and UNS S30453 (304LN) have specified chemical compositions in percentage by weight as illustrated in Table 1 herein:

						TABLE	1					
10	UNS No	Type		С	Mn	Р	S	Si	Cr	Ni	Мо	N
	S 30403	304L	MIN						17.50	8.00		
			MAX	0.030	2.00	0.045	0.030	0.75	19.50	12.00		0.10
15	UNS No	Туре		С	Mn	Р	S	Si	Cr	Ni	Мо	N
	S 30453	304LN	MIN						18.00	8.00		0.10
			MAX	0.030	2.00	0.045	0.030	0.75	20.00	12.00		0.16

[0003] There are a number of shortcomings with the abovementioned conventional Austenitic Stainless Steels associated with their particular specification ranges. This can potentially lead to a lack of proper control of the chemical analysis at the melting stage, which is necessary to optimise the properties of the Alloys to give an excellent combination of mechanical strength properties and good corrosion resistance.

[0004] The mechanical properties that are achieved, with Alloys such as UNS S30403 and UNS S30453 are not optimised and are relatively low compared to other generic stainless steel groups such as 22Cr Duplex Stainless Steels and 25Cr Duplex and 25Cr Super Duplex Stainless Steels. This is demonstrated in Table 2 which compares the properties of these conventional Austenitic Stainless Steels with typical grades of 22Cr Duplex, 25Cr Duplex and 25Cr Super Duplex Stainless Steels.

						TABLE 2	2					
30		Mechanical Properties of Austenitic Stainless Steels										
	UNS No	Type	Tensile	Strength	Yield S	Strength	Elongation 2in or 50mm	Hardness Note 2				
			M	Min		1in	Min	Max				
			Ksi	MPa	Ksi	MPa	%	Brinell	Rockwell B			
35	S30403	304L	70	485	25	170	40	201	92			
	S30453	304LN	75	515	30	205	40	217	95			
	Mechanical Properties of 22Cr Duplex Stainless Steels											
	UNS No	Type	Tensile Strength		Yield Strength		Elongation 2in or 50mm	Hardness Note 2				
40			Min		Min		Min	Max				
			Ksi	MPa	Ksi	MPa	%	Brinell	Rockwell C			
	S31803	2205	90	620	65	450	25	293	31			
	S32205	2205	95	655	65	450	25	293	31			
45	S32304	2304	87	600	58	400	25	290	32			
Mechanical Properties of 25Cr Duplex and 25Cr Super Duplex Stainless Steels												
	UNS No	Type	Tensile	Strength	Yield Strength		Elongation 2in or 50mm	Hardness Note 2				
			Min		Min		Min	Max				
50			Ksi	MPa	Ksi	MPa	%	Brinell	Rockwell C			
	S32760		108	750	80	550	25	270				
	S32750	2507	116	795	80	550	15	310	32			
	S39274		116	800	80	550	15	310	32			
55	S32520		112	770	80	550	25	310				
Note 2: The hardness figures quoted apply to the solution annealed condition.												

[0005] WO 2001/064969 relates to a duplex stainless steel with high contents of Chromium, Molybdenum and Nitrogen. WO 2001/000898 also relates to a duplex stainless steel with high contents of Chromium, Nitrogen, Copper and Tungsten in combination with low contents of Nickel and Molybdenum. WO 2003/080886 discloses a high grade duplex stainless steel with high corrosion resistance, embrittlement resistance, castability and hot workability which suppresses formation of intermetallic phases. WO 2004/079027 discloses a duplex stainless steel alloy having ferritic-austenitic matrix having a ferrite content of 40-65% by volume. WO02/088411 relates to a duplex stainless steel useful for structural parts requiring strength and corrosion resistance. It should be appreciated that these prior art documents relate to duplex stainless steel. [0006] JP 2010031313 relates to an austenitic stainless steel for heat exchangers and stack gas desulfurization facilities in seawater environment. US 2006/0243719 discloses an austenitic stainless steel welding wire and welding structure. GB 1433857 relates to stainless steels, and in particular to stainless steels capable of exhibiting excellent pitting corrosion resistance and hot working characteristics. GB 1514934 discloses austenitic stainless steels having alloying elements to enhance resistance to pitting corrosion. EP 0626460 discloses an austenitic stainless steel with high resistance to corrosion by chloride and sulphuric media and uses. EP 0438992 relates to an austenitic stainless steel which is suggested as having a high tensile strength, high impact strength, a good weldability and a high corrosion resistance. However, the base metals and/or weldments of these prior art stainless steels are not properly optimised and thus, they have undesirable dutility and toughnesss at ambient temperatures and/or, in particular, cryogenic tem-

[0007] It is an object of the present invention to provide an austenitic stainless steel which alleviates at least one of the disadvantages of the prior art and/or provide the public with a useful choice.

Summary of the Invention

10

20

30

35

40

45

50

55

[0008] According to the invention, there is provided austenitic stainless steel base metal according to claim 1.

[0009] Further preferred features may be found in the dependent claims.

[0010] According to a second aspect of the invention, there is provided a method of manufacturing austenitic stainless steel base metal according to claim 17.

[0011] As it can be appreciated from the described embodiments, the austenitic stainless steel (Cr-Ni-Mo-N) Alloy comprises a high level of Nitrogen possesses a unique combination of high mechanical strength properties with excellent ductility and toughness, along with good weldability and good resistance to general and localised corrosion. Specifically, the described embodiments also address the problem of relatively low mechanical strength properties in the conventional 300 series austenitic stainless steels such as UNS S30403 and UNS S30453 when compared to 22Cr Duplex Stainless Steels and 25Cr Duplex and 25Cr Super Duplex Stainless Steels.

Detailed Description of the Preferred Embodiments, which have to be read in conjunction with the restrictions of claim 1

304LM4N

[0012] For ease of explanation, a first embodiment of the invention is referred to as 304LM4N. In general terms, the 304LM4N is a high strength austenitic stainless steel (Cr-Ni-Mo-N) alloy which comprises a high level of Nitrogen and formulated to achieve a minimum specified Pitting Resistance Equivalent of $PRE_N \ge 25$, and preferably $PRE_N \ge 30$. The PRE_N is calculated according to the formulae:

$$PRE_N = \% Cr + (3.3 \times \% Mo) + (16 \times \% N).$$

[0013] The 304LM4N high strength austenitic stainless steel possesses a unique combination of high mechanical strength properties with excellent ductility and toughness, along with good weldability and good resistance to general and localised corrosion.

[0014] Chemical composition of the 304LM4N high strength austenitic stainless Steel is selective and characterised by an alloy of chemical elements in percentage by weight (wt) as follows, 0.030 wt % C (Carbon) max, 2.00 wt % Mn (Manganese) max, 0.030 wt % P (Phosphorus) max, 0.010 wt % S (Sulphur) max, 0.75 wt % Si (Silicon) max, 17.50 wt % Cr (Chromium) - 20.00 wt % Cr, 8.00 wt % Ni (Nickel) - 12.00 wt % Ni, 2.00 wt % Mo (Molybdenum) max, and 0.40 wt % N (Nitrogen) - 0.70 wt % N.

[0015] The 304LM4N stainless steel also comprises principally Fe (Iron) as the remainder and may also contain very small amounts of other elements such as 0.010 wt % B (Boron) max, 0.050 wt % Al (Aluminium) max, 0.01 wt % Ca (Calcium) max and/or 0.01 wt % Mg (Magnesium) max and other impurities which are normally present in residual levels.

[0016] The chemical composition of the 304LM4N stainless steel is optimised at the melting stage to primarily ensure an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg

C to 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and ferrite forming elements to primarily ensure that the alloy is austenitic. As a result, the 304LM4N stainless steel exhibits a unique combination of high strength and ductility at ambient temperatures, while at the same time achieves excellent toughness at ambient temperatures and cryogenic temperatures. In view of the fact that the chemical composition of the 304LM4N high strength austenitic stainless steel is adjusted to achieve a PRE $_{\rm N} \ge 25$, but preferably PRE $_{\rm N} \ge 30$, this ensures that the material also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 304LM4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S30403 and UNS S30453.

[0017] It has been determined that the optimum chemical composition range of the 304LM4N stainless steel is carefully selected to comprise the following chemical elements in percentage by weight as follows based on the first embodiment,

Carbon (C)

10

15

20

30

35

50

[0018] Carbon content of the 304LM4N stainless steel is \leq 0.030 wt % C (i.e. maximum of 0.030 wt % C). Preferably, the amount of Carbon should be \geq 0.020 wt % C and \leq 0.030 wt % C and more preferably \leq 0.025 wt % C.

Manganese (Mn)

[0019] The 304LM4N stainless steel of the first embodiment may come in two variations: low Manganese or high Manganese.

[0020] For the low Manganese alloys, the Manganese content of the 304LM4N stainless steel is \leq 2.0 wt % Mn. The range is \geq 1.0 wt % Mn and \leq 2.0 wt % Mn and more preferably \geq 1.20 wt % Mn and \leq 1.50 wt % Mn. With such compositions, this achieves an optimum Mn to N ratio of \leq 5.0, and \geq 2.85 and \leq 5.0. More preferably, the ratio is \geq 2.85 and \leq 3.75.

[0021] For the high Manganese alloys, the Manganese content of the 304LM4N stainless steel is \leq 4.0 wt % Mn. Preferably, the Manganese content is \geq 2.0 wt % Mn and \leq 4.0 wt % Mn, and more preferably the upper limit is \leq 3.0 wt % Mn. Even more preferably, the upper limit is \leq 2.50 wt % Mn. With such selective ranges, this achieves a Mn to N ratio of \geq 2.85 and \leq 7.50 and even more preferably \geq 2.85 and \leq 6.25.

Phosphorus (P)

[0022] Phosphorus content of the 304LM4N stainless steel is controlled to be \leq 0.030 wt % P. Preferably, the 304LM4N alloy has \leq 0.025 wt % P and more preferably \leq 0.020 wt % P. Even more preferably, the alloy has \leq 0.015 wt % P and even further more preferably \leq 0.010 wt % P.

Sulphur (S)

[0023] Sulphur content of the 304LM4N stainless steel of the first embodiment includes is \le 0.010 wt % S. Preferably, the 304LM4N has \le 0.005 wt % S and more preferably \le 0.003 wt % S, and even more preferably \le 0.001 wt % S.

Oxygen (O)

[0024] Oxygen content of the 304LM4N stainless steel is controlled to be as low as possible and in the first embodiment, the 304LM4N has \leq 0.070 wt % O. Preferably, the 304LM4N alloy has \leq 0.050 wt % O and more preferably \leq 0.030 wt % O. Even more preferably, the alloy has \leq 0.010 wt % O and even further more preferably \leq 0.005 wt % O.

Silicon (Si)

[0025] Silicon content of the 304LM4N stainless steel is \leq 0.75 wt % Si. Preferably, the alloy has \geq 0.25 wt % Si and \leq 0.75 wt % Si. More preferably, the range is \geq 0.40 wt % Si and \leq 0.60 wt % Si. However, for specific higher temperature applications where improved oxidation resistance is required, the Silicon content may be \geq 0.75 wt % Si and \leq 2.00 wt % Si.

55 Chromium (Cr)

[0026] Chromium content of the 304LM4N stainless steel of the first embodiment is \geq 17.50 wt % Cr and \leq 20.00 wt % Cr. Preferably, the alloy has \geq 18.25 wt % Cr.

Nickel (Ni)

5

10

15

20

25

30

35

50

55

[0027] Nickel content of the 304LM4N stainless steel is \geq 8.00 wt % Ni and \leq 12.00 wt % Ni. Preferably, the upper limit of Ni of the alloy is \leq 11 wt % Ni and more preferably \leq 10 wt % Ni.

Molybdenum (Mo)

[0028] Molybdenum content of the 304LM4N stainless steel alloy is \leq 2.00 wt % Mo. The lower limit of Mo is \geq 1.0 wt % Mo.

Nitrogen (N)

[0029] Nitrogen content of the 304LM4N stainless steel is \leq 0.70 wt % N, but \geq 0.40 wt % N and \leq 0.70 wt % N. More preferably, the 304LM4N alloy has \geq 0.40 wt % N and \leq 0.60 wt % N, and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N.

 PRE_N

[0030] The PITTING RESISTANCE EQUIVALENT (PRE_N) is calculated using the formulae:

 $PRE_N = \% Cr + (3.3 \times \% Mo) + (16 \times \% N).$

[0031] The 304LM4N stainless steel is specifically formulated to have the following composition:

(i) Chromium content of ≥ 17.50 wt % Cr and ≤ 20.00 wt % Cr, but preferably ≥ 18.25 wt % Cr;

- (ii) Molybdenum content ≤ 2.00 wt % Mo, and ≥ 1.0 wt % Mo;
- (iii) Nitrogen content \geq 0.40 wt % N and \leq 0.70 wt % N and more preferably \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N.

[0032] With a high level of Nitrogen, the 304LM4N stainless steel achieves the PRE_N of \geq 25, and preferably $PRE_N \geq$ 30. This ensures that the alloy has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 304LM4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S30403 and UNS S30453. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion

[0033] The chemical composition of the 304LM4N stainless steel is optimised at the melting stage to ensure that the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer⁶, is in the range > 0.40 and < 1.05, but preferably > 0.45 and < 0.95, in order to primarily obtain an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and Ferrite forming elements to primarily ensure that the alloy is austenitic. The alloy can therefore be manufactured and supplied in the Non-Magnetic condition.

[0034] The 304LM4N stainless steel also has principally Iron (Fe) as the remainder and may also contain very small amounts of other elements such as Boron, Aluminium, Calcium and/or Magnesium in percentage by weight as follows,

Boron (B)

[0035] The 304LM4N stainless steel may not have Boron intentionally added to the alloy and as a result the level of Boron is typically ≥ 0.0001 wt % B and ≤ 0.0006 wt % B for mills which prefer not to intentionally add Boron to the heats. Alternatively, the 304LM4N stainless steel may be manufactured to specifically include ≤ 0.010 wt % B. The range of Boron is ≥ 0.001 wt % B and ≤ 0.010 wt % B and more preferably ≥ 0.0015 wt % B and ≤ 0.0035 wt % B. In other words, Boron is specifically added during the production of the stainless steel but controlled to achieve such levels.

Cerium (Ce)

[0036] The 304LM4N stainless steel of the first embodiment includes ≥ 0.03 wt % Ce and ≤ 0.08 wt % Ce. If the

stainless steel contains Cerium, it may also possibly contain other Rare Earth Metals (REM) such as Lanthanum since REMs are very often supplied to the stainless steel manufacturers as Mischmetal. It should be noted that Rare Earth Metals may be utilised individually or together as Mischmetal providing the total amount of REMs conforms to the levels of Ce specified herein.

Aluminium (Al)

5

10

30

35

40

45

50

55

[0037] The 304LM4N stainless steel of the first embodiment may also comprise \leq 0.050 wt % Al, but \geq 0.005 wt % Al and \leq 0.050 wt % Al and more preferably \geq 0.010 wt % Al and \leq 0.030 wt % Al.

Calcium (Ca) /Magnesium (Mg)

[0038] The 304LM4N stainless steel may also include \leq 0.010 wt % Ca and/or Mg. The stainless steel may have \geq 0.001 wt % Ca and/or Mg and \leq 0.010 wt % Ca and/or Mg and more preferably \geq 0.001 wt % Ca and/or Mg and \leq 0.005 wt % Ca and/or Mg and other impurities which are normally present in residual levels.

[0039] Based on the above characteristics, 304LM4N stainless steel possesses minimum yield strength of 55 ksi or 380 MPa for the wrought version. More preferably, minimum yield strength of 62 ksi or 430 MPa may be achieved for the wrought version. The cast version possesses minimum yield strength of 41 ksi or 280 MPa. More preferably minimum yield strength of 48 ksi or 330 MPa may be achieved for the cast version. Based on the preferred strength values, comparisons of the wrought mechanical strength properties of 304LM4N stainless steel, with those of UNS S30403 in Table 2, suggest that the minimum yield strength of the 304LM4N stainless steel might be 2.5 times higher than that specified for UNS S30403. Similarly, a comparison of the wrought mechanical strength properties of the novel and innovative 304LM4N stainless steel, with those of UNS S30453 in Table 2, suggests that the minimum yield strength of the 304LM4N stainless steel might be 2.1 times higher than that specified for UNS S30453.

[0040] The 304LM4N stainless steel of the first embodiment possesses a minimum tensile strength of 102 ksi or 700 MPa for the wrought version. More preferably, a minimum tensile strength of 109 ksi or 750 MPa may be achieved for the wrought version. The cast version possesses a minimum tensile strength of 95 ksi or 650 MPa. More preferably, a minimum tensile strength of 102 ksi or 700 MPa may be achieved for the cast version. Based on the preferred values, a comparison of the wrought mechanical strength properties of the novel and innovative 304LM4N stainless steel, with those of UNS S30403 in Table 2, may suggest that the minimum tensile strength of the 304LM4N stainless steel is more than 1.5 times higher than that specified for UNS S30403. Similarly, a comparison of the wrought mechanical strength properties of the novel and innovative 304LM4N austenitic stainless steel, with those of UNS S30453 in Table 2, suggests that the minimum tensile strength of the 304LM4N stainless steel might be 1.45 times higher than that specified for UNS S30453. Indeed, if the wrought mechanical strength properties of the novel and innovative 304LM4N stainless steel, are compared with those of the 22 Cr Duplex Stainless Steel in Table 2, then it might be demonstrated that the minimum tensile strength of the 304LM4N stainless steel is in the region of 1.2 times higher than that specified for S31803 and similar to that specified for 25 Cr Super Duplex Stainless Steel. Therefore, the minimum mechanical strength properties of the 304LM4N stainless steel have been significantly improved compared to conventional Austenitic Stainless Steels such as UNS S30403 and UNS S30453 and the tensile strength properties are better than that specified for 22 Cr Duplex Stainless Steel and similar to those specified for 25 Cr Super Duplex Stainless Steel.

[0041] This means that applications using the wrought 304LM4N stainless steel may be frequently designed with reduced wall thicknesses, thus, leading to significant weight savings when specifying 304LM4N stainless steel compared to conventional austenitic stainless steels such as UNS S30403 and S30453 because the minimum allowable design stresses may be significantly higher. In fact, the minimum allowable design stresses for the wrought 304LM4N stainless steel may be higher than for 22 Cr Duplex Stainless Steels and similar to 25 Cr Super Duplex Stainless Steels.

[0042] For certain applications, other variants of the 304LM4N stainless steel have been purposely formulated to be manufactured containing specific levels of other alloying elements such as Copper, Tungsten and Vanadium. It has been determined that the optimum chemical composition range of the other variants of the 304LM4N stainless steel is selective and characterised by alloys of chemical compositions in percentage by weight as follows,

Copper(Cu)

[0043] The Copper content of the 304LM4N stainless steel is \leq 1.50 wt % Cu, but preferably \geq 0.50 wt % Cu and \leq 1.50 wt % Cu and more preferably \leq 1.00 wt % Cu for the lower Copper range Alloys. For higher copper range alloys, the Copper content may include \leq 3.50 wt %, but preferably \geq 1.50 wt % Cu and \leq 3.50 wt % Cu and more preferably \leq 2.50 wt % Cu.

[0044] Copper may be added individually or in conjunction with Tungsten, Vanadium, Titanium and/or Niobium and/or Niobium plus Tantalum in all the various combinations of these elements, to further improve the overall corrosion per-

formance of the Alloy. Copper is costly and therefore is being purposely limited to optimise the economics of the Alloy, while at the same time optimising the ductility, toughness and corrosion performance of the Alloy.

Tungsten (W)

5

10

15

20

30

35

45

50

55

[0045] The Tungsten content of the 304LM4N stainless steel when added is 0.75 wt % to 2.00 wt.% For 304LM4N stainless steel variants containing Tungsten, the PITTING RESISTANCE EQUIVALENT is calculated using the formulae:

$$PRE_{NW} = \% Cr + [3.3 \times \% (Mo + W)] + (16 \times \% N).$$

[0046] This Tungsten containing variant of the 304LM4N stainless steel is specifically formulated to have the following composition:

- (i) Chromium content \geq 17.50 wt % Cr and \leq 20.00 wt % Cr, but preferably \geq 18.25 wt % Cr;
- (ii) Molybdenum content ≤ 2.00 wt % Mo, and ≥ 1.0 wt % Mo;
- (iii) Nitrogen content \geq 0.40 wt % N and \leq 0.70 wt % N and more preferably \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N; and
- (iv) Tungsten content \leq 2.00 wt % W, and \geq 0.75 wt % W.

[0047] The Tungsten containing variant of the 304LM4N stainless steel has a high specified level of Nitrogen and a $PRE_{NW} \ge 27$, but preferably $PRE_{NW} \ge 32$. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion. Tungsten may be added individually or in conjunction with Copper, Vanadium, Titanium and/or Niobium and/or Niobium plus Tantalum in all the various combinations of these elements, to further improve the overall corrosion performance of the Alloy. Tungsten is extremely costly and therefore is being purposely limited to optimise the economics of the Alloy, while at the same time optimising the ductility, toughness and corrosion performance of the Alloy.

Vanadium (V)

[0048] The Vanadium content of the 304LM4N stainless steel when added has \leq 0.50 wt % V, but \geq 0.10 wt % V and \leq 0.50 wt % V and more preferably \leq 0.30 wt % V. Vanadium may be added individually or in conjunction with Copper, Tungsten, Titanium and/or Niobium and/or Niobium plus Tantalum in all the various combinations of these elements to further improve the overall corrosion performance of the Alloy. Vanadium is costly and therefore is being purposely limited to optimise the economics of the Alloy, while at the same time optimising the ductility, toughness and corrosion performance of the Alloy.

Carbon (C)

[0049] For certain applications, other variants of the 304LM4N High strength austenitic stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the Carbon content of the 304LM4N stainless steel may be ≥ 0.040 wt % C and < 0.10 wt % C, but preferably ≤ 0.050 wt % C or > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C. These specific variants of the 304LM4N High strength austenitic stainless steel may be regarded as the 304HM4N or 304M4N versions respectively.

Titanium (Ti) /Niobium (Nb) /Niobium (Nb) plus Tantalum (Ta)

[0050] Furthermore, for certain applications, other stabilised variants of the 304HM4N or 304M4N stainless steels are desirable, which have been specifically formulated to be manufactured containing higher levels of Carbon, > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C.

- (i) These include the Titanium stabilised versions which are referred to as 304HM4NTi or 304M4NTi to contrast with the generic 304LM4N stainless steel versions.
- The Titanium content is controlled according to the following formulae:
- Ti 5 x C min, 0.70 wt % Ti max respectively, in order to have Titanium stabilised derivatives of the alloy.
 - (ii) There are also the Niobium stabilised, 304HM4NNb or 304M4NNb versions where the Niobium content is controlled according to the following formulae:
 - Nb 10 x C min, 1.0 wt % Nb max, respectively, in order to have Niobium stabilised derivatives of the alloy.

(iii) In addition, other variants of the Alloy may also be manufactured to contain Niobium plus Tantalum stabilised, 304HM4NNbTa or 304M4NNbTa versions where the Niobium plus Tantalum content is controlled according to the following formulae:

Nb + Ta 10 x C min, 1.0 wt % Nb + Ta max, 0.10 wt % Ta max.

[0051] Titanium stabilised, Niobium stabilised and Niobium plus Tantalum stabilised variants of the Alloy may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium and/or Niobium and/or Niobium plus Tantalum may be added individually or in conjunction with Copper, Tungsten and Vanadium in all the various combinations of these elements to optimise the alloy for certain applications where higher Carbon contents are desirable. These alloying elements may be utilised individually or in all the various combinations of the elements to tailor the stainless steel for specific applications and to further improve the overall corrosion performance of the alloy.

[0052] The wrought and cast versions of the 304LM4N stainless steel along with the other variants and embodiments discussed herein are generally supplied in the solution annealed condition. However, the weldments of fabricated components, modules and fabrications are generally supplied in the as-welded condition, provided that suitable Weld Procedure Qualifications have been prequalified in accordance with the respective standards and specifications. For specific applications the wrought versions may also be supplied in the cold worked condition.

Effect of the proposed alloying Elements and their compositions

[0053] One of the most important properties of stainless steels is normally their corrosion resistance, without which, they would find few industrial applications, since in many instances their mechanical properties can be matched by less costly materials.

[0054] Changes in alloying element content which are desirable to establish attractive corrosion resistant characteristics can have a marked effect on the metallurgy of stainless steel. Consequently, this can affect the physical and mechanical characteristics which can be used practically. The establishment of certain desirable properties such as high strength, ductility and toughness is dependent upon the control of the microstructure and this may limit the corrosion resistance attainable. Alloying elements in the solid solution, Manganese Sulphide inclusions and various phases which can precipitate giving Chromium and Molybdenum depleted zones around the precipitates, can all have a profound influence on the microstructure, the mechanical properties of the alloy and the maintenance or breakdown of passivity.

[0055] Thus, it is extremely challenging to derive an optimum composition of the elements of the alloy in order for the alloy to have good mechanical strength properties, excellent ductility and toughness and yet good weldability and resistance to general and localised corrosion. This is especially true in view of the complex array of metallurgical variables which make up the alloy composition and how each variable affects passivity, micro-structure and the mechanical properties. It is also necessary to incorporate this knowledge into new alloy development programmes, fabrication and heat treatment schedules. In the following passages, it is discussed how each of the elements of the alloy is optimised to achieve the abovementioned properties.

Effect of Chromium

5

10

20

30

35

40

50

55

[0056] Stainless Steels derive their passive characteristics from alloying with Chromium. Alloying Iron with Chromium moves the primary passivation potential in the active direction. This in turn expands the passive potential range and reduces passive current density i_{pass} . In Chloride solutions, increasing the Chromium content of Stainless Steels raises the pitting potential E_p thereby expanding the passive potential range. Chromium, therefore, increases the resistance to localised corrosion (Pitting and Crevice Corrosion) as well as general corrosion. An increase in Chromium, which is a Ferrite forming element, may be balanced by an increase in Nickel and other austenite forming elements such as Nitrogen, Carbon and Manganese in order to primarily maintain an Austenitic microstructure. However, it has been found that Chromium in conjunction with Molybdenum and Silicon may increase the tendency towards the precipitation of intermetallic phases and deleterious precipitates. Therefore, practically, there is a maximum limit to the level of Chromium that may be increased without enhancing the rate of intermetallic phase formation in thick sections which, in turn, could lead to a reduction in ductility, toughness and corrosion performance of the Alloy. This 304LM4N stainless steel has been specifically formulated to have a Chromium content ≥ 17.50 wt % Cr and ≤ 20.00 wt % Cr to achieve optimum results. Preferably, the Chromium content is ≥ 18.25 wt %

Effect of Nickel

10

15

30

35

50

55

[0057] It has been found that Nickel moves the pitting potential E_p in the noble direction, thereby extending the passive potential range and also reduces the passive current density i_{pass} . Nickel therefore, increases the resistance to localised corrosion and general corrosion in austenitic stainless steels. Nickel is an Austenite forming element and the level of Nickel, Manganese, Carbon and Nitrogen are optimised in the first embodiment to balance the ferrite forming elements such as Chromium, Molybdenum and Silicon to primarily maintain an austenitic microstructure. Nickel is extremely costly and therefore is being purposely limited to optimise the economics of the Alloy, while at the same time optimising the ductility, toughness and corrosion performance of the Alloy. This 304LM4N stainless steel has been specifically formulated to have a Nickel content ≥ 8.00 wt % Ni and ≤ 12.00 wt % Ni, but preferably ≤ 11.00 wt % Ni and more preferably ≤ 10.00 wt % Ni

Effect of Molybdenum

[0058] At particular levels of Chromium content, it has been found that Molybdenum has a strong beneficial influence on the passivity of austenitic stainless steels. The addition of Molybdenum moves the pitting potential in the more noble direction thus extending the passive potential range. Increasing Molybdenum content also lowers i_{max} and thus Molybdenum improves the resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in Chloride environments. Molybdenum also improves the resistance to Chloride stress corrosion cracking in Chloride containing environments. Molybdenum is a Ferrite forming element and the level of Molybdenum along with Chromium and Silicon, is optimised to balance the austenite forming elements such as Nickel, Manganese, Carbon and Nitrogen to primarily maintain an Austenitic microstructure. However, Molybdenum in conjunction with Chromium and Silicon may increase the tendency towards the precipitation of intermetallic phases and deleterious precipitates. At higher levels of Molybdenum it is possible to experience macro-segregation, particularly in castings and primary products, which may further increase the kinetics of such intermetallic phases and deleterious precipitates. Sometimes other elements such as Tungsten may be introduced into the heat in order to lower the relative amount of Molybdenum required in the Alloy. Therefore, practically, there is a maximum limit to the level of Molybdenum that can be increased without enhancing the rate of intermetallic phase formation in thick sections which, in turn, could lead to a reduction in ductility, toughness and corrosion performance of the Alloy. This 304LM4N stainless steel has been specifically formulated to have a Molybdenum content \leq 2.00 wt % Mo, but preferably \geq 0.50 wt % Mo and \leq 2.0 wt % Mo and more preferably \geq 1.0 wt % Mo.

Effect of Nitrogen

[0059] In the first embodiment (and the subsequent embodiments), one of the most significant improvements in the localised corrosion performance of austenitic stainless steels is obtained by increasing the Nitrogen levels. Nitrogen raises the pitting potential E_n thereby expanding the passive potential range. Nitrogen modifies the passive protective film to improve the protection for the breakdown of passivity. It has been reported¹, that high Nitrogen concentrations have been observed at the metal side of the metal-passive film interface using Auger electron spectroscopy. Nitrogen is an extremely strong austenite forming element along with Carbon. Similarly, Manganese and Nickel are also austenite forming elements albeit to a lesser extent. The levels of austenite forming elements such as Nitrogen and Carbon, as well as Manganese and Nickel are optimised in these embodiments to balance the Ferrite forming elements such as Chromium, Molybdenum and Silicon to primarily maintain an austenitic microstructure. As a result, Nitrogen indirectly limits the propensity to form intermetallic phases since diffusion rates are much slower in Austenite. Thus the kinetics of intermetallic phase formation is reduced. Likewise, in view of the fact that austenite has a good solubility for Nitrogen, this means that the potential to form deleterious precipitates such as M₂X (carbo-nitrides, nitrides, borides, boro-nitrides or boro-carbides) as well as M₂₃C₆ carbides, in the weld metal and heat affected zone of weldments, during welding cycles, is reduced. Nitrogen in the solid solution is primarily responsible for increasing the mechanical strength properties of the 304LM4N stainless steel whilst ensuring that an austenitic microstructure optimises the ductility, toughness and corrosion performance of the Alloy. Nitrogen however, has a limited solubility both at the melting stage and in solid solution. This 304LM4N stainless steel has been specifically formulated to have a Nitrogen content ≤ 0.70 wt % N, but preferably ≥ 0.40 wt % N and ≤ 0.70 wt % N and more preferably ≥ 0.40 wt % N and ≤ 0.60 wt % N and even more preferably ≥ 0.45 wt % N and ≤ 0.55 wt % N.

Effect of Manganese

[0060] Manganese is an austenite forming element and the level of Manganese, Nickel, Carbon and Nitrogen is optimised in the embodiments to balance the ferrite forming elements such as Chromium, Molybdenum and Silicon to primarily maintain an austenitic microstructure. Therefore, a higher level of Manganese indirectly allows for a higher

solubility of Carbon and Nitrogen both at the melting stage and in solid solution so as to minimise the risk of deleterious precipitates such as M₂X (carbo-nitrides, nitrides, borides, boro-nitrides or boro-carbides) as well as M₂₃C₆ carbides. Therefore, increasing the Manganese concentration to specific levels to improve the solid solubility of Nitrogen would result in an improvement in the localised corrosion performance of the Austenitic Stainless Steel. Manganese is also a more cost effective element than Nickel and can be used up to a certain level to limit the amount of Nickel being utilised in the Alloy. However, there is a limit on the Manganese level that can be used successfully since this may lead to the formation of Manganese Sulphide inclusions which are favourable sites for pit initiation, thus adversely affecting the localised corrosion performance of the Austenitic Stainless Steel. Manganese also increases the tendency towards the precipitation of intermetallic phases as well as deleterious precipitates. Therefore, practically, there is a maximum limit to the level of Manganese that can be increased without enhancing the rate of intermetallic phase formation in thick sections which, in turn, could lead to a reduction in ductility, toughness and corrosion performance of the Alloy. This 304LM4N Stainless steel has been specifically formulated to have a Manganese content ≥ 1.00 wt % Mn and ≤ 2.00 wt % Mn, but preferably with a Manganese content ≥ 1.20 wt % Mn and ≤ 1.50 wt % Mn. The Manganese content may be controlled to ensure the Manganese to Nitrogen ratio is ≤ 5.0 , and preferably ≥ 1.42 and ≤ 5.0 . More preferably, the ratio is ≥ 1.42 and ≤ 3.75 for the lower Manganese range Alloys. The Manganese content may be characterised by an Alloy that contains \geq 2.0 wt % Mn and \leq 4.0 wt % Mn, but preferably \leq 3.0 wt % Mn and more preferably \leq 2.50 wt % Mn, with a Mn to N ratio of \leq 10.0, and preferably, \geq 2.85 and \leq 10.0. More preferably the ratio is \geq 2.85 and \leq 7.50 and even more preferably \geq 2.85 and \leq 6.25 for the higher Manganese range Alloys.

