FIELD OF THE INVENTION
[0001] The present invention relates to a wrapping machine forming a plastic film sleeve,
that is, a so-called hooding machine. These are machines provided for the wrapping
of loads, generally piled on pallets, with a plastic sleeve consisting of a stretching
or heat-shrinking tubular film folded on a plane and wound on a feeding reel.
BACKGROUND OF THE INVENTION
[0002] The general principle of wrapping apparatuses for palletpiled loads of this type
is the following: a load arranged on pallets is brought in correspondence of a wrapping
position in the middle of a main support structure of a wrapping machine. A tubular
sheet in a flat condition is taken off a respective reel, cut to measure, sealed and
welded at one end, conventionally called rear end, leaving the other end open, conventionally
called "mouth", to form a bag-like body, called "sleeve". This sleeve is then gripped
by the mouth end, opened and then to fit onto the load to cover it.
[0004] In these prior-art documents, an edge of the tubular film, fed from the reel, is
gripped from a position generically at the bottom of said main support structure and
brought - through gripping and dragging means - up to a position above the top of
the load, where a transfer station is found; from here, the tubular film is taken
by spreading-apart means which open the mouth thereof and force-fit it on the load.
The cutting to measure (depending on the load height) and the welding of the rear
end of the sleeve may occur alternatively at the bottom of the machine, hence during
a step preceding force-fitting, or above the top of the machine, hence during a final
step of force-fitting.
[0005] As already mentioned, for the wrapping a plastic wrapping film is used, which may
be of a stretching or heat-shrinking type.
[0006] When a heat-shrinking film is used, the force-fitting step does not carry particular
problems because the tubular portion of the film is rather wide and is effortlessly
applied on the load; the final step of the wrapping then consists in the tight closing
of the sleeve on the load, which is performed by subjecting the wrapping film to heat
shrinking due to heat supply.
[0007] When a stretching film is used instead, the step of force-fitting the sleeve is preceded
by a crosswise stretching step and of temporary spreading apart of the sleeve which
then, in the final wrapping step, returns into its initial condition due to the elastic
effect and hence automatically tightens around the load. Machines which operate in
this way, with different techniques, are known for example from
EP1,832,515 and
EP1,510,460 in the name of the same Applicant.
[0008] In any case, as can be easily understood from the abovereported examples, these apparatuses
are of a significant height: as a matter of fact, the sizing is conceived on the basis
of the tallest loads that the machine must be able to wrap, furthermore considering
that above the load height the dragging means of the tubular film, the members for
the spreading apart and force-fitting and, in some cases, the welding and cutting
assembly are furthermore provided.
[0009] That entails firstly maintenance problems. As a matter of fact, operators, in order
to be able to access all the functional members of the machine, are forced to climb
up to be able to operate at the top of the machine. Moreover, in the machines in which
the cutting and welding assembly is found at the top head of the machine (i.e. immediately
above the spreading- apart and force-fitting members), the operator must climb up
even at each reel change, because he must engage the initial edge of the film into
gripping devices arranged immediately downstream of the welding assembly.
[0010] Moreover, throughput of the apparatus is not optimised if there are significant height
changes of the loads to be wrapped. As a matter of fact, the path along which the
sleeve is formed and force-fitted is always the same (sized for a maximum-height load)
even when it is necessary to wrap a low load which would theoretically require a much
shorter sleeve processing treatment path. In substance, based on load height variability,
machine idle times arise, both during the sleeve ascent step and in the sleeve descent
step, which reduce overall throughput.
[0011] These problems so far have been addressed by adopting an apparatus configuration
in which all the fundamental members are found in the low part of the machine (typically
the welding and cutting assembly) or can be lowered to operator height. For the former
solution, see for example
EP 1,086,893. For the second solution see instead
EP 2,069,206 in the name of Lachenmeier A/S or
EP 2,336,034 in the name of MSK - VERPACKUNGS-SYSTEME GmbH.
[0012] In particular,
EP 2,069,206 shows an apparatus in which, in order to partly solve these problems, it has been
provided to mount also the transfer assembly and the cutting and welding unit on a
vertically-moving frame which can be coupled with the moving frame of the force-fitting
means.
[0013] However, this solution is not fully satisfactory, both due to its reliability, and
because it is still cumbersome during reel change. As a matter of fact, during the
course of this last operation, the operator is still forced to insert the tubular
film along the sleeve-forming path, until engaging it beyond the cutting and welding
unit.
SUMMARY OF THE INVENTION
[0014] The problem at the basis of the invention is hence to provide a structure of hooding
machine of the above-cited type, which overcomes the mentioned drawbacks and which,
on the one hand, is more accessible during maintenance and reel change operations,
without putting the operator at risk and, on the other hand, allows to remove undesired
idle times during processing.