Effect of Sulphur, Oxygen and Phosphorus

10

20

30

35

40

50

[0061] Impurities such as Sulphur, Oxygen and Phosphorus may have a negative influence on the mechanical properties and resistance to localised corrosion (Pitting and Crevice Corrosion) and general corrosion in Austenitic Stainless Steel. This is because Sulphur, in conjunction with Manganese at specific levels, promotes the formation of Manganese Sulphide inclusions. In addition, Oxygen in conjunction with Aluminium or Silicon at specific levels, promotes the formation of oxide inclusions such as Al₂O₃ or SiO₂. These inclusions are favourable sites for pit initiation thus adversely affecting the localised corrosion performance, ductility and toughness of the austenitic stainless steel. Likewise, Phosphorus promotes the formation of deleterious precipitates which are favourable sites for pit initiation which adversely affect the pitting-and crevice corrosion resistance of the Alloy as well as reducing its ductility and toughness. In addition, Sulphur, Oxygen and Phosphorus have an adverse effect on the hot workability of wrought austenitic stainless steels and the sensitivity towards hot cracking and cold cracking, particularly in castings and the weld metal of weldments in austenitic stainless steel. Oxygen at specific levels may also lead to porosity in Austenitic Stainless Steel castings. This may generate potential crack initiation sites within the cast components that experience high cyclical loads. Therefore, modern melting techniques such as electric arc melting, induction melting and vacuum oxygen decarburisation or argon oxygen decarburisation in conjunction with other secondary remelting techniques such as Electro Slag Remelting or Vacuum Arc Remelting as well as other refining techniques are utilised to ensure that extremely low Sulphur, Oxygen and Phosphorus contents are obtained to improve the hot workability of wrought Stainless Steel and to reduce the sensitivity towards hot cracking and cold cracking and porosity particularly in castings and in the weld metal of weldments. Modern melting techniques also lead to a reduction in the level of inclusions. This improves the cleanness of the Austenitic Stainless Steel and hence the ductility and toughness as well as the overall corrosion performance. This 304LM4N stainless steel has been specifically formulated to have a Sulphur content ≤ 0.010 wt % S, but preferably with a Sulphur content of ≤ 0.005 wt % S and more preferably ≤ 0.003wt % S and even more preferably ≤ 0.001 wt % S. The Oxygen content is as low as possible and controlled to ≤ 0.070 wt % O, but preferably ≤ 0.050 wt % O and more preferably \leq 0.030 wt % O and even more preferably ≤ 0.010 wt % O and even further more preferably ≤ 0.005 wt % O. The Phosphorus content is controlled to ≤ 0.030 wt % P, but preferably ≤ 0.025 wt % P, and more preferably ≤ 0.020 wt % P, and even more preferably ≤ 0.015 wt % P, and even further more preferably ≤ 0.010 wt % P.

Effect of Silicon

[0062] Silicon moves the pitting potential in the noble direction thereby extending the passive potential range. Silicon also enhances the fluidity of the melt during the manufacture of Stainless Steels. Likewise, Silicon improves the fluidity of the hot weld metal during welding cycles. Silicon is a Ferrite forming element and the level of Silicon along with Chromium and Molybdenum, is optimised to balance the Austenite forming elements such as Nickel, Manganese, Carbon and Nitrogen to primarily maintain an Austenitic microstructure. Silicon contents in the range of 0.75 wt % Si and 2.00 wt % Si may improve the oxidation resistance for higher temperature applications. However, Silicon content in excess of approximately 1.0 wt % Si, in conjunction with Chromium and Molybdenum may increase the tendency towards the precipitation of intermetallic phases and deleterious precipitates. Therefore, practically, there is a maximum limit to the level of Silicon that can be increased without enhancing the rate of intermetallic phase formation in thick sections which,

in turn, could lead to a reduction in ductility, toughness and corrosion performance of the Alloy. This 304LM4N Stainless steel has been specifically formulated to have a Silicon content \leq 0.75 wt % Si, but preferably \geq 0.25 wt % Si and \leq 0.75 wt % Si and more preferably \geq 0.40 wt % Si and \leq 0.60 wt % Si. The Silicon content may be characterised by an Alloy that contains \geq 0.75 wt % Si and \leq 2.00 wt % Si for specific higher temperature applications where improved oxidation resistance is required.

Effect of Carbon

10

15

30

35

50

55

[0063] Carbon is an extremely strong Austenite forming element along with Nitrogen. Similarly, Manganese and Nickel are also Austenite forming elements albeit to a lesser extent. The levels of Austenite forming elements such as Carbon and Nitrogen, as well as Manganese and Nickel are optimised to balance the Ferrite forming elements such as Chromium, Molybdenum and Silicon to primarily maintain an Austenitic microstructure. As a result, Carbon indirectly limits the propensity to form intermetallic phases since diffusion rates are much slower in Austenite. Thus, the kinetics of intermetallic phase formation is reduced. Likewise, in view of the fact that Austenite has a good solubility for Carbon, this means that the potential to form deleterious precipitates such as M2X (carbo-nitrides, nitrides, borides, boro-nitrides or boro-carbides) as well as ${\rm M}_{23}{\rm C}_6$ carbides, in the weld metal and heat affected zone of weldments, during welding cycles, is reduced. Carbon and Nitrogen in the solid solution are primarily responsible for increasing the mechanical strength properties of the 304LM4N Stainless steel whilst ensuring that an Austenitic microstructure optimises the ductility, toughness and corrosion performance of the Alloy. The Carbon content is normally restricted to 0.030 wt % C maximum to optimise the properties and also to ensure good hot workability of the wrought Austenitic Stainless Steels. This 304LM4N Stainless steel has been specifically formulated to have a Carbon content ≤ 0.030 wt % C maximum, but preferably ≥ 0.020 wt % C and $\leq 0.030 \text{ wt } \% \text{ C}$ and more preferably $\leq 0.025 \text{ wt } \% \text{ C}$. For certain applications, where a higher Carbon content ≥ 0.040 wt % C and < 0.10 wt % C, but preferably ≤ 0.050 wt % C or > 0.030 wt % C and ≤0.08 wt % C, but preferably < 0.040 wt % C is desirable, specific variants of the 304LM4N Stainless steel, namely 304HM4N or 304M4N respectively, have also been purposely formulated.

Effect of Boron, Cerium, Aluminium, Calcium and Magnesium

[0064] The hot workability of Stainless Steels is improved by introducing discrete amounts of other elements such as Boron or Cerium. If the Stainless steel contains Cerium it may also possibly contain other Rare Earth Metals (REM) such as Lanthanum since REMs are very often supplied to the Stainless steel manufacturers as Mischmetal. In general, the typical residual level of Boron present in Stainless Steels is ≥ 0.0001 wt % B and ≤ 0.0006 wt % B for mills which prefer not to intentionally add Boron to the heats. The 304LM4N stainless steel may be manufactured without the addition of Boron. Alternatively, the 304LM4N stainless steel may be manufactured to specifically have a Boron content ≥ 0.001 wt% B and ≤ 0.010 wt % B, but preferably ≥ 0.0015 wt % B and ≤ 0.0035 wt % B. The beneficial effect of Boron on hot workability results from ensuring that Boron is retained in solid solution. It is therefore necessary to ensure that deleterious precipitates such as M_2X (borides, boro-nitrides or boro-carbides) do not precipitate in the microstructure at the grain boundaries of the base material during manufacturing and heat treatment cycles or in the as-welded weld metal and heat affected zone of weldments during welding cycles.

[0065] The 304LM4N stainless steel is manufactured to specifically have a Cerium ≥ 0.03 wt % Ce and ≤ 0.08 wt % Ce. The Cerium forms Cerium oxysulphides in the Stainless steel to improve hot workability but, at specific levels, these do not adversely affect the corrosion resistance of the material. For certain applications, where a higher Carbon content of \geq 0.04 wt % C and \leq 0.10 wt % C, but preferably \leq 0.050 wt % C or \geq 0.030 wt % C and \leq 0.08 wt % C, but preferably < 0.040 wt % C is desirable, variants of the 304LM4N stainless steel may also be manufactured to specifically have a Boron content \leq 0.010 wt % B, but \geq 0.001 wt % B and \leq 0.010 wt % B and more preferably \geq 0.0015 wt % B and \leq 0.0035wt % B and ≥ 0.03 wt % Ce and ≤ 0.08 wt % Ce. It should be noted that Rare Earth Metals may be utilised individually or together as Mischmetal providing the total amount of REMs conforms to the levels of Ce specified herein. The 304LM4N Stainless steel may be manufactured to specifically contain Aluminium, Calcium and/or Magnesium. These elements may be added to deoxidise and/or desulphurise the Stainless steel in order to improve its cleanness as well as the hot workability of the material. Where relevant the Aluminium content is controlled to have an Aluminium content \leq 0.050 wt % AI, but \geq 0.005 wt % AI and \leq 0.050 wt % AI and more preferably \geq 0.010 wt % AI and \leq 0.030 wt % Al in order to inhibit the precipitation of nitrides. Similarly, the Calcium and/or Magnesium content is controlled to have a Ca and/or Mg content of ≤ 0.010 wt % Ca and/or Mg, but ≥ 0.001 wt % Ca and/or Mg and ≤ 0.010 wt % Ca and/or Mg and more preferably ≥ 0.001 wt % Ca and/or Mg and ≤ 0.005 wt % Ca and/or Mg to restrict the amount of slag formation in the melt.

Other Variants

[0066] For certain applications, other variants of the 304LM4N stainless steel may be formulated to be manufactured containing specific levels of other alloying elements such as Copper, Tungsten and Vanadium. Similarly, for certain applications, where a higher Carbon content ≥ 0.040 wt % C and < 0.10 wt % C, but preferably ≤ 0.050 wt % C or > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C is desirable, specific variants of the 304LM4N stainless steel, namely 304HM4N or 304M4N respectively, have been purposely formulated. Furthermore, for certain applications, where a higher Carbon content ≥ 0.040 wt % C and < 0.10 wt % C, but preferably ≤ 0.050 wt % C or > 0.030 wt % C and ≤ 0.08 wt % C but preferably < 0.040 wt % C is desirable, specific variants of the 304HM4N or 304M4N stainless steel, namely Titanium stabilised, 304HM4NNbTa or304M4NTi, Niobium stabilised, 304HM4NNb or 304M4NNb and Niobium plus Tantalum stabilised, 304HM4NNbTa or 304M4NNbTa Alloys have also been purposely formulated. Titanium stabilised, Niobium stabilised and Niobium plus Tantalum stabilised variants of the Alloys may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium and/or Niobium and/or Niobium plus Tantalum- may be added individually or in conjunction with Copper, Tungsten and Vanadium in all the various combinations of these elements to optimise the Alloy for certain applications where higher Carbon contents are desirable. These alloying elements may be utilised individually or in all the various combinations of the elements to tailor the stainless steel for specific applications and to further improve the overall corrosion performance of the Alloy.

Effect of Copper

20

10

15

30

35

40

50

[0067] The beneficial effect of Copper additions on the corrosion resistance of stainless steels in non-oxidising media is well known. If approximately 0.50 wt % of Copper is added, the active dissolution rate in boiling Hydrochloric Acid and the crevice corrosion loss in Chloride solutions are both decreased. It has been found that the general corrosion resistance in Sulphuric Acid also improves with the addition of Copper up to up to 1.50 wt % Cu. 2 Copper is an Austenite forming element along with Nickel, Manganese, Carbon and Nitrogen. Therefore, Copper can improve the localised corrosion and general corrosion performance of stainless steels. The levels of Copper and other austenite forming elements are optimised to balance the Ferrite forming elements such as Chromium, Molybdenum and Silicon to primarily maintain an Austenitic microstructure. Therefore, a variant of the 304LM4N stainless steel has been specifically selected to have a Copper content \leq 1.50 wt % Cu, but preferably \geq 0.50 wt % Cu and \leq 1.50 wt % Cu and more preferably \leq 1.00 wt % Cu for the lower Copper range Alloys. The Copper content of the 304LM4N may be characterised by an alloy which comprises \leq 3.50 wt % Cu, but preferably \geq 1.50 wt% Cu and \leq 3.50 wt % Cu and more preferably \leq 2.50 wt % Cu for the higher Copper range Alloys.

[0068] Copper may be added individually or in conjunction with Tungsten, Vanadium, Titanium and/or Niobium and/or Niobium plus Tantalum in all the various combinations of these elements, to further improve the overall corrosion performance of the Alloy. Copper is costly and therefore is being purposely limited to optimise the economics of the Alloy, while at the same time optimising the ductility, toughness and corrosion performance of the Alloy.

Effect of Tungsten

[0069] Tungsten and Molybdenum occupy a similar position on the Periodic table and have a similar potency and influence on the resistance to localised corrosion (Pitting and Crevice Corrosion). At particular levels of Chromium and Molybdenum content, Tungsten has a strong beneficial influence on the passivity of Austenitic Stainless Steels. Addition of Tungsten moves the pitting potential in the more noble direction, thus extending the passive potential range. Increasing Tungsten content also reduces the passive current density i_{pass}. Tungsten is present in the passive layer and is adsorbed without modification of the oxide state 3 . In acid Chloride solutions, Tungsten probably passes directly from the metal into the passive film, by interaction with water and forming an insoluble WO3, rather than through a dissolution then adsorption process. In neutral Chloride solutions, the beneficial effect of Tungsten is interpreted by the interaction of WO₃ with other oxides, resulting in enhanced stability and enhanced bonding of the oxide layer to the base metal. Tungsten improves the resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in Chloride environments. Tungsten also improves the resistance to Chloride stress corrosion cracking in Chloride containing environments. Tungsten is a Ferrite forming element and the level of Tungsten along with Chromium, Molybdenum and Silicon, is optimised to balance the Austenite forming elements such as Nickel, Manganese, Carbon and Nitrogen to primarily maintain an Austenitic microstructure. However, Tungsten in conjunction with Chromium, Molybdenum and Silicon may increase the tendency towards the precipitation of intermetallic phases and deleterious precipitates. Therefore, practically, there is a maximum limit to the level of Tungsten that can be increased without enhancing the rate of intermetallic phase formation in thick sections which, in turn, could lead to a reduction in ductility, toughness and corrosion performance of the Alloy. Therefore, a variant of this 304LM4N stainless steel has been specifically formulated to have a Tungsten content \leq 2.00 wt % W, and \geq 0.75 wt % W. Tungsten may be added individually or in

conjunction with Copper, Vanadium, Titanium and/or Niobium and/or Niobium plus Tantalum in all the various combinations of these elements, to further improve the overall corrosion performance of the Alloy. Tungsten is extremely costly and therefore is being purposely limited to optimise the economics of the Alloy, while at the same time optimising the ductility, toughness and corrosion performance of the Alloy.

Effect of Vanadium

[0070] At particular levels of Chromium and Molybdenum content, Vanadium has a strong beneficial influence on the passivity of Austenitic Stainless Steels. Addition of Vanadium moves the pitting potential in the more noble direction thus extending the passive potential range. Increasing the Vanadium content also lowers i_{max} and thus Vanadium, in conjunction with Molybdenum improves the resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in Chloride environments. Vanadium in conjunction with Molybdenum may also improve the resistance to Chloride stress corrosion cracking in Chloride containing environments. However, Vanadium in conjunction with Chromium, Molybdenum and Silicon may increase the tendency towards the precipitation of intermetallic phases and deleterious precipitates. Vanadium has a strong tendency to form deleterious precipitates such as M2X (carbonitrides, nitrides, borides, boro-nitrides or boro-carbides) as well as $M_{23}C_6$ carbides. Therefore, practically, there is a maximum limit to the level of Vanadium that can be increased without enhancing the rate of intermetallic phase formation in thick sections. Vanadium also increases the propensity to form such deleterious precipitates in the weld metal and heat affected zone of weldments, during welding cycles. These intermetallic phases and deleterious phases could, in turn, lead to a reduction in ductility, toughness and corrosion performance of the Alloy. Therefore, a variant of this 304LM4N stainless steel has been specifically formulated to have a Vanadium content ≤ 0.50 wt % V, but ≥ 0.10 wt % V and ≤ 0.50 wt % V and more preferably ≤ 0.30 wt % V. Vanadium may be added individually or in conjunction with Copper, Tungsten, Titanium and/or Niobium and/or Niobium plus Tantalum in all the various combinations of these elements to further improve the overall corrosion performance of the Alloy. Vanadium is costly and therefore is being purposely limited to optimise the economics of the Alloy, while at the same time optimising the ductility, toughness and corrosion performance of the Alloy.

Effect of Titanium, Niobium and Niobium plus Tantalum

[0071] For certain applications, where a higher Carbon content > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C is desirable, specific variants of the 304HM4N or 304M4N stainless steel, namely 304HM4NTi or 304M4NTi, have been purposely formulated to have a Titanium content according to the following formulae: Ti 5 x C min, 0.70 wt % Ti max respectively, in order to have Titanium stabilised derivatives of the Alloy. Titanium stabilised variants of the alloys may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium may be added individually or in conjunction with Copper, Tungsten, Vanadium and/or Niobium plus Tantalum in all the various combinations of these elements to optimise the ductility, toughness and corrosion performance of the alloy.</p>

[0072] Likewise, for certain applications, where a higher Carbon content > 0.030 wt % C and \leq 0.08 wt % C, but preferably < 0.040 wt % C is desirable, specific variants of the 304HM4N or 304M4N Stainless steel, namely 304HM4NNb or 304M4NNb, have been purposely formulated to have a Niobium content according to the following formulae: Nb 10 x C min, 1.0 wt % Nb max respectively, in order to have Niobium stabilised derivatives of the Alloy. In addition, other variants of the Alloy may also be manufactured to contain Niobium plus Tantalum stabilised, 304HM4NNbTa or 304M4NNbTa versions where the Niobium plus Tantalum content is controlled according to the following formulae: Nb + Ta 10 x C min, 1.0 wt % Nb + Ta max, 0.10 wt % Ta max. Niobium stabilised and Niobium plus Tantalum stabilised variants of the alloys may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Niobium and/or Niobium plus Tantalum may be added individually or in conjunction with Copper, Tungsten, Vanadium and/or Titanium in all the various combinations of these elements to optimise the ductility, toughness and corrosion performance of the alloy.

Pitting Resistance Equivalent

50

55

[0073] It is evident from the foregoing that a number of alloying elements in Stainless Steels move the pitting potential in the noble direction. These beneficial effects are complex and interactive and attempts have been made to use compositionally derived empirical relationships for pitting resistance indices. The most commonly accepted formulae utilised for calculating PITTING RESISTANCE EQUIVALENT:

$$PRE_N = \% Cr + (3.3 \times \% Mo) + (16 \times \% N).$$

[0074] It is generally recognised that such Alloys as described herein with PRE_N values less than 40, may be classified as "Austenitic" Stainless Steels. Whereas such alloys as described herein with PRE_N values of greater or equal to 40, may be classified as "Super Austenitic" Stainless Steels reflecting their superior general and localised corrosion resistance. This 304LM4N stainless steel has been specifically formulated to have the following composition:

5

- (i) Chromium content \geq 17.50 wt % Cr and \leq 20.00 wt % Cr, but preferably \geq 18.25 wt % Cr,
- (ii) Molybdenum content ≤ 2.00 wt % Mo, and 1.0 wt % Mo
- (iii) Nitrogen content ≥ 0.40 wt % N and ≤ 0.70 wt % N and more preferably ≥ 0.40 wt % N and ≤ 0.60 wt % N and even more preferably ≥ 0.45 wt % N and ≤ 0.55 wt % N.

10

20

25

30

[0075] The 304LM4N Stainless steel has a high specified level of Nitrogen and a PRE_N \geq 25, but preferably PRE_N \geq 30. As a result, the 304LM4N Stainless steel possesses a unique combination of High mechanical strength properties with excellent ductility and toughness, along with good weldability and good resistance to general and localised corrosion. There are reservations concerning the utilisation of such formulae in total isolation. The formulae do not take account of the beneficial effects of other elements such as Tungsten which improve pitting performance. For 304LM4N stainless steel variants containing Tungsten, the PITTING RESISTANCE EQUIVALENT is calculated using the formulae: PRE_{NW} = % Cr + [3.3 x % (Mo + W)] + (16 x % N). It is generally recognised that such alloys as described herein with PRE_{NW} values less than 40, may be classified as "Austenitic" Stainless Steels. Whereas such Alloys as described herein with PRE_{NW} values of greater or equal to 40, may be classified as "Super Austenitic" Stainless Steels reflecting their superior general and localised corrosion resistance. This Tungsten containing variant of the 304LM4N Stainless steel has been specifically formulated to have the following composition:

- (i) Chromium content ≥ 17.50 wt % Cr and ≤ 20.00 wt % Cr, but preferably ≥ 18.25 wt % Cr,
- (ii) Molybdenum content \leq 2.00 wt % Mo, and \geq 1.0 wt % Mo,
- (iii) Nitrogen content ≥ 0.40 wt % N and ≤ 0.70 wt % N and more preferably ≥ 0.40 wt % N and ≤ 0.60 wt % N and even more preferably ≥ 0.45 wt % N and ≤ 0.55 wt % N
- (iv) Tungsten content \leq 2.00 wt % W, and \geq 0.75 wt % W.

[0076] The Tungsten containing variant of the 304LM4N Stainless steel has a high specified level of Nitrogen and a $PRE_{NW} \ge 27$, but preferably $PRE_{NW} \ge 32$. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion.

Austenitic Microstructure

35

[0077] The chemical composition of the 304LM4N stainless steel of the first embodiment is optimised at the melting stage to primarily ensure an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C to 1250 deg C followed by water quenching.

[0078] The microstructure of the 304LM4N base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and ferrite forming elements, as discussed above, to primarily ensure that the alloy is austenitic.

[0079] The relative effectiveness of elements which stabilise the ferrite and austenite phases can be expressed in terms of their [Cr] and [Ni] equivalents. The conjoint effect of utilising [Cr] and [Ni] equivalents has been demonstrated using the method proposed by Schaeffler⁴ for predicting the structures of weld metals. The Schaeffler⁴ diagram is strictly only applicable to rapidly cast and cooled Alloys such as weldments or chill castings. However, the Schaeffler⁴ diagram can also give an indication of the phase balance of 'parent' materials. Schaeffler4 predicted the structures of Stainless Steel weld metals formed on rapid cooling according to their chemical composition expressed in terms of their [Cr] and [Ni] equivalents. The Schaeffler⁴ diagram utilised [Cr] and [Ni] equivalents according to the following formulae:

[Cr] equivalent = wt % Cr + wt % Mo + $1.5 \times$ wt % Si + $0.5 \times$ wt % Nb

(1)

[Ni] equivalent = wt % Ni + 30 x wt % C + 0.5 x wt % Mn

(2)

55

50

[0080] However, the Schaeffler⁴ diagram did not take account of the significant influence of Nitrogen in stabilising Austenite. Therefore, the Schaeffler⁴ diagram has been modified by DeLong⁵ to incorporate the important influence of Nitrogen as an Austenite forming element. The DeLong⁵ diagram utilised the same [Cr] equivalent formulae as utilised

by Schaeffler⁴ in equation (1). However, the [Ni] equivalent has been modified according to the following formulae:

[0081] This DeLong⁵ diagram shows the ferrite content in terms of magnetically determined Ferrite content and the Welding Research Council (WRC) Ferrite number. The difference in the Ferrite number and the percentage Ferrite (i.e. at values > 6 % Ferrite) is related to the WRC calibration procedures and the calibration curves used with the magnetic measurements. A comparison of the Schaeffler⁴ diagram and the DeLong⁵ modified Schaeffler⁴ diagram reveals that, for a given [Cr] equivalent and [Ni] equivalent, the DeLong⁵ diagram predicts a higher Ferrite content (i.e. approximately 5 % higher).

[0082] Both the Schaeffler⁴ diagram and the DeLong⁵ diagram have principally been developed for weldments and are therefore not strictly applicable to 'parent' material. However, they do provide a good indication of the phases likely to be present and give valuable information of the relative influence of the different alloying elements.

[0083] Schoefer⁶ has demonstrated that a modified version of the Schaeffler⁴ diagram can be used to describe the Ferrite number in castings This has been achieved by transforming the coordinates of the Schaeffler⁴ diagram to either a Ferrite number or a Volume Percent Ferrite on the horizontal axis as adopted by ASTM in A800/A800M - 10.⁷ The vertical axis is expressed as a ratio of the [Cr] equivalent divided by the [Ni] equivalent. Schoefer⁶ also modified the [Cr] equivalent and [Ni] equivalent factors according to the following formulae:

[Cr] equivalent = wt % Cr + 1.5 x wt % Si + 1.4 x wt % Mo + wt % Nb
$$- 4.99$$
 (4)

[Ni] equivalent = wt % Ni + 30 x wt % C + 0.5 x wt % Mn + 26 x wt % (N
$$-$$
 0.02) + 2.77 (5)

[0084] It is also suggested that other elements which are Ferrite stabilisers are also likely to influence the [Cr] equivalent factors to give a variation in such equations adopted by Schoefer⁶. These include the following elements which have been designated with the respective [Cr] equivalent factors that may be relevant to the variants of the Alloys contained herein:

35	Element	[Cr] equivalent Factor
	Tungsten	0.72
	Vanadium	2.27
	Titanium	2.20
40	Tantalum	0.21
40	Aluminium	2.48

5

10

15

20

25

45

50

[0085] Likewise it is also suggested that other elements which are Austenite stabilisers are also likely to influence the [Ni] equivalent factors to give a variation in such equations adopted by Schoefer⁶. This includes the following element which has been designated with the respective [Ni] equivalent factor that may be relevant to the variants of the Alloys contained herein:

Element	[Ni] equivalent Factor
Copper	0.44

[0086] However, ASTM A800/A800M - 10⁷ states that the Schoefer⁶ diagram is only applicable to Stainless Steel Alloys containing alloying elements in percentage by weight according to the following specification range:

55		С	Mn	Si	Cr	Ni	Мо	Nb	N
55	MIN				17.00	4.00			
	MAX	0.20	2.00	2.00	28.00	13.00	4.00	1.00	0.20

[0087] From the foregoing, it can be deduced that the Nitrogen content in the 304LM4N stainless steel, is \geq 0.40 wt % N and \leq 0.70 wt % N and more preferably \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N. This exceeds the Schoefer⁶ diagram maximum limitations as adopted by ASTM A800/A800M - 10^7 . Notwithstanding this, where appropriate, the Schoefer⁶ diagram will give a relative comparison of the Ferrite number or Volume Percent Ferrite present in Higher Nitrogen containing Austenitic Stainless Steels.

[0088] Nitrogen is an extremely strong Austenite forming element along with Carbon. Similarly, Manganese and Nickel are also Austenite forming elements albeit to a lesser extent. The levels of Austenite forming elements such as Nitrogen and Carbon, as well as Manganese and Nickel are optimised to balance the Ferrite forming elements such as Chromium, Molybdenum and Silicon to primarily maintain an austenitic microstructure. As a result, Nitrogen indirectly limits the propensity to form intermetallic phases since diffusion rates are much slower in austenite. Thus, the kinetics of intermetallic phase formation is reduced. Likewise, in view of the fact that austenite has a good solubility for Nitrogen, this means that the potential to form deleterious precipitates such as M_2X . (carbo-nitrides, borides, boro-nitrides or boro-carbides) as well as $M_{23}C_6$ carbides, in the weld metal and heat affected zone of weldments, during welding cycles, is reduced. As discussed already other variants of the stainless steels may also include elements such as Tungsten, Vanadium, Titanium, Tantalum, Aluminium and Copper.

[0089] Therefore, the 304LM4N stainless steel has been specifically developed to primarily ensure that the microstructure of the base material in the solution heat treated condition along with as-welded weld metal and heat affected zone of weldments is Austenitic. This is controlled by optimising the balance between Austenite forming elements and Ferrite forming elements. Therefore, the chemical analysis of the 304LM4N Stainless steel is optimised at the melting stage to ensure that the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer⁶, is in the range > 0.40 and < 1.05, but preferably > 0.45 and < 0.95.

[0090] As a result the 304LM4N Stainless steel exhibits a unique combination of High Strength and Ductility at ambient temperatures while at the same time guarantees excellent toughness at ambient temperatures and cryogenic temperatures. Furthermore the Alloy can be manufactured and supplied in the Non-Magnetic condition.

Optimum Chemical Composition

10

25

30

35

40

45

50

[0091] As a result of the forgoing, it has been determined that the optimum chemical composition range of the 304LM4N stainless steel is selective and includes in percentage by weight as follows:

- (i) \leq 0.030 wt % C maximum, but preferably \geq 0.020 wt % C and \leq 0.030 wt % C and more preferably \leq 0.025 wt % C; (ii) \leq 2.0 wt % Mn, but \geq 1.0 wt % Mn and \leq 2.0 wt % Mn and more preferably \geq 1.20 wt % Mn and \leq 1.50 wt % Mn, with a Mn to N ratio of \leq 5.0 and \geq 2.85 and \leq 5.0 but more preferably, \geq 2.85 and \leq 3.75, for the lower Manganese range Alloys;
- (iii) \leq 0.030 wt % P, but preferably \leq 0.025 wt % P and more preferably \leq 0.020 wt % P and even more preferably \leq 0.015 wt % P and even further more preferably \leq 0.010 wt % P;
- (iv) \leq 0.010 wt % S, but preferably \leq 0.005 wt % S and more preferably \leq 0.003 wt % S, and even more preferably \leq 0.001 wt % S;
- (v) \leq 0.070 wt % O, but preferably \leq 0.050 wt % O, and more preferably \leq 0.030 wt % O, and even more preferably \leq 0.010 wt % O, and even further more preferably \leq 0.005 wt % O;
- (vi) \leq 0.75 wt % Si, but preferably \geq 0.25 wt % Si and \leq 0.75 wt % Si and more preferably \geq 0.40 wt % Si and \leq 0.60 wt % Si;
- (vii) \geq 17.50 wt % Cr and \leq 20.00 wt % Cr, but preferably \geq 18.25 wt % Cr;
- (viii) \geq 8.00 wt % Ni and \leq 12.00 wt % Ni, but preferably \leq 11 wt % Ni and more preferably \leq 10 wt % Ni;
- $(ix) \le 2.00 \text{ wt } \% \text{ Mo, and } \ge 1.0 \text{ wt } \% \text{ Mo};$
- (x) \geq 0.40 wt % N and \leq 0.70 wt % N and more preferably \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N.

[0092] The 304LM4N stainless steel has a high specified level of Nitrogen and a $PRE_N \ge 25$, but preferably $PRE_N \ge 30$. The chemical composition of the 304LM4N stainless steel is optimised at the melting stage to ensure that the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer⁶, is in the range > 0.40 and < 1.05, but preferably > 0.45 and < 0.95.

[0093] The 304LM4N stainless steel also contains principally Fe as the remainder and may also contain very small amounts of other elements such as Boron, Cerium, Aluminium, Calcium and/or Magnesium as well as other impurities which may be present in residual levels. The 304LM4N stainless steel may be manufactured without the addition of Boron and the residual level of Boron is typically ≥ 0.0001 wt % B and ≤ 0.0006 wt % B for mills which prefer not to intentionally add Boron to the heats. Alternatively, the 304LM4N stainless steel may be manufactured to specifically have a Boron content ≥ 0.001 wt% B and ≤ 0.010 wt % B, but preferably ≥ 0.0015 wt % B and ≤ 0.0035 wt % B. Cerium

is ≥ 0.03 wt % Ce and ≤ 0.08 wt % Ce. If the stainless steel contains Cerium it may also possibly contain other Rare Earth Metals (REM) such as Lanthanum since REMs are very often supplied to the Stainless steel manufacturers as Mischmetal. It should be noted that Rare Earth Metals may be utilised individually or together as Mischmetal providing the total amount of REMs conforms to the levels of Ce specified herein. Aluminium may be added with an Aluminium content ≤ 0.050 wt % Al, but ≥ 0.005 wt % Al and ≤ 0.050 wt % Al and more preferably ≥ 0.010 wt % Al and ≤ 0.030 wt % Al. Calcium and/or Magnesium may be added with a Ca and/or Mg content of ≥ 0.001 and ≤ 0.010 wt % Ca and/or Mg but preferably ≤ 0.005 wt % Ca and/or Mg.

[0094] From the above, applications using the wrought 304LM4N stainless steel can frequently be designed with reduced wall thicknesses, thus leading to significant weight savings when specifying 304LM4N Stainless steel compared to conventional austenitic Stainless Steels such as UNS S30403 and S30453 because the minimum allowable design stresses are significantly higher. In fact, the minimum allowable design stresses for the wrought 304LM4N Stainless steel are higher than for 22 Cr Duplex Stainless Steels and similar to 25 Cr Super Duplex Stainless Steels.

[0095] It should also be appreciated that if wrought 304LM4N stainless steel is specified and utilised, this may lead to overall savings in fabrication and construction costs because thinner wall components may be designed which are easier to handle and require less fabrication time. Therefore, 304LM4N stainless steel may be utilised in a wide range of industry applications where structural integrity and corrosion resistance is demanded and is particularly suitable for offshore and onshore oil and gas applications.

[0096] Wrought 304LM4N Stainless steel is ideal for use in a wide range of Applications in various Markets and Industry Sectors such as topside piping systems and fabricated modules used for offshore Floating Liquefied Natural Gas (FLNG) vessels because of the significant weight savings and fabrication time savings that can be achieved, which in turn leads to significant cost savings. The 304LM4N stainless steel can also be specified and may be used for piping systems utilised for both offshore and onshore Applications, such as piping systems used for offshore FLNG vessels and onshore LNG plants, in view of their high mechanical strength properties and ductility, as well as possessing excellent toughness at ambient and cryogenic temperatures.

[0097] In addition to 304LM4N austenitic stainless steel, there is also proposed a second embodiment appropriately referred to as 316LM4N in this description.

316LM4N

35

50

55

[0098] The 316LM4N High strength austenitic stainless steel comprises a high level of Nitrogen and a specified Pitting Resistance Equivalent of $PRE_N \ge 30$, but preferably $PRE_N \ge 35$. The Pitting Resistance Equivalent as designated by PRE_N is calculated according to the formulae:

$$PRE_N = \% Cr + (3.3 \times \% Mo) + (16 \times \% N).$$

[0099] The 316LM4N Stainless steel has been formulated to possess a unique combination of high mechanical strength properties with excellent ductility and toughness, along with good weldability and good resistance to general and localised corrosion. The chemical composition of the 316LM4N stainless steel is selective and characterised by an alloy of chemical elements in percentage by weight as follows, 0.030 wt % C max, 2.00 wt % Mn max, 0.030 wt % P max, 0.010 wt % S max, 0.75 wt % Si max, 16.00 wt % Cr -18.00 wt % Cr, 10.00 wt % Ni -14.00 wt % Ni, 2.00 wt % Mo - 4.00 wt % Mo, 0.40 wt % N - 0.70 wt % N.

[0100] The 316LM4N Stainless steel also comprises principally Fe as the remainder and may also contain very small amounts of other elements such as 0.010 wt % B max, 0.050 wt % Al max, 0.01 wt % Ca max and/or 0.01 wt % Mg max and other impurities which are normally present in residual levels. The chemical composition of the 316LM4N stainless steel is optimised at the melting stage to primarily ensure an Austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C to 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between Austenite forming elements and Ferrite forming elements to primarily ensure that the Alloy is Austenitic. As a result, the 316LM4N Stainless steel exhibits a unique combination of high strength and ductility at ambient temperatures, while at the same time guarantees excellent toughness at ambient temperatures and cryogenic temperatures. In view of the fact that the chemical analysis of the 316LM4N stainless steel is adjusted to guarantee a PRE $_{\rm N} \ge 30$, but preferably PRE $_{\rm N} \ge 35$, this ensures that the material also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 316LM4N Stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31603 and UNS S31653.

[0101] It has been determined that the optimum chemical composition range of the 316LM4N stainless steel is carefully

selective to comprise the following chemical elements in percentage by weight as follows based on a second embodiment,

Carbon (C)

[0102] Carbon content of the 316LM4N stainless steel is \leq 0.030 wt % C maximum, but preferably > 0.020 wt % C and \leq 0.030 wt % C and more preferably \leq 0.025 wt % C.

Manganese (Mn)

[0103] The 316LM4N stainless steel of the second embodiment may come in two variations: Low Manganese or high Manganese.

[0104] For the low Manganese alloys, the Manganese content of the 316LM4N stainless steel is \leq 2.0 wt % Mn, but \geq 1.0 wt % Mn and \leq 2.0 wt % Mn and more preferably \geq 1.20 wt % Mn and \leq 1.50 wt % Mn. With such a composition, this achieves an optimum Mn to N ratio of \leq 5.0, and \geq 2.85 and \leq 5.0. More preferably, the ratio is \geq 2.85 and \leq 3.75.

[0105] For the high Manganese alloys, the Manganese content of the 316MN4N is \leq 4.0 wt % Mn. Preferably, the Manganese content is \geq 2.0 wt % Mn and \leq 4.0 wt % Mn, and more preferably the upper limit is \leq 3.0 wt % Mn. Even more preferably, the upper limit is \leq 2.50 wt % Mn. With these selective ranges, this achieves a Mn to N ratio of \geq 2.85 and \leq 7.50 and even more preferably \geq 2.85 and \leq 6.25.

20 Phosphorus(P)

[0106] The Phosphorus content of the 316LM4N stainless steel is controlled to be \leq 0.030 wt % P. Preferably, the 316LM4N alloy has \leq 0.025 wt % P and more preferably \leq 0.020 wt % P. Even more preferably, the alloy has \leq 0.015 wt % P and even further more preferably \leq 0.010 wt % P.

Sulphur (S)

25

30

35

45

50

55

[0107] The Sulphur content of the 316LM4N stainless steel is \leq 0.010 wt % S. Preferably, the 316LM4N has \leq 0.005 wt % S and more preferably \leq 0.003 wt % S, and even more preferably \leq 0.001 wt % S.

Oxygen (O)

[0108] The Oxygen content of the 316LM4N stainless steel is controlled to be as low as possible and in the second embodiment, the 316LM4N has \leq 0.070 wt % O. Preferably, the 316LM4N has \leq 0.050 wt % O and more preferably \leq 0.030 wt % O. Even more preferably, the alloy has \leq 0.010 wt % O and even further more preferably \leq 0.005 wt % O.

Silicon (Si)

[0109] The Silicon content of the 316LM4N stainless steel has \leq 0.75 wt % Si. Preferably, the alloy has \geq 0.25 wt % Si and \leq 0.75 wt % Si. More preferably, the range is \geq 0.40 wt % Si and \leq 0.60 wt % Si. However, for higher temperature applications wherein improved oxidation resistance is required, the Silicon content may be \geq 0.75 wt % Si and \leq 2.00 wt % Si.

Chromium (Cr)

[0110] The Chromium content of the 316LM4N stainless steel is \geq 16.00 wt % Cr and \leq 18.00 wt % Cr. Preferably, the alloy has \geq 17.25 wt % Cr.

Nickel (Ni)

[0111] The Nickel content of the 316LM4N stainless steel is \geq 10.00 wt % Ni and \leq 14.00 wt % Ni. Preferably, the upper limit of Ni of the alloy is \leq 13.00 wt % Ni and more preferably \leq 12.00 wt % Ni.

Molybdenum (Mo)

[0112] The Molybdenum content of the 316LM4N stainless steel is \geq 2.00 wt % Mo and \leq 4.00 wt % Mo. Preferably, the lower limit is \geq 3.0 wt % Mo.

Nitrogen (N)

[0113] The Nitrogen content of the 316LM4N stainless steel is \geq 0.40 wt % N and \leq 0.70 wt % N. More preferably, the 316LM4N has \geq 0.40 wt % N and \leq 0.60 wt % N, and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N.

 PRE_N

[0114] The PITTING RESISTANCE EQUIVALENT (PRE_N) is calculated using the formulae:

10

15

20

30

35

40

50

55

5

$$PRE_N = \% Cr + (3.3 \times \% Mo) + (16 \times \% N).$$

[0115] The 316LM4N Stainless steel has been specifically formulated to have the following composition:

- (i) Chromium content \geq 16.00 wt % Cr and \leq 18.00 wt % Cr, but preferably \geq 17.25 wt % Cr,
- (ii) Molybdenum content \geq 2.00 wt % Mo and \leq 4.00 wt % Mo, but preferably \geq 3.0 wt % Mo,
- (iii) Nitrogen content \geq 0.40 wt % N and \leq 0.70 wt % N and more preferably \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N.

[0116] With a high level of Nitrogen, the 316LM4N stainless steel achieves a $PRE_N \ge 30$, but preferably $PRE_N \ge 35$. This ensures that the alloy also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 316LM4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31603 and UNS S31653. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion.

[0117] The chemical composition of the 316LM4N stainless steel is optimised at the melting stage to ensure that the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer 6 , is in the range > 0.40 and < 1.05, but preferably > 0.45 and < 0.95, in order to primarily obtain an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C-1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and Ferrite forming elements to primarily ensure that the alloy is austenitic. The alloy can therefore be manufactured and supplied in the Non-Magnetic condition.

[0118] The 316LM4N Stainless steel also has principally Fe as the remainder and may also contain very small amounts of other elements such as Boron, Aluminium, Calcium and/or Magnesium in percentage by weight and the compositions of these elements are the same as those of 304LM4N. In other words, the passages relating to these elements and Ce for 304LM4N are also applicable here.

[0119] The 316LM4N stainless steel according to the second embodiment possesses minimum yield strength of 55 ksi or 380 MPa for the wrought version. More preferably, minimum yield strength of 62 ksi or 430 MPa may be achieved for the wrought version. The cast version possesses minimum yield strength of 41 ksi or 280 MPa. More preferably, minimum yield strength of 48 ksi or 330 MPa may be achieved for the cast version. Based on the preferred values, a comparison of the wrought mechanical strength properties of the 316LM4N stainless steel, with those of UNS S31603, suggest that the minimum yield strength of the 316LM4N stainless steel might be 2.5 times higher than that specified for UNS S31603. Similarly, a comparison of the wrought mechanical strength properties of the novel and innovative 316LM4N stainless steel, with those of UNS S31653, may suggest that the minimum yield strength of the 316LM4N stainless steel is 2.1 times higher than that specified for UNS S31653.

[0120] The 316LM4N stainless steel according to the second embodiment possesses a minimum tensile strength of 102 ksi or 700 MPa for the wrought version. More preferably, a minimum tensile strength of 109 ksi or 750 MPa may be achieved and for the wrought version. The cast version possesses a minimum tensile strength of 95 ksi or 650 MPa. More preferably, a minimum tensile strength of 102 ksi or 700 MPa may be achieved for the cast version. Based on the preferred values, a comparison of the wrought mechanical strength properties of the 316LM4N stainless steel, with those of UNS S31603, may suggest that the minimum tensile strength of the 316LM4N stainless steel is more than 1.5 times higher than that specified for UNS S31603. Similarly, a comparison of the wrought mechanical strength properties of the 316LM4N stainless steel, with those of UNS S31653, may suggest that the minimum tensile strength of the 316LM4N stainless steel might be 1.45 times higher than that specified for UNS S31653. Indeed, if the wrought mechanical strength properties of the novel and innovative 316LM4N stainless steel, are compared with those of the 22 Cr Duplex Stainless Steel, then it might be demonstrated that the minimum tensile strength of the 316LM4N stainless steel might be in the region of 1.2 times higher than that specified for S31803 and similar to that specified for 25 Cr Super Duplex Stainless

Steel. Therefore, the minimum mechanical strength properties of the 316LM4N stainless steel have been significantly improved compared to conventional Austenitic Stainless Steels such as UNS S31603 and UNS S31653 and the tensile strength properties are better than that specified for 22 Cr Duplex Stainless Steel and similar to those specified for 25 Cr Super Duplex Stainless Steel.

[0121] This means that applications using the wrought 316LM4N stainless steel may be frequently designed with reduced wall thicknesses, thus, leading to significant weight savings when specifying 316LM4N stainless steel compared to conventional austenitic stainless steels such as UNS S31603 and S31653 because the minimum allowable design stresses are significantly higher. In fact, the minimum allowable design stresses for the wrought 316LM4N Stainless steel may be higher than for 22 Cr Duplex Stainless Steels and similar to 25 Cr Super Duplex Stainless Steels.

[0122] For certain applications, other variants of the 316LM4N stainless steel have been purposely formulated to be manufactured containing specific levels of other alloying elements such as Copper, Tungsten and Vanadium. It has been determined that the optimum chemical composition range of the other variants of the 316LM4N stainless steel is selective and the compositions of Copper and Vanadium are the same as those of 304LM4N. In other words, the passages relating to these elements for 304LM4N are also applicable here for the 316LM4N.

Tungsten (W)

10

15

20

25

30

35

40

45

50

55

[0123] The Tungsten content of the 316LM4N stainless steel is \leq 2.00 wt % and \geq 0.75 wt % W. For 316LM4N stainless steel variants containing Tungsten, the PITTING RESISTANCE EQUIVALENT is calculated using the formulae:

$$PRE_{NW} = \% Cr + [3.3 \times \% (Mo + W)] + (16 \times \% N).$$

[0124] This Tungsten containing variant of the 316LM4N stainless steel has been specifically formulated to have the following composition:

- (i) Chromium content ≥ 16.00 wt % Cr and ≤ 18.00 wt % Cr, but preferably ≥ 17.25 wt % Cr;
- (ii) Molybdenum content \geq 2.00 wt % Mo and \leq 4.00 wt % Mo, but preferably \geq 3.0 wt % Mo;
- (iii) Nitrogen ≥ 0.40 wt % N and ≤ 0.70 wt % N and more preferably ≥ 0.40 wt % N and ≤ 0.60 wt % N and even more preferably ≥ 0.45 wt % N and ≤ 0.55 wt % N; and
- (iv) Tungsten content \leq 2.00 wt % and \geq 0.75 wt % W.

[0125] The Tungsten containing variant of the 316LM4N Stainless steel has a high specified level of Nitrogen and a $PRE_{NW} \ge 32$, but preferably $PRE_{NW} \ge 37$. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion. Tungsten may be added individually or in conjunction with Copper, Vanadium, Titanium and/or Niobium and/or Niobium plus Tantalum in all the various combinations of these elements, to further improve the overall corrosion performance of the alloy. Tungsten is extremely costly and therefore is being purposely limited to optimise the economics of the alloy, while at the same time optimising the ductility, toughness and corrosion performance of the alloy.

Carbon (C)

[0126] For certain applications, other variants of the 316LM4N Stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the Carbon content of the 316LM4N stainless steel may be ≥ 0.040 wt % C and < 0.10 wt % C, but preferably ≤ 0.050 wt % C or > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C. These specific variants of the 316LM4N Stainless steel may be regarded as the 316HM4N or 316M4N versions respectively.

Titanium (Ti) /Niobium (Nb) /Niobium (Nb) plus Tantalum (Ta)

[0127] Furthermore, for certain applications, other stabilised variants of the 316HM4N or 316M4N stainless steel are desirable, which have been specifically formulated to be manufactured containing higher levels of Carbon. Specifically, the amount of Carbon is > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C.

- (i) These include the Titanium stabilised versions which are referred to as 316HM4NTi or 316M4NTi to contrast with the generic 316LM4N stainless steel versions. The Titanium content is controlled according to the following formulae: Ti 5 x C min, 0.70 wt % Ti max respectively, in order to have Titanium stabilised derivatives of the alloy.
- (ii) There are also the Niobium stabilised, 316HM4NNb or 316M4NNb versions where the Niobium content is con-

trolled according to the following formulae: Nb 10 x C min, 1.0 wt % Nb max respectively, in order to have Niobium stabilised derivatives of the alloy.

(iii) In addition, other variants of the alloy may also be manufactured to contain Niobium plus Tantalum stabilised, 316HM4NNbTa or 316M4NNbTa versions where the Niobium plus Tantalum content is controlled according to the following formulae:

Nb + Ta 10 x C min, 1.0 wt % Nb + Ta max, 0.10 wt % Ta max.

[0128] Titanium stabilised, Niobium stabilised and Niobium plus Tantalum stabilised variants of the Alloy may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium and/or Niobium and/or Niobium plus Tantalum may be added individually or in conjunction with Copper, Tungsten and Vanadium in all the various combinations of these elements to optimise the alloy for certain applications where higher Carbon contents are desirable. These alloying elements may be utilised individually or in all the various combinations of the elements to tailor the Stainless steel for specific applications and to further improve the overall corrosion performance of the alloy.

[0129] The wrought and cast versions of the 316LM4N Stainless steel along with the other variants and embodiments discussed herein are generally supplied in the solution annealed condition. However, the weldments of Fabricated components, modules and fabrications are generally supplied in the as -welded condition, providing that suitable Weld Procedure Qualifications have been prequalified in accordance with the respective standards and specifications. For specific applications the wrought versions may also be supplied in the cold worked condition.

[0130] It should be appreciated that the effect of the various elements and their compositions as discussed in relation to 304LM4N are also applicable to 316LM4N (and the embodiments discussed below) to appreciate how the optimum chemical composition is obtained for the 316LM4N stainless steel (and the rest of the embodiments).

[0131] In addition to 304LM4N and 316LM4N austenitic stainless steels, there is also proposed a further variation appropriately referred to as 317L57M4N and this forms a third embodiment of this invention.

[317L57M4N]

5

15

20

35

50

[0132] The 317L57M4N High strength austenitic stainless steel has a high level of Nitrogen and a specified Pitting Resistance Equivalent of $PRE_N \ge 40$, but preferably $PRE_N \ge 45$. The Pitting Resistance Equivalent as designated by PRE_N is calculated according to the formulae:

$$PRE_N = \% Cr + (3.3 \times \% Mo) + (16 \times \% N).$$

[0133] The 317L57M4N Stainless steel has been formulated to possess a unique combination of high mechanical strength properties with excellent ductility and toughness, along with good weldability and good resistance to general and localised corrosion. The chemical composition of the 317L57M4N stainless steel is selective and characterised by an alloy of chemical elements in percentage by weight as follows, 0.030 wt % C max, 2.00 wt % Mn max, 0.030 wt % P max, 0.010 wt % S max, 0.75 wt % Si max, 18.00 wt % Cr - 20.00 wt % Cr, 11.00 wt % Ni -15.00 wt % Ni, 5.00 wt % Mo - 7.00 wt % Mo, 0.40 wt % N - 0.70 wt % N.

[0134] The 317L57M4N stainless steel also comprises principally Fe as the remainder and may also contain very small amounts of other elements such as 0.010 wt % B max, 0.050 wt % Al max, 0.010 wt % Ca max and/or 0.010 wt % Mg max and other impurities which are normally present in residual levels.

[0135] The chemical composition of the 317L57M4N stainless steel is optimised at the melting stage to primarily ensure an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and ferrite forming elements to primarily ensure that the alloy is austenitic. As a result, the 317L57M4N stainless steel exhibits a unique combination of high strength and ductility at ambient temperatures, while at the same time achieves excellent toughness at ambient temperatures and cryogenic temperatures. In view of the fact that the chemical analysis of the 317L57M4N stainless steel is adjusted to achieve a PRE_N \geq 40, but preferably PRE_N \geq 45, this ensures that the material also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 317L57M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31703 and UNS S31753.

[0136] It has been determined that the optimum chemical composition range of the 317L57M4N stainless steel is carefully selected to comprise the following chemical elements in percentage by weight as follows based on the third embodiment,

5 Carbon (C)

[0137] The Carbon content of the 317L57M4N stainless steel is \leq 0.030 wt % C maximum. Preferably, the amount of Carbon should be \geq 0.020 wt % C and \leq 0.030 wt % C and more preferably \leq 0.025 wt % C.

10 Manganese (Mn)

[0138] The 317LM57M4N stainless steel of the third embodiment may come in two variations: low Manganese or high Manganese.

[0139] For the low Manganese alloys, the Manganese content of the 317L57M4N stainless steel is \leq 2.0 wt % Mn. The range is \geq 1.0 wt % Mn and \leq 2.0 wt % Mn and more preferably \geq 1.20 wt % Mn and \leq 1.50 wt % Mn. With such compositions, this achieves an optimum Mn to N ratio of \leq 5.0, and \geq 2.85 and \leq 5.0. More preferably, the ratio is \geq 2.85 and \leq 3.75

[0140] For the high Manganese alloys, the Manganese content of the 317L57M4N is \leq 4.0 wt % Mn. Preferably, the Manganese content is \geq 2.0 wt % Mn and \leq 4.0 wt % Mn, and more preferably, the upper limit is \leq 3.0 wt % Mn. Even more preferably, the upper limit is \leq 2.50 wt % Mn. With such selective ranges, this achieves a Mn to N ratio of \geq 2.85 and \leq 7.50 and even more preferably \geq 2.85 and \leq 6.25.

Phosphorus(P)

[0141] The Phosphorus content of the 317L57M4N stainless steel is controlled to be \le 0.030 wt % P. Preferably, the 317L57M4N alloy has \le 0.025 wt % P and more preferably \le 0.020 wt % P. Even more preferably, the alloy has \le 0.015 wt % P and even further more preferably \le 0.010 wt % P.

Sulphur (S)

[0142] The Sulphur content of the 317L57M4N stainless steel of the third embodiment includes \leq 0.010 wt % S. Preferably, the 317L57M4N has \leq 0.005 wt % S and more preferably \leq 0.003 wt % S, and even more preferably \leq 0.001 wt % S.

Oxygen (O)

30

40

50

55

[0143] The Oxygen content of the 317L57M4N stainless steel is controlled to be as low as possible and in the third embodiment, the 317L57M4N also has \leq 0.070 wt % O. Preferably, the 317L57M4N alloy has \leq 0.050 wt % O and more preferably \leq 0.030 wt % O. Even more preferably, the alloy has \leq 0.010 wt % O and even further more preferably \leq 0.005 wt % O.

Silicon (Si)

[0144] The Silicon content of the 317L57M4N stainless steel is \leq 0.75 wt % Si. Preferably, the alloy has \geq 0.25 wt % Si and \leq 0.75 wt % Si. More preferably, the range is \geq 0.40 wt % Si and \leq 0.60 wt % Si. However, for specific higher temperature applications where improved oxidation resistance is required, the Silicon content may be \geq 0.75 wt % Si and \leq 2.00 wt % Si.

Chromium (Cr)

[0145] The Chromium content of the 317L57M4N stainless steel is \geq 18.00 wt % Cr and \leq 20.00 wt % Cr. Preferably, the alloy has \geq 19.00 wt % Cr.

Nickel (Ni)

[0146] The Nickel content of the 317L57M4N stainless steel is \geq 11.00 wt % Ni and \leq 15.00 wt % Ni. Preferably, the upper limit of Ni of the alloy is \leq 14.00 wt % Ni and more preferably \leq 13.00 wt % Ni for the lower Nickel range alloys. **[0147]** For higher Nickel range alloys, the Nickel content of the 317L57M4N stainless steel may have \geq 13.50 wt %

Ni and \leq 17.50 wt % Ni. Preferably, the upper limit of the Ni is \leq 16.50 wt % Ni and more preferably \leq 15.50 wt % Ni for the higher Nickel range alloys.

Molybdenum (Mo)

[0148] The Molybdenum content of the 317L57M4N stainless steel alloy is ≥ 5.00 wt % Mo and ≤ 7.00 wt % Mo, but preferably ≥ 6.00 wt % Mo. In other words, the Molybdenum has a maximum of 7.00 wt % Mo.

Nitrogen (N)

[0149] The Nitrogen content of the 317L57M4N stainless steel is \geq 0.40 wt % N and \leq 0.70 wt % N. More preferably, the 317L57M4N has \geq 0.40 wt % N and \leq 0.60 wt % N, and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N.

 PRE_N

5

10

15

20

25

30

35

50

[0150] The PITTING RESISTANCE EQUIVALENT is calculated using the formulae:

$$PRE_N = \% Cr + (3.3 \times \% Mo) + (16 \times \% N).$$

[0151] The 317L57M4N stainless steel has been specifically formulated to have the following composition:

- (i) Chromium content \geq 18.00 wt % Cr and \leq 20.00 wt % Cr, but preferably \geq 19.00 wt % Cr;
- (ii) Molybdenum content ≥ 5.00 wt % Mo and ≤ 7.00 wt % Mo, but preferably ≥ 6.00 wt % Mo
- (iii) Nitrogen \geq 0.40 wt % N and \leq 0.70 wt % N and more preferably \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N.

[0152] With a high level of Nitrogen, the 317L57M4N stainless steel achieves a PRE_N of \geq 40, and preferably PRE_N \geq 45. This ensures that the alloy has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 317L57M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional austenitic stainless steels such as UNS S31703 and UNS S31753. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion

[0153] The chemical composition of the 317L57M4N Stainless steel is optimised at the melting stage to ensure that the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer⁶, is in the range > 0.40 and < 1.05, but preferably > 0.45 and < 0.95, in order to primarily obtain an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and Ferrite forming elements to primarily ensure that the alloy is austenitic. The alloy can therefore be manufactured and supplied in the Non-Magnetic condition.

[0154] The 317L57M4N stainless steel also has principally Fe as the remainder and may also contain very small amounts of other elements such as Boron, Aluminium, Calcium and/or Magnesium in percentage by weight, and the compositions of these elements are the same as those of 304LM4N. In other words, the passages relating to these elements and Ce for 304LM4N are also applicable here.

[0155] The 317L57M4N stainless steel according to the third embodiment possesses minimum yield strength of 55 ksi or 380 MPa for the wrought version. More preferably, minimum yield strength of 62 ksi or 430 MPa may be achieved for the wrought version. The cast version possesses minimum yield strength of 41 ksi or 280 MPa. More preferably, minimum yield strength of 48 ksi or 330 MPa may be achieved for the cast version. Based on the preferred values, a comparison of the wrought mechanical strength properties of the novel and innovative 317L57M4N stainless steel, with those of UNS S31703, suggests that the minimum yield strength of the 317L57M4N stainless steel might be 2.1 times higher than that specified for UNS S31703. Similarly, a comparison of the wrought mechanical strength properties of the 317L57M4N stainless steel, with those of UNS S31753, suggests that the minimum yield strength of the 317L57M4N stainless steel might be 1.79 times higher than that specified for UNS S31753.

[0156] The 317L57M4N stainless steel according to the third embodiment possesses a minimum tensile strength of 102 ksi or 700 MPa for the wrought version. More preferably, a minimum tensile strength of 109 ksi or 750 MPa may be achieved for the wrought version. The cast version possesses a minimum tensile strength of 95 ksi or 650 MPa. More

preferably, a minimum tensile strength of 102 ksi or 700 MPa may be achieved for the cast version. Based on the preferred values a comparison of the wrought mechanical strength properties of the 317L57M4N stainless steel, with those of UNS S31703, suggests that the minimum tensile strength of the 317L57M4N Stainless steel might be more than 1.45 times higher than that specified for UNS S31703. Similarly, a comparison of the wrought mechanical strength properties of the novel and innovative 317L57M4N Stainless steel, with those of UNS S31753, suggests that the minimum tensile strength of the 317L57M4N Stainless steel might be 1.36 times higher than that specified for UNS S31753. Indeed, if the wrought mechanical strength properties of the 317L57M4N Stainless steel, are compared with those of the 22 Cr Duplex Stainless Steel in Table 2, then it may be demonstrated that the minimum tensile strength of the 317L57M4N stainless steel is in the region of 1.2 times higher than that specified for S31803 and similar to that specified for 25 Cr Super Duplex Stainless Steel. Therefore, the minimum mechanical strength properties of the 317L57M4N stainless steel have been significantly improved compared to conventional Austenitic Stainless Steels such as UNS S31703 and UNS S31753 and the tensile strength properties are better than that specified for 22 Cr Duplex Stainless Steel and similar to those specified for 25 Cr Super Duplex Stainless Steel.

[0157] This means that applications using the wrought 317L57M4N stainless steel may be frequently designed with reduced wall thicknesses, thus, leading to significant weight savings when specifying 317L57M4N stainless steel compared to conventional austenitic stainless steels such as UNS S31703 and S31753 because the minimum allowable design stresses are significantly higher. In fact, the minimum allowable design stresses for the wrought 317L57M4N stainless steel are higher than for 22 Cr Duplex Stainless Steels and similar to 25 Cr Super Duplex Stainless Steels.

[0158] For certain applications, other variants of the 317L57M4N stainless steel have been purposely formulated to be manufactured containing specific levels of other alloying elements such as Copper, Tungsten and Vanadium. It has been determined that the optimum chemical composition range of the other variants of the 317L57M4N stainless steel is selective and the compositions of Copper and Vanadium are the same as those of 304LM4N. In other words, the passages relating to these elements for 304LM4N are also applicable here for 317L57M4N.

Tungsten (W)

25

30

35

40

50

55

[0159] The Tungsten content of the 317L57M4N stainless steel is ≤ 2.00 wt % and ≥ 0.75 wt % W. For 317L57M4N stainless steel variants containing Tungsten, the PITTING RESISTANCE EQUIVALENT is calculated using the formulae:

$$PRE_{NW} = \% Cr + [3.3 x \% (Mo + W)] + (16 x \% N).$$

[0160] This Tungsten containing variant of the 317L57M4N stainless steel has been specifically formulated to have the following composition:

- (i) Chromium content ≥ 18.00 wt % Cr and ≤ 20.00 wt % Cr, but preferably ≥ 19.00 wt % Cr;
- (ii) Molybdenum content ≥ 5.00 wt % Mo and ≤ 7.00 wt % Mo, but preferably ≥ 6.00 wt % Mo,
- (iii) Nitrogen content \geq 0.40 wt % N and \leq 0.70 wt % N and more preferably \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N; and
- (iv) Tungsten content \leq 2.00 wt % and \geq 0.75 wt % W.

[0161] The Tungsten containing variant of the 317L57M4N Stainless steel has a high specified level of Nitrogen and a $PRE_{NW} \ge 42$, but preferably $PRE_{NW} \ge 47$. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion. Tungsten may be added individually or in conjunction with Copper, Vanadium, Titanium and/or Niobium and/or Niobium plus Tantalum in all the various combinations of these elements, to further improve the overall corrosion performance of the alloy. Tungsten is extremely costly and therefore is being purposely limited to optimise the economics of the alloy, while at the same time optimising the ductility, toughness and corrosion performance of the alloy.

Carbon (C)

[0162] For certain applications, other variants of the 317L57M4N stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the Carbon content of the 317L57M4N stainless steel may be ≥ 0.040 wt % C and < 0.10 wt % C, but preferably ≤ 0.050 wt % C or > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C. These specific variants of the 317L57M4N stainless steel are the 317H57M4N or 31757M4N versions respectively.

Titanium (Ti) /Niobium (Nb) /Niobium (Nb) plus Tantalum (Ta)

[0163] Furthermore, for certain applications, other stabilised variants of the 317H57M4N or 31757M4N stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the Carbon is > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C.

- (i) These include the Titanium stabilised versions which are referred to as 317H57M4NTi or 31757M4NTi to contrast with the generic 317L574N steel versions. The Titanium content is controlled according to the following formulae: Ti 5 x C min, 0.70 wt % Ti max respectively, in order to have Titanium stabilised derivatives of the alloy.
- (ii) There are also the Niobium stabilised, 317H57M4NNb or 31757M4NNb versions where the Niobium content is controlled according to the following formulae: Nb 10 x C min, 1.0 wt % Nb max respectively, in order to have Niobium stabilised derivatives of the alloy.
- (iii) In addition, other variants of the alloy may also be manufactured to contain Niobium plus Tantalum stabilised, 317H57M4NNbTa or 31757M4NNbTa versions where the Niobium plus Tantalum content is controlled according to the following formulae:

Nb + Ta 10 x C min, 1.0 wt % Nb + Ta max, 0.10 wt % Ta max.

[0164] Titanium stabilised, Niobium stabilised and Niobium plus Tantalum stabilised variants of the alloy may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium and/or Niobium and/or Niobium plus Tantalum may be added individually or in conjunction with Copper, Tungsten and Vanadium in all the various combinations of these elements to optimise the alloy for certain applications where higher Carbon contents are desirable. These alloying elements may be utilised individually or in all the various combinations of the elements to tailor the stainless steel for specific applications and to further improve the overall corrosion performance of the alloy.

[0165] The wrought and cast versions of the 317L57M4N stainless steel along with the other variants are generally supplied in the same manner as the earlier embodiments.

[0166] Further, there is proposed a further variation appropriately referred to as 317L35M4N high strength austenitic stainless steel, which is a fourth embodiment of the invention. The 317L35M4N stainless steel virtually has the same chemical compositions as 317L57M4N stainless steel with the exception of the Molybdenum content. Thus, instead of repeating the various chemical compositions, only the difference is described.

[317L35M4N]

10

15

20

30

35

45

50

55

[0167] As mentioned above, the 317L35M4N has exactly the same wt % Carbon, Manganese, Phosphorus, Sulphur, Oxygen, Silicon, Chromium, Nickel and Nitrogen content as the third embodiment, 317L57M4N stainless steel, except the Molybdenum content. In the 317L57M4N stainless steel, the Molybdenum level is between 5.00 wt % and 7.00 wt % Mo. In contrast, the 317L35M4N stainless steel's Molybdenum content is between 3.00 wt % and 5.00% Mo. In other words, the 317L35M4N may be regarded as a lower Molybdenum version of the 317L57M4N stainless steel.

[0168] It should be appreciated that the passages relating to 317L57M4N are also applicable here, except the Molybdenum content.

Molybdenum (Mo)

[0169] The Molybdenum content of the 317L35M4N stainless steel may be \geq 3.00 wt % Mo and \leq 5.00 wt % Mo, but preferably \geq 4.00 wt % Mo. In other words, the Molybdenum content of the 317L35M4N has a maximum of 5.00 wt % Mo.

PRE_N

[0170] The PITTING RESISTANCE EQUIVALENT for the 317L35M4N is calculated using the same formulae as 317L57M4N, but because of the different Molybdenum content, the PRE_N is \geq 35, but preferably $PRE_N \geq$ 40. This ensures that the material also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 317L35M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31703 and UNS S31753. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion.

[0171] The chemical composition of the 317L35M4N Stainless steel is optimised at the melting stage to ensure that

the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer⁶, is in the range > 0.40 and < 1.05, but preferably > 0.45 and < 0.95, in order to primarily obtain an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and ferrite forming elements to primarily ensure that the alloy is austenitic. As a result, the 317L35M4N stainless steel exhibits a unique combination of high strength and ductility at ambient temperatures, while at the same time guarantees excellent toughness at ambient temperatures and cryogenic temperatures. The alloy can therefore be manufactured and supplied in the Non-Magnetic condition.

[0172] Like the 317L57M4N embodiment, the 317L35M4N stainless steel also contains principally Fe as the remainder and may also contain very small amounts of other elements such as Boron, Aluminium, Calcium and/or Magnesium in percentage by weight, and the compositions of these elements and Ce are the same as those of 317L57M4N and thus, those of 304LM4N.

[0173] The 317L35M4N stainless steel of the fourth embodiment has minimum yield strength and a minimum tensile strength comparable or similar to those of the 317L57M4N stainless steel. Likewise, the strength properties of the wrought and cast versions of the 317L35M4N are also comparable to those of the 317L57M4N. Thus, the specific strength values are not repeated here and reference is made to the earlier passages of 317L57M4N. A comparison of the wrought mechanical strength properties between 317L35M4N and those of conventional austenitic stainless steel UNS S31703, and between 317L35M4N and those of UNS S31753, suggests stronger yield and tensile strengths of the magnitude similar to those found for 317L57M4N. Similarly a comparison of the tensile properties of 317L35M4N demonstrates they are better than that specified for 22 Cr Duplex Stainless Steel and similar to those specified for 25 Cr Super Duplex Stainless Steel, just like the 317L57M4N.

[0174] This means that applications using the wrought 317L35M4N stainless steel may be frequently designed with reduced wall thicknesses, thus, leading to significant weight savings when specifying 317L35M4N stainless steel compared to conventional austenitic stainless steels such as UNS S31703 and S31753 because the minimum allowable design stresses are significantly higher. In fact, the minimum allowable design stresses for the wrought 317L35M4N stainless steel are higher than for 22 Cr Duplex Stainless Steels and similar to 25 Cr Super Duplex Stainless Steels.

[0175] For certain applications, other variants of the 317L35M4N stainless steel have been purposely formulated to be manufactured containing specific levels of other alloying elements such as Copper, Tungsten and Vanadium. It has been determined that the optimum chemical composition range of the other variants of the 317L35M4N stainless steel is selective and the compositions of Copper and Vanadium are the same as those of 317L57M4N and those of 304LM4N. In other words, the passages relating to these elements for 304LM4N are also applicable here for 317L35M4N.

Tungsten (W)

10

30

35

40

45

50

55

[0176] The Tungsten content of the 317L35M4N stainless steel is similar to those of 317L57M4N and the PITTING RESISTANCE EQUIVALENT, PRE_{NW} , of 317L35M4N calculated using the same formulae as mentioned above for 317L57M4N is \geq 37, and preferably $PRE_{NW} \geq$ 42, due to the different Molybdenum content. It should be apparent that the passage relating to the use and effects of Tungsten for 317L57M4N is also applicable for 317L35M4N.

[0177] Further, the 317L35M4N may have higher levels of Carbon referred to as 317H35M4N and 31735M4N which correspond respectively to 317H57M4N and 31757M4N discussed earlier and the Carbon wt % ranges discussed earlier are also applicable for 317H35M4N and 31735M4N.