[0015] These objects are achieved through the features mentioned in claims 1 and 7. The
dependent claims describe preferred features of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016] Further features and advantages of the invention are in any case more evident from
the following detailed description of a preferred embodiment, given purely as a non-limiting
example and illustrated in the attached drawings, wherein:
fig. 1 is a schematic front elevation view of a hooding machine according to an embodiment
of the invention;
figs. 2A, 2B and 2C are schematic front elevation views, taken in the same direction
as fig. 1, relating to the sole belt dragging system, in three different operation
attitudes;
fig. 3 is a schematic front elevation view, relating to the sole spreading-apart and
sleeve application unit, taken in the same direction as fig. 1 and in a waiting home
waiting for the plastic tubular film;
fig. 3A is a top plan view of fig. 3;
fig. 4 is a schematic front elevation view, fully similar to that of fig. 3, but with
the spreading-apart unit in a working position where it is opening/spreading-apart
the plastic tubular film;
fig. 4A is a top plan view of fig. 4;
fig. 5 is an enlarged, schematic view, of the detail referred to by A in fig. 2A;
and
fig. 6 is an enlarged, schematic view of the detail referred to by B in fig. 2A.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0017] As shown in the drawings, an hooding machine comprises, in a way known per se, a
main post 1 of a main support structure (not better shown overall, being of a type
largely-known per se).
[0018] Beside post 1 there is arranged a carriage 2 carrying feeding reels 3 of a film F
of plastic material, of a tubular shape but folded on a plane. For the purposes of
the present invention the use of a heat-shrinking or extending plastic sheet is unimportant,
even if the opening/spreading-apart unit for the film of plastic material - such as
shown in particular in drawings 3, 4 - is an exemplifying system for extendable film.
[0019] The usefulness of reel-carrying carriage 2 is not related to the teaching of the
present invention and will hence not be described in further detail.
[0020] As an example, on post 1 there are arranged control means of the rotation of reel
3, consisting of an arm 4, mounted with one end thereof pivoting around a pin 4a and
carrying at the other free end thereof a motorisation 5 for a roller 6, which roller
rests on the periphery of reel 3 and controls it in rotation by friction.
[0021] The tubular sheet or film F, supplied from the reel 3, first runs through a tensioning
device 7 and subsequently on a diverting device 8 towards a cutting and welding unit
9. In the illustrated embodiment, the cutting and welding unit of the sleeves is hence
preferably arranged in the lower part of the machine.
[0022] Cutting and welding unit 9, in a manner known per se, comprises two mutually opposite
welding bars 9a, 9b, which may be moved mutually closer together and further apart,
as well as - upstream (in the progress direction of film F) or below said bars - a
cutting blade 9c cooperating and which may be moved closer together with an opposite
cutting abutment 9d. The two mutually opposite assemblies are normally kept mutually
spaced apart (attitude shown in fig. 6), so as to define a running path for sheet
F. When it is necessary to close one end of the tubular sheet to form a sleeve, the
two assemblies are temporarily brought closer together to weld and cut, and then moved
further apart again.
[0023] In this preferred embodiment, in order to be able to give feeding continuity to plastic
sheet F, diverting device 8 furthermore comprises a holding and presentation unit
8a (shown in greater detail in fig. 6) the function of which is to hold the free edge
of sheet F (separated from the sleeve by above-lying cutting unit 9) until the moment
of releasing it to a gripper and advancement means - better described here in the
following - which grips it to drag it towards and beyond said cutting and welding
unit 9.
[0024] With this part of the hooding machine a gripping and advancement device according
to the invention is associated, overall referred to as 10 for the vertically-running
part and as 10a for the horizontally-running part, which leads to a distribution station,
overall referred to as 11 and arranged on the vertical of the stationing site of the
load C to be wrapped.
[0025] Advancement device 10 essentially consists - according to the fundamental feature
of the present invention, and as better shown in drawings 2A-2C - of two mutually
opposite ribbon or belt assemblies 12, 13, which run along two specular, end-less
paths, arranged so as to both have at least one mutually adjacent vertical side and
another side shaped with a variable path. The two adjacent sides define a vertical
plane along which the sheet of plastic material F is meant to move, held therebetween
and driven into motion by friction by the two mutually opposite belts. The loop of
the end-less path may be modified in its shape, so as to shorten or lengthen the overall
bulk (in height) of the belt unit (the extent of the circular-path belts nevertheless
being the same) and hence of the two mutually adjacent vertical sides of the path.
[0026] In detail, please notice that the belt 12 of the first assembly (the left one in
the drawings) follows a first vertical segment 12a, from a lower transfer roller 12b
to an upper transfer roller 12c; after a lateral deviation (roller 12e) it then follows
a second vertical segment 12f and a third vertical segment 12j between which a varying-size
loop 12g is defined. Loop 12g is defined by the relative position of two rollers 12h
which are mounted mutually moving in a way which will be explained further on.
[0027] Since the first vertical segment 12a is meant to drag plastic sheet F upwards, it
is provided that the first belt assembly 12 rotates on the circular path in an anti-clockwise
direction (in the plane of the drawing of figs. 2A-2C), so that segment 12a moves
upwards according to arrow S.
[0028] Belt 13 in turn follows a minor path with respect to the advancement plane of sheet
F, that it, to the lying plane of the two mutually opposite belts which define the
continuous, vertical side of the path. Belt 13 hence also has a first vertical, uprising
(S) segment 13a and two vertical descending (arrow D) segments 13f, 13j. These last
two are joined by a loop-shaped segment 13g. In its belt, ribbon unit 13 runs in sequence
on transfer rollers 13b, 13c, 13e, 13h and again 13b. The righthand assembly, by consistency
with the movement of the left-hand assembly, moves along the closed loop in a clockwise
direction (in the drawing plane).