Titanium (Ti) / Niobium (Nb) / Niobium (Nb) plus Tantalum (Ta)

[0178] Furthermore, for certain applications, other stabilised variants of the 317H35M4N or 31735M4N stainless steel are desirable, which have been specifically formulated to be manufactured containing higher levels of Carbon. Specifically, the amount of Carbon is > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C.

- (i) These include the Titanium stabilised versions which are referred to as 317H35M4NTi or 31735M4NTi to contrast with the generic 317L35M4N. The Titanium content is controlled according to the following formulae:
- Ti 5 x C min, 0.70 wt % Ti max respectively, in order to have Titanium stabilised derivatives of the alloy.
- (ii) There are also Niobium stabilised, 317H35M4NNb or 31735M4NNb, versions where the Niobium content is controlled according to the following formulae:
- Nb 10 x C min, 1.0 wt % Nb max respectively, in order to have Niobium stabilised derivatives of the alloy.
 - (iii) In addition, other variants of the alloy may also be manufactured to contain Niobium plus Tantalum stabilised, 317H35M4NNbTa or 31735M4NNbTa versions where the Niobium plus Tantalum content is controlled according to the following formulae:

Nb + Ta 10 x C min, 1.0 wt % Nb + Ta max, 0.10 wt % Ta max.

[0179] Titanium stabilised, Niobium stabilised and Niobium plus Tantalum stabilised variants of the alloy may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium and/or Niobium and/or Niobium plus Tantalum may be added individually or in conjunction with Copper, Tungsten and Vanadium in all the various combinations of these elements to optimise the alloy for certain applications where higher Carbon contents are desirable. These alloying elements may be utilised individually or in all the various combinations of the elements to tailor the stainless steel for specific applications and to further improve the overall corrosion performance of the alloy.

[0180] The wrought and cast versions of the 317L35M4N Stainless steel along with the other variants are generally supplied in the same manner as the earlier embodiments.

[0181] Further, there is proposed a further variation appropriately referred to as 312L35M4N in this description, which is a fifth embodiment of the invention.

[312L35M4N]

10

15

20

35

[0182] The 312L35M4N high strength austenitic stainless steel has a high level of Nitrogen and a specified Pitting Resistance Equivalent of $PRE_N \ge 37$, but preferably $PRE_N \ge 42$. The Pitting Resistance Equivalent as designated by PRE_N is calculated according to the formulae:

$$PRE_N = \% Cr + (3.3 \times \% Mo) + (16 \times \% N).$$

[0183] The 312L35M4N Stainless steel has been formulated to possess a unique combination of high mechanical strength properties with excellent ductility and toughness, along with good weldability and good resistance to general and localised corrosion. The chemical composition of the 312L35M4N stainless steel is selective and characterised by an alloy of chemical analysis in percentage by weight as follows, 0.030 wt % C max, 2.00 wt % Mn max, 0.030 wt % P max, 0.010 wt % S max, 0.75 wt % Si max, 20.00 wt % Cr - 22.00 wt % Cr, 15.00 wt % Ni - 19.00 wt % Ni, 3.00 wt % Mo - 5.00 wt % Mo, 0.40 wt % N - 0.70 wt % N.

[0184] The 312L35M4N stainless steel also contains principally Fe as the remainder and may also contain very small amounts of other elements such as 0.010 wt % B max, 0.050 wt % Al max, 0.010 wt % Ca max and/or 0.010 wt % Mg max and other impurities which are normally present in residual levels.

[0185] The chemical composition of the 312L35M4N stainless steel is optimised at the melting stage to primarily ensure an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and ferrite forming elements to primarily ensure that the alloy is austenitic. As a result, the 312L35M4N stainless steel exhibits a unique combination of high strength and ductility at ambient temperatures, while at the same time guarantees excellent toughness at ambient temperatures and cryogenic temperatures. In view of the fact that the chemical composition of the 312L35M4N stainless steel is adjusted to achieve a PRE $_{\rm N} \ge 37$, but preferably PRE $_{\rm N} \ge 42$, this ensures that the material also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 312L35M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31703 and UNS S31753.

[0186] It has been determined that the optimum chemical composition range of the 312L35M4N stainless steel is carefully selected to comprise the following chemical elements in percentage by weight as follows based on the fifth embodiment,

50 Carbon (C)

[0187] The Carbon content of the 312L35M4N stainless steel is ≤ 0.030 wt % C maximum. Preferably, the amount of Carbon should be ≥ 0.020 wt % C and ≤ 0.030 wt % C and more preferably ≤ 0.025 wt % C.

55 Manganese (Mn)

[0188] The 312L35M4N stainless steel of the fifth embodiment may come in two variations: low Manganese or high Manganese.

[0189] For the low Manganese alloys, the Manganese content of the 312L35M4N stainless steel is \leq 2.0 wt % Mn. The range is \geq 1.0 wt % Mn and \leq 2.0 wt % Mn and more preferably \geq 1.20 wt % Mn and \leq 1.50 wt % Mn. With such compositions, this achieves an optimum Mn to N ratio of \leq 5.0, and \geq 2.85 and \leq 5.0. More preferably, the ratio is \geq 2.85 and \leq 3.75.

[0190] For the high Manganese alloys, the Manganese content of the 312L35M4N is ≤ 4.0 wt % Mn. Preferably, the Manganese content is ≥ 2.0 wt % Mn and ≤ 4.0 wt % Mn and more preferably, the upper limit is ≤ 3.0 wt % Mn. Even more preferably, the upper limit is ≤ 2.50 wt % Mn. With such selective ranges this achieves a Mn to N ratio of ≥ 2.85 and ≤ 7.50 and even more preferably ≥ 2.85 and ≤ 6.25 .

10 Phosphorus(P)

[0191] The Phosphorus content of the 312L35M4N stainless steel is controlled to be ≤ 0.030 wt % P. Preferably, the 317L57M4N alloy has ≤ 0.025 wt % P and more preferably ≤ 0.020 wt % P. Even more preferably, the alloy has ≤ 0.015 wt % P and even further more preferably ≤ 0.010 wt % P.

Sulphur (S)

15

20

[0192] The Sulphur content of the 312L35M4N stainless steel of the fifth embodiment includes \leq 0.010 wt % S. Preferably, the 312L35M4N has \leq 0.005 wt % S and more preferably \leq 0.003 wt % S, and even more preferably \leq 0.001 wt % S.

Oxygen (O)

[0193] The Oxygen content of the 312L35M4N stainless steel is controlled to be as low as possible and in the fifth embodiment, the 312L35M4N has \leq 0.070 wt % O. Preferably, the 312L35M4N has \leq 0.050 wt % O and more preferably \leq 0.030 wt % O. Even more preferably, the alloy has \leq 0.010 wt % O and even further more preferably \leq 0.005 wt % O.

Silicon (Si)

[0194] The Silicon content of the 312L35M4N stainless steel is ≤ 0.75 wt % Si. Preferably, the alloy has ≥ 0.25 wt % Si and ≤ 0.75 wt % Si. More preferably, the range is ≥ 0.40 wt % Si and ≤ 0.60 wt % Si. However, for specific higher temperature applications where improved oxidation resistance is required, the Silicon content may be ≥ 0.75 wt % Si and ≤ 2.00 wt % Si.

35 Chromium (Cr)

[0195] The Chromium content of the 312L35M4N stainless steel is \geq 20.00 wt % Cr and \leq 22.00 wt % Cr. Preferably, the alloy has \geq 21.00 wt % Cr.

40 Nickel (Ni)

[0196] The Nickel content of the 312L35M4N stainless steel is \geq 15.00 wt % Ni and \leq 19.00 wt % Ni. Preferably, the upper limit of Ni of the alloy is \leq 18.00 wt % Ni and more preferably \leq 17.00 wt % Ni.

45 Molybdenum (Mo)

[0197] The Molybdenum content of the 312L35M4N stainless steel alloy is \geq 3.00 wt % Mo and \leq 5.00 wt % Mo, but preferably \geq 4.00 wt % Mo. In other words, the Molybdenum of this embodiment has a maximum of 5.00 wt % Mo.

50 Nitrogen (N)

[0198] The Nitrogen content of the 312L35M4N stainless steel is \geq 0.40 wt % N and \leq 0.70 wt % N. More preferably, the 312L35M4N has \geq 0.40 wt % N and \leq 0.60 wt % N, and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N.

55 PRE_N

[0199] The PITTING RESISTANCE EQUIVALENT is calculated using the formulae:

$$PRE_N = \% Cr + (3.3 \times \% Mo) + (16 \times \% N).$$

[0200] The 312L35M4N stainless steel has been specifically formulated to have the following composition:

(i) Chromium content \geq 20.00 wt % Cr and \leq 22.00 wt % Cr, but preferably \geq 21.00 wt % Cr;

5

10

30

35

50

- (ii) Molybdenum content \geq 3.00 wt % Mo and \leq 5.00 wt % Mo, but preferably \geq 4.00 wt % Mo;
- (iii) Nitrogen content \geq 0.40 wt % N and \leq 0.70 wt % N and more preferably \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N.

[0201] With a high level of Nitrogen, the 312L35M4N stainless steel achieves a PRE_N of \geq 37, and preferably $PRE_N \geq$ 42. This ensures that the alloy has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 312L35M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional austenitic stainless steels such as UNS S31703 and UNS S31753. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion

[0202] The chemical composition of the 312L35M4N stainless steel is optimised at the melting stage to ensure that the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer⁶, is in the range > 0.40 and < 1.05, but preferably > 0.45 and < 0.95, in order to primarily obtain an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and Ferrite forming elements to primarily ensure that the alloy is austenitic. The alloy can therefore be manufactured and supplied in the Non-Magnetic condition.

[0203] The 312L35M4N stainless steel also has principally Fe as the remainder and may also contain very small amounts of other elements such as Boron, Aluminium, Calcium and/or Magnesium in percentage by weight, and the compositions of these elements are the same as those of 304LM4N. In other words, the passages relating to these elements and Ce for 304LM4N are also applicable here.

[0204] The 312L35M4N stainless steel according to the fifth embodiment possesses minimum yield strength of 55 ksi or 380 MPa for the wrought version. More preferably minimum yield strength of 62 ksi or 430 MPa may be achieved for the wrought version. The cast version possesses minimum yield strength of 41 ksi or 280 MPa. More preferably, minimum yield strength of 48 ksi or 330 MPa may be achieved for the cast version. Based on the preferred values, a comparison of the wrought mechanical strength properties of the novel and innovative 312L35M4N stainless steel, with those of UNS S31703, suggests that the minimum yield strength of the 312L35M4N stainless steel might be 2.1 times higher than that specified for UNS S31703. Similarly, a comparison of the wrought mechanical strength properties of the 312L35M4N stainless steel, with those of UNS S31753, suggests that the minimum yield strength of the 312L35M4N stainless steel might be 1.79 times higher than that specified for UNS S31753. Likewise, a comparison of the wrought mechanical strength properties of the 312L35M4N stainless steel, with those of UNS S31254, suggests that the minimum yield strength of the 312L35M4N stainless steel might be 1.38 times higher than that specified for UNS S31254.

[0205] The 312L35M4N stainless steel according to the fifth embodiment possesses a minimum tensile strength of 102 ksi or 700 MPa for the wrought version. More preferably, a minimum tensile strength of 109 ksi or 750 MPa may be achieved for the wrought version. The cast version possesses a minimum tensile strength of 95 ksi or 650 MPa. More preferably a minimum tensile strength of 102 ksi or 700 MPa may be achieved for the cast version. Based on the preferred values, a comparison of the wrought mechanical strength properties of the 312L35M4N stainless steel, with those of UNS S31703, suggests that the minimum tensile strength of the 312L35M4N stainless steel might be more than 1.45 times higher than that specified for UNS S31703. Similarly, a comparison of the wrought mechanical strength properties of the 312L35M4N stainless steel, with those of UNS S31753, suggests that the minimum tensile strength of the 312L35M4N stainless steel might be 1.36 times higher than that specified for UNS S31753. Likewise, a comparison of the wrought mechanical strength properties of the 312L35M4N stainless steel, with those of UNS S31254, suggests that the minimum tensile strength of the 312L35M4N stainless steel might be 1.14 times higher than that specified for UNS S31254. Indeed, if the wrought mechanical strength properties of the 312L35M4N stainless steel, are compared with those of the 22 Cr Duplex Stainless Steel, then it may be demonstrated that the minimum tensile strength of the 312L35M4N stainless steel is in the region of 1.2 times higher than that specified for S31803 and similar to that specified for 25 Cr Super Duplex Stainless Steel. Therefore, the minimum mechanical strength properties of the 312L35M4N stainless steel have been significantly improved compared to conventional austenitic stainless steels such as UNS S31703, UNS S31753 and UNS S31254 and the tensile strength properties are better than that specified for 22 Cr Duplex Stainless Steel and similar to those specified for 25 Cr Super Duplex Stainless Steel.

[0206] This means that applications using the wrought 312L35M4N stainless steel may be frequently designed with

reduced wall thicknesses, thus, leading to significant weight savings when specifying 312L35M4N stainless steel compared to conventional austenitic stainless steels such as UNS S31703, S31753 and S31254 because the minimum allowable design stresses are significantly higher. In fact, the minimum allowable design stresses for the wrought 312L35M4N stainless steel are higher than for 22 Cr Duplex Stainless Steels and similar to 25 Cr Super Duplex Stainless Steels.

[0207] For certain applications, other variants of the 312L35M4N stainless steel have been purposely formulated to be manufactured containing specific levels of other alloying elements such as Copper, Tungsten and Vanadium. It has been determined that the optimum chemical composition range of the other variants of the 312L35M4N stainless steel is selective and the compositions of Copper and Vanadium are the same as those of 304LM4N. In other words, passages relating to these elements for 304LM4N are also applicable for 312L35M4N.

Tungsten (W)

15

25

30

35

50

55

[0208] The Tungsten content of the 312L35M4N stainless steel is ≤ 2.00 wt % W, and ≥ 0.75 wt % W. For 312L35M4N stainless steel variants containing Tungsten, the PITTING RESISTANCE EQUIVALENT is calculated using the formulae:

$$PRE_{NW} = \% Cr + [3.3 \times \% (Mo + W)] + (16 \times \% N).$$

- [0209] This Tungsten containing variant of the 312L35M4N stainless steel has been specifically formulated to have the following composition:
 - (i) Chromium content \geq 20.00 wt % Cr and \leq 22.00 wt % Cr, but preferably \geq 21.00 wt % Cr;
 - (ii) Molybdenum content ≥ 3.00 wt % Mo and ≤ 5.00 wt % Mo, but preferably ≥ 4.00 wt % Mo;
 - (iii) Nitrogen content \geq 0.40 wt % N and \leq 0.70 wt % N and more preferably \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N; and
 - (iv) Tungsten content \leq 2.00 wt % W, and \geq 0.75 wt % W.

[0210] The Tungsten containing variant of the 312L35M4N stainless steel has a high specified level of Nitrogen and a $PRE_{NW} \ge 39$, but preferably $PRE_{NW} \ge 44$. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion. Tungsten may be added individually or in conjunction with Copper, Vanadium, Titanium and/or Niobium and/or Niobium plus Tantalum in all the various combinations of these elements, to further improve the overall corrosion performance of the alloy. Tungsten is extremely costly and therefore is being purposely limited to optimise the economics of the alloy, while at the same time optimising the ductility, toughness and corrosion performance of the alloy.

Carbon

[0211] For certain applications, other variants of the 312L35M4N stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the Carbon content of the 312L35M4N stainless steel may be ≥ 0.040 wt % C and < 0.10 wt % C, but preferably ≤ 0.050 wt % C or > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C. These specific variants of the 312L35M4N stainless steel are the 312H35M4N or 31235M4N versions respectively.

Titanium (Ti) /Niobium (Nb) / Niobium (Nb) plus Tantalum (Ta)

[0212] Furthermore, for certain applications, other stabilised variants of the 312H35M4N or 31235M4N stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the Carbon is > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C.

(i) These include the Titanium stabilised versions which are referred to as 312H35M4NTi or 31235M4NTi to contrast with the generic 312L35M4N steel versions. The Titanium content is controlled according to the following formulae: Ti 5 x C min, 0.70 wt % Ti max respectively, in order to have Titanium stabilised derivatives of the alloy.

(ii) There are also the Niobium stabilised, 312H35M4NNb or 31235M4NNb versions where the Niobium content is controlled according to the following formulae:

Nb 10 x C min, 1.0 wt % Nb max respectively, in order to have Niobium stabilised derivatives of the Alloy.

(iii) In addition, other variants of the Alloy may also be manufactured to contain Niobium plus Tantalum stabilised, 312H35M4NNbTa or 31235M4NNbTa versions where the Niobium plus Tantalum content is controlled according

to the following formulae:

Nb + Ta 10 x C min, 1.0 wt % Nb + Ta max, 0.10 wt % Ta max.

[0213] Titanium stabilised, Niobium stabilised and Niobium plus Tantalum stabilised variants of the alloy may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium and/or Niobium and/or Niobium plus Tantalum may be added individually or in conjunction with Copper, Tungsten and Vanadium in all the various combinations of these elements to optimise the alloy for certain applications where higher Carbon contents are desirable. These alloying elements may be utilised individually or in all the various combinations of the elements to tailor the stainless steel for specific applications and to further improve the overall corrosion performance of the Alloy.

[0214] The wrought and cast versions of the 312L35M4N stainless steel along with the other variants are generally supplied in the same manner as the earlier embodiments.

[0215] Further, there is proposed a further variation appropriately referred to as 312L57M4N high strength austenitic stainless steel, which is a sixth embodiment of the invention. The 312L57M4N stainless virtually has the same chemical composition as 312L35M4N stainless steel with the exception of the Molybdenum content. Thus, instead of repeating the various chemical compositions, only the difference is described.

[312L57M4N]

10

[0216] As mentioned above, the 312L57M4N has exactly the same wt % Carbon, Manganese, Phosphorus, Sulphur, Oxygen, Silicon, Chromium, Nickel and Nitrogen content as the fifth embodiment, 312L35M4N stainless steel, except the Molybdenum content. In the 312L35M4N, the Molybdenum content is between 3.00 wt % and 5.00 wt %. In contrast, the 312L57M4N stainless steel's Molybdenum content is between 5.00 wt % and 7.00 wt %. In other words, the 312L57M4N may be regarded as a higher Molybdenum version of the 312L35M4N stainless steel.

[0217] It should be appreciated that the passages relating to 312L35M4N are also applicable here, except the Molyb-denum content.

Molybdenum (Mo)

[0218] The Molybdenum content of the 312L57M4N stainless steel may be \geq 5.00 wt % Mo and \leq 7.00 wt % Mo, but preferably \geq 6.00 wt % Mo. In other words, the Molybdenum content of the 312L57M4N has a maximum of 7.00 wt % Mo.

PRE_N

35 [0219] The PITTING RESISTANCE EQUIVALENT for the 312L57M4N is calculated using the same formulae as 312L35M4N but because of the Molybdenum content, the PRE_N is ≥ 43, but preferably PRE_N ≥ 48. This ensures that the material also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 312L57M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31703 and UNS S31753. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion

[0220] The chemical composition of the 312L57M4N stainless steel is optimised at the melting stage to ensure that the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer⁶, is in the range > 0.40 and < 1.05, but preferably > 0.45 and < 0.95, in order to primarily obtain an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and ferrite forming elements to primarily ensure that the alloy is austenitic. The alloy can therefore be manufactured and supplied in the Non-Magnetic condition.

[0221] Like the 312L35M4N embodiment, the 312L57M4N stainless steel also contains principally Fe as the remainder and may also contain very small amounts of other elements such as Boron, Cerium, Aluminium, Calcium and/or Magnesium in percentage by weight, and the compositions of these elements are the same as those of 312L35M4N and thus, those of 304LM4N.

[0222] The 312L57M4N stainless steel of the sixth embodiment has minimum yield strength and a minimum tensile strength comparable or similar to those of the 312L35M4N stainless steel. Likewise, the strength properties of the wrought and cast versions of the 312L57M4N are also comparable to those of the 312L35M4N. Thus, the specific strength values are not repeated here and reference is made to the earlier passages of 312L35M4N. A comparison of the wrought mechanical strength properties between 312L57M4N and those of conventional austenitic stainless steel UNS S31703,

and between 312L57M4N and those of UNS S31753/UNS S31254, suggests stronger yield and tensile strengths of the magnitude similar to those found for 312L35M4N. Similarly, a comparison of the tensile properties of 312L57M4N demonstrates that they are better than that specified for 22Cr Duplex Stainless Steel and similar to those specified for 25 Cr Super Duplex Stainless Steel, just like the 312L35M4N.

[0223] This means that applications using the wrought 312L57M4N stainless steel may be frequently designed with reduced wall thicknesses, thus, leading to significant weight savings when specifying 312L57M4N stainless steel compared to conventional austenitic stainless steels such as UNS S31703, S31753 and S31254 because the minimum allowable design stresses are significantly higher. In fact, the minimum allowable design stresses for the wrought 312L57M4N stainless steel are higher than for 22 Cr Duplex Stainless Steels and similar to 25 Cr Super Duplex Stainless Steels.

[0224] For certain applications, other variants of the 312L57M4N stainless steel have been purposely formulated to be manufactured containing specific levels of other alloying elements such as Copper, Tungsten and Vanadium. It has been determined that the optimum chemical composition range of the other variants of the 312L57M4N stainless steel is selective and the compositions of Copper and Vanadium are the same as those of 312L35M4N and those of 304LM4N. In other words, the passages relating to these elements for 304LM4N are also applicable here for 312L57M4N.

Tungsten (W)

10

15

20

30

35

40

45

50

55

[0225] The Tungsten content of the 312L57M4N stainless steel is similar to those of the 312L35M4N and the PITTING RESISTANCE EQUIVALENT, PRE_{NW} , of 312L57M4N calculated using the same formulae as mentioned above for 312L35M4N is $PRE_{NW} \ge 45$, and preferably $PRE_{NW} \ge 50$, due to the different Molybdenum content. It should be apparent that the passage relating to the use and effects of Tungsten for 312L35M4N is also applicable for 312L57M4N.

[0226] Further, the 312L57M4N may have higher levels of Carbon referred to as 312H57M4N or 31257M4N which correspond respectively to 312H35M4N and 31235M4N discussed earlier and the Carbon wt % ranges discussed earlier are also applicable for 312H57M4N and 31257M4N.

Titanium (Ti) / Niobium (Nb) / Niobium (Nb) plus Tantalum (Ta)

[0227] Furthermore, for certain applications, other stabilised variants of the 312H57M4N or 31257M4N stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the Carbon is > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C.

- (i) These include the Titanium stabilised versions which are referred to as 312H57M4NTi or 31257M4NTi to contrast with the generic 312L57M4N stainless steel versions. The Titanium content is controlled according to the following formulae:
- Ti 5 x C min, 0.70 wt % Ti max respectively, in order to have Titanium stabilised derivatives of the alloy.
- (ii) There are also the Niobium stabilised, 312H57M4NNb or 31257M4NNb versions where the Niobium content is controlled according to the following formulae:
- Nb 10 x C min, 1.0 wt % Nb max respectively, in order to have Niobium stabilised derivatives of the alloy.
- (iii) In addition, other variants of the alloy may also be manufactured to contain Niobium plus Tantalum stabilised, 312H57M4NNbTa or 31257M4NNbTa versions where the Niobium plus Tantalum content is controlled according to the following formulae:

Nb + Ta 10 x C min, 1.0 wt % Nb + Ta max, 0.10 wt % Ta max.

[0228] Titanium stabilised, Niobium stabilised and Niobium plus Tantalum stabilised variants of the alloy may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium and/or Niobium and/or Niobium plus Tantalum may be added individually or in conjunction with Copper, Tungsten and Vanadium in all the various combinations of these elements to optimise the alloy for certain applications where higher Carbon contents are desirable. These alloying elements may be utilised individually or in all the various combinations of the elements to tailor the stainless steel for specific applications and to further improve the overall corrosion performance of the alloy.

[0229] The wrought and cast versions of the 312L57M4N stainless steel along with the other variants are generally supplied in the same manner as the earlier embodiments.

[0230] Further, there is proposed a further variation appropriately referred to as 320L35M4N in this description, which is a seventh embodiment of the invention.

[320L35M4N]

[0231] The 320L35M4N high strength austenitic stainless steel has a high level of Nitrogen and a specified Pitting Resistance Equivalent of $PRE_N \ge 39$, but preferably $PRE_N \ge 44$. The Pitting Resistance Equivalent as designated by PRE_N is calculated according to the formulae:

$$PRE_N = \% Cr + (3.3 \times \% Mo) + (16 \times \% N).$$

10 [0232] The 320L35M4N stainless steel has been formulated to possess a unique combination of high mechanical strength properties with excellent ductility and toughness, along with good weldability and good resistance to general and localised corrosion. The chemical composition of the 320L35M4N stainless steel is selective and characterised by an alloy of chemical analysis in percentage by weight as follows, 0.030 wt % C max, 2.00 wt % Mn max, 0.030 wt % P max, 0.010 wt % S max, 0.75 wt % Si max, 22.00 wt % Cr - 24.00 wt % Cr, 17.00 wt % Ni - 21.00 wt % Ni, 3.00 wt % Mo - 5.00 wt % Mo, 0.40 wt % N - 0.70 wt % N.

[0233] The 320L35M4N stainless steel also contains principally Fe as the remainder and may also contain very small amounts of other elements such as 0.010 wt % B max, 0.050 wt % Al max, 0.010 wt % Ca max and/or 0.010 wt % Mg max and other impurities which are normally present in residual levels.

[0234] The chemical composition of the 320L35M4N stainless steel is optimised at the melting stage to primarily ensure an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and ferrite forming elements to primarily ensure that the alloy is austenitic. As a result, the 320L35M4N stainless steel exhibits a unique combination of high strength and ductility at ambient temperatures, while at the same time guarantees excellent toughness at ambient temperatures and cryogenic temperatures. In view of the fact that the chemical composition of the 320L35M4N stainless steel is adjusted to achieve a $PRE_N \ge 39$, but preferably $PRE_N \ge 44$, this ensures that the material also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 320L35M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31703 and UNS S31753.

[0235] It has been determined that the optimum chemical composition range of the 320L35M4N stainless steel is carefully selected to comprise the following chemical elements in percentage by weight as follows, based on the seventh embodiment,

35 Carbon (C)

30

50

[0236] The Carbon content of the 320L35M4N stainless steel is \leq 0.030 wt % C maximum. Preferably, the amount of Carbon should be \geq 0.020 wt % C and \leq 0.030 wt % C and more preferably \leq 0.025 wt % C.

40 Manganese (Mn)

[0237] The 320L35M4N stainless steel of the seventh embodiment may come in two variations: low Manganese or high Manganese.

[0238] For the low Manganese alloys, the Manganese content of the 320L35M4N stainless steel is \leq 2.0 wt % Mn. The range is \geq 1.0 wt % Mn and \leq 2.0 wt % Mn and more preferably \geq 1.20 wt % Mn and \leq 1.50 wt % Mn. With such compositions, this achieves an optimum Mn to N ratio of \leq 5.0, and \geq 2.85 and \leq 5.0. More preferably, the ratio is \geq 2.85 and \leq 3.75.

[0239] For the high Manganese alloys, the Manganese content of the 320L35M4N is \leq 4.0 wt % Mn. Preferably, the Manganese content is \geq 2.0 wt % Mn and \leq 4.0 wt % Mn and more preferably, the upper limit is \leq 3.0 wt % Mn. Even more preferably, the upper limit is \leq 2.50 wt % Mn. With such selective ranges, this achieves a Mn to N ratio of \geq 2.85 and \leq 7.50 and even more preferably \geq 2.85 and \leq 6.25.

Phosphorus(P)

[0240] The Phosphorus content of the 320L35M4N stainless steel is controlled to be \le 0.030 wt % P. Preferably, the 320L35M4N alloy has \le 0.025 wt % P and more preferably \le 0.020 wt % P. Even more preferably, the alloy has \le 0.015 wt % P and even further more preferably \le 0.010 wt % P.

Sulphur (S)

[0241] The Sulphur content of the 320L35M4N stainless steel of the seventh embodiment includes \le 0.010 wt % S. Preferably, the 320L35M4N has \le 0.005 wt % S and more preferably \le 0.003 wt % S, and even more preferably \le 0.001 wt % S.

Oxygen (O)

5

[0242] The Oxygen content of the 320L35M4N stainless steel is controlled to be as low as possible and in the seventh embodiment, the 320L35M4N has \leq 0.070 wt % O. Preferably, the 320L35M4N has \leq 0.050 wt % O and more preferably \leq 0.030 wt % O. Even more preferably, the alloy has \leq 0.010 wt % O and even further more preferably \leq 0.005 wt % O.

Silicon (Si)

15 **[0243]** The Silicon content of the 320L35M4N stainless steel is ≤ 0.75 wt % Si. Preferably, the alloy has ≥ 0.25 wt % Si and ≤ 0.75 wt % Si. More preferably, the range is ≥ 0.40 wt % Si and ≤ 0.60 wt % Si. However, for specific higher temperature applications where improved oxidation resistance is required, the Silicon content may be ≥ 0.75 wt % Si and ≤ 2.00 wt % Si.

20 Chromium (Cr)

[0244] The Chromium content of the 320L35M4N stainless steel is \geq 22.00 wt % Cr and \leq 24.00 wt % Cr. Preferably, the alloy has \geq 23.00 wt % Cr.

Nickel (Ni)

[0245] The Nickel content of the 320L35M4N stainless steel is \geq 17.00 wt % Ni and \leq 21.00 wt % Ni. Preferably, the upper limit of Ni of the alloy is \leq 20.00 wt % Ni and more preferably \leq 19.00 wt % Ni.

30 Molybdenum (Mo)

[0246] The Molybdenum content of the 320L35M4N stainless steel alloy is \geq 3.00 wt % Mo and \leq 5.00 wt % Mo, but preferably \geq 4.00 wt % Mo.

35 Nitrogen (N)

[0247] The Nitrogen content of the 320L35M4N stainless steel is \geq 0.40 wt % N and \leq 0.70 wt % N. More preferably, the 320L35M4N has \geq 0.40 wt % N and \leq 0.60 wt % N, and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N.

40 PRE_N

45

50

[0248] The PITTING RESISTANCE EQUIVALENT is calculated using the formulae:

$$PRE_N = \% Cr + (3.3 \times \%Mo) + (16 \times \% N).$$

[0249] The 320L35M4N stainless steel has been specifically formulated to have the following composition:

- (i) Chromium content ≥ 22.00 wt % Cr and ≤ 24.00 wt % Cr, but preferably ≥ 23.00 wt % Cr;
- (ii) Molybdenum content ≥ 3.00 wt % Mo and ≤ 5.00 wt % Mo, but preferably ≥ 4.00 wt % Mo,
- (iii) Nitrogen content \geq 0.40 wt % N and \leq 0.70 wt % N and more preferably \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N.

[0250] With a high level of Nitrogen, the 320L35M4N stainless steel achieves a PRE_N of ≥ 39, and preferably PRE_N ≥ 44. This ensures that the alloy has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 320L35M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31703 and UNS S31753. It should be emphasised that these equations ignore the effects

of microstructural factors on the breakdown of passivity by pitting or crevice corrosion

[0251] The chemical composition of the 320L35M4N stainless steel is optimised at the melting stage to ensure that the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer⁶, is in the range > 0.40 and < 1.05, but preferably > 0.45 and < 0.95, in order to primarily obtain an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and ferrite forming elements to primarily ensure that the alloy is austenitic. The alloy can therefore be manufactured and supplied in the Non-Magnetic condition.

[0252] The 320L35M4N stainless steel also has principally Fe as the remainder and may also contain very small amounts of other elements such as Boron, Aluminium, Calcium and/or Magnesium in percentage by weight, and the compositions of these elements are the same as those of 304LM4N. In other words, the passages relating to these and Ce for 304LM4N are also applicable here.

[0253] The 320L35M4N stainless steel according to the seventh embodiment possesses minimum yield strength of 55 ksi or 380 MPa for the wrought version. More preferably, minimum yield strength of 62 ksi or 430 MPa may be achieved for the wrought version. The cast version possesses minimum yield strength of 41 ksi or 280 MPa. More preferably, minimum yield strength of 48 ksi or 330 MPa may be achieved for the cast version. Based on the preferred values, a comparison of the wrought mechanical strength properties of the 320L35M4N stainless steel, with those of UNS S31703, suggests that the minimum yield strength of the 320L35M4N stainless steel might be 2.1 times higher than that specified for UNS S31703. Similarly, a comparison of the wrought mechanical strength properties of the 320L35M4N stainless steel, with those of UNS S31753, suggests that the minimum yield strength of the 320L35M4N stainless steel might be 1.79 times higher than that specified for UNS S31753. Likewise, a comparison of the wrought mechanical strength properties of the 320L35M4N stainless steel, with those of UNS S32053, suggests that the minimum yield strength of the 320L35M4N Stainless steel might be 1.45 times higher than that specified for UNS S32053.

[0254] The 320L35M4N Stainless steel according to the seventh embodiment possesses a minimum tensile strength of 102 ksi or 700 MPa for the wrought version. More preferably, a minimum tensile strength of 109 ksi or 750 MPa may be achieved for the wrought version. The cast version possesses a minimum tensile strength of 95 ksi or 650 MPa. More preferably, a minimum tensile strength of 102 ksi or 700 MPa may be achieved for the cast version. Based on the preferred values, a comparison of the wrought mechanical strength properties of the 320L35M4N stainless steel, with those of UNS S31703, suggests that the minimum tensile strength of the 320L35M4N stainless steel might be more than 1.45 times higher than that specified for UNS S31703. Similarly, a comparison of the wrought mechanical strength properties of the 320L35M4N stainless steel, with those of UNS S31753, suggests that the minimum tensile strength of the 320L35M4N stainless steel might be 1.36 times higher than that specified for UNS S31753. Likewise, a comparison of the wrought mechanical strength properties of the 320L35M4N stainless steel, with those of UNS S32053, suggests that the minimum tensile strength of the 320L35M4N stainless steel might be 1.17 times higher than that specified for UNS S32053. Indeed, if the wrought mechanical strength properties of the 320L35M4N stainless steel, are compared with those of the 22 Cr Duplex Stainless Steel, then it may be demonstrated that the minimum tensile strength of the 320L35M4N stainless steel is in the region of 1.2 times higher than that specified for S31803 and similar to that specified for 25 Cr Super Duplex Stainless Steel. Therefore, the minimum mechanical strength properties of the novel and innovative 320L35M4N stainless steel have been significantly improved compared to conventional austenitic stainless steels such as UNS S31703, UNS S31753 and UNS S32053 and the tensile strength properties are better than that specified for 22 Cr Duplex Stainless Steel and similar to those specified for 25 Cr Super Duplex Stainless Steel.

[0255] This means that applications using the wrought 320L35M4N stainless steel may be frequently designed with reduced wall thicknesses, thus, leading to significant weight savings when specifying 320L35M4N stainless steel compared to conventional austenitic stainless steels such as UNS S31703, S31753 and S32053 because the minimum allowable design stresses are significantly higher. In fact, the minimum allowable design stresses for the wrought 320L35M4N stainless steel are higher than for 22 Cr Duplex Stainless Steels and similar to 25 Cr Super Duplex Stainless Steels.

[0256] For certain applications, other variants of the 320L35M4N stainless steel have been purposely formulated to be manufactured containing specific levels of other alloying elements such as Copper, Tungsten and Vanadium. It has been determined that the optimum chemical composition range of the other variants of the 320L35M4N stainless steel is selective and the compositions of Copper and Vanadium are the same as those of 304LM4N. In other words, passages relating to these elements for 304LM4N are also applicable for 320L35M4N.

55 Tungsten (W)

10

20

30

35

50

[0257] The Tungsten content of the 320L35M4N stainless steel is \leq 2.00 wt % W, and \geq 0.75 wt % W. For 320L35M4N stainless steel variants containing Tungsten, the PITTING RESISTANCE EQUIVALENT is calculated using the formulae:

$$PRE_{NW} = \% Cr + [3.3 \times \% (Mo + W)] + (16 \times \% N).$$

[0258] This Tungsten containing variant of the 320L35M4N stainless steel has been specifically formulated to have the following composition:

- (i) Chromium content \geq 22.00 wt % Cr and \leq 24.00 wt % Cr, but preferably \geq 23.00 wt % Cr;
- (ii) Molybdenum content ≥ 3.00 wt % Mo and ≤ 5.00 wt % Mo, but preferably ≥ 4.00 wt % Mo;
- (iii) Nitrogen content \geq 0.40 wt % N and \leq 0.70 wt % N and more preferably \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N; and
- (iv) Tungsten content \leq 2.00 wt % W, and \geq 0.75 wt % W.

[0259] The Tungsten containing variant of the 320L35M4N stainless steel has a high specified level of Nitrogen and a $PRE_{NW} \ge 41$, but preferably $PRE_{NW} \ge 46$. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion. Tungsten may be added individually or in conjunction with Copper, Vanadium, Titanium and/or Niobium and/or Niobium plus Tantalum in all the various combinations of these elements, to further improve the overall corrosion performance of the alloy. Tungsten is extremely costly and therefore is being purposely limited to optimise the economics of the alloy, while at the same time optimising the ductility, toughness and corrosion performance of the alloy.

Carbon (C)

10

20

35

40

45

50

[0260] For certain applications, other variants of the 320L35M4N stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the Carbon content of the 320L35M4N stainless steel is > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C. These specific variants of the 320L35M4N stainless steel are the 320H35M4N or 32035M4N versions respectively.

Titanium (Ti) / Niobium (Nb) / Niobium (Nb) plus Tantalum (Ta)

- [0261] Furthermore, for certain applications, other stabilised variants of the 320H35M4N or 32035M4N stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the amount of Carbon is > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C.
 - (i) These include the Titanium stabilised versions which are referred to as 320H35M4NTi or 32035M4NTi to contrast with the generic 320L35M4N versions. The Titanium content is controlled according to the following formulae:
 - Ti 5 x C min, 0.70 wt % Ti max respectively, in order to have Titanium stabilised derivatives of the alloy.
 - (ii) There are also the Niobium stabilised, 320H35M4NNb or 32035M4NNb versions where the Niobium content is controlled according to the following formulae:
 - Nb 10 x C min, 1.0 wt % Nb max respectively, in order to have Niobium stabilised derivatives of the alloy.
 - (iii) In addition, other variants of the alloy may also be manufactured to contain Niobium plus Tantalum stabilised, 320H35M4NNbTa or 32035M4NNbTa versions where the Niobium plus Tantalum content is controlled according to the following formulae:

Nb + Ta 10 x C min, 1.0 wt % Nb + Ta max, 0.10 wt % Ta max.

- **[0262]** Titanium stabilised, Niobium stabilised and Niobium plus Tantalum stabilised variants of the alloy may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium and/or Niobium and/or Niobium plus Tantalum may be added individually or in conjunction with Copper, Tungsten and Vanadium in all the various combinations of these elements to optimise the alloy for certain applications where higher Carbon contents are desirable. These alloying elements may be utilised individually or in all the various combinations of the elements to tailor the stainless steel for specific applications and to further improve the overall corrosion performance of the alloy.
- ⁵⁵ **[0263]** The wrought and cast versions of the 320L35M4N stainless steel along with the other variants are generally supplied in the same manner as the earlier embodiments.
 - **[0264]** Further, there is proposed a further variation appropriately referred to as 320L57M4N high strength austenitic stainless steel, which is an eighth embodiment of the invention. The 320L57M4N stainless steel virtually has the same

chemical composition as 320L35M4N with the exception of the Molybdenum content. Thus, instead of repeating the various chemical compositions, only the difference is described.

[320L57M4N]

5

10

15

20

30

35

40

45

50

[0265] As mentioned above, the 320L57M4N has exactly the same wt % Carbon, Manganese, Phosphorus, Sulphur, Oxygen, Silicon, Chromium, Nickel and Nitrogen content as the seventh embodiment, 320L35M4N stainless steel, except the Molybdenum content. In the 320L35M4N, the Molybdenum content is between 3.00 wt % and 5.00 wt % Mo. In contrast, the 320L57M4N stainless steel's Molybdenum content is between 5.00 wt % and 7.00 wt % Mo. In other words, the 320L57M4N may be regarded as a higher Molybdenum version of the 320L35M4N stainless steel.

[0266] It should be appreciated that the passages relating to 320L35M4N are also applicable here, except the Molybdenum content.

Molybdenum (Mo)

[0267] The Molybdenum content of the 320L57M4N stainless steel may be ≥ 5.00 wt % Mo and ≤ 7.00 wt % Mo, but preferably ≥ 6.00 wt % Mo. In other words, the Molybdenum content of the 320L57M4N has a maximum of 7.00 wt % Mo.

PRE_N

[0268] The PITTING RESISTANCE EQUIVALENT for the 320L57M4N is calculated using the same formulae as 320L35M4N but because of the Molybdenum content, the PRE $_{\rm N}$ is \geq 45, but preferably PRE $_{\rm N}$ \geq 50. This ensures that the material also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 320L57M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31703 and UNS S31753. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion

[0269] The chemical composition of the 320L57M4N stainless steel is optimised at the melting stage to ensure that the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer⁶, is in the range > 0.40 and < 1.05, but preferably > 0.45 and < 0.95, in order to primarily obtain an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and Ferrite forming elements to primarily ensure that the alloy is austenitic. The alloy can therefore be manufactured and supplied in the Non-Magnetic condition.

[0270] Like the 320L35M4N embodiment, the 320L57M4N stainless steel also contains principally Fe as the remainder and may also contain very small amounts of other elements such as Boron, Aluminium, Calcium and/or Magnesium in percentage by weight and the compositions of these elements and Ce are the same as those of 320L35M4N and thus, those of 304LM4N.

[0271] The 320L57M4N stainless steel of the eighth embodiment has minimum yield strength and a minimum tensile strength comparable or similar to those of the 320L35M4N stainless steel. Likewise, the strength properties of the wrought and cast versions of the 320L57M4N are also comparable to those of the 320L35M4N. Thus, the specific strength values are not repeated here and reference is made to the earlier passages of 320L35M4N. A comparison of the wrought mechanical strength properties between 320L57M4N and those of conventional austenitic stainless steel UNS S31703, and between 320L57M4N and those of UNS S31753/UNS S32053, suggests stronger yield and tensile strengths of the magnitude similar to those found for 320L35M4N. Similarly, a comparison of the tensile properties of 320L57M4N demonstrates they are better than that specified for 22 Cr Duplex Stainless Steel and similar to those specified for 25 Cr Super Duplex Stainless Steel, just like the 320L35M4N.

[0272] This means that applications using the wrought 320L57M4N stainless steel may be frequently designed with reduced wall thicknesses, thus, leading to significant weight savings when specifying 320L57M4N stainless steel compared to conventional austenitic stainless steels such as UNS S31703, S31753 and S32053 because the minimum allowable design stresses are significantly higher. In fact, the minimum allowable design stresses for the wrought 320L57M4N stainless steel are higher than for 22 Cr Duplex Stainless Steels and similar to 25 Cr Super Duplex Stainless Steels

[0273] For certain applications, other variants of the 320L57M4N stainless steel have been purposely formulated to be manufactured containing specific levels of other alloying elements such as Copper, Tungsten and Vanadium. It has been determined that the optimum chemical composition range of the other variants of the 320L57M4N stainless steel is selective and the compositions of Copper and Vanadium are the same as those of 320L35M4N and those of 304LM4N.

In other words, the passages relating to these elements for 304LM4N are also applicable here for 320L57M4N

Tungsten (W)

10

15

20

25

30

35

50

55

The Tungsten content of the 320L57M4N stainless steel is similar to those of the 320L35M4N and the PITTING RESISTANCE EQUIVALENT, PRE_{NW}, of 320L57M4N calculated using the same formulae as mentioned above for 320L35M4N is PRE_{NW}≥47, and preferably PRE_{NW}≥52, due to the different Molybdenum content. It should be apparent that the passage relating to the use and effects of Tungsten for 320L35M4N is also applicable for 320L57M4N.

[0275] Further, the 320L57M4N may have higher levels of Carbon referred to as 320H57M4N or 32057M4N which correspond respectively to 320H35M4N and 32035M4N discussed earlier and the Carbon wt % ranges discussed earlier are also applicable for 320H57M4N and 32057M4N.

Titanium (Ti) / Niobium (Nb) / Niobium (Nb) plus Tantalum (Ta)

[0276] Furthermore, for certain applications, other stabilised variants of the 320H57M4N or 32057M4N stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the Carbon is > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C.

- (i) These include the Titanium stabilised versions which are referred to as 320H57M4NTi or 32057M4NTi to contrast with the generic 320L57M4N. The Titanium content is controlled according to the following formulae:
- Ti 5 x C min, 0.70 wt % Ti max respectively, in order to have Titanium stabilised derivatives of the alloy.
- (ii) There are also the Niobium stabilised, 320H57M4NNb or 32057M4NNb versions where the Niobium content is controlled according to the following formulae:
- Nb 10 x C min, 1.0 wt % Nb max respectively, in order to have Niobium stabilised derivatives of the alloy.
- (iii) In addition, other variants of the alloy may also be manufactured to contain Niobium plus Tantalum stabilised, 320H57M4NNbTa or 32057M4NNbTa versions where the Niobium plus Tantalum content is controlled according to the following formulae:

Nb + Ta 10 x C min, 1.0 wt % Nb + Ta max, 0.10 wt % Ta max.

[0277] Titanium stabilised, Niobium stabilised and Niobium plus Tantalum stabilised variants of the alloy may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium and/or Niobium and/or Niobium plus Tantalum may be added individually or in conjunction with Copper, Tungsten and Vanadium in all the various combinations of these elements to optimise the alloy for certain applications where higher Carbon contents are desirable. These alloying elements may be utilised individually or in all the various combinations of the elements to tailor the stainless steel for specific applications and to further improve the overall corrosion performance of the Alloy.

[0278] The wrought and cast versions of the 320L57M4N stainless steel along with the other variants are generally supplied in the same manner as the earlier embodiments.

[0279] Further, there is proposed a further variation appropriately referred to as 326L35M4N in this description, which is a ninth embodiment of the invention.

45 [326L35M4N]

[0280] The 326L35M4N high strength austenitic stainless steel has a high level of Nitrogen and a specified Pitting Resistance Equivalent of $PRE_N \ge 42$, but preferably $PRE_N \ge 47$. The Pitting Resistance Equivalent as designated by PRE_N is calculated according to the formulae:

$$PRE_N = \% Cr + (3.3 \times \% Mo) + (16 \times \% N).$$

[0281] The 326L35M4N stainless steel has been formulated to possess a unique combination of high mechanical strength properties with excellent ductility and toughness, along with good weldability and good resistance to general and localised corrosion. The chemical composition of the 326L35M4N stainless steel is selective and characterised by an alloy of chemical analysis in percentage by weight as follows, 0.030 wt % C max, 2.00 wt % Mn max, 0.030 wt % P max, 0.010 wt % S max, 0.75 wt % Si max, 24.00 wt % Cr - 26.00 wt % Cr, 19.00 wt % Ni - 23.00 wt % Ni, 3.00 wt %

Mo - 5.00 wt % Mo, 0.40 wt % N - 0.70 wt % N.

[0282] The 326L35M4N stainless steel also contains principally Fe as the remainder and may also contain very small amounts of other elements such as 0.010 wt % B max, 0.050 wt % Al max, 0.010 wt% Ca max and/or 0.010 wt % Mg max and other impurities which are normally present in residual levels.

[0283] The chemical composition of the 326L35M4N stainless steel is optimised at the melting stage to primarily ensure an Austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and Ferrite forming elements to primarily ensure that the alloy is austenitic. As a result, the 326L35M4N stainless steel exhibits a unique combination of high strength and ductility at ambient temperatures, while at the same time guarantees excellent toughness at ambient temperatures and cryogenic temperatures. In view of the fact that the chemical composition of the 326L35M4N stainless steel is adjusted to achieve a PRE $_{\rm N} \ge 42$, but preferably PRE $_{\rm N} \ge 47$, this ensures that the material also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 326L35M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31703 and UNS S31753.

[0284] It has been determined that the optimum chemical composition range of the 326L35M4N stainless steel is carefully selected to comprise the following chemical elements in percentage by weight as follows, based on the ninth embodiment,

Carbon (C)

20

25

30

35

40

50

55

[0285] The Carbon content of the 326L35M4N stainless steel is \leq 0.030 wt % C maximum. Preferably, the amount of Carbon should be \geq 0.020 wt % C and \leq 0.030 wt % C and more preferably \leq 0.025 wt % C.

Manganese (Mn)

[0286] The 326L35M4N stainless steel of the ninth embodiment may come in two variations: low Manganese or high Manganese.

[0287] For the low Manganese alloys, the Manganese content of the 326L35M4N Stainless steel is \leq 2.0 wt % Mn. The range is \geq 1.0 wt % Mn and \leq 2.0 wt % Mn and more preferably \geq 1.20 wt % Mn and \leq 1.50 wt % Mn. With such compositions, this achieves an optimum Mn to N ratio of \leq 5.0, and \geq 2.85 and \leq 5.0. More preferably, the ratio is \geq 2.85 and \leq 3.75.

[0288] For high Manganese alloys, the Manganese content of the 326L35M4N is \leq 4.0 wt % Mn. Preferably, the Manganese content is \geq 2.0 wt % Mn and \leq 4.0 wt % Mn and more preferably, the upper limit is \leq 3.0 wt % Mn. Even more preferably, the upper limit is \leq 2.50 wt % Mn. With such selective ranges, this achieves a Mn to N ratio of \geq 2.85 and \leq 7.50 and even more preferably \geq 2.85 and \leq 6.25 for the higher Manganese range Alloys.

Phosphorus (P)

[0289] The Phosphorus content of the 326L35M4N stainless steel is controlled to be \le 0.030 wt % P. Preferably, the 326L35M4N alloy has \le 0.025 wt % P and more preferably \le 0.020 wt % P. Even more preferably, the alloy has \le 0.015 wt % P and even further more preferably \le 0.010 wt % P.

45 Sulphur (S)

[0290] The Sulphur content of the 326L35M4N stainless steel of the ninth embodiment includes ≤ 0.010 wt % S. Preferably, the 326L35M4N has ≤ 0.005 wt % S and more preferably ≤ 0.003 wt % S, and even more preferably ≤ 0.001 wt % S.

Oxygen (O)

[0291] The Oxygen content of the 326L35M4N stainless steel is controlled to be as low as possible and in the ninth embodiment, the 326L35M4N has \leq 0.070 wt % O. Preferably, the 326L35M4N has \leq 0.050 wt % O and more preferably \leq 0.030 wt % O. Even more preferably, the alloy has \leq 0.010 wt % O and even further more preferably \leq 0.005 wt % O.

Silicon (Si)

[0292] The Silicon content of the 326L35M4N stainless steel is ≤ 0.75 wt % Si. Preferably, the alloy has ≥ 0.25 wt % Si and ≤ 0.75 wt % Si. More preferably, the range is ≥ 0.40 wt % Si and ≤ 0.60 wt % Si. However, for specific higher temperature applications where improved oxidation resistance is required, the Silicon content may be ≥ 0.75 wt % Si and ≤ 2.00 wt % Si.

Chromium (Cr)

10 **[0293]** The Chromium content of the 326L35M4N Stainless steel is \geq 24.00 wt % Cr and \leq 26.00 wt % Cr. Preferably, the alloy has \geq 25.00 wt % Cr.

Nickel (Ni)

[0294] The Nickel content of the 326L35M4N stainless steel is \geq 19.00 wt % Ni and \leq 23.00 wt % Ni. Preferably, the upper limit of Ni of the alloy is \leq 22.00 wt % Ni and more preferably \leq 21.00 wt % Ni.

Molybdenum (Mo)

[0295] The Molybdenum content of the 326L35M4N stainless steel alloy is \geq 3.00 wt % Mo and \leq 5.00 wt % Mo, but preferably \geq 4.00 wt % Mo.

Nitrogen (N)

[0296] The Nitrogen content of the 326L35M4N Stainless steel \geq 0.40 wt % N and \leq 0.70 wt % N. More preferably, the 326L35M4N has \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N.

PRE_N

40

50

55

30 [0297] The PITTING RESISTANCE EQUIVALENT is calculated using the formulae:

$$PRE_N = \% Cr + (3.3 \times \% Mo) + (16 \times \% N).$$

- ³⁵ **[0298]** The 326L35M4N stainless steel has been specifically formulated to have the following composition:
 - i) Chromium content \geq 24.00 wt % Cr and \leq 26.00 wt % Cr, but preferably \geq 25.00 wt % Cr;
 - ii) Molybdenum content ≥ 3.00 wt % Mo and ≤ 5.00 wt % Mo, but preferably ≥ 4.00 wt % Mo;
 - iii) Nitrogen content ≥ 0.40 wt % N and ≤ 0.70 wt % N and more preferably ≥ 0.40 wt % N and ≤ 0.60 wt % N and even more preferably ≥ 0.45 wt % N and ≤ 0.55 wt % N.

[0299] With a high level of Nitrogen, the 326L35M4N stainless steel achieves a $PRE_N \ge 42$, but preferably $PRE_N \ge 47$. This ensures that the alloy has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 326L35M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional austenitic stainless steels such as UNS S31703 and UNS S31753. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion

[0300] The chemical composition of the 326L35M4N stainless steel is optimised at the melting stage to ensure that the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer⁶, is in the range > 0.40 and < 1.05, but preferably > 0.45 and < 0.95, in order to primarily obtain an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and ferrite forming elements to primarily ensure that the alloy is austenitic. The alloy can therefore be manufactured and supplied in the Non-Magnetic condition

[0301] The 326L35M4N stainless steel also has principally Fe as the remainder and may also contain very small amounts of other elements such as Boron, Aluminium, Calcium and/or Magnesium in percentage by weight, and the compositions of these elements are the same as those of 304LM4N. In other words, the passages relating to these

elements and Ce for 304LM4N are also applicable here.

[0302] The 326L35M4N stainless steel according to the ninth embodiment possesses minimum yield strength of 55 ksi or 380 MPa for the wrought version. More preferably, minimum yield strength of 62 ksi or 430 MPa may be achieved for the wrought version. The cast version possesses minimum yield strength of 41 ksi or 280 MPa. More preferably, minimum yield strength of 48 ksi or 330 MPa may be achieved for the cast version. Based on the preferred values, a comparison of the wrought mechanical strength properties of the 326L35M4N stainless steel, with those of UNS S31703, suggests that the minimum yield strength of the 326L35M4N Stainless steel might be 2.1 times higher than that specified for UNS S31703. Similarly, a comparison of the wrought mechanical strength properties of the 326L35M4N stainless steel might be 1.79 times higher than that specified for UNS S31753. Likewise, a comparison of the wrought mechanical strength properties of the 326L35M4N stainless steel, with those of UNS S32615, suggests that the minimum yield strength of the 326L35M4N stainless steel might be 1.95 times higher than that specified for UNS S32615.

[0303] The 326L35M4N stainless steel according to the ninth embodiment possesses a minimum tensile strength of 102 ksi or 700 MPa for the wrought version. More preferably a minimum tensile strength of 109 ksi or 750 MPa may be achieved for the wrought version. The cast version possesses a minimum tensile strength of 95 ksi or 650 MPa. More preferably a minimum tensile strength of 102 ksi or 700 MPa may be achieved for the cast version. Based on the preferred values, a comparison of the wrought mechanical strength properties of the 326L35M4N stainless steel, with those of UNS S31703, suggests that the minimum tensile strength of the 326L35M4N stainless steel might be more than 1.45 times higher than that specified for UNS S31703. Similarly, a comparison of the wrought mechanical strength properties of the 326L35M4N Stainless steel, with those of UNS S31753, suggests that the minimum tensile strength of the 326L35M4N stainless steel might be 1.36 times higher than that specified for UNS S31753. Likewise, a comparison of the wrought mechanical strength properties of the 326L35M4N stainless steel, with those of UNS S32615, suggests that the minimum tensile strength of the 326L35M4N Stainless steel might be 1.36 times higher than that specified for UNS S32615. Indeed, if the wrought mechanical strength properties of the 326L35M4N stainless steel, are compared with those of the 22 Cr Duplex Stainless Steel, then it may be demonstrated that the minimum tensile strength of the 326L35M4N stainless steel is in the region of 1.2 times higher than that specified for S31803 and similar to that specified for 25 Cr Super Duplex Stainless Steel. Therefore, the minimum mechanical strength properties of the 326L35M4N stainless steel have been significantly improved compared to conventional austenitic stainless steels such as UNS S31703, UNS S31753 and UNS S32615 and the tensile strength properties are better than that specified for 22 Cr Duplex Stainless Steel and similar to those specified for 25 Cr Super Duplex Stainless Steel.

[0304] This means that applications using the wrought 326L35M4N stainless steel may be frequently designed with reduced wall thicknesses, thus, leading to significant weight savings when specifying 326L35M4N stainless steel compared to conventional austenitic stainless steels such as UNS S31703, S31753 and S32615 because the minimum allowable design stresses are significantly higher. In fact, the minimum allowable design stresses for the wrought 326L35M4N stainless steel are higher than for 22 Cr Duplex Stainless Steels and similar to 25 Cr Super Duplex Stainless Steels.

[0305] For certain applications, other variants of the 326L35M4N stainless steel have been purposely formulated to be manufactured containing specific levels of other alloying elements such as Copper, Tungsten and Vanadium. It has been determined that the optimum chemical composition range of the other variants of the 326L35M4N stainless steel is selective and the compositions of Copper and Vanadium are the same as those of 304LM4N. In other words, passages relating to these elements for 304LM4N are also applicable for 320L35M4N.

Tungsten (W)

10

30

35

40

45

50

55

[0306] The Tungsten content of the 326L35M4N stainless steel is \leq 2.00 wt % W, and \geq 0.75 wt % W. For 326L35M4N stainless steel variants containing Tungsten, the PITTING RESISTANCE EQUIVALENT is calculated using the formulae:

$$PRE_{NW} = \% Cr + [3.3 x \% (Mo + W)] + (16 x \% N).$$

[0307] This Tungsten containing variant of the 326L35M4N stainless steel has been specifically formulated to have the following composition:

- (i) Chromium content ≥ 24.00 wt % Cr and ≤ 26.00 wt % Cr, but preferably ≥ 25.00 wt % Cr;
- (ii) Molybdenum content \geq 3.00 wt % Mo and \leq 5.00 wt % Mo, but preferably \geq 4.00 wt % Mo;
- (iii) Nitrogen content \geq 0.40 wt % N and \leq 0.70 wt % N and more preferably \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N; and
- (iv) Tungsten content \leq 2.00 wt % W, and \geq 0.75 wt % W.

[0308] The Tungsten containing variant of the 326L35M4N stainless steel has a high specified level of Nitrogen and a $PRE_{NW} \ge 44$, but preferably $PRE_{NW} \ge 49$. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion. Tungsten may be added individually or in conjunction with Copper, Vanadium, Titanium and/or Niobium and/or Niobium plus Tantalum in all the various combinations of these elements, to further improve the overall corrosion performance of the alloy. Tungsten is extremely costly and therefore is being purposely limited to optimise the economics of the alloy, while at the same time optimising the ductility, toughness and corrosion performance of the alloy.

Carbon (C)

10

15

20

25

30

35

[0309] For certain applications, other variants of the 326L35M4N stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the Carbon content of the 320L35M4N stainless steel may be ≥ 0.040 wt % C and < 0.10 wt % C, but preferably ≤ 0.050 wt % C or > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C. These specific variants of the 326L35M4N stainless steel are the 326H35M4N or 32635M4N versions respectively.

Titanium (Ti) / Niobium (Nb) / Niobium (Nb) plus Tantalum (Ta)

[0310] Furthermore, for certain applications, other stabilised variants of the 326H35M4N or 32635M4N stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the Carbon is > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C.

- (i) These include the Titanium stabilised versions which are referred to as 326H35M4NTi or 32635M4NTi to contrast with the generic 326L35M4N versions. The Titanium content is controlled according to the following formulae:
- Ti 5 x C min, 0.70 wt % Ti max respectively, in order to have Titanium stabilised derivatives of the alloy.
- (ii) There are also the Niobium stabilised, 326H35M4NNb or 32635M4NNb versions where the Niobium content is controlled according to the following formulae:
- Nb 10 x C min, 1.0 wt % Nb max respectively, in order to have Niobium stabilised derivatives of the alloy.
- (iii) In addition, other variants of the Alloy may also be manufactured to contain Niobium plus Tantalum stabilised, 326H35M4NNbTa or 32635M4NNbTa versions where the Niobium plus Tantalum content is controlled according to the following formulae:
- Nb + Ta 10 x C min, 1.0 wt % Nb + Ta max, 0.10 wt % Ta max.
- [0311] Titanium stabilised, Niobium stabilised and Niobium plus Tantalum stabilised variants of the alloy may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium and/or Niobium and/or Niobium plus Tantalum may be added individually or in conjunction with Copper, Tungsten and Vanadium in all the various combinations of these elements to optimise the Alloy for certain applications where higher Carbon contents are desirable. These alloying elements may be utilised individually or in all the various combinations of the elements to tailor the stainless steel for specific applications and to further improve the overall corrosion performance of the alloy.
- **[0312]** The wrought and cast versions of the 326L35M4N Stainless steel along with the other variants are generally supplied in the same manner as the earlier embodiments.
- **[0313]** Further, there is proposed a further variation appropriately referred to as 326L57M4N high strength austenitic stainless steel, which is a tenth embodiment of the invention. The 326L57M4N stainless steel virtually has the same chemical composition as 326L35M4N stainless steel with the exception of the Molybdenum content. Thus, instead of repeating the various chemical compositions, only the difference is described.

[326L57M4N]

- [0314] As mentioned above, the 326L57M4N has exactly the same wt % Carbon, Manganese, Phosphorus, Sulphur, Oxygen, Silicon, Chromium, Nickel and Nitrogen content as the ninth embodiment, 326L35M4N stainless steel, except the Molybdenum content. In the 326L35M4N, the Molybdenum content is between 3.00 wt % and 5.00 wt % Mo. In contrast, the 326L57M4N stainless steel's Molybdenum content is between 5.00 wt % and 7.00 wt % Mo. In other words, the 326L57M4N may be regarded as a higher Molybdenum version of the 326L35M4N stainless steel.
- [0315] It should be appreciated that the passages relating to 326L35M4N are also applicable here, except the Molybdenum content.

Molybdenum (Mo)

[0316] The Molybdenum content of the 326L57M4N stainless steel may be ≥ 5.00 wt % Mo and ≤ 7.00 wt % Mo, but preferably ≥ 6.00 wt % Mo and ≤ 7.00 wt % Mo, and more preferably ≥ 6.50 wt % Mo. In other words, the Molybdenum content of the 326L57M4N has a maximum of 7.00 wt % Mo.

PRE_N

5

10

30

35

50

55

[0317] The PITTING RESISTANCE EQUIVALENT for the 326L57M4N is calculated using the same formulae as 326L35M4N but because of the Molybdenum content, the PRE $_{\rm N}$ is \geq 48.5, but preferably PRE $_{\rm N}$ \geq 53.5. This ensures that the material also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 326L57M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31703 and UNS S31753. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion

[0318] The chemical composition of the 326L57M4N stainless steel is optimised at the melting stage to ensure that the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer⁶, is in the range > 0.40 and < 1.05, but preferably > 0.45 and < 0.95, in order to primarily obtain an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and ferrite forming elements to primarily ensure that the alloy is austenitic. The alloy can therefore be manufactured and supplied in the Non-Magnetic condition

[0319] Like the 326L35M4N embodiment, the 326L57M4N stainless steel also contains principally Fe as the remainder and may also contain very small amounts of other elements such as Boron, Aluminium, Calcium and/or Magnesium in percentage by weight and the compositions of these elements and Ce are the same as those of 326L35M4N, and thus, those of 304LM4N.

[0320] The 326L57M4N stainless steel of the tenth embodiment has a minimum yield strength and a minimum tensile strength comparable or similar to those of 326L35M4N stainless steel. Likewise, the strength properties of the wrought and cast versions of the 326L57M4N are also comparable to those of the 326L35M4N. Thus, the specific strength values are not repeated here and reference is made to the earlier passages of 326L35M4N. A comparison of the wrought mechanical strength properties between 326L57M4N and those of conventional austenitic stainless steel UNS S31703, and between 326L57M4N and those of UNS S31753/UNS S32615, suggests stronger yield and tensile strengths of the magnitude similar to those found for 326L35M4N. Similarly, a comparison of the tensile strength properties of 326L57M4N demonstrates that they are better than that specified for 22Cr Duplex Stainless Steel and similar to those specified for 25 Cr Super Duplex Stainless Steel, just like the 326L35M4N.

[0321] This means that applications using the wrought 326L57M4N stainless steel may be frequently designed with reduced wall thicknesses, thus, leading to significant weight savings when specifying 326L57M4N Stainless steel compared to conventional austenitic stainless steels such as UNS S31703, S31753 and S32615 because the minimum allowable design stresses are significantly higher. In fact, the minimum allowable design stresses for the wrought 326L57M4N stainless steel are higher than for 22 Cr Duplex Stainless Steels and similar to 25 Cr Super Duplex Stainless Steels.

[0322] For certain applications, other variants of the 326L57M4N stainless steel, have been purposely formulated to be manufactured containing specific levels of other alloying elements such as Copper, Tungsten and Vanadium. It has been determined that the optimum chemical composition range of the other variants of the 326L57M4N stainless steel is selective and the compositions of Copper and Vanadium are the same as those of 326L35M4N and those of 304LM4N. In other words, the passages relating to these elements for 304LM4N are also applicable here for 326L57M4N

Tungsten (W)

[0323] The Tungsten content of the 326L57M4N stainless steel is similar to those of the 326L35M4N and the PITTING RESISTANCE EQUIVALENT, PRE_{NW}, of 326L57M4N calculated using the same formulae as mentioned above for 326L35M4N is $PRE_{NW} \geq 50.5$, and preferably $PRE_{NW} \geq 55.5$, due to the different Molybdenum content. It should be apparent that the passage relating to the use and effects of Tungsten for 326L35M4N is also applicable for 326L57M4N. **[0324]** Further, the 326L57M4N may have higher levels of Carbon referred to as 326H57M4N or 32657M4N which correspond respectively to 326H35M4N and 32635M4N discussed earlier and the Carbon wt % ranges discussed earlier are also applicable for 326H57M4N and 32657M4N.

Titanium (Ti) / Niobium (Nb) / Niobium (Nb) plus Tantalum (Ta)

[0325] Furthermore, for certain applications, other stabilised variants of the 326H57M4N or 32657M4N stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the amount of Carbon is > 0.030 wt % C and \leq 0.08 wt % C, but preferably < 0.040 wt % C.

- (i) These include the Titanium stabilised versions which are referred to as 326H57M4NTi or 32657M4NTi to contrast with the generic 326L57M4N. The Titanium content is controlled according to the following formulae:
- Ti 5 x C min, 0.70 wt % Ti max respectively, in order to have Titanium stabilised derivatives of the alloy.
- (ii) There are also the Niobium stabilised, 326H57M4NNb or 32657M4NNb versions where the Niobium content is controlled according to the following formulae:
- Nb 10 x C min, 1.0 wt % Nb max respectively, in order to have Niobium stabilised derivatives of the alloy.
- (iii) In addition, other variants of the alloy may also be manufactured to contain Niobium plus Tantalum stabilised, 326H57M4NNbTa or 32657M4NNbTa versions where the Niobium plus Tantalum content is controlled according to the following formulae:

Nb + Ta 10 x C min, 1.0 wt % Nb + Ta max, 0.10 wt % Ta max.

20

50

55

10

15

[0326] Titanium stabilised, Niobium stabilised and Niobium plus Tantalum stabilised variants of the Alloy may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium and/or Niobium and/or Niobium plus Tantalum may be added individually or in conjunction with Copper, Tungsten and Vanadium in all the various combinations of these elements to optimise the alloy for certain applications where higher Carbon contents are desirable. These alloying elements may be utilised individually or in all the various combinations of the elements to tailor the stainless steel for specific applications and to further improve the overall corrosion performance of the alloy.

[0327] The wrought and cast versions of the 326L57M4N stainless steel along with the other variants, are generally supplied in the same manner as the earlier embodiments.

30 [0328] Further, there is proposed a further variation appropriately referred to as 351L35M4N in this description, which is an eleventh embodiment of the invention.