[0029] According to an essential feature of the invention, the first vertical path segments
12a e 13a are mutually adjacent, so as to define between them a sliding plane; in
addition thereto, there are also provided guiding means (not shown since they are
within the reach of a person skilled in the field) apt to impart a pressure on the
belts, which tends to keep them tightly adhering one to the other.
[0030] Due to this arrangement, as can be easily understood, when retaining means 8a presents
the initial end of sheet F in the proximity of the lower rollers 12b, 13b, these cylinders
perform a gripping function and guide sheet F between belts 12 and 13, which hence
drag upwards sheet F, in the direction S, retaining it between the path segments 12a
and 13a of the two belt assemblies.
[0031] In order to allow an efficient gripping of the initial edge of sheet F, preferably
also lower cylinders 12b and 13b are vertically movable, so as to temporarily drop
below the level in which the welding and cutting station 9 is located (fig. 2A and
6). In particular, the edge of sheet F is retained in its central area by guiding
reeds 8a', while the lateral edges of sheet F are exposed and can be captured by belts
12a and 13a which drop below the level of station 9 and beside reeds 8a'. In the rest
of the work step, particularly in the final cutting and welding step, rollers 12b
and 13b rise back to above station 9 so as not to interfere with welding and cutting
units 9a-9d (fig. 2A).
[0032] For such purpose, according to a preferred embodiment of the invention, lower transfer
rollers 12b and 13b are mounted in the lower part of a carriage 1a mounted vertically
translatable on frame 1. On the same carriage 1a there are mounted two homologous
rollers (one for each assembly 12 and 13) of the roller pair 12h and 13h which define
the variable-size loops. Thereby, when carriage 1a drops, to bring lower transfer
rollers 12b and 13b below cutting and welding unit 9, also loops 12g and 13g vary
in size, allowing the downward extension of the path defined by the two belt assemblies,
the extension of the belts necessarily remaining the same.
[0033] The vertical movement of carriage 1a is driven, for example, by an actuation motor
100 with a crankshaft drive 101 mounted in the top part of frame 1.
[0034] When sheet F arrives at the top of upward path S, the initial edge thereof (coinciding
with the sleeve mouth) comes out between the two transfer rollers 12c, 13c and is
here taken by a second portion of the advancement device, and precisely the advancement
device 10a running in a horizontal direction.
[0035] Said latter advancement device is construed - in a way fully similar to the first
vertical segment, i.e. having two specularly opposite belt assemblies having at least
one horizontal side mutually adjacent. In this case, the two adjacent assemblies are
arranged and driven into motion so that the two horizontal and mutually adjacent belt
segments drag sheet F, captured between them, towards the distal end of the advancement
device, that is, in direction T (figs. 2A-2C).
[0036] In particular, two belts 14, 15 run on two end-less paths so as to have two adjacent
horizontal sides 14a, 15a, with the belts in close mutual contact, which can thus
actuate - in a way similar to belts 12, 13 - the transportation of sheet F towards
a distribution station 11.
[0037] In order to give more continuity to the advancement path of sheet F, preferably the
two end-less belts 14 and 15 wind on initial end rollers which are mutually coaxial,
although unconstrained, with respect to terminal transfer rollers 12c and 13c of assemblies
12 and 13 (see fig. 5).
[0038] Considering the upper assembly, which provides continuity to the left-hand assembly
12, a first continuous, linear segment 14a is identified, which then bends downwards
through the joint action of a final roller 14' and the adjacent terminal roller 15c
of the underlying belt assembly 15. This deviation at the distal end of the second
advancement device 10a, allows sheet F to be directed downwards (T' in fig. 2A) to
then be taken by distribution assembly 11.
[0039] From final roller 14', the belt bends upwards on deviation cylinder 14c and comes
back along a path slightly offset from the first segment 14a, ending on terminal roller
14b which deviates the belt to roller 12c.
[0040] Symmetrically, a continuous segment 15a of the lower belt - which ensures the continuity
of the path coming from the righthand assembly 13 of first advancement device 10 -
unwinds off roller 13c to an end cylinder 15c, from which return outer segment 15d
departs.
[0041] In order to be able to wind the two assemblies of homologous belts 12, 14 and 13,
15 onto common axes which ensure the dragging continuity of film F, the belts are
offset along the coaxial rollers seen on plan view.
[0042] On the other hand, in the drawings only one belt for each end-less handling assembly
is shown, but it is understood that each assembly could comprise multiple belts arranged
offset on the plane perpendicular to the plane of figs. 1, 2A-2C. Preferably, it is
provided that each assembly comprises at least two belts which follow identical paths,
arranged in the proximity of the two opposite lateral edges of tubular sheet F.
[0043] The two advancement devices 10 and 10a are preferably driven independently by separate
motors 17' and 17", respectively. In the transition step of film F from one device
to the subsequent one, dragging speeds are kept as equal as possible (ideally in sync),
if anything with a slightly higher speed for second advancement device 10a. Vice versa,
the two movements can be made independent to achieve further advantageous results
which will be described further on in connection with the operation of the invention.
[0044] Moreover, preferably, belts 12-15 are in the shape of toothed belts, with inner toothing:
that allows to achieve a perfect movement sync of the two belts of each pair of belts.
[0045] An amount of deviation of the path of the belts is defined in correspondence of cylinders
14f and 15f - which have the function of respective driving pulleys of drive motor
17" - for the purpose of obtaining a greater winding of the belts and hence a greater
dragging/driving friction.
[0046] The configuration just described of the second horizontaladvancement device is certainly
preferable for reasons of construction evenness and to achieve further advantages
which will be highlighted further on. Moreover, it makes it possible - in an embodiment
not shown - to manufacture belts 12 and 14 in a single, continuous piece and belts
13 and 15, respectively, in turn in a single, continuous piece, with the advantage
of an absolute transport continuity of sheet F along the vertical and horizontal paths.
[0047] However, for the purposes of the main teaching offered here, the illustrated configuration
of the second advancement device 10a is not strictly necessary and could be replaced
by another horizontal means of transport, known per se and not shown here.
[0048] Vice versa, the arrangement, described above, of the two tightly adjacent conveyor
belts 12, 13 is essential for the purpose of achieving the objects of the present
invention, as is evident from the following description on the operation of the machine
according to the invention.
[0049] Returning to fig. 1, a rising motor 18 can be noticed, which drives the lifting/lowering
movement of an upper frame 16, suitably guided on column 1, which supports the entire
distribution assembly 11 and the second advancement device 10a. With lifting frame
16 there are integral in movement at least also the top roller assembly 12c, 13c and
14b through which the sheet F is transferred from first device 10 to second device
10a.
[0050] The vertical movement of the frame, as mentioned, is constrained by a guide, overall
referred to as 20, which may for example consist of a rail 20a, along which a carriage
20b - integral with frame 16 - is slidable, supported by a chain 20c, driven by a
motorised wheel 20d.
[0051] According to a feature of the invention, the vertical movement of frame 16 is coordinated
with the change of configuration of loops 12g and 13g. In particular, as frame 16
lowers, loops 12g and 13g become deeper and artificially extend the path of belts
12 and 13 so as to recover the slack which would otherwise originate from the approaching
displacement of the upper transfer rollers 12c and 13c toward the lower transfer rollers
12b and 13b. Vice versa, when the frame 16 rises back up, loops 12g and 13g reduce
their overall size, to allow the loop path of the belts to extend upwards. In substance,
a height extension of the end-less path of belt assemblies 12 and 13 results in a
contraction of the size of loops 12g and 13g, so as to maintain the correct tensioning
of the belts (because the linear extension of the end-less belt cannot change). Vice
versa, a shortening of the path height produces an extension of loops 12g and 13g.
[0052] Thereby at least two extreme configurations originate, when assemblies 12 and 13
have maximum extension and the loops minimum extension (fig. 2B), and when assemblies
12 and 13 have minimum extension (corresponding to the minimum height of the machine)
and the loops have maximum extension (fig. 2C).
[0053] As already mentioned, the geometric change of the loops can also occur when only
lower rollers 12b and 13b drop below cutting and welding unit 9, to take the edge
of plastic sheet F, and one does not wish to lower frame 16 (fig. 2A to be compared
with fig. 2B).
[0054] The geometric change of the loops can be achieved in a plurality of different ways.
Preferably, as shown, each of the two loops 12g and 13g is formed by a pair of tensioning
rollers, 12h and 13h, respectively, mutually horizontally offset and movable one with
respect to the other in a vertical direction. In the embodiment shown, the inner rollers
of pairs 12h and 13h are integral with carriage 1a, while the outer rollers of pairs
12h and 13h are integral with the vertical movement of frame 16.
[0055] As visible also in fig.1, the distribution unit 11 comprises gripping arms 11a, 11b,
which are capable of gripping the initial edge of sleeve-shaped film F, coming from
rollers 15c, 14c', to bring it in correspondence of the spreading-apart and application
unit, overall referred to as 25. This last unit comprises for example, a spreading-apart
device consisting of the four assemblies 25a, 25b, 25c, 25d at the corners of a rectangular
load foot-print (as shown in figs. 3-4A); these assemblies are schematised both in
a pick-up position of sleeve F (figs. 3 and 3A), and when they are in a spreading-apart
position of the extensible plastic material of sleeve F (figs. 4, 4A). No further
details of the structure and operation of this spreading-apart and application unit
are provided, but reference can simply be made - as an example - to the apparatus
described in
EP 1,510,460.
Operation
[0056] As can be clearly seen from the comparison of drawings 2A, 2B and 2C, through the
first advancement device consisting of the two conveyor-belt assemblies provided with
variable-geometry loops, it is possible to obtain the height adjustment of frame 16
and of distribution unit 11. This last unit may take up at least the following positions:
- a maximum-height position, as illustrated in fig. 2A, in which tensioning rollers
12h and 13h of loops 12g and 13g are rather close, forming loops having a short extension;
- a maximum-height position, as illustrated in fig. 2B, in which frame 16 is at the
maximum height and the lower rollers are lowered to start the drawing step of plastic
sheet F; tensioning rollers 12h, 13h are very close and the loops have a negligible
extension;
- finally, a minimum-height position, as illustrated in fig. 2C, in which the tensioning
rollers are at the maximum relative distance; for example, the outer rollers - movable
together with frame 16 - are found at the lower level thereof, virtually next to cutting
and welding unit 9, so that very large loops 12g, 13g originate.