[351L35M4N]

35 **[0329]** The

[0329] The 351L35M4N stainless steel has a high level of Nitrogen and a specified Pitting Resistance Equivalent of $PRE_N \ge 44$, but preferably $PRE_N \ge 49$. The Pitting Resistance Equivalent as designated by PRE_N is calculated according to the formulae:

PRE_N = % Cr +
$$(3.3 \times % Mo) + (16 \times % N)$$
.

[0330] The 351L35M4N stainless steel has been formulated to possess a unique combination of high mechanical strength properties with excellent ductility and toughness, along with good weldability and good resistance to general and localised corrosion. The chemical composition of the 351L35M4N stainless steel is selective and characterised by an alloy of chemical analysis in percentage by weight as follows, 0.030 wt % C max, 2.00 wt % Mn max, 0.030 wt % P max, 0.010 wt % S max, 0.75 wt % Si max, 26.00 wt % Cr - 28.00 wt % Cr, 21.00 wt % Ni - 25.00 wt % Ni, 3.00 wt % Mo - 5.00 wt % Mo, 0.40 wt % N - 0.70 wt % N.

[0331] The 351L35M4N stainless steel also contains principally Fe as the remainder and may also contain very small amounts of other elements such as 0.010 wt % B max, 0.050 wt % Al max, 0.010 wt % Ca max and/or 0.010 wt % Mg max and other impurities which are normally present in residual levels.

[0332] The chemical composition of the 351L35M4N stainless steel is optimised at the melting stage to primarily ensure an Austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between Austenite forming elements and Ferrite forming elements to primarily ensure that the Alloy is Austenitic. As a result, the 351L35M4N stainless steel exhibits a unique combination of high strength and ductility at ambient temperatures, while at the same time guarantees excellent toughness at ambient temperatures and cryogenic temperatures. In view of the fact that the chemical analysis of the 351L35M4N stainless steel is adjusted to achieve a PRE_N \geq 44, but preferably

 $PRE_N \ge 49$, this ensures that the material also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 351L35M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31703 and UNS S31753.

[0333] It has been determined that the optimum chemical composition range of the 351L35M4N stainless steel is carefully selected to comprise the following chemical elements in percentage by weight as follows, based on the eleventh embodiment,

Carbon (C)

10

15

20

30

40

50

[0334] The Carbon content of the 351L35M4N stainless steel is \leq 0.030 wt % C maximum. Preferably, the amount of Carbon should be \geq 0.020 wt % C and \leq 0.030 wt % C and more preferably \leq 0.025 wt % C.

Manganese (Mn)

[0335] The 351L35M4N stainless steel of the eleventh embodiment may come in two variations: low Manganese or high Manganese.

[0336] For low Manganese alloys, the Manganese content of the 351L35M4N stainless steel is \leq 2.0 wt % Mn. The range is \geq 1.0 wt % Mn and \leq 2.0 wt % Mn and more preferably \geq 1.20 wt % Mn and \leq 1.50 wt % Mn. With such compositions, this achieves an optimum Mn to N ratio of \leq 5.0, and \geq 2.85 and \leq 5.0. More preferably, the ratio is \geq 1.42 and \leq 3.75.

[0337] For the high Manganese alloys, the Manganese content of the 351L35M4N is \leq 4.0 wt % Mn. Preferably, the Manganese content is \geq 2.0 wt % Mn and \leq 4.0 wt % Mn and more preferably, the upper limit is \leq 3.0 wt % Mn. Even more preferably, the upper limit is \leq 2.50 wt % Mn. With such selective ranges, this achieves a Mn to N ratio of \geq 2.85 and \leq 7.50 and even more preferably \geq 2.85 and \leq 6.25.

Phosphorus (P)

[0338] The Phosphorus content of the 351L35M4N stainless steel is controlled to be \le 0.030 wt % P. Preferably, the 351L35M4N alloy has \le 0.025 wt % P and more preferably \le 0.020 wt % P. Even more preferably, the alloy has \le 0.015 wt % P and even further more preferably \le 0.010 wt % P.

Sulphur (S)

[0339] The Sulphur content of the 351L35M4N stainless steel of the eleventh embodiment includes \leq 0.010 wt % S. Preferably, the 351L35M4N has \leq 0.005 wt % S and more preferably \leq 0.003 wt % S, and even more preferably \leq 0.001 wt % S.

Oxygen (O)

[0340] The Oxygen content of the 351L35M4N stainless steel is controlled to be as low as possible and in the eleventh embodiment, the 351L35M4N has \le 0.070 wt % O. Preferably, the 351L35M4N has \le 0.050 wt % O and more preferably \le 0.030 wt % O. Even more preferably, the alloy has \le 0.010 wt % O and even further more preferably \le 0.005 wt % O.

45 Silicon (Si)

[0341] The Silicon content of the 351L35M4N stainless steel is \leq 0.75 wt % Si. Preferably, the alloy has \geq 0.25 wt % Si and \leq 0.75 wt % Si. More preferably, the range is \geq 0.40 wt % Si and \leq 0.60 wt % Si. However, for specific higher temperature applications where improved oxidation resistance is required, the Silicon content may be \geq 0.75 wt % Si and \leq 2.00 wt % Si.

Chromium (Cr)

[0342] The Chromium content of the 351L35M4N stainless steel is \geq 26.00 wt % Cr and \leq 28.00 wt % Cr. Preferably, the alloy has \geq 27.00 wt % Cr.

Nickel (Ni)

5

10

15

20

25

30

35

50

[0343] The Nickel content of the 351L35M4N stainless steel is \geq 21.00 wt % Ni and \leq 25.00 wt % Ni. Preferably, the upper limit of Ni of the alloy is \leq 24.00 wt % Ni and more preferably \leq 23.00 wt % Ni.

Molybdenum (Mo)

[0344] The Molybdenum content of the 351L35M4N stainless steel is \geq 3.00 wt % Mo and \leq 5.00 wt % Mo, but preferably \geq 4.00 wt % Mo.

Nitrogen (N)

[0345] The Nitrogen content of the 351L35M4N stainless steel is \geq 0.40 wt % N and \leq 0.70 wt % N. More preferably, the 351L35M4N has \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N.

 PRE_N

[0346] The PITTING RESISTANCE EQUIVALENT is calculated using the formulae:

 $PRE_N = \% Cr + (3.3 \times \% Mo) + (16 \times \% N).$

[0347] The 351L35M4N stainless steel has been specifically formulated to have the following composition:

- (i) Chromium content \geq 26.00 wt % Cr and \leq 28.00 wt % Cr, but preferably \geq 27.00 wt % Cr;
- (ii) Molybdenum content \geq 3.00 wt % Mo and \leq 5.00 wt % Mo, but preferably \geq 4.00 wt % Mo,
- (iii) Nitrogen content ≥ 0.40 wt % N and ≤ 0.70 wt % N and more preferably ≥ 0.40 wt % N and ≤ 0.60 wt % N and even more preferably ≥ 0.45 wt % N and ≤ 0.55 wt % N.

[0348] With a high level of Nitrogen, the 351L35M4N stainless steel achieves a $PRE_N \ge 44$, but preferably $PRE_N \ge 49$. This ensures that the material also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 351L35M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31703 and UNS S31753. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion

[0349] The chemical composition of the 351L35M4N stainless steel is optimised at the melting stage to ensure that the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer⁶, is in the range > 0.40 and < 1.05, but preferably > 0.45 and < 0.95, in order to primarily obtain an Austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and Ferrite forming elements to primarily ensure that the alloy is austenitic. The alloy can therefore be manufactured and supplied in the Non-Magnetic condition.

[0350] The 351L35M4N stainless steel also has principally Fe as the remainder and may also contain very small amounts of other elements such as Boron, Aluminium, Calcium and/or Magnesium in percentage by weight, and the compositions of these elements are the same as those of 304LM4N. In other words, the passages relating to these elements and Ce for 304LM4N are also applicable here.

[0351] The 351L35M4N stainless steel according to the eleventh embodiment possesses minimum yield strength of 55 ksi or 380 MPa for the wrought version. More preferably minimum yield strength of 62 ksi or 430 MPa may be achieved for the wrought version. The cast version possesses minimum yield strength of 41 ksi or 280 MPa. More preferably, minimum yield strength of 48 ksi or 330 MPa may be achieved for the cast version. Based on the preferred values, a comparison of the wrought mechanical strength properties of the 351L35M4N stainless steel, with those of UNS S31703, suggests that the minimum yield strength of the 351L35M4N stainless steel might be 2.1 times higher than that specified for UNS S31703. Similarly, a comparison of the wrought mechanical strength properties of the 351L35M4N stainless steel might be 1.79 times higher than that specified for UNS S31753. Likewise, a comparison of the wrought mechanical strength properties of the 351L35M4N stainless steel, with those of UNS S3115, suggests that the minimum yield strength of the 351L35M4N stainless steel might be 1.56 times higher than that specified for UNS S35115.

[0352] The 351L35M4N stainless steel according to the eleventh embodiment possesses a minimum tensile strength of 102 ksi or 700 MPa for the wrought version. More preferably, a minimum tensile strength of 109 ksi or 750 MPa may be achieved for the wrought version. The cast version possesses a minimum tensile strength of 95 ksi or 650 MPa. More preferably, a minimum tensile strength of 102 ksi or 700 MPa may be achieved for the cast version. Based on the preferred values, a comparison of the wrought mechanical strength properties of the 351L35M4N stainless steel, with those of UNS S31703, suggests that the minimum tensile strength of the 351L35M4N stainless steel might be more than 1.45 times higher than that specified for UNS S31703. Similarly, a comparison of the wrought mechanical strength properties of the 351L35M4N stainless steel, with those of UNS S31753, suggests that the minimum tensile strength of the 351L35M4N stainless steel might be 1.36 times higher than that specified for UNS S31753. Likewise, a comparison of the wrought mechanical strength properties of the 351L35M4N Stainless steel, with those of UNS S35115, suggests that the minimum tensile strength of the 351L35M4N stainless steel might be 1.28 times higher than that specified for UNS S35115. Indeed, if the wrought mechanical strength properties of the 351L35M4N stainless steel, are compared with those of the 22 Cr Duplex Stainless Steel, then it may be demonstrated that the minimum tensile strength of the 351L35M4N stainless steel is in the region of 1.2 times higher than that specified for S31803 and similar to that specified for 25 Cr Super Duplex Stainless Steel. Therefore, the minimum mechanical strength properties of the 351L35M4N Stainless steel have been significantly improved compared to conventional austenitic stainless steels such as UNS S31703, UNS S31753 and UNS S35115 and the tensile strength properties are better than that specified for 22 Cr Duplex Stainless Steel and similar to those specified for 25 Cr Super Duplex Stainless Steel.

[0353] This means that applications using the wrought 351L35M4N stainless steel may be frequently designed with reduced wall thicknesses, thus, leading to significant weight savings when specifying 351L35M4N stainless steel compared to conventional austenitic stainless steels such as UNS S31703, S31753 and S35115 because the minimum allowable design stresses are significantly higher. In fact, the minimum allowable design stresses for the wrought 351L35M4N stainless steel are higher than for 22 Cr Duplex Stainless Steels and similar to 25 Cr Super Duplex Stainless Steels.

[0354] For certain applications, other variants of the 351L35M4N stainless steel have been purposely formulated to be manufactured containing specific levels of other alloying elements such as Copper, Tungsten and Vanadium. It has been determined that the optimum chemical composition range of the other variants of the 351L35M4N stainless steel is selective and the compositions of Copper and Vanadium are the same as those of 304LM4N. In other words, passages relating to these elements for 304LM4N are also applicable for 351L35M4N.

Tungsten (W)

10

30

35

40

45

50

55

[0355] The Tungsten content of the 351L35M4N stainless steel is \leq 2.00 wt % W, and \geq 0.75 wt % W. For 351L35M4N stainless steel variants containing Tungsten, the PITTING RESISTANCE EQUIVALENT is calculated using the formulae:

$PRE_{NW} = \% Cr + [3.3 x \% (Mo + W)] + (16 x \% N).$

[0356] This Tungsten containing variant of the 351L35M4N stainless steel has been specifically formulated to have the following composition:

- (i) Chromium content \geq 26.00 wt % Cr and \leq 28.00 wt % Cr, but preferably \geq 27.00 wt % Cr;
- (ii) Molybdenum content ≥ 3.00 wt % Mo and ≤ 5.00 wt % Mo, but preferably ≥ 4.00 wt % Mo,
- (iii) Nitrogen content \geq 0.40 wt % N and \leq 0.70 wt % N and more preferably \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N; and
- (iv) Tungsten content \leq 2.00 wt % W, and \geq 0.75 wt % W.

[0357] The Tungsten containing variant of the 351L35M4N stainless steel has a high specified level of Nitrogen and a $PRE_{NW} \ge 46$, but preferably $PRE_{NW} \ge 51$. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion. Tungsten may be added individually or in conjunction with Copper, Vanadium, Titanium and/or Niobium and/or Niobium plus Tantalum in all the various combinations of these elements, to further improve the overall corrosion performance of the alloy. Tungsten is extremely costly and therefore is being purposely limited to optimise the economics of the alloy, while at the same time optimising the ductility, toughness and corrosion performance of the alloy.

Carbon (C)

[0358] For certain applications, other variants of the 351L35M4N stainless steel are desirable, which have been

specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the Carbon content of the 351L35M4N stainless steel may be ≥ 0.040 wt % C and < 0.10 wt % C, but preferably ≤ 0.050 wt % C or > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C. These specific variants of the 351L35M4N stainless steel are the 351H35M4N or 35135M4N versions respectively.

Titanium (Ti) / Niobium (Nb) / Niobium (Nb) plus Tantalum (Ta)

[0359] Furthermore, for certain applications, other stabilised variants of the 351H35M4N or 35135M4N stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the amount of Carbon is > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C.

- (i) These include the Titanium stabilised versions which are referred to as 351H35M4NTi or 35135M4NTi to contrast with the generic 351L35M4N. The Titanium content is controlled according to the following formulae:
- or Ti 5 x C min, 0.70 wt % Ti max respectively, in order to have Titanium stabilised derivatives of the alloy.
- (ii) There are also Niobium stabilised, 351H35M4NNb or 35135M4NNb versions where the Niobium content is controlled according to the following formulae:
- Nb 10 x C min, 1.0 wt % Nb max respectively, in order to have Niobium stabilised derivatives of the alloy.
- (iii) In addition, other variants of the Alloy may also be manufactured to contain Niobium plus Tantalum stabilised, 351H35M4NNbTa or 35135M4NNbTa versions where the Niobium plus Tantalum content is controlled according to the following formulae:

Nb + Ta 10 x C min, 1.0 wt % Nb + Ta max, 0.10 wt % Ta max.

[0360] Titanium stabilised, Niobium stabilised and Niobium plus Tantalum stabilised variants of the alloy may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium and/or Niobium and/or Niobium plus Tantalum may be added individually or in conjunction with Copper, Tungsten and Vanadium in all the various combinations of these elements to optimise the alloy for certain applications where higher Carbon contents are desirable. These alloying elements may be utilised individually or in all the various combinations of the elements to tailor the stainless steel for specific applications and to further improve the overall corrosion performance of the alloy.

[0361] The wrought and cast versions of the 351L35M4N stainless steel along with the other variants are generally supplied in the same manner as the earlier embodiments.

[0362] Further, there is proposed a further variation appropriately referred to as 351L57M4N high strength austenitic stainless steel, which is a twelfth embodiment of the invention. The 351L57M4N stainless steel virtually has the same chemical composition as 351L35M4N with the exception of the Molybdenum content. Thus, instead of repeating the various chemical compositions, only the difference is described.

40 [351L57M4N]

5

10

15

20

25

30

35

[0363] As mentioned above, the 351L57M4N has exactly the same wt % Carbon, Manganese, Phosphorus, Sulphur, Oxygen, Silicon, Chromium, Nickel and Nitrogen content as the eleventh embodiment, 351L35M4N stainless steel, except the Molybdenum content. In the 351L35M4N, the Molybdenum content is between 3.00 wt % and 5.00 wt % Mo. In contrast, the 351L57M4N stainless steel's Molybdenum content is between 5.00 wt % and 7.00 wt % Mo. In other words, the 351L57M4N may be regarded as a higher Molybdenum version of the 351L35M4N stainless steel.

[0364] It should be appreciated that the passages relating to 351L35M4N are also applicable here, except the Molybdenum content.

50 Molybdenum (Mo)

[0365] The Molybdenum content of the 351L57M4N stainless steel may be \geq 5.00 wt % Mo and \leq 7.00 wt % Mo, but preferably \geq 5.50 wt % Mo and \leq 6.50 wt % Mo and more preferably \geq 6.00 wt % Mo. In other words, the Molybdenum content of the 351L57M4N has a maximum of 7.00 wt % Mo.

PREN

55

[0366] The PITTING RESISTANCE EQUIVALENT for the 351L57M4N is calculated using the same formulae as

351L35M4N but because of the Molybdenum content, the PRE_N is ≥ 50.5 , but preferably $PRE_N \geq 55.5$. This ensures that the material also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 351L57M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31703 and UNS S31753. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion

[0367] The chemical composition of the 351L57M4N stainless steel is optimised at the melting stage to ensure that the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer⁶, is in the range > 0.40 and < 1.05, but preferably > 0.45 and < 0.95, in order to primarily obtain an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between Austenite forming elements and Ferrite forming elements to primarily ensure that the alloy is austenitic. The alloy can therefore be manufactured and supplied in the Non-Magnetic condition.

[0368] Like the 351L35M4N embodiment, the 351L57M4N stainless steel also comprise principally Fe as the remainder and may also contain very small amounts of other elements such as Boron, Aluminium, Calcium and/or Magnesium in percentage by weight and the compositions of these elements and Ce are the same as those of 351L35M4N, and thus, those of 304LM4N.

[0369] The 351L57M4N stainless steel of the twelfth embodiment has a minimum yield strength and a minimum tensile strength comparable or similar to those of 351L35M4N stainless steel. Likewise, the strength properties of the wrought and cast versions of the 351L57M4N are also comparable to those of the 351L35M4N. Thus, the specific strength values are not repeated here and reference is made to the earlier passages of 351L35M4N. A comparison of the wrought mechanical strength properties between 351L57M4N and those of conventional austenitic stainless steel UNS S31703, and between 351L57M4N and those of UNS S31753/UNS S35115, suggests stronger yield and tensile strengths of the magnitude similar to those found for 351L35M4N. Similarly, a comparison of the tensile properties of 351L57M4N demonstrates they are better than that specified for 22 Cr Duplex Stainless Steel and similar to those specified for 25 Cr Super Duplex Stainless Steel, just like the 351L35M4N.

[0370] This means that applications using the wrought 351L57M4N stainless steel may be frequently designed with reduced wall thicknesses, thus, leading to significant weight savings when specifying 351L57M4N stainless steel compared to conventional austenitic stainless steels such as UNS S31703, S31753 and S35115 because the minimum allowable design stresses are significantly higher. In fact, the minimum allowable design stresses for the wrought 351L57M4N stainless steel are higher than for 22 Cr Duplex Stainless Steels and similar to 25 Cr Super Duplex Stainless Steels

[0371] For certain applications, other variants of the 351L57M4N stainless steel, have been purposely formulated to be manufactured containing specific levels of other alloying elements such as Copper, Tungsten and Vanadium. It has been determined that the optimum chemical composition range of the other variants of the 351L57M4N stainless steel is selective and the compositions of Copper and Vanadium are the same as those of 351L35M4N and those of 304LM4N. In other words, the passages relating to these elements for 304LM4N are also applicable here for 351L57M4N.

40 Tungsten (W)

10

30

35

55

[0372] The Tungsten content of the 351L57M4N stainless steel is similar to those of the 351L35M4N and the PITTING RESISTANCE EQUIVALENT, PRE_{NW}, of 351L57M4N calculated using the same formulae as mentioned above for 351L35M4N is $PRE_{NW} \geq 52.5$, and preferably $PRE_{NW} \geq 57.5$, due to the different Molybdenum content. It should be apparent that the passage relating to the use and effects of Tungsten for 351L35M4N is also applicable for 351L57M4N. [0373] Further, the 351L57M4N may have higher levels of Carbon referred to as 351H57M4N or 35157M4N which correspond respectively to 351H35M4N and 35135M4N discussed earlier and the Carbon wt % ranges discussed earlier are also applicable for 351H57M4N and 35157M4N.

Titanium (Ti) / Niobium (Nb) / Niobium (Nb) plus Tantalum (Ta)

[0374] Furthermore, for certain applications, other stabilised variants of the 351H57M4N or 35157M4N stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the amount of Carbon is > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C.

(i) These include the Titanium stabilised versions which are referred to as 351H57M4NTi or 35157M4NTi to contrast with the generic 351L57M4N. The Titanium content is controlled according to the following formulae: Ti 5 x C min, 0.70 wt % Ti max respectively, in order to have Titanium stabilised derivatives of the alloy.

49

(ii) There are also the Niobium stabilised, 351H57M4NNb or 35157M4NNb versions where the Niobium content is controlled according to the following formulae:

Nb 10 x C min, 1.0 wt % Nb max respectively, in order to have Niobium stabilised derivatives of the alloy.

(iii) In addition, other variants of the alloy may also be manufactured to contain Niobium plus Tantalum stabilised, 351H57M4NNbTa or 35157M4NNbTa versions where the Niobium plus Tantalum content is controlled according to the following formulae:

Nb + Ta 10 x C min, 1.0 wt % Nb + Ta max, 0.10 wt % Ta max.

[0375] Titanium stabilised, Niobium stabilised and Niobium plus Tantalum stabilised variants of the Alloy may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium and/or Niobium and/or Niobium plus Tantalum may be added individually or in conjunction with Copper, Tungsten and Vanadium in all the various combinations of these elements to optimise the alloy for certain applications where higher Carbon contents are desirable. These alloying elements may be utilised individually or in all the various combinations of the elements to tailor the stainless steel for specific applications and to further improve the overall corrosion performance of the alloy.

[0376] The wrought and cast versions of the 351L57M4N Stainless steel, along with the other variants, are generally supplied in the same manner as the earlier embodiments.

Further, there is proposed a further variation appropriately referred to as 353L35M4N in this description, which is a thirteenth embodiment of the invention.

[353L35M4N]

[0377] The 353L35M4N stainless steel has a high level of Nitrogen and a specified Pitting Resistance Equivalent of $PRE_N \ge 46$, but preferably $PRE_N \ge 51$. The Pitting Resistance Equivalent as designated by PRE_N is calculated according to the formulae:

$$PRE_N = \% Cr + (3.3 \times \% Mo) + (16 \times \% N).$$

[0378] The 353L35M4N stainless steel has been formulated to possess a unique combination of high mechanical strength properties with excellent ductility and toughness, along with good weldability and good resistance to general and localised corrosion. The chemical composition of the 353L35M4N stainless steel is selective and characterised by an alloy of chemical analysis in percentage by weight as follows, 0.030 wt % C max, 2.00 wt % Mn max, 0.030 wt % P max, 0.010 wt % S max, 0.75 wt % Si max, 28.00 wt % Cr - 30.00 wt % Cr, 23.00 wt % Ni - 27.00 wt % Ni, 3.00 wt % Mo - 5.00 wt % Mo, 0.40 wt % N - 0.70 wt % N.

[0379] The 353L35M4N stainless steel also contains principally Fe as the remainder and may also contain very small amounts of other elements such as 0.010 wt % B max, 0.050 wt % Al max, 0.010 wt % Ca max and/or 0.010 wt % Mg max and other impurities which are normally present in residual levels.

[0380] The chemical composition of the 353L35M4N stainless steel is optimised at the melting stage to primarily ensure an Austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between Austenite forming elements and Ferrite forming elements to primarily ensure that the Alloy is Austenitic. As a result, the 353L35M4N stainless steel exhibits a unique combination of high strength and ductility at ambient temperatures, while at the same time guarantees excellent toughness at ambient temperatures and cryogenic temperatures. In view of the fact that the chemical analysis of the 353L35M4N stainless steel is adjusted to achieve a $PRE_N \ge 46$, but preferably $PRE_N \ge 51$, this ensures that the material also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 353L35M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31703 and UNS S31753.

[0381] It has been determined that the optimum chemical composition range of the 353L35M4N stainless steel is carefully selected to comprise the following chemical elements in percentage by weight as follows, based on the thirteenth

50

10

5

25

30

35

50

55

embodiment,

Carbon (C)

5

10

20

30

35

40

45

50

55

[0382] The Carbon content of the 353L35M4N stainless steel is \leq 0.030 wt % C maximum. Preferably, the amount of Carbon should be \geq 0.020 wt % C and \leq 0.030 wt % C and more preferably \leq 0.025 wt % C.

Manganese (Mn)

[0383] The 353L35M4N stainless steel of the thirteenth embodiment may come in two variations: low Manganese or high Manganese.

[0384] For the low Manganese alloys, the Manganese content of the 353L35M4N stainless steel is \leq 2.0 wt % Mn. The range is \geq 1.0 wt % Mn and \leq 2.0 wt % Mn and more preferably \geq 1.20 wt % Mn and \leq 1.50 wt % Mn. With such compositions, this achieves an optimum Mn to N ratio of \leq 5.0, and \geq 2.85 and \leq 5.0. More preferably, the ratio is \geq 2.85 and \leq 3.75.

[0385] For the high Manganese alloys, the Manganese content of the 353L35M4N is \leq 4.0 wt % Mn. Preferably, the Manganese content is \geq 2.0 wt % Mn and \leq 4.0 wt % Mn and more preferably, the upper limit is \leq 3.0 wt % Mn. Even more preferably, the upper limit is \leq 2.50 wt % Mn. With such selective ranges, this achieves a Mn to N ratio of \geq 2.85 and \leq 7.50 and even more preferably \geq 2.85 and \leq 6.25.

Phosphorus (P)

[0386] The Phosphorus content of the 353L35M4N stainless steel is controlled to be \le 0.030 wt % P. Preferably, the 353L35M4N alloy has \le 0.025 wt % P and more preferably \le 0.020 wt % P. Even more preferably, the alloy has \le 0.015 wt % P and even further more preferably \le 0.010 wt % P.

25 Sulphur (S)

[0387] The Sulphur content of the 353L35M4N stainless steel of the thirteenth embodiment includes \le 0.010 wt % S. Preferably, the 353L35M4N has \le 0.005 wt % S and more preferably \le 0.003 wt % S, and even more preferably \le 0.001 wt % S.

Oxygen (O)

[0388] The Oxygen content of the 353L35M4N stainless steel is controlled to be as low as possible and in the thirteenth embodiment, the 353L35M4N has \leq 0.070 wt % O. Preferably, the 353L35M4N has \leq 0.050 wt % O and more preferably \leq 0.030 wt % O. Even more preferably, the alloy has \leq 0.010 wt % O and even further more preferably \leq 0.005 wt % O.

Silicon (Si)

[0389] The Silicon content of the 353L35M4N stainless steel is ≤ 0.75 wt % Si. Preferably, the alloy has ≥ 0.25 wt % Si and ≤ 0.75 wt % Si. More preferably, the range is ≥ 0.40 wt % Si and ≤ 0.60 wt % Si. However, for specific higher temperature applications where improved oxidation resistance is required, the Silicon content may be ≥ 0.75 wt % Si and ≤ 2.00 wt % Si.

Chromium (Cr)

[0390] The Chromium content of the 353L35M4N stainless steel is \geq 28.00 wt % Cr and \leq 30.00 wt % Cr. Preferably, the alloy has \geq 29.00 wt % Cr.

Nickel (Ni)

[0391] The Nickel content of the 353L35M4N stainless steel is \geq 23.00 wt % Ni and \leq 27.00 wt % Ni. Preferably, the upper limit of Ni of the alloy is \leq 26.00 wt % Ni and more preferably \leq 25.00 wt % Ni.

Molybdenum (Mo)

[0392] The Molybdenum content of the 353L35M4N stainless steel is \geq 3.00 wt % Mo and \leq 5.00 wt % Mo, but preferably \geq 4.00 wt % Mo.

Nitrogen (N)

[0393] The Nitrogen content of the 353L35M4N stainless steel is \geq 0.40 wt % N and \leq 0.70 wt % N. More preferably, the 353L35M4N has \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N.

 PRE_N

[0394] The PITTING RESISTANCE EQUIVALENT is calculated using the formulae:

10

15

20

30

35

40

50

55

5

$$PRE_N = \% Cr + (3.3 \times \%Mo) + (16 \times \% N).$$

[0395] The 353L35M4N stainless steel has been specifically formulated to have

- (i) Chromium content \geq 28.00 wt % Cr and \leq 30.00 wt % Cr, but preferably \geq 29.00 wt % Cr;
- (ii) Molybdenum content ≥ 3.00 wt % Mo and ≤ 5.00 wt % Mo, but preferably ≥ 4.00 wt % Mo;
- (iii) Nitrogen content \geq 0.40 wt % N and \leq 0.70 wt % N and more preferably \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N.

[0396] With a high level of Nitrogen, the 353L35M4N stainless steel achieves a $PRE_N \ge 46$, but preferably $PRE_N \ge 51$. This ensures that the material also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 353L35M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31703 and UNS S31753. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion.

[0397] The chemical composition of the 353L35M4N stainless steel is optimised at the melting stage to ensure that the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer⁶, is in the range > 0.40 and < 1.05, but preferably > 0.45 and < 0.95, in order to primarily obtain an Austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between austenite forming elements and ferrite forming elements to primarily ensure that the alloy is austenitic. The alloy can therefore be manufactured and supplied in the Non-Magnetic condition.

[0398] The 353L35M4N stainless steel also has principally Fe as the remainder and may also contain very small amounts of other elements such as Boron, Aluminium, Calcium and/or Magnesium in percentage by weight, and the compositions of these elements are the same as those of 304LM4N. In other words, the passages relating to these elements and Ce for 304LM4N are also applicable here.

[0399] The 353L35M4N stainless steel according to the thirteenth embodiment possesses minimum yield strength of 55 ksi or 380 MPa for the wrought version. More preferably minimum yield strength of 62 ksi or 430 MPa may be achieved for the wrought version. The cast version possesses minimum yield strength of 41 ksi or 280 MPa. More preferably, minimum yield strength of 48 ksi or 330 MPa may be achieved for the cast version. Based on the preferred values, a comparison of the wrought mechanical strength properties of the 353L35M4N stainless steel, with those of UNS S31703, suggests that the minimum yield strength of the 353L35M4N stainless steel might be 2.1 times higher than that specified for UNS S31703. Similarly, a comparison of the wrought mechanical strength properties of the 353L35M4N stainless steel might be 1.79 times higher than that specified for UNS S31753. Likewise, a comparison of the wrought mechanical strength properties of the 353L35M4N stainless steel, with those of UNS S35315, suggests that the minimum yield strength of the 353L35M4N stainless steel might be 1.59 times higher than that specified for UNS S35315.

[0400] The 353L35M4N stainless steel according to the thirteenth embodiment has a minimum tensile strength of 102 ksi or 700 MPa for the wrought version. More preferably, a minimum tensile strength of 109 ksi or 750 MPa may be achieved for the wrought version. The cast version possesses a minimum tensile strength of 95 ksi or 650 MPa. More preferably, a minimum tensile strength of 102 ksi or 700 MPa may be achieved for the cast version. Based on the preferred values, a comparison of the wrought mechanical strength properties of the 353L35M4N stainless steel, with those of UNS S31703, suggests that the minimum tensile strength of the 353L35M4N stainless steel might be more than 1.45 times higher than that specified for UNS S31703. Similarly, a comparison of the wrought mechanical strength of the 353L35M4N stainless steel might be 1.36 times higher than that specified for UNS S31753. Likewise, a comparison of the wrought mechanical strength properties of the 353L35M4N Stainless steel, with those of UNS S35315, suggests

that the minimum tensile strength of the 353L35M4N stainless steel might be 1.15 times higher than that specified for UNS S35315. Indeed, if the wrought mechanical strength properties of the 353L35M4N stainless steel, are compared with those of the 22 Cr Duplex Stainless Steel, then it may be demonstrated that the minimum tensile strength of the 353L35M4N stainless steel is in the region of 1.2 times higher than that specified for S31803 and similar to that specified for 25 Cr Super Duplex Stainless Steel. Therefore, the minimum mechanical strength properties of the 353L35M4N stainless steel have been significantly improved compared to conventional austenitic stainless steels such as UNS S31703, UNS S31753 and UNS S35315 and the tensile strength properties are better than that specified for 22 Cr Duplex Stainless Steel and similar to those specified for 25 Cr Super Duplex Stainless Steel. This means that applications using the wrought 353L35M4N stainless steel may be frequently formulated with reduced wall thicknesses, thus, leading to significant weight savings when specifying 353L35M4N stainless steel compared to conventional austenitic stainless steels such as UNS S31703, S31753 and S35315 because the minimum allowable design stresses are significantly higher. In fact, the minimum allowable design stresses for the wrought 353L35M4N stainless steel are higher than for 22 Cr Duplex Stainless Steels and similar to 25 Cr Super Duplex Stainless Steels.

[0401] For certain applications, other variants of the 353L35M4N stainless steel have been purposely formulated to be manufactured containing specific levels of other alloying elements such as Copper, Tungsten and Vanadium. It has been determined that the optimum chemical composition range of the other variants of the 353L35M4N stainless steel according to claim 1, is selective and the compositions of Copper and Vanadium are the same as those of 304LM4N. In other words, passages relating to these elements for 304LM4N are also applicable for 353L35M4N.

20 Tungsten (W)

10

15

25

30

35

40

50

[0402] The Tungsten content of the 353L35M4N stainless steel is \leq 2.00 wt % W, and \geq 0.75 wt % W. For 353L35M4N stainless steel variants containing Tungsten, the PITTING RESISTANCE EQUIVALENT is calculated using the formulae:

$$PRE_{NW} = \% Cr + [3.3 \times \% (Mo + W)] + (16 \times \% N).$$

[0403] This Tungsten containing variant of the 353L35M4N stainless steel has been specifically formulated to have the following composition:

- (i) Chromium content \geq 28.00 wt % Cr and \leq 30.00 wt % Cr, but preferably \geq 29.00 wt %Cr;
- (ii) Molybdenum content ≥ 3.00 wt % Mo and ≤ 5.00 wt % Mo, but preferably ≥ 4.00 wt % Mo;
- (iii) Nitrogen content \geq 0.40 wt % N and \leq 0.70 wt % N and more preferably \geq 0.40 wt % N and \leq 0.60 wt % N and even more preferably \geq 0.45 wt % N and \leq 0.55 wt % N; and
- (iv) Tungsten content \leq 2.00 wt % W, and \geq 0.75 wt % W.