[0057] As can be understood, the geometric variation of loops 12g, 13g and the height position
of frame 16 (hence of distribution assembly 11) is determined each time depending
on the height of the load to be wrapped, so that distribution unit 11 is as close
as possible to the top of the load.
[0058] Thereby a first one of the objects of the present invention is accomplished, that
is, to reduce as far as possible the sleeve-lowering path on the load and hence to
remove the idle time required to bring the sleeve mouth in proximity of the load.
[0059] The lowering of distribution unit 11 to the minimum height (fig. 2C) is also achieved
to ease an operator's access for maintenance purposes.
[0060] Due to the separation of the transport path of plastic sheet F into two advancement
devices, a further advantageous result can be achieved. As a matter of fact, especially
for the tallest formats, which hence require to operate with the machine set on maximum
height (fig. 2B), it is possible to deliver a sleeve to distribution unit 11 (activity
delegated to the movement of the second advancement device) while, at the same time,
another sleeve is formed in the first segment of advancement device 10.
[0061] That requires to detect the format of load C when it arrives near the machine, so
as to operate in advance and form the correctly-sized sleeve while another sleeve
is applied to the preceding load. This mode - as can be guessed - further increases
the productivity of the machine.
[0062] However, it is understood that the invention is not limited to the special embodiments
illustrated above, which make up only non-limiting examples of the scope of the invention,
but that a number of variants are possible, all within the reach of a person skilled
in the field, without departing from the scope of the invention.
[0063] For example, although a displacement path of sheet F, divided into two segments,
one perfectly vertical and the other perfectly horizontal, has been described, it
is not ruled out that the two paths may be differently inclined.
[0064] Accordingly, by "adjacent continuous linear portions" of the two assemblies of mutually
opposite belts it is not understood that they are strictly rectilinear, but simply
that they remain adjacent on that portion to guarantee the continuity of the accompanying
path of sheet F. In such respect, what is essential for the purposes of the teaching
provided here is that the belt assemblies always have an inner path portion - which
defines, together with the opposite assembly, the continuous gap between which tubular
sheet F is pinched and dragged - and an outer path portion along which the end-less
belt path closes.
1. Hooding machine for the wrapping of loads, comprising a support frame (1) on which
a system for the forming of a sleeve made of plastic material is arranged, starting
from a tubular sheet (F) folded on a plane and wound on at least one feeding reel
(3), wherein said forming system comprises
in the proximity of the machine base, presenting means (8a) of an initial edge of
said tubular sheet,
gripping and advancement means which guide said tubular sheet (F) along a forming
path until above a stationing position of a load to be wrapped,
a cutting and welding unit (9), arranged along said forming path, and
a distribution unit (11) and a force-fitting unit (25), both being arranged in the
upper part of the machine and suitable to cooperate to take up said sleeve from said
gripping and advancement means and force-fitting it onto said load,characterised in that said distribution unit (11) is mounted vertically movable with respect to the support
frame (1) of the machine, and
said gripping and advancement means consist of at least a first advancement device
(10, 10a) comprising two symmetrically opposite conveyor-belt assemblies (12, 13;
14, 15), which run on two end-less paths having at least adjacent continuous portions
(12a,13a; 14a, 15a) , along which said belts adhere by pressure one to the other dragging
between them said plastic sheet (F), and in that
at least one of said assemblies (12, 13) of mutually opposite belts also has at least
a variable-geometry loop (12g, 13g) the size of which is reduced or extended based
on at least the vertical displace- ment of said distribution unit (11).
2. Hooding machine as claimed in claim 1, characterised in that said distribution unit (11) is supported on a frame (16) guided in a vertical movement
on said support frame (1) of the machine.
3. Hooding machine as claimed in claim or 2, characterised in that said first belt-employing advancement device (10) defines a first, substantially-vertical,
continuous, linear part (12a, 13a) and a second belt-employing advancement device
(10a) is further provided which defines a second, substantially horizontal, continuous
linear part (14a, 15a).
4. Machine as claimed in claim 3, wherein the homologous belt assemblies of the first
advancement device (10) and of the second advancement device (10a) have at least an
axis of transfer rollers (12c, 13c) in common.
5. Machine as claimed in claim 3 or 4, wherein said second advancement device (10a) is
integral in the vertical movement with said distribution unit (11) and has two mutually
opposite, fixed-geometry belt assemblies (14, 15).
6. Machine as claimed in any one of the preceding claims, wherein
said cutting and welding unit (9) is arranged between said presentation means (8a)
and a lower end of said first advancement device (10),
a lower portion of the path of said belts (12, 13) of the first advancement device
is provisionally downwardly extendable, below said cutting and welding unit (9), in
a gripping step of the edge of plastic sheet (F), and wherein
the size of said at least one variable-geometry loop (12g, 13g) is changed also according
to the displacement of said lower portion of the path of the belts (12, 13).