[0404] The Tungsten containing variant of the 353L35M4N stainless steel has a high specified level of Nitrogen and a $PRE_{NW} \ge 48$, but preferably $PRE_{NW} \ge 53$. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion. Tungsten may be added individually or in conjunction with Copper, Vanadium, Titanium and/or Niobium and/or Niobium plus Tantalum in all the various combinations of these elements, to further improve the overall corrosion performance of the alloy. Tungsten is extremely costly and therefore is being purposely limited to optimise the economics of the alloy, while at the same time optimising the ductility, toughness and corrosion performance of the alloy.

45 Carbon (C)

[0405] For certain applications, other variants of the 353L35M4N stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the Carbon content of the 353L35M4N may be ≥ 0.040 wt % C and < 0.10 wt % C, but preferably ≤ 0.050 wt % C or > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C. These specific variants of the 353L35M4N stainless steel are the 353H35M4N or 35335M4N versions respectively.

Titanium (Ti) / Niobium (Nb) / Niobium (Nb) plus Tantalum (Ta)

55 **[0406]** Furthermore, for certain applications, other stabilised variants of the 353H35M4N or 35335M4N stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon Specifically, the amount of Carbon is > 0.030 wt % C and ≤ 0.08 wt % C, but preferably < 0.040 wt % C.

(i) These include the Titanium stabilised versions which are referred to as 353H35M4NTi or 35335M4NTi to contrast with the generic 353L35M4N.

The Titanium content is controlled according to the following formulae:

Ti 5 x C min, 0.70 wt % Ti max respectively, in order to have Titanium stabilised derivatives of the alloy.

(ii) There are also the Niobium stabilised, 353H35M4NNb or 35335M4NNb versions where the Niobium content is controlled according to the following formulae:

Nb 10 x C min, 1.0 wt % Nb max respectively, in order to have Niobium stabilised derivatives of the alloy.

(iii) In addition, other variants of the Alloy may also be manufactured to contain Niobium plus Tantalum stabilised, 353H35M4NNbTa or 35335M4NNbTa versions where the Niobium plus Tantalum content is controlled according to the following formulae:

Nb + Ta 10 x C min, 1.0 wt % Nb + Ta max, 0.10 wt % Ta max.

[0407] Titanium stabilised, Niobium stabilised and Niobium plus Tantalum stabilised variants of the alloy may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium and/or Niobium and/or Niobium plus Tantalum may be added individually or in conjunction with Copper, Tungsten and Vanadium in all the various combinations of these elements to optimise the alloy for certain applications where higher Carbon contents are desirable. These alloying elements may be utilised individually or in all the various combinations of the elements to tailor the stainless steel for specific applications and to further improve the overall corrosion performance of the alloy.

[0408] The wrought and cast versions of the 353L35M4N stainless steel along with the other variants are generally supplied in the same manner as the earlier embodiments.

[0409] Further, there is proposed a further variation appropriately referred to as 353L57M4N high strength austenitic stainless steel, which is a fourteenth embodiment of the invention. The 353L57M4N stainless steel virtually has the same chemical composition as 353L35M4N with the exception of the Molybdenum content. Thus, instead of repeating the various chemical compositions, only the difference is described.

[353L57M4N]

5

10

30

35

40

50

[0410] As mentioned above, the 353L57M4N has exactly the same wt % Carbon, Manganese, Phosphorus, Sulphur, Oxygen, Silicon, Chromium, Nickel and Nitrogen content as the thirteenth embodiment, 353L35M4N stainless steel, except the Molybdenum content. In the 353L35M4N, the Molybdenum content is between 3.00 wt % and 5.00 wt % Mo. In contrast, the 353L57M4N stainless steel's Molybdenum content is between 5.00 wt % and 7.00 wt % Mo. In other words, the 353L57M4N may be regarded as a higher Molybdenum version of the 353L35M4N stainless steel.

[0411] It should be appreciated that the passages relating to 353L35M4N are also applicable here, except the Molybdenum content.

Molybdenum (Mo)

[0412] The Molybdenum content of the 353L57M4N stainless steel may be \geq 5.00 wt % Mo and \leq 7.00 wt % Mo, but preferably \geq 5.50 wt % Mo and \leq 6.50 wt % Mo, and more preferably \geq 6.00 wt % Mo. In other words, the Molybdenum content of the 353L57M4N has a maximum of 7.00 wt % Mo.

45 PRE_N

[0413] The PITTING RESISTANCE EQUIVALENT for the 353L57M4N is calculated using the same formulae as 353L35M4N but because of the Molybdenum content, the PRE_N is \geq 52.5, but preferably $PRE_N \geq$ 57.5. This ensures that the material also has a good resistance to general corrosion and localised corrosion (Pitting Corrosion and Crevice Corrosion) in a wide range of process environments. The 353L57M4N stainless steel also has improved resistance to stress corrosion cracking in Chloride containing environments when compared to conventional Austenitic Stainless Steels such as UNS S31703 and UNS S31753. It should be emphasised that these equations ignore the effects of microstructural factors on the breakdown of passivity by pitting or crevice corrosion

[0414] The chemical composition of the 353L57M4N stainless steel is optimised at the melting stage to ensure that the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer⁶, is in the range > 0.40 and < 1.05, but preferably > 0.45 and < 0.95, in order to primarily obtain an austenitic microstructure in the base material after solution heat treatment typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of

weldments, is controlled by optimising the balance between austenite forming elements and ferrite forming elements to primarily ensure that the alloy is austenitic. The alloy can therefore be manufactured and supplied in the Non-Magnetic condition.

[0415] Like the 353L35M4N, the 353L57M4N stainless steel also comprises principally Fe as the remainder and may also contain very small amounts of other elements such as Boron, Aluminium, Calcium and/or Magnesium in percentage by weight and the compositions of these elements and Ce are the same as those of 353L35M4N and thus, those of 304LM4N.

[0416] The 353L57M4N stainless steel of the fourteenth embodiment has a minimum yield strength and a minimum tensile strength comparable or similar to those of 353L35M4N stainless steel. Likewise, the strength properties of the wrought and cast versions of the 353L57M4N are also comparable to those of the 353L35M4N. Thus, the specific strength values are not repeated here and reference is made to the earlier passages of 353L35M4N. A comparison of the wrought mechanical strength properties between 353L57M4N and those of conventional austenitic stainless steel UNS S31703, and between 353L57M4N and those of UNS S31753/UNS S35315, suggests stronger yield and tensile strengths of the magnitude similar to those found for 353L35M4N. Similarly, a comparison of the tensile properties of 353L57M4N demonstrates they are better than that specified for 22 Cr Duplex Stainless Steel and similar to those specified for 25 Cr Super Duplex Stainless Steel, just like the 353L35M4N.

[0417] This means that applications using the wrought 353L57M4N stainless steel may be frequently designed with reduced wall thicknesses, thus, leading to significant weight savings when specifying 353L57M4N stainless steel compared to conventional austenitic stainless steels such as UNS S31703, S31753 and S35315 because the minimum allowable design stresses are significantly higher. In fact, the minimum allowable design stresses for the wrought 353L57M4N stainless steel are higher than for 22 Cr Duplex Stainless Steels and similar to 25 Cr Super Duplex Stainless Steels.

[0418] For certain applications, other variants of the 353L57M4N stainless steel, have been purposely formulated to be manufactured containing specific levels of other alloying elements such as Copper, Tungsten and Vanadium. It has been determined that the optimum chemical composition range of the other variants of the 353L57M4N stainless steel is selective and the compositions of Copper and Vanadium are the same as those of 353L35M4N and those of 304LM4N. In other words, the passages relating to these elements for 304LM4N are also applicable here for 353L57M4N.

Tungsten (W)

30

35

40

45

50

55

[0419] The Tungsten content of the 353L57M4N stainless steel is similar to those of the 353L35M4N and the PITTING RESISTANCE EQUIVALENT, PRE_{NW}, of 353L57M4N calculated using the same formulae as mentioned above for 353L35M4N is $PRE_{NW} \geq 54.5$, and preferably $PRE_{NW} \geq 59.5$, due to the different Molybdenum content. It should be apparent that the passage relating to the use and effects of Tungsten for 353L35M4N is also applicable for 353L57M4N. **[0420]** Further, the 353L57M4N may have higher levels of Carbon referred to as 353H57M4N or 35357M4N which correspond respectively to 353H35M4N and 35335M4N discussed earlier and the Carbon wt % ranges discussed earlier are also applicable for 353H57M4N and 35357M4N.

Titanium (Ti) / Niobium (Nb) / Niobium (Nb) plus Tantalum (Ta)

[0421] Furthermore, for certain applications, other stabilised variants of the 353H57M4N or 35357M4N stainless steel are desirable, which have been specifically formulated to be manufactured comprising higher levels of Carbon. Specifically, the Carbon is > 0.030 wt % C and \leq 0.08 wt % C, but preferably < 0.040 wt % C.

- (i) These include the Titanium stabilised versions which are referred to as 353H57M4NTi or 35357M4NTi to contrast with the generic 353L57M4N. The Titanium content is controlled according to the following formulae:
- Ti 5 x C min, 0.70 wt % Ti max respectively, in order to have Titanium stabilised derivatives of the alloy.
- (ii) There are also the Niobium stabilised, 353H57M4NNb or 35357M4NNb versions where the Niobium content is controlled according to the following formulae:
- Nb 10 x C min, 1.0 wt % Nb max respectively, in order to have Niobium stabilised derivatives of the alloy.
- (iii) In addition, other variants of the alloy may also be manufactured to contain Niobium plus Tantalum stabilised, 353H57M4NNbTa or 35357M4NNbTa versions where the Niobium plus Tantalum content is controlled according to the following formulae:

Nb + Ta 10 x C min, 1.0 wt % Nb + Ta max, 0.10 wt % Ta max.

[0422] Titanium stabilised, Niobium stabilised and Niobium plus Tantalum stabilised variants of the Alloy may be given

a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium and/or Niobium and/or Niobium plus Tantalum may be added individually or in conjunction with Copper, Tungsten and Vanadium in all the various combinations of these elements to optimise the Alloy for certain applications where higher Carbon contents are desirable. These alloying elements may be utilised individually or in all the various combinations of the elements to tailor the stainless steel for specific applications and to further improve the overall corrosion performance of the alloy.

[0423] The wrought and cast versions of the 353L57M4N stainless steel along with the other variants are generally supplied in the same manner as the earlier embodiments.

[0424] The described embodiments should not be construed as limitative and others may be formulated in addition to the ones described herein. For example, the aforementioned embodiments or series of austenitic stainless steels for all the different types of alloy compositions and their variants may be produced with tailored chemical compositions for specific applications. One such example is the use of a higher Manganese content of > 2.00 wt % Mn and \leq 4.00 wt % Mn, in order to reduce the level of the Nickel content by a pro rata amount according to the equations proposed by Schoefer. This would reduce the overall cost of the alloys since Nickel is extremely costly. Therefore the Nickel content may be purposely limited to optimise the economics of the alloys.

[0425] The described embodiments may also be controlled to satisfy other criteria to the ones already defined herein. For example in addition to the Manganese to Nitrogen ratios, the embodiments are also controlled to have specific Manganese to Carbon + Nitrogen ratios.

[0426] For the "LM4N," types of the low Manganese range Alloys this achieves an optimum Mn to C+N ratio of \leq 4.76, and preferably \geq 1.37 and \leq 4.76. More preferably, the Mn to C+N ratio is \geq 1.37 and \leq 3.57. For the "LM4N," types of the high Manganese range Alloys this achieves an optimum Mn to C+N ratio of \leq 9.52, and preferably \geq 2.74 and \leq 9.52. More preferably, the Mn to C+N ratio for these "LM4N," types of high Manganese alloys is \geq 2.74 and \leq 7.14 and even more preferably the Mn to C+N ratio is \geq 2.74 to \leq 5.95. The current embodiments include the following: the 304LM4N, 316LM4N, 317L35M4N, 317L57M4N, 312L35M4N, 312L57M4N, 320L35M4N, 320L57M4N, 320L57M4N, 326L35M4N and 326L57M4N, 351L35M4N, 351L57M4N, 353L35M4N, 353L57M4N types of Alloy and their variants which may comprise up to 0.030 wt % of Carbon maximum,

[0427] For the "HM4N," types of the low Manganese range Alloys this achieves an optimum Mn to C+N ratio of \leq 4.55, and preferably \geq 1.25 and \leq 4.55. More preferably, the Mn to C+N ratio is \geq 1.25 and \leq 3.41. For the "HM4N," types of the high Manganese range Alloys this achieves an optimum Mn to C+N ratio of \leq 9.10, and preferably \geq 2.50 and \leq 9.10. More preferably, the Mn to C+N ratio for these "HM4N," types of high Manganese alloys is \geq 2.50 and \leq 6.82 and even more preferably the Mn to C+N ratio is \geq 2.50 to \leq 5.68. The current embodiments include the following: the 304HM4N, 316HM4N 317H57M4N, 317H35M4N, 312H35M4N, 312H57M4N, 320H35M4N, 320H57M4N, 326H35M4N, 326H35M4N, 351H35M4N, 351H57M4N, 353H35M4N and 353H57M4N types of Alloy and their variants which may comprise from 0.040 wt % of Carbon up to 0.10 wt % of Carbon, and

[0428] For the "M4N," types of the low Manganese range Alloys this achieves an optimum Mn to C+N ratio of \leq 4.64, and preferably \geq 1.28 and \leq 4.64. More preferably, the Mn to C+N ratio is \geq 1.28 and \leq 3.48. For the "M4N," types of the high Manganese range Alloys this achieves an optimum Mn to C+N ratio of \leq 9.28, and preferably \geq 2.56 and \leq 9.28. More preferably, the Mn to C+N ratio for these "M4N," types of high Manganese alloys is \geq 2.56 and \leq 6.96 and even more preferably the Mn to C+N ratio is \geq 2.56 to \leq 5.80. The current embodiments include the following: the 304M4N, 316M4N 31757M4N, 31735M4N, 31235M4N, 31257M4N, 32035M4N, 32635M4N, 32635M4N, 32657M4N, 35135M4N, 35135M4N, 35135M4N and 35357M4N types of Alloy and their variants which may comprise from more than 0.030 wt % of Carbon up to 0.080 wt % of Carbon.

[0429] The series of N'GENIUS™ high strength austenitic and super austenitic stainless steels including the "LM4N," "HM4N" and "M4N" types of Alloy, as well as the other variants discussed herein, may be specified and utilised as range of Products and Product Packages for complete systems.

It should be evident that chemical composition ranges specified for one element (e.g. Chromium, Nickel, Molybdenum, Carbon and Nitrogen etc) for specific alloy composition types and their variants may also be applicable to the elements in other alloy composition types and their variants.

Products, Markets, Industry Sectors and Applications

30

35

50

55

[0430] The proposed series of N'GENIUS™ high strength austenitic and super austenitic stainless steels may be specified to international standards and specifications and used for a range of products utilised for both offshore and onshore applications in view of their high mechanical strength properties, excellent ductility and toughness at ambient and cryogenic temperatures, along with good weldability and good resistance to general and localised corrosion.

Products

10

20

35

[0431] Products include but are not limited to Primary and Secondary Products such as Ingots, Continuous Cast Slabs, Rolled Skelps, Blooms, Billet, Bar, Flat Bar, Shapes, Rod, Wire, Welding wire, Welding Consumables, Plate, Sheet, Strip and Coiled Strip, Forgings, Static Castings, Die Castings, Centrifugal Castings, Powder Metallurgical Products, Hot Isostatic Pressings, Seamless Line Pipe, Seamless Pipe and Tube, Drill Pipe, Oil Country Tubular Goods, Casings, Condenser and Heat Exchanger Tubes, Welded Line Pipe, Welded Pipe and Tube, Tubular Products, Induction Bends, Butt Welded Fittings, Seamless Fittings, Fasteners, Bolting, Screws and Studs, Cold Drawn and Cold Reduced Bar, Rod and Wire, Cold Drawn and Cold Reduced Pipe and Tube, Flanges, Compact Flanges, Clamp-Lock Connectors, Forged Fittings, Pumps, Valves, Separators, Vessels and Ancillary Products. The Primary and Secondary Products above are also relevant to Metallurgically Clad Products (e.g. Thermo-Mechanically Bonded, Hot Roll Bonded, Explosively Bonded etc.), Weld Overlayed Clad Products, Mechanically Lined Products or Hydraulically Lined Products or CRA Lined Products.

[0432] As it can be appreciated from the number of alternative alloy compositions discussed above, the proposed N'GENIUS™ High Strength Austenitic and Super Austenitic Stainless Steels may be specified and used in various markets and industry sectors in a wide range of applications. Significant weight savings and fabrication time savings may be achieved when utilising these Alloys which in turn leads to significant cost savings in the overall construction costs.

Markets, Industry Sectors and Applications

Upstream and Downstream Oil and Gas Industries (Onshore and Offshore Including Shallow Water, Deep Water and Ultra Deep Water Technology)

[0433] Finished Product Applications may include but are not limited to the following:

Onshore and Offshore Pipelines including Interfield Pipelines and Flowlines, Infield Pipelines and Flowlines, Buckle Arrestors, High Pressure and High Temperature (HPHT) Pipelines for multiphase fluids such as Oil, Gas and Condensates containing Chlorides, CO₂ and H₂S, and other constituents, Seawater Injection and Formation Water Injection Pipelines, Subsea Production System Equipment, Manifolds, Jumpers, Tie-ins, Spools, Pigging Loops, Tubulars, OCTG and Casings, Steel Catenary Risers, Riser Pipes, Structural Splash Zone Riser Pipes, River and Waterway Crossings, Valves, Pumps, Separators, Vessels, Filtration Systems, Forgings, Fasteners and all associated Ancillary Products and Equipment.

[0434] Piping Package Systems: such as, Process systems and Utilities systems, Seawater Cooling systems and Firewater systems which can be utilised in all types of Onshore and Offshore applications. The Offshore applications include but are not limited to Fixed Platforms, Floating Platforms, SPA's and Hulls such as Process Platforms, Utilities Platforms, Wellhead Platforms, Riser Platforms, Compression Platforms, FPSO's, FSO's, SPA and Hull Infrastructure, Fabrications, Fabricated Modules and all associated Ancillary Products and Equipment.

[0435] Tubing Package Systems: such as, Umbilicals, Condensers, Heat Exchangers, Desalination, Desulphidation and all associated Ancillary Products and Equipment.

40 LNG Industries

[0436] Finished Product Applications may include but are not limited to the following: Pipelines and Piping Package Systems Infrastructure, Fabrications, Fabricated Modules, Valves, Vessels, Pumps, Filtration Systems, Forgings, Fasteners and all associated Ancillary Products and Equipment used for the Fabrication of offshore Floating Liquefied Natural Gas (FLNG) vessels, FSRU's or onshore Liquefied Natural Gas (LNG) Plants, Ships and Vessels as well as Terminals for the processing, storage and transportation of Liquefied Natural Gas (LNG) at cryogenic temperatures.

Chemical Process, Petrochemical, GTL and Refining Industries

[0437] Finished Product Applications may include but are not limited to the following: Pipelines and Piping Package Systems, Infrastructure, Fabrications, Fabricated modules, Valves, Pumps, Vessels, Filtration Systems, Forgings, Fasteners and all associated Ancillary Products and Equipment, including Rail and Road Chemical Tankers used for the processing and transportation of corrosive aggressive fluids from the Chemical Process, Petrochemical, Gas to Liquids and Refining Industries as well as acids, alkalis and other corrosive fluids including chemicals typically found in Vacuum Towers, Atmospheric Towers and Hydro Treaters.

Environmental Protection Industries

[0438] Finished Product Applications may include but are not limited to the following:

Pipelines and Piping Package Systems, Infrastructure, Fabrications, Fabricated modules, Valves, Pumps, Vessels, Filtration Systems, Forgings, Fasteners and all associated Ancillary Products and Equipment used for waste products and wet toxic gases from the Chemical Process and Refining Industries, Pollution Control e.g. Vapour Recovery systems, containment of CO₂ and Flue Gas Desulphurisation.

Iron and Steel Industries

10

15

30

35

50

[0439] Finished Product Applications may include but are not limited to the following:

Pipelines and Piping Package Systems, Infrastructure, Fabrications, Fabricated modules, Valves, Pumps, Vessels, Filtration Systems, Forgings, Fasteners and all associated Ancillary Products and Equipment used for the manufacture and processing of Iron and Steel.

Mining and Minerals Industries

[0440] Finished Product Applications may include but are not limited to the following:

Pipelines and Piping Package Systems, Infrastructure, Fabrications, Fabricated Modules, Valves, Pumps, Vessels, Filtration Systems, Forgings, Fasteners and all associated Ancillary Products and Equipment used for the Mining and Minerals extraction and for the transportation of erosive-corrosive slurries as well as mine dewatering.

Power Industries

[0441] Finished Product Applications may include but are not limited to the following:

Pipelines and Piping Package Systems, Infrastructure, Fabrications, Fabricated modules, Valves, Pumps, Vessels, Filtration Systems, Forgings, Fasteners and all associated Ancillary Products and Equipment used for the generation of Power and for the transportation of corrosive media associated with power generation i.e. fossil fuel, gas fired, nuclear fuel, geothermal power, hydro-electric power and all other forms of power generation.

Pulp and Paper Industries

[0442] Finished Product Applications may include but are not limited to the following:

Pipelines and Piping Package Systems, Infrastructure, Fabrications, Fabricated modules, Valves, Pumps, Vessels, Filtration Systems, Forgings, Fasteners and all associated Ancillary Products and Equipment used in the Pulp and Paper Industries and for the transportation of aggressive fluids in pulp bleach plants.

Desalination Industries

40 [0443] Finished Product Applications may include but are not limited to the following:

Pipelines and Piping Package Systems, Infrastructure, Fabrications, Fabricated modules, Valves, Pumps, Vessels, Filtration Systems, Forgings, Fasteners and all associated Ancillary Products and Equipment used in the Desalination Industries and for the transportation of seawater and brines used in desalination plants.

45 Marine, Naval and Defence Industries

[0444] Finished Product Applications may include but are not limited to the following:

Pipelines and Piping Package Systems, Fabrications, Fabricated modules, Valves, Pumps, Vessels, Filtration Systems, Forgings, Fasteners and all associated Ancillary Products and Equipment used for the Marine Naval and Defence Industries and for the transportation of aggressive media and utilities piping systems for chemical tankers, ship building and submarines.

Water and Waste Water Industries

⁵⁵ **[0445]** Finished Product Applications may include but are not limited to the following:

Pipelines and Piping Package Systems, Infrastructure, Fabrications, Fabricated modules, Valves, Pumps, Vessels, Filtration Systems, Forgings, Fasteners and all associated Ancillary Products and Equipment used in the Water and Waste Water Industries including Casing Pipe used for water wells, utility distribution networks, sewage networks and

irrigation systems.

Architectural, Engineering and Construction Industries

5 [0446] Finished Product Applications may include but are not limited to the following:

Pipe, Piping, Infrastructure, Fabrications, Forgings and Fasteners and all associated Ancillary Products and Equipment utilised for Structural Integrity and Decorative applications in the Architectural, Civil and Mechanical Engineering and the Construction industries.

10 Food and Brewing Industries

[0447] Finished Product Applications may include but are not limited to the following:

Pipelines and Piping Package Systems, Infrastructure, Fabrications, Fabricated modules, Valves, Pumps, Vessels, Filtration Systems, Forgings, Fasteners and all associated Ancillary Products and Equipment used in Food and Drinks Industries as well as the related Consumer Products.

Pharmaceutical, Bio-Chemical, Health and Medical Industries

[0448] Finished Product Applications may include but are not limited to the following:

Pipelines and Piping Package Systems, Infrastructure, Fabrications, Fabricated modules, Valves, Pumps, Vessels, Filtration Systems, Forgings, Fasteners and all associated Ancillary Products and Equipment used in the Pharmaceuticals, Bio-chemicals, Health and Medical Industries as well as related Consumer Products.

Automotive Industries

25

30

35

40

45

50

55

15

20

[0449] Finished Product Applications may include but are not limited to the following:

Pipelines and Piping Package Systems, Infrastructure, Fabrications, Fabricated modules, Valves, Pumps, Vessels, Filtration Systems, Forgings, Fasteners, Components and all associated Ancillary Products and Equipment used in the Automotive Industries including the manufacture of vehicles for Road and Rail applications as well as Surface and Underground Mass Transit Systems.

[0450] Finished Product Applications may include but are not limited to the following:

Pipelines and Piping Package Systems, Infrastructure, Fabrications, Fabricated modules, Valves, Pumps, Vessels, Filtration Systems, Forgings, Fasteners and all associated Ancillary Products and Equipment used in the Specialist Research and Development Industries.

[0451] This invention relates austenitic stainless steels, comprising a high level of Nitrogen and a minimum specified Pitting Resistance Equivalent for each designated type of Alloy. The Pitting Resistance Equivalent as designated by PRE_N is calculated according to the formulae:

$$PRE_N = \% Cr + (3.3 \times \% Mo) + (16 \times \% N)$$
:

and/or

$$PRE_{NW} = \% Cr + [3.3 x \% (Mo + W)] + (16 x \% N)$$

where applicable, as discussed above, for each designated type of Alloy.

[0452] The low Carbon range of alloys for the different embodiments or types of Austenitic stainless steels and/or Super Austenitic Stainless Steels, have been referred to as 304LM4N, 316LM4N, 317L35M4N, 317L57M4N, 312L35M4N, 312L57M4N, 320L35M4N, 320L57M4N, 326L35M4N, 326L57M4N, 351L35M4N, 351L57M4N, 353L35M4N and 353L57M4N and these among other variants have been disclosed. In the described embodiments, the Austenitic stainless steels and/or Super Austenitic Stainless Steels, are defined as in claim 1. For the lower Carbon range Alloys these comprise no more than 0.030 wt % of Carbon. For the lower Manganese range Alloys these comprise no more than 2.00 wt % of Manganese with the Manganese to Nitrogen ratio controlled to less than or equal to 5.0 and ≥ 2.85 or more preferably a minimum of 2.85 and less than or equal to 3.75. For the higher Manganese range Alloys these comprise no more than 4.00 wt % of Manganese with the Manganese to Nitrogen ratio controlled to a minimum of 2.85 and less than or equal to 7.50, or even more preferably to a minimum of 2.85 and less than or equal to 6.25, or even further more preferably to a minimum of 2.85 and less than or equal to 5.0, or even more further more preferably

to a minimum of 2.85 and less than or equal to 3.75. The level of Phosphorus is no more than 0.030 wt % of Phosphorus and is controlled to as low as possible so that it may be less than or equal to 0.010 wt % of Phosphorus. The level of Sulphur is no more than 0.010 wt % of Sulphur and is controlled to as low as possible so that it may be less than or equal to 0.001 wt % of Sulphur. The level of Oxygen in the Alloys is no more than 0.070 wt % of Oxygen and is crucially controlled to as low as possible so that it may be less than or equal to 0.005 wt % of Oxygen. The level of Silicon in the Alloys is no more than 0.75 wt % of Silicon, except for specific higher temperature applications where improved oxidation resistance is required, wherein the Silicon content may be from 0.75 wt % of Silicon to 2.00 wt % of Silicon. For certain applications, other variants of the Stainless steel and Super Austenitic Stainless Steels, have been purposely formulated to be manufactured containing specific levels of other alloying elements such as Copper of no more than 1.50 wt % of Copper for the lower Copper range Alloys and Copper of no more than 3.50 wt % of Copper for the higher Copper range Alloys, Tungsten of no more than 2.00 wt % of Tungsten and Vanadium of no more than 0.50 wt % of Vanadium. The Austenitic Stainless steels and Super Austenitic Stainless Steels, also contains principally Fe as the remainder and may also contain very small amounts of other elements such as Boron of no more than 0.010 wt % of Boron, Aluminium of no more than 0.050 wt % of Aluminium and Calcium and/or Magnesium of no more than 0.010 wt % of Calcium and/or Magnesium. The Austenitic Stainless steels and Super Austenitic Stainless Steels have been formulated to possess a unique combination of High mechanical strength properties with excellent ductility and toughness, along with good weldability and good resistance to general and localised corrosion. The chemical analysis of the Stainless steels and Super Austenitic Stainless Steels, is characterised in that it is optimised at the melting stage to ensure that the ratio of the [Cr] equivalent divided by the [Ni] equivalent, according to Schoefer6, is in the range > 0.40 and < 1.05, or preferably > 0.45 and < 0.95, in order to primarily obtain an Austenitic microstructure in the base material after solution heat treatment, typically performed in the range 1100 deg C - 1250 deg C followed by water quenching. The microstructure of the base material in the solution heat treated condition, along with as-welded weld metal and heat affected zone of weldments, is controlled by optimising the balance between Austenite forming elements and Ferrite forming elements to primarily ensure that the Alloy is Austenitic. The Alloys can therefore be manufactured and supplied in the Non-Magnetic condition. The minimum specified mechanical strength properties of the novel and innovative Stainless steels and Super Austenitic Stainless Steels, have been significantly improved compared to their respective counterparts, including Austenitic Stainless Steels such as, UNS S30403, UNS S30453, UNS S31603, UNS S31703, UNS S31753, UNS S31254, UNS S32053, UNS S32615, UNS S35115 and UNS S35315. Furthermore the minimum specified tensile strength properties can be better than that specified for 22 Cr Duplex Stainless Steel (UNS S31803) and similar to those specified for 25 Cr Super Duplex Stainless Steel (UNS S32760). This means that System components for different applications using the wrought Stainless steels are characterised in that the Alloys can frequently be designed with reduced wall thicknesses, thus, leading to significant weight savings when specifying Stainless steels compared to conventional Austenitic Stainless Steels such as those detailed herein because the minimum allowable design stresses may be significantly higher. In fact, the minimum allowable design stresses for the wrought Austenitic Stainless steel may be higher than that specified for 22 Cr Duplex Stainless Steels and similar to that specified for 25 Cr Super Duplex

10

20

30

35

45

50

[0453] For certain applications, other variants of the Austenitic Stainless steel and Super Austenitic Stainless Steels, have been specifically formulated to be manufactured containing higher levels of Carbon than that defined previously herein above. The higher Carbon range of alloys for the different types of Austenitic Stainless steels and Super Austenitic Stainless Steels, have been referred to as 304HM4N, 316HM4N, 317H35M4N, 317H57M4N, 312H35M4N, 312H57M4N, 320H35M4N, 320H57M4N, 326H35M4N, 326H57M4N, 351H35M4N, 351H57M4N, 353H35M4N and 353H57M4N and these types of Alloy comprise from 0.040 wt % of Carbon up to less than 0.10 wt % of Carbon. Whereas the 304M4N, 316M4N, 31735M4N, 31757M4N, 31235M4N, 31257M4N, 32035M4N, 32057M4N, 32635M4N, 32657M4N, 35135M4N, 35157M4N, 35335M4N and 35357M4N types of Alloy comprise from more than 0.030 wt % of Carbon up to 0.080 wt % of Carbon.

[0454] Furthermore, for certain applications, other variants of the higher Carbon ranges of Alloys for the Austenitic Stainless steel and Super Austenitic Stainless Steels, are desirable, which have been specifically formulated to be manufactured as stabilised versions. These specific variants of the Austenitic Stainless steel and Super Austenitic Stainless Steels, are the Titanium stabilised, "HM4NTi" or "M4NTi" types of Alloy where the Titanium content is controlled according to the following formulae: Ti 5 x C min, 0.70 wt % Ti max respectively, in order to have Titanium stabilised derivatives of the Alloy. Similarly there are Niobium stabilised, "HM4NNb" or "M4NNb" types of Alloy where the Niobium content is controlled according to the following formulae: Nb 10 x C min, 1.0 wt % Nb max respectively, in order to have Niobium stabilised derivatives of the Alloy. In addition, other variants of the Alloy may also be manufactured to contain Niobium plus Tantalum stabilised, "HM4NNbTa" or "M4NNbTa" types of alloy where the Niobium plus Tantalum content is controlled according to the following formulae: Nb + Ta 10 x C min, 1.0 wt % Nb + Ta max, 0.10 wt % Ta max. Titanium stabilised, Niobium stabilised and Niobium plus Tantalum stabilised variants of the Alloy may be given a stabilisation heat treatment at a temperature lower than the initial solution heat treatment temperature. Titanium and/or Niobium and/or Niobium plus Tantalum may also be added individually or in conjunction with Copper, Tungsten and Vanadium

in all the various combinations of these elements to optimise the Alloy for certain applications where higher Carbon contents are desirable. These alloying elements may be utilised individually or in all the various combinations of the elements to tailor the Austenitic Stainless steels for specific applications and to further optimise the overall corrosion performance of the Alloys.