7. Machine as claimed in claim 6, wherein at least one lower transfer roller (12b, 13b)
and one transfer roller (12h, 13h) of said variable-geometry loop (12g, 13g), for
each mutually opposite belt (12, 13) assembly of said first advancement device (10),
are mounted integral in movement with a verticallytranslatable carriage (1a).
8. Method for the forming of a wrapping sleeve in an hooding machine, comprising the
steps of
taking a plastic tubular sheet (F), folded on a plane, off a storage reel (3),
causing said tubular plastic sheet (F) to advance in a forming path along which at
least one welding and cutting unit (9) is provided,
transferring a sleeve formed along said forming path to a distribution unit (11) and
a force-fitting unit (25) both mounted at the top of the hooding machine,
applying said sleeve on a load to be wrapped (C) through said force-fitting unit (25),
characterised in that
said tubular plastic sheet (F) is caused to advance along said forming path captured
between adjacent belts (12a, 13a, 14a, 15a) belonging to at least two assemblies of
mutually oppo- site belts (10, 10a) and mounted running on two end-less paths, and
in that
said distribution unit (11) is controlled in vertical translation so as to adapt the
height position thereof to the size of the load to be wrapped, changing the geometry
of at least one variable-geometry loop (12g, 13g) of said assemblies of mutually opposite
belts (10, 10a) accordingly.
9. Method for the forming of a wrapping sleeve in an hood- ing machine as claimed in
claim 8, wherein said forming path is divided into two sections defined by four assemblies
of mutually opposite belts, symmetrically coupled two by two so as to define two distinct,
continuous, linear dragging parts in sequence one after the other, the driving of
the two continuous, linear dragging parts being controlled in an independent manner.
10. Method for the forming of a wrapping sleeve in an hood- ing machine as claimed in
claim 9, wherein while a first sleeve is formed along the first one of said two continuous,
linear dragging parts, a second sleeve is transferred to said distribu- tion (11)
and force-fitting units (25) along the second one of said two continuous, linear dragging
parts.
1. Überzugmaschine zum Verpacken von Ladungen, umfassend einen Tragrahmen (1), auf dem
ein System zur Herstellung einer Hülle, die aus Kunststoffmaterial hergestellt ist,
angeordnet ist, die von einer schlauchförmigen Bahn (F) ausgeht, die in einer Ebene
gefaltet und über wenigstens eine Zuführrolle (3) gewunden wird, wobei das Herstellungssystem
umfasst:
in der Nähe der Maschinenbasis, Bereitstellungsmittel (8a) einer ersten Kante der
schlauchförmigen Bahn,
Greif- und Weiterführmittel, die die schlauchförmige Bahn (F) bis oberhalb einer stationären
Position einer Ladung, die verpackt werden soll, entlang eines Herstellungspfades
führen,
eine Schneide- und Schweißeinheit (9), die entlang des Herstellungspfades angeordnet
ist, und
eine Distributionseinheit (11) und eine Kraftschlusseinheit (25), die beide in dem
oberen Teil der Maschine angeordnet und geeignet sind, zusammenzuwirken, um die Hülle
von dem Greif- und Weiterführmittel zu übernehmen und sie kraftschlüssig auf die Ladung
zu bringen, dadurch gekennzeichnet, dass
die Verteileinheit (11) bezüglich des Tragrahmens (1) der Maschine vertikal beweglich
befestigt ist und
die Greif- und Weiterführmittel aus wenigstens einer ersten Weiterführeinrichtung
(10, 10a) bestehen, die zwei symmetrisch gegenüberliegende Förderbandanordnungen (12,
13; 14, 15) umfasst, die auf zwei Endlospfaden laufen, die wenigstens nebeneinander
liegende kontinuierliche Abschnitte (12a, 13a; 14a, 15a) aufweisen, entlang derer
die Bänder durch Druck aneinander haften, wobei sie zwischen sich die Kunststoffbahn
(F) ziehen, und dass
wenigstens eine der Anordnungen (12, 13) einander gegenüberliegender Bänder außerdem
wenigstens eine Schleife mit variabler Geometrie (12g, 13g) aufweist, deren Größe
reduziert oder erweitert wird anhand wenigstens der vertikalen Verschiebung der Verteileinheit
(11).
2. Überzugmaschine nach Anspruch 1, dadurch gekennzeichnet, dass die Verteileinheit (11) auf einem Rahmen (16) gestützt wird, der in einer vertikalen
Bewegung auf dem Tragrahmen (1) der Maschine geführt wird.
3. Überzugmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die erste bandgestützte Weiterführeinrichtung (10) einen ersten im Wesentlichen vertikalen
kontinuierlichen linearen Teil (12a, 13a) definiert und ferner eine zweite bandgestützte
Weiterführeinrichtung (10a) bereitgestellt wird, die einen zweiten im Wesentlichen
horizontalen kontinuierlichen linearen Teil (14a, 15a) definiert.
4. Maschine nach Anspruch 3, dadurch gekennzeichnet, dass die entsprechenden Bandanordnungen der ersten Weiterführvorrichtung (10) und der
zweiten Weiterführeinrichtung (10a) wenigstens eine Achse aus Übertragungsrollen (12c,
13c) gemeinsam haben.