References

[0455]

5

15

- 1. A. J. Sedriks, Stainless Steels '84, Proceedings of Göteborg Conference, Book No 320. The Institute of Metals, 1 Carlton House Terrace, London SW1Y 5DB, p. 125, 1985.
 - 2. P. Guha and C. A. Clark, Duplex Stainless Steel Conference Proceedings, ASM Metals/Materials Technology Series, Paper (8201 018) p. 355, 1982.
 - 3. N. Bui, A. Irhzo, F. Dabosi and Y. Limouzin-Maire, Corrosion NACE, Vol. 39, p. 491, 1983.
 - 4. A. L. Schaeffler, Metal Progress, Vol. 56, p. 680, 1949.
- ²⁰ 5. C. L. Long and W. T. DeLong, Welding Journal, Vol. 52, p. 281s, 1973.
 - 6. E. A. Schoefer, Welding Journal, Vol. 53, p. 10s, 1974.
 - 7. ASTM A800/A800M 10

25

35

40

50

55

Claims

 Austenitic stainless steel base metal characterised by having a non-magnetic austenitic base metal microstructure comprising:

16.00 wt % of Chromium to 30.00 wt % of Chromium (Cr);

8.00 wt % of Nickel to 27.00 wt % of Nickel (Ni);

1.00 wt % of Molybdenum to no more than 7.00 wt % of Molybdenum (Mo);

0.40 wt % of Nitrogen to 0.70 wt % of Nitrogen (N);

1.0 wt % of Manganese to 4.00 wt % of Manganese (Mn), in which levels of the N and Mn are specifically selected to ensure a Mn to N ratio of \geq 2.85 and \leq 7.50;

less than 0.10 wt % of Carbon (C);

≤ 0.070 wt % of Oxygen (O);

no more than 2.00 wt % of Silicon (Si),

- \leq 0.030 wt % of Phosphorus (P);
- \leq 0.010 wt % of Sulphur (S);
- \geq 0.03 wt % of Cerium and \leq 0.08 wt % of Cerium (Ce);
- and optionally the austenitic stainless steel base metal further comprises:
 - (i) one or more of the following from a first group:

 \geq 0.001 wt % Boron and \leq 0.010 wt % Boron;

Rare Earth Metals (REMs) other than Cerium provided the total amount of REMs conforms to the levels of Cerium of \geq 0.03 wt % and \leq 0.08 wt %;

- \geq 0.005 wt % Aluminium and \leq 0.050 wt % Aluminium;
- \geq 0.001 wt % Calcium and \leq 0.010 wt % Calcium;
- ≥ 0.001 wt % Magnesium and ≤ 0.010 wt % Magnesium;
- ≤ 3.50 wt % Copper;
- ≥ 0.75 wt % Tungsten and ≤ 2.00 wt % Tungsten;
- ≥ 0.10 wt % Vanadium and ≤ 0.50 wt % Vanadium; and/or

- (ii) optionally, either one of the following from a second group:
 - (a) > 0.030 wt % Carbon and ≤ 0.08 wt % Carbon in combination with more than Ti (min), wherein Ti (min) is calculated from 5 x C (min) and wherein C(min) is the minimum amount of carbon, to 0.70 wt % of Titanium, or
 - (b) > 0.030 wt % Carbon and \leq 0.08 wt % Carbon in combination with more than Nb + Ta (min), wherein Nb + Ta (min) is calculated from 10 x C (min) and wherein C (min) is the minimum amount of carbon, to 1.0 wt % of Niobium plus Tantalum with a maximum of 0.10 wt % of Tantalum; wherein
- the balance of the base metal being iron and inevitable impurity; and

wherein levels of austenite forming elements of Ni, C, Mn and N; and ferrite forming elements of Cr, Si, Mo and Nb; are specifically selected to ensure

a ratio of Chromium Equivalent [Cr] to Nickel Equivalent [Ni] is determined and controlled to more than 0.40 and less than 1.05; and

wherein the Chromium Equivalent is determined and controlled according to a first formula:

$$[Cr] = (wt \% Cr) + (1.5 x wt \% Si) + (1.4 x wt \% Mo) + (wt \% Nb) - 4.99;$$

and

5

15

20

25

30

45

50

55

wherein the Nickel Equivalent is determined and controlled according to a second formula:

$$[Ni] = (wt \% Ni) + (30 x wt \% C) + (0.5 x wt \% Mn) + ((26 x wt \% (N - 0.02)) + 2.77;$$

and

the base metal having a specified Pitting Resistance Equivalent (PRE_N) of > 25; wherein:

 $PRE_N = wt \%$ of Chromium + (3.3 x wt % of Molybdenum) + (16 x wt % of Nitrogen); and wherein the ratio of the [Cr] Equivalent divided by the [Ni] Equivalent is optimized at a melting stage in order to obtain the non-magnetic austenitic microstructure in the base metal.

- 2. Austenitic stainless steel base metal according to claim 1, comprising ≤ 0.030 wt % of Carbon.
- 35. Austenitic stainless steel base metal according to claim 1 or 2, comprising 0.020 wt % to 0.030 wt % of Carbon.
 - **4.** Austenitic stainless steel base metal according to any preceding claim, wherein the Manganese is 2.0 wt % to 4.00 wt % of Manganese.
- 40 **5.** Austenitic stainless steel base metal according to claim 4, wherein the Manganese is ≤ 3.0 wt % of Manganese.
 - **6.** Austenitic stainless steel base metal according to any preceding claim, comprising ≤ 0.001 wt % of Sulphur.
 - 7. Austenitic stainless steel base metal according to any preceding claim, wherein the Oxygen is ≤ 0.050 wt % of Oxygen.
 - 8. Austenitic stainless steel base metal according to any preceding claim, comprising no more than 0.75 wt % of Silicon.
 - Austenitic stainless steel base metal according to any preceding claim, wherein the Silicon is ≥ 0.25 wt % and ≤ 0.75 wt % of Silicon.
 - **10.** Austenitic stainless steel base metal according to any of claims 1 to 7, wherein the Silicon is \geq 0.75 wt % and \leq 2.00 wt % of Silicon.
 - 11. Austenitic stainless steel base metal according to any preceding claim, comprising ≤ 1.50 wt % of Copper.
 - **12.** Austenitic stainless steel base metal according to any of claims 1 to 10, comprising ≥ 1.50 wt % of Copper.
 - **13.** Austenitic stainless steel base metal according to any of claims 1 to 12, wherein the Nitrogen is \geq 0.40 and \leq 0.60

wt % of Nitrogen.

5

15

20

25

30

35

45

55

- **14.** Austenitic stainless steel base metal according to any preceding claim, wherein the ratio of the Chromium Equivalents to Nickel Equivalents is more than 0.45 and less than 0.95.
- 15. Wrought steel comprising the austenitic stainless steel base metal of any preceding claim.
- 16. Cast steel comprising the austenitic stainless steel base metal of any of claims 1 to 14.
- **17.** A method of manufacturing austenitic stainless steel base metal having a non-magnetic austenitic base metal microstructure comprising:

16.00 wt % of Chromium to 30.00 wt % of Chromium (Cr);

8.00 wt % of Nickel to 27.00 wt % of Nickel (Ni);

1.00 wt % of Molybdenum to no more than 7.00 wt % of Molybdenum (Mo);

0.40 wt % of Nitrogen to 0.70 wt % of Nitrogen (N);

1.0 wt % of Manganese to 4.00 wt % of Manganese (Mn), in which levels of the N and Mn are specifically selected to ensure a Mn to N ratio of \geq 2.85 and \leq 7.50;

less than 0.10 wt % of Carbon (C);

≤ 0.070 wt % of Oxygen (O);

no more than 2.00 wt % of Silicon (Si);

- \leq 0.030 wt % of Phosphorus (P);
- ≤ 0.010 wt % of Sulphur (S);
- \geq 0.03 wt % of Cerium and \leq 0.08 wt % of Cerium (Ce);

and optionally the non-magnetic austenitic base metal further comprises:

- (i) one or more of the following from a first group:
- \geq 0.001 wt % Boron and \leq 0.010 wt % Boron;

Rare Earth Metals (REMs) other than Cerium provided the total amount of REMs conforms to the levels of Cerium of \geq 0.03 wt % and \leq 0.08 wt %;

- \geq 0.005 wt % Aluminium and \leq 0.050 wt % Aluminium;
- \geq 0.001 wt % Calcium and \leq 0.010 wt % Calcium;
- \geq 0.001 wt % Magnesium and \leq 0.010 wt % Magnesium;
- ≤ 3.50 wt % Copper;
- ≥ 0.75 wt % Tungsten and ≤2.00 wt % Tungsten;
- \geq 0.10 wt % and \leq 0.50 wt % Vanadium; and/or
- 40 (ii) optionally, either one of the following from a second group:
 - (a) > 0.030 wt % Carbon and ≤ 0.08 wt % Carbon in combination with more than Ti (min), wherein Ti (min) is calculated from 5 x C (min) and wherein C(min) is the minimum amount of carbon, to 0.70 wt % of Titanium, or
 - (b) > 0.030 wt % Carbon and \leq 0.08 wt % of Carbon in combination with more than Nb + Ta (min), wherein Nb + Ta (min) is calculated from 10 x C (min) and wherein C (min) is the minimum amount of carbon, to 1.0 wt % of Niobium plus Tantalum with a maximum of 0.10 wt % of Tantalum; wherein

the balance of the base metal being iron and inevitable impurity;

the method **characterised by** comprising:

performing solution heat treatment of a metal alloy composition at a temperature between 1100°C and 1250°C followed by water quenching, wherein a ratio of Chromium Equivalent divided by Nickel Equivalent is optimized at a melting stage in order to obtain the non-magnetic austenitic microstructure in the base metal; wherein, at the melting stage,

levels of austenite forming elements of Ni, C, Mn and N; and ferrite forming elements of Cr, Si, Mo and Nb; are specifically selected to ensure a ratio of Chromium Equivalent [Cr] to Nickel Equivalent [Ni] is determined and controlled to more than 0.40 and less than 1.05; and

wherein the Chromium Equivalent is determined and controlled according to a first formula:

$$[Cr] = (wt \% Cr) + (1.5 x wt \% Si) + (1.4 x wt \% Mo) + (wt \% Nb) - 4.99;$$

anc

wherein the Nickel Equivalent is determined and controlled according to a second formula:

[Ni] = (wt % Ni) + (30 x wt % C) + (0.5 x wt % Mn) + ((26 x wt % (N
$$-$$
 0.02)) + 2.77;

wherein the specified Pitting Resistance Equivalent (PRE_N) is determined and controlled to > 25; wherein

 $PRE_N = wt \%$ of Chromium + (3.3 x wt % of Molybdenum) + (16 x wt % of Nitrogen).

20

25

30

35

15

5

Patentansprüche

Austenitisches rostfreies Stahl-Nichtedelmetall, dadurch gekennzeichnet, dass es eine nichtmagnetische austenitische Nichtedelmetall-Mikrostruktur aufweist, umfassend:

```
16,00 Gew.-% von Chrom bis 30,00 Gew.-% von Chrom (Cr);
```

8,00 Gew.-% von Nickel bis 27,00 Gew.-% von Nickel (Ni);

1,00 Gew.-% von Molybdän bis nicht mehr als 7,00 Gew.-% von Molybdän (Mo);

0,40 Gew.-% von Stickstoff bis 0,70 Gew.-% von Stickstoff (N);

1,0 Gew.-% von Mangan bis 4,00 Gew.-% von Mangan (Mn), wobei Konzentrationen von dem N und Mn speziell ausgewählt sind, um ein Verhältnis von N zu Mn von \geq 2,85 und \leq 7,50 zu gewährleisten;

weniger als 0,10 Gew.-% von Kohlenstoff (C);

≤ 0,070 Gew.-% von Sauerstoff (O);

nicht mehr als 2,00 Gew.-% von Silizium (Si),

 \leq 0,030 Gew.-% von Phosphor (P);

 \leq 0,010 Gew.-% von Schwefel (S);

 \geq 0,03 Gew.-% von Cer und \leq 0,08 Gew.-% von Cer (Ce);

und wahlweise das austenitische rostfreie Stahl-Nichtedelmetall ferner umfasst:

40

45

50

55

(i) eines oder mehrere der Folgenden aus einer ersten Gruppe:

```
\geq 0,001 Gew.-% Bor und \leq 0,010 Gew.-% Bor;
```

Seltenerdmetalle (SEM) außer Cer mit der Maßgabe, dass die Gesamtmenge von SEM in Übereinstimmung steht mit der Konzentration an Cer von \geq 0,03 Gew.-% und \leq 0,08 Gew.-%;

≥ 0,005 Gew.-% Aluminium und ≤ 0,050 Gew.-% Aluminium;

≥ 0,001 Gew.-% Calcium und ≤ 0,010 Gew.-% Calcium;

≥ 0,001 Gew.-% Magnesium und ≤ 0,010 Gew.-% Magnesium;

≤ 3,50 Gew.-% Kupfer;

≥ 0,75 Gew.-% Wolfram und ≤ 2,00 Gew.-% Wolfram;

≥ 0,10 Gew.-% Vanadium und ≤ 0,050 Gew.-% Vanadium; und/oder

(ii) wahlweise ein beliebiges der Folgenden aus einer zweiten Gruppe:

(a) > 0,030 Gew.-% Kohlenstoff und \leq 0,08 Gew.-% Kohlenstoff in Kombination mit mehr als Ti (min), wobei Ti (min) berechnet wird aus 5 x C (min) und wobei C(min) die kleinste Menge von Kohlenstoff ist, zu 0,70 Gew.-% von Titan, oder

(b) > 0,030 Gew.-% Kohlenstoff und ≤ 0,08 Gew.-% Kohlenstoff in Kombination mit mehr als Nb + Ta

(min), wobei Nb + Ta (min) berechnet wird aus 10 x C (min) und wobei C (min) die kleinste Menge von Kohlenstoff ist, zu 1,0 Gew.-% von Niob plus Tantal mit einem Maximum von 0,10 Gew.-% Tantal, wobei

der Rest des Nichtedelmetalls Eisen und unvermeidliche Verunreinigung sind; und wobei Konzentrationen von Austenit bildenden Elementen von Ni, C, Mn und N; und Ferrit bildenden Elementen von Cr, Si, Mo und Nb; speziell ausgewählt sind, um zu gewährleisten, dass ein Verhältnis von Chrom-Äquivalent [Cr] zu Nickel-Äquivalent [Ni] festgelegt und geregelt wird auf mehr als 0,40 und weniger als 1,05; und wobei das Chrom-Äquivalent festgelegt und geregelt wird entsprechend einer ersten Formel:

 $[Cr] = (Gew.-\% Cr) + (1,5 \times Gew.-\% Si) + (1,4 Gew.-\% Mo) + (Gew.-\% Nb) - 4,99;$

und wobei das Nickel-Äquivalent festgelegt und geregelt wird entsprechend einer zweiten Formel:

[Ni] = (Gew.-% Ni) + (30 x Gew.-% C) + (0,5 x Gew.-% Mn) + ((26 x Gew.-% (N -0.02)) + 2,77;

und

5

10

15

25

45

50

das Nichtedelmetall ein vorgegebenes Lochfraß-Widerstandsäquivalent (PRE_N) von > 25 aufweist; wobei:

PRE_N = Gew.-% von Chrom + (3,3 x Gew.-% von Molybdän) + (16 x Gew.-% von Stickstoff); und wobei das Verhältnis des [Cr]-Äquivalents geteilt durch das [Ni]-Äquivalent in einem Zustand des Schmelzens optimiert ist, um die nichtmagnetische austenitische Mikrostruktur in dem Nichtedelmetall zu erhalten.

- 30 **2.** Austenitisches rostfreies Stahl-Nichtedelmetall nach Anspruch 1, umfassend ≤ 0,030 Gew.-% von Kohlenstoff.
 - Austenitisches rostfreies Stahl-Nichtedelmetall nach Anspruch 1 oder 2, umfassend 0,020 Gew.-% bis 0,030 Gew.-% von Kohlenstoff.
- 4. Austenitisches rostfreies Stahl-Nichtedelmetall nach einem der vorhergehenden Ansprüche, wobei das Mangan 2,00 Gew.-% bis 4,00 Gew.-% Mangan beträgt.
 - 5. Austenitisches rostfreies Stahl-Nichtedelmetall nach Anspruch 4, wobei das Mangan ≤ 3,0 Gew.-% Mangan beträgt.
- 40 6. Austenitisches rostfreies Stahl-Nichtedelmetall nach einem der vorhergehenden Ansprüche, umfassend ≤ 0,001 Gew.-% von Schwefel.
 - Austenitisches rostfreies Stahl-Nichtedelmetall nach einem der vorhergehenden Ansprüche, wobei der Sauerstoff
 ≤ 0,050 Gew.-% Sauerstoff beträgt.
 - **8.** Austenitisches rostfreies Stahl-Nichtedelmetall nach einem der vorhergehenden Ansprüche, umfassend nicht mehr als 0,75 Gew.-% von Silizium.
 - **9.** Austenitisches rostfreies Stahl-Nichtedelmetall nach einem der vorhergehenden Ansprüche, wobei_das Silizium ≥ 0,25 Gew.-% und ≤ 0,75 Gew.-% Silizium beträgt.
 - **10.** Austenitisches rostfreies Stahl-Nichtedelmetall nach einem der Ansprüche 1 bis 7, wobei das Silizium ≥ 0,75 Gew.-% und ≤ 2,00 Gew.-% Silizium beträgt.
- 11. Austenitisches rostfreies Stahl-Nichtedelmetall nach einem der vorhergehenden Ansprüche, umfassend ≤ 1,50 Gew.-% von Kupfer.
 - 12. Austenitisches rostfreies Stahl-Nichtedelmetall nach einem der Ansprüche 1 bis 10, umfassend ≥ 1,50 Gew.-% von

Kupfer.

5

10

15

20

25

30

35

40

45

50

- **13.** Austenitisches rostfreies Stahl-Nichtedelmetall nach einem der Ansprüche 1 bis 12, wobei das Stickstoff ≥ 0,40 Gew.-% und ≤ 0,60 Gew.-% von Stickstoff beträgt.
- **14.** Austenitisches rostfreies Stahl-Nichtedelmetall nach einem der vorhergehenden Ansprüche, wobei das Verhältnis der Chrom-Äquivalente zu Nickel-Äquivalenten mehr als 0,45 und weniger als 0,95 beträgt.
- 15. Schmiedestahl, umfassend das austenitische rostfreie Stahl-Nichtedelmetall eines vorhergehenden Anspruchs.
- 16. Stahlguss, umfassend das austenitische rostfreie Stahl-Nichtedelmetall nach einem der Ansprüche 1 bis 14.
- 17. Verfahren zum Herstellen von austenitischem rostfreiem Stahl-Nichtedelmetall, das eine nichtmagnetische austenitische Nichtedelmetall-Mikrostruktur aufweist, umfassend:

```
16,00 Gew.-% von Chrom bis 30,00 Gew.-% von Chrom (Cr); 8,00 Gew.-% von Nickel bis 27,00 Gew.-% von Nickel (Ni); 1,00 Gew.-% von Molybdän bis nicht mehr als 7,00 Gew.-% von Molybdän (Mo); 0,40 Gew.-% von Stickstoff bis 0,70 Gew.-% von Stickstoff (N); 1,0 Gew.-% von Mangan bis 4,00 Gew.-% von Mangan (Mn), wobei Konzentrationen von dem N und Mn speziell ausgewählt sind, um ein Verhältnis von Mn zu N von \geq 2,85 und \leq 7,50 zu gewährleisten; weniger als 0,10 Gew.-% von Kohlenstoff (C); \leq 0,070 Gew.-% von Sauerstoff (O); nicht mehr als 2,00 Gew.-% von Silizium (Si), \leq 0,030 Gew.-% von Phosphor (P); \leq 0,010 Gew.-% von Schwefel (S); \geq 0,03 Gew.-% von Cer und \leq 0,08 Gew.-% von Cer (Ce); und wahlweise das austenitische rostfreie Stahl-Nichtedelmetall ferner umfasst:
```

(i) eines oder mehrere der folgenden aus einer ersten Gruppe:

 \geq 0,001 Gew.-% Bor und \leq 0,010 Gew.-% Bor;

```
Seltenerdmetalle (SEM) außer Cer mit der Maßgabe, dass die Gesamtmenge von SEM in Übereinstimmung steht mit den Konzentrationen an Cer von \geq 0,03 Gew.-% und \leq 0,08 Gew.-%; \geq 0,005 Gew.-% Aluminium und \leq 0,050 Gew.-% Aluminium; \geq 0,001 Gew.-% Calcium und \leq 0,010 Gew.-% Calcium; \geq 0,001 Gew.-% Magnesium und \leq 0,010 Gew.-% Magnesium; \leq 3,50 Gew.-% Kupfer; \geq 0,75 Gew.-% Wolfram und \leq 2,00 Gew.-% Wolfram; \geq 0,10 Gew.-% und \leq 0,050 Gew.-% Vanadium; und/oder
```

(ii) wahlweise ein beliebiges der folgenden aus einer zweiten Gruppe:

(a) > 0,030 Gew.-% Kohlenstoff und \le 0,08 Gew.-% Kohlenstoff in Kombination mit mehr als Ti (min), wobei Ti (min) berechnet wird aus 5 x C (min) und wobei C(min) die kleinste Menge von Kohlenstoff ist, zu 0,70 Gew.-% von Titan, oder (b) > 0,030 Gew.-% Kohlenstoff und \le 0,08 Gew.-% Kohlenstoff in Kombination mit mehr als Nb + Ta (min), wobei Nb + Ta (min) berechnet wird aus 10 x C (min) und wobei C (min) die kleinste Menge von Kohlenstoff ist, zu 1,0 Gew.-% von Niob plus Tantal mit einem Maximum von 0,10 Gew.-% Tantal, wobei

der Rest des Nichtedelmetalls Eisen und unvermeidliche Verunreinigung sind; wobei das Verfahren **dadurch gekennzeichnet ist, dass** es umfasst:

Ausführen eines Lösungsglühens einer Metalllegierungszusammensetzung bei einer Temperatur zwischen 1.100°C und 1.250°C, gefolgt von einem Wasserabschrecken, wobei ein Verhältnis von Chrom-Äquivalent geteilt durch Nickel-Äquivalent bei einer Schmelzphase optimiert wird, um die nichtmagnetische austenitische Mikrostruktur in dem Nichtedelmetall zu erhalten, wobei bei der Schmelzphase

66

55

Konzentrationen von Austenit bildenden Elementen von Ni, C, Mn und N; und Ferrit bildenden Elementen von Cr, Si, Mo und Nb; speziell ausgewählt sind, um zu gewährleisten, dass ein Verhältnis von Chrom-Äquivalent [Cr] zu Nickel-Äquivalent [Ni] festgelegt und geregelt wird auf mehr als 0,40 und weniger als 1.05: und

wobei das Chrom-Äguivalent festgelegt und geregelt wird entsprechend einer ersten Formel:

$$[Cr] = (Gew.-\% Cr) + (1,5 \times Gew.-\% Si) + (1,4 \times Gew.-\% Mo) + (Gew.-\% Nb) - 4.99;$$

und

wobei das Nickel-Äquivalent festgelegt und geregelt wird entsprechend einer zweiten Formel:

[Ni] = (Gew.-% Ni) + (30 x Gew.-% C) + (0,5 x Gew.-% Mn) + ((26 x Gew.-% (N -0.02)) + 2,77;

wobei das vorgegebene Lochfraß-Widerstandsäquivalent (PRE_N) festgelegt und geregelt wird auf > 25; wobei

PRE_N = Gew.-% von Chrom + (3,3 x Gew.-% von Molybdän) + (16 x Gew.-% von Stickstoff) gilt.

25 Revendications

5

10

20

35

40

45

50

55

 Métal de base en acier inoxydable austénitique caractérisé en ce qu'il comporte une microstructure de métal de base austénitique non magnétique comprenant:

de 16,00 % en poids de chrome à 30,00 % en poids de chrome (Cr);

de 8,00 % en poids de nickel à 27,00 % en poids de nickel (Ni);

de 1,00 % en poids de molybdène à pas plus de 7,00 % en poids de molybdène (Mo);

de 0,40 % en poids d'azote à 0,70 % en poids d'azote (N);

de 1,0 % en poids de manganèse à 4,00 % en poids de manganèse (Mn), dans lequel des niveaux de N et de Mn sont spécifiquement sélectionnés pour garantir un rapport de Mn à N de \geq 2,85 et de \leq 7,50;

moins de 0,10 % en poids de carbone (C);

≤ 0,070 % en poids d'oxygène (O);

pas plus de 2,00 % en poids de silicium (Si);

≤ 0,030 % en poids de phosphore (P);

 \leq 0,010 % en poids de soufre (S);

≥ 0,03 % en poids de cérium et ≤ 0,08 % en poids de cérium (Ce);

et optionnellement le métal de base en acier inoxydable austénitique comprend en outre:

(i) un ou plusieurs des suivants d'un premier groupe:

 \geq 0,001 % en poids de bore et \leq 0,010 % en poids de bore;

des métaux des terres rares (REM) autres que le cérium à condition que la quantité totale de REM soit conforme aux niveaux de cérium de \geq 0,03 % en poids et de \leq 0,08 % en poids;

 \geq 0,005 % en poids d'aluminium et \leq 0,050 % en poids d'aluminium;

 \geq 0,001 % en poids de calcium et \leq 0,010 % en poids de calcium;

 \geq 0,001 % en poids de magnésium et \leq 0,010 % en poids de magnésium;

 \leq 3,50 % en poids de cuivre;

 \geq 0,75 % en poids de tungstène et \leq 2,00 % en poids de tungstène;

≥ 0,10 % en poids de vanadium et ≤ 0,50 % en poids de vanadium; et/ou

(ii) optionnellement, l'un ou l'autre des suivants d'un deuxième groupe:

(a) > 0,030 % en poids de carbone et ≤ 0,08 % en poids de carbone en combinaison avec plus que Ti

(min), où Ti (min) est calculé de 5 x C (min) et où C (min) est la quantité minimale de carbone, à 0,70 % en poids de titane, ou

(b) > 0,030 % en poids de carbone et \le 0,08 % en poids de carbone en combinaison avec plus que Nb + Ta (min), où Nb + Ta (min) est calculé de 10 x C (min) et où C (min) est la quantité minimale de carbone, à 1,0 % en poids de niobium plus tantale avec un maximum de 0,10 % en poids de tantale; dans lequel

le reste du métal de base étant du fer et des impuretés inévitables; et

dans lequel les niveaux d'éléments formant de l'austénite de Ni, C, Mn et N; et les éléments formant de la ferrite de Cr, Si, Mo et Nb; sont spécifiquement sélectionnés pour garantir qu'un rapport d'équivalent chrome [Cr] à équivalent nickel [Ni] est déterminé et contrôlé à plus de 0,40 et à moins de 1,05; et

dans lequel l'équivalent chrome est déterminé et contrôlé conformément à une première formule:

[Cr] = (% en poids de Cr) + (1,5 x % en poids de Si) + (1,4 x % en poids de Mo) + (% en poids de Nb) – 4,99;

et

5

10

15

20

25

30

35

40

50

55

dans lequel l'équivalent nickel est déterminé et contrôlé conformément à une deuxième formule:

[Ni] = (% en poids de Ni) + (30 x % en poids de C) + (0.5 x % en poids de Mn) + ((26 x % en poids (N - 0.02)) + 2.77;

et

le métal de base ayant un équivalent de résistance aux piqûres spécifié (PRE_N) de > 25; dans lequel:

PRE_N = % en poids de chrome + (3,3 x % en poids de molybdène) + (16 x % en poids d'azote); et dans lequel le rapport d'équivalent [Cr] divisé par l'équivalent [Ni] est optimisé à un stade de fusion pour obtenir la microstructure austénitique non magnétique dans le métal de base.

- 2. Métal de base en acier inoxydable austénitique selon la revendication 1, comprenant ≤ 0,030 % en poids de carbone.
- **3.** Métal de base en acier inoxydable austénitique selon la revendication 1 ou 2, comprenant de 0,020 % en poids à 0,030 % en poids de carbone.
- **4.** Métal de base en acier inoxydable austénitique selon l'une quelconque des revendications précédentes, dans lequel le manganèse est de 2,0 % en poids à 4,00 % en poids de manganèse.
 - **5.** Métal de base en acier inoxydable austénitique selon la revendication 4, dans lequel le manganèse est de ≤ 3,0 % en poids de manganèse.
- 45 Métal de base en acier inoxydable austénitique selon l'une quelconque des revendications précédentes, comprenant ≤ 0,001 % en poids de soufre.
 - 7. Métal de base en acier inoxydable austénitique selon l'une quelconque des revendications précédentes, dans lequel l'oxygène est de ≤ 0,050 % en poids d'oxygène.
 - **8.** Métal de base en acier inoxydable austénitique selon l'une quelconque des revendications précédentes, comprenant pas plus de 0,75 % en poids de silicium.
 - **9.** Métal de base en acier inoxydable austénitique selon l'une quelconque des revendications précédentes, dans lequel le silicium est de ≥ 0,25 % en poids et de ≤ 0,75 % en poids de silicium.
 - **10.** Métal de base en acier inoxydable austénitique selon l'une quelconque des revendications 1 à 7, dans lequel le silicium est de ≥ 0.75 % en poids et de ≤ 2.00 % en poids de silicium.

- 11. Métal de base en acier inoxydable austénitique selon l'une quelconque des revendications précédentes, comprenant ≤ 1,50 % en poids de cuivre.
- **12.** Métal de base en acier inoxydable austénitique selon l'une quelconque des revendications 1 à 10, comprenant ≥ 1,50 % en poids de cuivre.
 - **13.** Métal de base en acier inoxydable austénitique selon l'une quelconque des revendications 1 à 12, dans lequel l'azote est de \geq 0,40 et de \leq 0,60 % en poids d'azote.
- 10 **14.** Métal de base en acier inoxydable austénitique selon l'une quelconque des revendications précédentes, dans lequel le rapport des équivalents chrome aux équivalents nickel est de plus de 0,45 et de moins de 0,95.
 - **15.** Acier forgé comprenant le métal de base en acier inoxydable austénitique selon l'une quelconque des revendications précédentes.
 - **16.** Acier moulé comprenant le métal de base en acier inoxydable austénitique selon l'une quelconque des revendications 1 à 14.
 - **17.** Procédé de fabrication de métal de base en acier inoxydable austénitique ayant une microstructure de métal de base austénitique non magnétique comprenant:

```
de 16,00 % en poids de chrome à 30,00 % en poids de chrome (Cr);
```

de 8,00 % en poids de nickel à 27,00 % en poids de nickel (Ni);

de 1,00 % en poids de molybdène à pas plus de 7,00 % en poids de molybdène (Mo);

de 0,40 % en poids d'azote à 0,70 % en poids d'azote (N);

de 1,0 % en poids de manganèse à 4,00 % en poids de manganèse (Mn), dans lequel les niveaux de N et de Mn sont spécifiquement sélectionnés pour garantir un rapport de Mn à N de \geq 2,85 et de \leq 7,50;

moins de 0,10 % en poids de carbone (C);

≤ 0,070 % en poids d'oxygène (O);

pas plus de 2,00 % en poids de silicium (Si);

≤ 0,030 % en poids de phosphore (P);

 \leq 0,010 % en poids de soufre (S);

≥ 0,03 % en poids de cérium et ≤ 0,08 % en poids de cérium (Ce);

et optionnellement le métal de base en acier inoxydable austénitique comprend en outre:

(i) un ou plusieurs des suivants d'un premier groupe:

 \geq 0.001 % en poids de bore et \leq 0.010 % en poids de bore;

des métaux des terres rares (REM) autres que le cérium à condition que la quantité totale de REM soit conforme aux niveaux de cérium de ≥ 0.03 % en poids et de ≤ 0.08 % en poids;

 \geq 0,005 % en poids d'aluminium et \leq 0,050 % en poids d'aluminium;

 \geq 0,001 % en poids de calcium et \leq 0,010 % en poids de calcium;

≥ 0,001 % en poids de magnésium et ≤ 0,010 % en poids de magnésium;

≤ 3,50 % en poids de cuivre;

 $\geq 0.75~\%$ en poids de tungstène et $\leq 2,\!00~\%$ en poids de tungstène;

 \geq 0,10 % en poids et \leq 0,50 % en poids de vanadium et/ou

(ii) optionnellement, l'un ou l'autre des suivants d'un deuxième groupe:

(a) > 0,030 % en poids de carbone et \leq 0,08 % en poids de carbone en combinaison avec plus que Ti (min), où Ti (min) est calculé de 5 x C (min) et où C (min) est la quantité minimale de carbone, à 0,70 % en poids de titane, ou

(b) > 0,030 % en poids de carbone et \le 0,08 % en poids de carbone en combinaison avec plus que Nb + Ta (min), où Nb + Ta (min) est calculé de 10 x C (min) et où C (min) est la quantité minimale de carbone, à 1,0 % en poids de niobium plus tantale avec un maximum de 0,10 % en poids de tantale; dans lequel

le reste du métal de base étant du fer et des impuretés inévitables;

69

50

5

15

20

25

30

35

40

45

50

55

le procédé étant caractérisé en comprenant:

effectuer un traitement thermique de mise en solution d'une composition d'alliage de métal à une température d'entre 1100 °C et 1250 °C, suivi par une trempe dans l'eau, dans lequel le rapport d'équivalent chrome divisé par l'équivalent nickel est optimisé à un stade de fusion pour obtenir la microstructure austénitique non magnétique dans le métal de base;

dans lequel, au stade de fusion,

les niveaux d'éléments formant de l'austénite de Ni, C, Mn et N; et les éléments formant de la ferrite de Cr, Si, Mo et Nb; sont spécifiquement sélectionnés pour garantir qu'un rapport d'équivalent chrome [Cr] à équivalent nickel [Ni] est déterminé et contrôlé à plus de 0,40 et à moins de 1,05; et

dans lequel l'équivalent chrome est déterminé et contrôlé conformément à une première formule:

[Cr] = (% en poids de Cr) + (1,5 x % en poids de Si) + (1,4 x % en poids de Mo) + (% en poids de Nb) – 4,99;

et

dans lequel l'équivalent nickel est déterminé et contrôlé conformément à une deuxième formule:

20

5

10

15

[Ni] = (% en poids de Ni) + (30 x % en poids de C) + (0.5 x % en poids de Mn) + ((26 x % en poids (N - 0.02)) + 2.77;

25

dans lequel l'équivalent de résistance aux piqûres spécifié (PRE_N) est déterminé et contrôlé à > 25; dans lequel:

30

 $PRE_N = \%$ en poids de chrome + (3,3 x % en poids de molybdène) + (16 x % en poids d'azote).

35

40

45

50

55

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2001064969 A **[0005]**
- WO 2001000898 A [0005]
- WO 2003080886 A [0005]
- WO 2004079027 A **[0005]**
- WO 02088411 A [0005]
- JP 2010031313 B **[0006]**

- US 20060243719 A [0006]
- GB 1433857 A [0006]
- GB 1514934 A [0006]
- EP 0626460 A [0006]
- EP 0438992 A [0006]

Non-patent literature cited in the description

- Stainless Steels '84, Proceedings of Göteborg Conference. A. J. SEDRIKS. Book No 320. The Institute of Metals, 1985, 125 [0455]
- P. GUHA; C. A. CLARK. Duplex Stainless Steel Conference Proceedings, ASM Metals/Materials Technology Series, 1982, 355 [0455]
- N. BUI; A. IRHZO; F. DABOSI; Y. LIMOUZ-IN-MAIRE. Corrosion NACE, 1983, vol. 39, 491 [0455]
- A. L. SCHAEFFLER. Metal Progress, 1949, vol. 56, 680 [0455]
- C.L.LONG; W.T.DELONG. Welding Journal, 1973, vol. 52, 281s [0455]
- E. A. SCHOEFER. Welding Journal, 1974, vol. 53, 10s [0455]