5. Maschine nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die zweite Weiterführeinrichtung (10a) in der vertikalen Bewegung mit der Distributionseinheit
(11) integral ist und zwei einander gegenüberliegende Bandanordnungen (14, 15) mit
fester Geometrie aufweist.
6. Maschine nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass
die Schneide- und Schweißeinheit (9) zwischen den Bereitstellungsmitteln (8a) und
einem unteren Ende der ersten Weiterführeinrichtung (10) angeordnet ist,
ein unterer Teil des Pfades der Bänder (12, 13) der ersten Weiterführeinrichtung provisorisch
nach unten unterhalb der Schneide- und Schweißeinheit (9) in einem Greifschritt der
Kante der Plastikbahn (F) erweiterbar ist, und dass
die Größe der wenigstens einen Schleife (12g, 13g) mit variabler Geometrie außerdem
gemäß der Verschiebung des unteren Teils des Pfades der Bänder (12, 13) geändert wird.
7. Maschinen nach Anspruch 6, dadurch gekennzeichnet, dass wenigstens eine untere Übertragungsrolle (12b, 13b) und eine Übertragungsrolle (12h,
13h) der Schleife (12g, 13g) mit der variablen Geometrie bei jeder einander gegenüberliegenden
Band (12, 13) -Anordnung der ersten Weiterführeinrichtung (10) integral in Bewegung
mit einer vertikal übersetzbaren Transporteinheit (1a) befestigt ist.
8. Verfahren zum Herstellen einer Verpackungshülle in einer Überzugmaschine, umfassend
die Schritte:
Abnehmen einer schlauchförmigen Bahn (F) aus Kunststoff, die in einer Ebene gefaltet
ist, von einer Speicherrolle (3),
Veranlassen, dass sich die schlauchförmige Kunststoffbahn (F) auf einem Herstellungspfad
bewegt, an dem wenigstens eine Schweiß- und Schneideeinheit (9) bereitgestellt ist;
Übertragen einer Hülle, die entlang des Herstellungspfades hergestellt wurde, auf
eine Verteileinheit (11) und eine Kraftschlusseinheit (25), die beide oben an der
Überzugmaschine befestigt sind,
Anbringen der Hülle an eine Ladung, die verpackt werden soll (C), durch die Kraftschlusseinheit
(25), dadurch gekennzeichnet, dass
die schlauchförmige Kunststoffbahn (F) veranlasst wird, sich entlang des Herstellungspfades
zu Bewegen, der zwischen nebeneinanderliegenden Bändern (12a, 13a, 14a, 15a) angeordnet
ist, die zu wenigstens zwei Anordnungen gegenüberliegender Bänder (10, 10a) gehören
und auf zwei Endlospfaden laufend befestigt sind, und dass
die Verteileinheit (11) in vertikaler Translation so gesteuert wird, dass sie ihre
Höhenposition an die Größe der zu verpackenden Ladung anpasst, wobei die Geometrie
wenigstens einer Schleife (12g, 13g) mit variabler Geometrie der Anordnungen einander
gegenüberliegender Bänder (10, 10a) entsprechend geändert wird.
9. Verfahren zum Herstellen einer Verpackungshülle in einer Überzugmaschine nach Anspruch
8, dadurch gekennzeichnet, dass der Herstellungspfad in zwei Sektionen unterteilt ist, die durch vier Anordnungen
einander gegenüberliegender Bänder definiert ist, die symmetrisch zweifach gekoppelt
sind, um zwei getrennte kontinuierliche, linear nacheinander ziehende Teile zu definieren,
wobei der Antrieb der zwei kontinuierlichen, linear ziehenden Teile auf unabhängige
Weise gesteuert wird.
10. Verfahren zum Herstellen einer Verpackungshülle in einer Überzugmaschine nach Anspruch
9, dadurch gekennzeichnet, dass, während eine erste Hülle entlang des ersten der beiden kontinuierlich linear ziehenden
Teile hergestellt wird, eine zweite Hülle an die Verteil- (11) und Kraftschlusseinheiten
(25) entlang des zweiten der beiden kontinuierlich linear ziehenden Teile übertragen
wird.
1. Machine ensacheuse pour l'emballage de charges, comprenant un châssis de support (1)
sur lequel est agencé un système pour le formage d'un manchon réalisé en matière plastique,
à partir d'une feuille tubulaire (F) pliée sur un plan et enroulée sur au moins une
bobine d'alimentation (3), dans laquelle ledit système de formage comprend :
à proximité de la base de la machine, des moyens de présentation (8a) d'un bord initial
de ladite feuille tubulaire,
des moyens de préhension et d'avancement qui guident ladite feuille tubulaire (F)
le long d'une trajectoire de formage jusqu'au-dessus d'une position de stationnement
d'une charge à emballer,
une unité de coupe et de soudage (9) agencée le long de ladite trajectoire de formage,
et
une unité de distribution (11) et une unité d'assemblage à force (25), les deux étant
agencées dans la partie supérieure de la machine et appropriées pour coopérer pour
prendre ledit manchon desdits moyens de préhension et d'avancement et l'assembler
à force sur ladite charge, caractérisée en ce que :
ladite unité de distribution (11) est montée verticalement, mobile par rapport au
châssis de support (1) de la machine, et
lesdits moyens de préhension et d'avancement se composent d'au moins un premier dispositif
d'avancement (10, 10a) comprenant deux ensembles de courroies transporteuses (12,
13 ; 14, 15) symétriquement opposées, qui s'étendent sur deux trajectoires sans fin
ayant au moins des parties continues adjacentes (12a, 13a ; 14a, 15a), le long desquelles
lesdites courroies adhèrent par pression l'une sur l'autre, en traînant entre elles
ladite feuille en plastique (F), et en ce qu'au moins l'un desdits ensembles (12, 13) de courroies mutuellement opposées a également
au moins une boucle à géométrie variable (12g, 13g) dont la taille est réduite ou
étendue au moins en fonction du déplacement vertical de ladite unité de distribution
(11).
2. Machine ensacheuse selon la revendication 1, caractérisée en ce que ladite unité de distribution (11) est supportée sur un châssis (16) guidé dans un
mouvement vertical sur ledit châssis de support (1) de la machine.
3. Machine ensacheuse selon la revendication ou 2, caractérisée en ce que ledit premier dispositif d'avancement (10) utilisant la courroie définit une première
partie linéaire (12a, 13a) continue sensiblement verticale et on prévoit en outre
un second dispositif d'avancement (10a) utilisant la courroie qui définit une seconde
partie linéaire (14a, 15a) continue sensiblement horizontale.
4. Machine selon la revendication 3, dans laquelle les ensembles de courroies homologues
du premier dispositif d'avancement (10) et du second dispositif d'avancement (10a)
ont au moins un axe de rouleaux de transfert (12c, 13c) en commun.
5. Machine selon la revendication 3 ou 4, dans laquelle ledit second dispositif d'avancement
(10a) est solidaire dans le mouvement vertical avec ladite unité de distribution (11)
et a deux ensembles de courroies (14, 15) à géométrie fixe, mutuellement opposées.
6. Machine selon l'une quelconque des revendications précédentes, dans laquelle :
ladite unité de coupe et de soudage (9) est agencée entre lesdits moyens de présentation
(8a) et une extrémité inférieure dudit premier dispositif d'avancement (10),
une partie inférieure de la trajectoire desdites courroies (12, 13) du premier dispositif
d'avancement est provisoirement extensible vers le bas, au-dessous de ladite unité
de coupe et de soudage (9), dans une étape de préhension du bord de la feuille en
plastique (F), et dans laquelle :
la taille de ladite au moins une boucle à géométrie variable (12g, 13g) est modifiée
également selon le déplacement de ladite partie inférieure de la trajectoire des courroies
(12, 13).
7. Machine selon la revendication 6, dans laquelle au moins un rouleau de transfert inférieur
(12b, 13b) et un rouleau de transfert (12h, 13h) de ladite boucle à géométrie variable
(12g, 13g), pour chaque ensemble de courroies mutuellement opposées (12, 13) dudit
premier dispositif d'avancement (10), sont montés de manière solidaire en mouvement
avec un chariot (1a) pouvant effectuer une translation verticale.
8. Procédé pour former un manchon d'emballage dans une machine ensacheuse, comprenant
les étapes consistant à :
prendre une feuille tubulaire en plastique (F), pliée sur un plan, enroulée sur une
bobine de stockage (3),
amener ladite feuille tubulaire en plastique (F) à avancer dans une trajectoire de
formage le long de laquelle est prévue au moins une unité de soudage et de coupe (9),
transférer un manchon formé le long de ladite trajectoire de formage vers une unité
de distribution (11) et une unité d'assemblage à force (25), toutes deux montées sur
le sommet de la machine ensacheuse,
appliquer ledit manchon sur une charge à emballer (C) par le biais de ladite unité
d'assemblage à force (25), caractérisé en ce que :
ladite feuille tubulaire en plastique (F) est amenée à avancer le long de ladite trajectoire
de formage capturée entre des courroies (12a, 13a, 14a, 15a) adjacentes appartenant
aux au moins deux ensembles de courroies mutuellement opposées (10, 10a) et montées
pour s'étendre sur deux trajectoires sans fin, et en ce que ladite unité de distribution (11) est commandée en translation verticale afin d'adapter
sa position en hauteur à la taille de la charge à emballer, modifiant la géométrie
d'au moins une boucle à géométrie variable (12g, 13g) desdits ensembles de courroies
mutuellement opposées (10, 10a) en conséquence.
9. Procédé pour former un manchon d'emballage dans une machine ensacheuse selon la revendication
8, dans lequel ladite trajectoire de formage est divisée en deux sections définies
par quatre ensembles de courroies mutuellement opposées, symétriquement couplées deux
à deux afin de définir deux parties de trainée continues, distinctes en séquence l'une
après l'autre, l'entraînement des deux parties de traînée linéaires, continues étant
commandé d'une manière indépendante.
10. Procédé pour former un manchon d'emballage dans une machine ensacheuse selon la revendication
9, dans lequel, alors qu'un premier manchon est formé le long de la première desdites
parties de traînée linéaires continues, un second manchon est transféré vers lesdites
unités de distribution (11) et d'assemblage à force (25) le long de la seconde partie
desdites deux parties de traînée linéaires, continues.